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Abstract  The tension wood (TW) properties of a 70 year-old Acer sieboldianum Miq were analyzed 

by using the G-fiber model which was proposed in our previous paper. The roles of the G-layer on the 

origins of (1) a high large tensile growth stress, (2) a large longitudinal Young’s modulus, and (3) a 

high longitudinal drying shrinkage in the tension wood xylem were discussed on the basis of the 

simulations using the G-fiber model. The results suggest that the G-layer generates a high tensile 

stress in the longitudinal direction during the xylem maturation; the longitudinal Young’s modulus of 

the green G-layer becomes significantly higher than that of the lignified layer; furthermore, the 

G-layer tends to shrink extraordinarily higher than that of the lignified layer during the moisture 

desorption. 
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Introduction 

 

Tension wood (TW) shows abnormal xylem properties as compared to the normal wood (NW), e.g. a 

large tensile growth stress, a high longitudinal Young’s modulus, and a large longitudinal shrinkage 

after drying. Some researchers attribute those behaviors to the physical properties of the gelatinous 

layer (G-layer) through comparing xylem properties and anatomical features in the TW xylem.1-4) 

To verify their ideas, it is required to observe the behaviors or physical properties of the 

G-layer by isolating it directly from the lignified layer. However, it is almost impossible to obtain the 

G-layer cylinder without giving any damages. No matter how we could obtain an isolated G-layer 

cylinder, it is still difficult to provide an accurate measurement since the isolated G-layer cylinder is 

too small to be analyzed by the ordinary mechanical testing machine. 

The authors consider that a simulation using a mathematical model of the multi-layered wood 

fiber gives one of the most effective approaches for estimating the behavior of each cell wall 

constituent as it is in the cell wall.5) In the previous report, we proposed a structural model of the 

G-fiber consisting of four-layered cylinders (CML+S1+S2+G), and formulated the mechanical 

behaviors of the G-fiber model on the basis of the reinforced-matrix hypothesis.6)  

The formula derived in the previous report contains several parameters. We need to optimize 

those parameters so as to obtain very reasonable result when we simulate the observed phenomena on 

the basis of the G-fiber model. Conversely to say, it can be considered that the optimized values of the 

parameters should reflect certain internal properties and fine composite structures of each constituent 

material in the G-layer. In this report, based on the simulation using the G-fiber model, we analyzed 

the observed results on the physical properties of the TW xylem which was formed in an inclined 

stem of a 70-years-old Kohauchiwakaede (Acer sieboldianum Miq.), and we tried to explain the role 

of the G-layer on the origin of distinctive xylem properties in the TW.  

 

Experiment 3) 

 

Material and method 

 

A 70-year-old kohauchiwakaede (Acer sieboldianum Miq.), grown on a steep slope at a private 

mountain in Kiyomi-cho, Gifu prefecture, Japan, 14 cm in DBH, having a leaning stem, was used for 

the experiment At the breast height, ten measuring points were set peripherally on the xylem surface 

of the leaning stem. At each point, the released strain of the longitudinal growth stress on the xylem 

surface (εL
X) was measured by using the ordinary strain-gauge method in early April 1988. Thereafter, 

rectangular portions, 70×10×5 mm and 50×10×5 mm in the longitudinal (L), the tangential (T), 

and the radial (R) directions, respectively, were sampled away from the upper or lower positions at 



each measuring point of the released strain. Then, respective portions were used for obtaining the 

tensile Young’s modulus under the green condition (EL
X) and the longitudinal shrinkage (αL

X) from 

green to oven-dried condition.3) 

After that, transverse section, 10µm in thickness, was cut from each measuring point of the 

released strain by the sliding microtome, and it was stained by safranin and ferric hematoxylin, 

thereafter, it was mounted on a slide glass with the jelly-like compound of gelatin, glycerin, and water. 

By using the light microscope connected to the image processor, microscopic images at the large and 

small magnification were photographed within the outermost annual ring of the mounted section. 

From the images photographed at the small magnification, the area composition of domain of each 

tissue, e.g. vessel element (V), ray tissue (R), and wood fiber (F), was computed. From the images at 

the large magnification, the area ratios of the lignified layer (s), the G-layer (g), and the cell lumen in 

the domain of the wood fiber were determined. Frequency of the G-fiber per unit area (Ng) in the 

domain of the wood fiber and that of the normal wood fiber (N-fiber) (Nn) were also counted.  

Flat-sliced samples, 5×5×0.015 mm in L, T, R respective directions, were cut from the 

outermost annual rings of both the NW xylem and the highly-developed TW xylem. Sampled 

specimens from the TW xylem were quickly dried with ethanol, and were treated with an ultra-sonic 

vibrator in water to remove the G-layers from the lignified layer.7) Thereafter, the microfibril angles 

in the middle layer of the secondary wall (MFA) were measured by the iodine-staining method.8) 

 

Observed Results  

 

Obtained results were overviewed in Table 1, which was already reported in our previous paper.3) 

From the Table 1, it can be clearly understood that the TW xylem shows quite distinctive properties as 

compared to the NW xylem. It is considered that either of the G-layer formation or the relatively 

small MFA in the S2 layer of the G-fiber would cause the distinctive xylem properties in the TW. 

However, it is still unsolved which possibility is more positively concerned with the origin of the TW 

properties, or there is something other factor which causes the TW properties. In the present paper, we 

tried to answer this question through simulating the mechanical behaviors of the G-fiber on the basis 

of the formula derived in our previous paper.6) 

 



 

 

Simulation 

 

G-fiber model 

 

A schematic model of the typical G-fiber, consisting of the compound middle lamella (CML), the S1, 

the S2, and the G-layers, was shown in Fig.1.6)  

 

 

 

Parameters in the basic formula 

 



In this report, we focused on three biomechanical processes in the TW xylem, e.g. (1) cell wall 

maturation, (2) elastic deformation due to action of an axial traction under the moisture steady 

condition, and (3) moisture adsorption. The G-fiber tends to shrink or expand in its longitudinal or 

transverse directions when those biomechanical processes occur. We denoted the strains of the 

dimensional changes of the single G-fiber in the longitudinal and the diametral directions as εL and εT, 

respectively, which were simulated by the formula derived in our previous paper. Correctly speaking, 

it is not a model for the behaviors of an isolated fiber, since the constitutive equations used in the 

formulation consider the conditions of shear restraint imposed by neighboring fibers. Basic formula 

to calculate εL and εT contains several parameters, which can be categorized into a few groups as 

follows. 

 

Anatomical factors (See Fig. 1) 

 

r0, r1, r2, r3 : Outer radii in CML, the S1, the S2, and the G layers. 

r4 : Innermost radius in the G-fiber. 

ρ0, ρ1, ρ2, ρ3 : Respectively, ratios of the outer radii to the inner radii in the CML, the S1, the S2, and 

the G layers. ρo= r0/r1, ρ1= r1/r2,ρ2= r2/r3,ρ3= r3/r4. 

h : Thickness of the CML (= r0 – r1 ). 

θ : Microfibril angle in the S2 layer (MFA). 

 

Mechanical factors 

 

E1, E2, E3 : Young’s moduli of the framework bundles of the oriented polysaccharide in the direction 

parallel to the molecular chain of the cellulose in the S1, the S2, and the G layers, respectively. 

S1, S2, S3 : Double shear moduli of the isotropic skeletons of the matrix substances in the S1, the S2, 

and the G layers, respectively. 

S0: Double shear modulus of the CML. 

 

Internal expansive terms 

 

ε1
f, ε2

f, ε3
f : Internal strains caused in the polysaccharide framework bundles in the directions parallel 

to the cellulose molecular chains in the S1, the S2, and the G-layers, respectively. 

ε1
m, ε2

m, ε3
m : Internal strains caused in the matrix skeletons in the S1, the S2, and the G-layers, 

respectively. Those internal strains are caused by the changes of the physical state in the cell wall. 

 

Basic equations to calculate the dimensional changes of the single G-fiber 



 

The basic equations which gives εL and εT were derived as follows in our previous paper.6) 

Ý ε L = f11(p)Ý ε 1
m + f12(p)Ý ε 2

m + f13(p)Ý ε 3
m + f14 (p)Ý ε 1

f + f15(p)Ý ε 2
f + f16(p)Ý ε 3

f + f17(p) Ý P L

Ý ε T = Ý ε t r= r1( )= f21(p)Ý ε 1
m + f22(p)Ý ε 2

m + f23(p)Ý ε 3
m + f24(p)Ý ε 1

f + f25(p)Ý ε 2
f + f26(p)Ý ε 3

f + f27(p)
Ý P L
    (1) 

where a dot on each quantity stands for the derivative by an elapsed time t. Coefficients f11, f12, ・・・, 

f27 are functions of p, and p is a parameter vector whose components are ρ0, ρ1, ρ2, ρ3, θ, E1, E2 , E3, S0, 

S1, S2, and S3. A part of those parameters depend on t during the cell wall maturation, or the moisture 

adsorption. PL stands for an axial traction which acts on both ends of the G-fiber. We can calculate the 

dimensional change of the single wood fiber by integrating the differential equations (1) along the 

physical state change of the cell wall. 

 

Time (or moisture) dependent behaviors of the parameters 

 

Maturation process of the cell wall 

 

The amorphous constituent, such as xylan and lignin, are irreversibly accumulated among the gaps of 

the polysaccharide bundle after the completion of the polysaccharide framework of the cellulose 

microfibril (CMF) and other oriented polyose. In this process, the amorphous constituent hardens into 

the matrix skeleton. Thus, S1, S2, and S3 tend to increase monotonously from very small values to their 

final values. Moreover, the amount of the substance increases irreversibly inside the matrix skeleton 

whose volume is spatially limited. As the inevitable consequence, internal strains ε1
m, ε2

m, ε3
m are 

induced in the S1, the S2, and the G-layers, respectively. 

It is considered that time dependent changes in E1, E2, and E3 are quite smaller than in S1, S2, 

and S3 since the polysaccharide framework had been already completed before the matrix substance 

starts to deposit. However, we should not ignore a possibility that an aging effects, such as an increase 

in the crystallinity of the CMF, would generate internal strains ε1
f, ε2

f, ε3
f in the polysaccharide 

framework bundle.3,6,9-11) In such a case, we need to assume a certain value for each of them. 

 

Drying process in the cell wall 

 

Since the completed xylem (i.e. green wood) contains much water, we need to remove it before 

converting the wood as natural resources into the building or furniture timber. In this process, the 

water molecule is discharged from the absorption site in the matrix skeleton, then, the matrix skeleton 

tends to shrink and harden. This means that S1, S2, S3, ε1
m, ε2

m, and ε3
m tend to change their values 

monotonously in accordance with the moisture desorption. At the same time, a certain 



physicochemical change may occur in the bundle of the CMF. However, it is natural to consider that 

changes of E1, E2, E3 and values of ε1
f, ε2

f, and ε3
f are quite smaller than those of S1, S2, S3, ε1

m, ε2
m, 

and ε3
m since the crystal domain, which is a main component of the polysaccharide framework, 

almost does not participate in the adsorption of the water molecule. 

 

Determination of the values to be assumed for parameters in eqs.(1) 

 

Anatomical factors ρ0, ρ1, ρ2, ρ3, and θ 
 

To determine the values of ρ0, ρ1, ρ2, and ρ3, it is required to know the ratio of the area of each layer to 

the total crosscut area of a single wood fiber. Then, we interrelate the parameters ρ0, ρ1, ρ2, and ρ3 by 

using the following formulus (see APPENDIX (A)). 

ρ0ρ1ρ2 =
1

1− s
, ρ0 =1 +

h

r1
, ρ2 =

1

ρ1 1+ h r1( ) 1− s
,

ρ3 =
1− s

(1− s) − f ⋅ g Ng

( for Ng ≠ 0) , or ρ3 = 1 ( for Ng = 0 ) ,

  (2) 

where s and g stand for the area ratios of the lignified layer (= CML+S1+S2) and the G layer in the 

domain of the wood fiber, respectively. f and Ng stand for the numbers of the wood fiber and the 

G-fiber per unit area in the domain of the wood fiber. Those are experimentally determined values. To 

determine the values of ρ0, ρ1, ρ2 by using the eqs.(2), we need to give at least two of them. In the 

present calculation, with reference to the authors’ previous studies,5,12) we hypothesized 0.025 as the 

value of h/r1, and 1.1 as the value of ρ1. Thereafter, for each measuring point of the released strain, we 

calculated the values of ρ2 and ρ3 by using eqs.(2). Estimated values of ρ2 and ρ3 are displayed in 

Table 2.  
 

 
 

θ is one of the anatomical factors in p. In the present simulation, we used the measured 

values of the MFA in the S2 layer of the N- and the G-fibers, which are displayed in Table 1. 

 

Mechanical factors E1, E2, E3, S1, S2, S3, S0 



 

The S1, the S2, and the G-layers can be regarded as the parallel composites of the crystalline bundle 

of cellulose and the matrix skeleton, then, the simple mixture law is applied to calculate the values of 

E1, E2, E3, S1, S2, and S3 as follows:12) 

E1 = A1 × C1 × Ecry , E2 = A2 × C2 × Ecry , E3 = A3 × C3 × Ecry ,

S1 =
(1− A1C1)Ematr

1 +υ
, S2 =

(1− A2C2)Ematr

1+υ
, S3 =

(1− A3C3)Ematr

1 +υ
,

  (3) 

where ν is Poisson ratio, which is hypothesized to be 0.5 in the same way as our previous 

papers.6,11-13) C1, C2, and C3 are crystallinity indices of the polysaccharide framework in the S1, the S2, 

and the G-layers, respectively. A1, A2, and A3 are weight ratios of the polysaccharide framework in 

respective layers. In this study, the values of A1, A2, and A3 are assumed in Table 3. 

 Ematr is Young’s modulus of the molded matrix substance, which clearly depends on the 

elapsed time during the cell wall maturation (or moisture content during the moisture adsorption). 

With reference to Cousins’s experiments,14,15) it is assumed that Ematr= 2 GPa at the green condition, 

and Ematr= 4~6 GPa at the dried condition. On the other hand, it is considered that Young’s modulus of 

the cellulose crystal along the direction parallel to the molecular chain (Ecry) is not affected by the 

moisture adsorption. With reference to Nishino et al’s study,16) we assume Ecry = 134 GPa regardless 

of the moisture content. 

 Then, we assumed the values and t-dependent patterns of E1, E2, E3, S1, S2, S3 as displayed in 

Table 3 on the basis of the above-mentioned discussions and the after-mentioned Subsidiary 

Conditions, provided that the non-crystalline region in the framework bundle was regarded as the 

matrix substance from the mechanical point of view. The value of S0 was calculated by the method 

described in our previous paper.12) 

 

Internal expansive terms ε1
f, ε2

f, ε3
f, ε1

m, ε2
m, ε3

m
 

 

Neither of the values nor t-dependent patterns can be measured for ε1
f, ε2

f, ε3
f, ε1

m, ε2
m, ε3

m. However, 

we can optimize their values and t-dependent patterns so as to obtain a reasonable simulation.  

 



 

 

Results 

 

Young’s modulus of the green G-layer 

 

Experimental results  

 

Matured secondary xylem of kohauchiwakaede consists of four domains of tissues, i.e. the wood fiber, 

the vessel element, the ray parenchyma, and the axial parenchyma. It is considered that those tissues 

are arranged in a row in the direction parallel to the axis of wood fiber, then, the following formula 

can be used for calculating the longitudinal Young’s modulus of the TW xylem (EL
X) by the simple 

law of mixture.  

EL
X =

1
F + V + R + P

F ⋅ EL
F + V ⋅ EL

V + R ⋅EL
R + P ⋅EL

P( ),                                 (4)  

where EL
F, EL

V, EL
R, and EL

P are Young’s modulus of respective tissues under the green condition, 

and F+V+R+P=1. Considering EL
V/EL

F<<1, EL
R/EL

F<<1, and EL
P/EL

F<<1, we obtain EL
F = EL

X/F. In 

the case of Kohauchiwakaede, the amount of the axial parenchyma is quite lower than that of the 

other tissue, and its morphological feature is almost similar as the wood fiber cell excepting the fact 

that the wall thickness of the axial parenchyma is more or less smaller than that of the wood fiber. In 

this study, for the simplification, we did not distinguish the axial parenchyma from the wood fiber 

when we determined the values of F, V, R, and P. 

According to the observations, there was no significant difference among the measuring points 

on the periphery as to the morphological properties of the G-fiber, e.g. the thickness of the lignified 



layer, that of the G-layer, and their morphological appearance. The same can be said in the case of the 

N-fiber. Then, applying the simple mixture law to the fiber domain that is regarded as a parallel 

composite of the G-fiber and the N-fiber, we obtain the following formula: 

EL
F = φ ⋅ EL

g + (1− φ)EL
n = EL

g − EL
n( )φ + EL

n , where φ = Ng / f , Ng + Nn = f ,  (5) 

where EL
g and EL

n are respectively the axial Young’s modulus of the green G-fiber and that of the 

green N-fiber, and φ is the relative frequency of the G-fiber in the fiber domain. On the other hand, we 

obtained the relationship between φ and EL
F (= EL

X/F) as shown in Table1, which was approximated 

by the following linear regression: 

  EL
F = 7.74 φ + 8.50  ( r = 0.857**) .      (6) 

Then, comparing eqs.(5) and (6) directly, we obtain 

  EL
g = 16.24 [GPa] , EL

n = 8.50 [GPa] ,     (7) 

provided that we did not use the data obtained from the measuring point 5 when deriving eq. (6) for 

the following reason. The observed value of the longitudinal Young’s modulus at the measuring point 

5 was quite larger regardless of having very small amount of G-fiber formation, therefore, estimated 

value of EL
g becomes abnormally larger at the position 5 than at the other positions. It is supposedly to 

say that something error happened when measuring the elastic modulus of the specimen at the 

position 5. 

 

Simulation using the wood fiber model 

 

In this simulation, we assumed the condition of the steady moisture state (green condition, i.e. the 

state at t = T3 in Table 3). Then, every component in p must be constant, and both dεi
m and dεi

f (i = 1, 

2, 3) should be all nil. Then, from eqs.(1), we obtain the following formula to calculate the 

longitudinal Young’s modulus of the wood fiber (EL): 

  EL = {1/(πr02)}dPL/dεL =  {1/(πr02)}/f17(p) .    (8) 

The values assumed in Table 3 were used for the simulation using eq.(8). Firstly, we optimized the 

values of C1 and C2 in eqs.(3) so as to simulate the experimentally determined value of EL
n (= 

8.50GPa). In this simulation, we assumed that the degree of crystallinity in the framework bundle of 

the oriented polysaccharide is identical in the S1 and the S2 for convenience since there is no reason 

for considering that properties of the CMF are different each other between in the S1 and in the S2 

layer. Thereafter, we applied the optimized values of C1 and C2 to the simulation of EL in the green 

G-fiber, and optimized the values of C3 so as to obtain the experimentally determined value of EL
g (= 

16.24GPa). Finally, the optimized values of C1, C2, and C3 became: 

C1 (= C2 ) = 0.494,   C3 = 0.221.     (9) 

From this result, we calculate the longitudinal Young’s modulus of the lignified layer in the N-fiber 

(EN
n), that of the lignified layer in the G-fiber (EN

g), and that of the G-layer (EG
g) as follows: 



   In the N-fiber : EN
n = 13.13 [GPa] 

 In the G-fiber : EN
g = 16.28 [GPa] , EG

g = 28.27 [GPa] .   (10) 

 

Growth strain in the G-layer 

 

Experimental Results 

 

The wood fiber, the vessel element, the ray parenchyma, and the axial parenchyma in the 

differenciating xylem tend to deform during their secondary wall maturation. Thus, the growth strain 

is generated in the maturing xylem. Infinitesimal increase in the longitudinal growth strain of the 

xylem at the macroscopic level (εL
X) can be expressed as the following formula by the simple mixture 

law: 

dεL
X =

F ⋅ EL
F ⋅ dεL

F + V ⋅ EL
V ⋅ dεL

V + R ⋅EL
R ⋅ dεL

R + P ⋅EL
P ⋅ dεL

P

F ⋅ EL
F + V ⋅ EL

V + R ⋅EL
R + P ⋅EL

P .    (11) 

Where dεL
F, dεL

V,dεL
R, and dεL

P are infinitesimal increses of the longitudinal growth strain in 

respective tissues. Assuming EL
V/EL

F<<1, EL
R/EL

F<<1, EL
P/EL

F<<1, and F+V+R+P=1, we obtain 

dε L
X ≅ dε L

F . 

Moreover, we obtain the following formula:  

dεL
X (≅ dεL

F) =
φ ⋅ EL

g ⋅ dεL
g + (1−φ) ⋅EL

n ⋅ dεL
n

φ ⋅ EL
g + (1−φ) ⋅EL

n =
EL

g ⋅ dεL
g − EL

n ⋅ dεL
n( )⋅φ + EL

n ⋅ dεL
n

EL
g − EL

n( )⋅φ + EL
n  (12) 

where dεL
g and dεL

n are respective increments in the longitudinal growth strain of the G-fiber and that 

of the N-fiber respectively. By integrating the eq.(12) along the cell wall maturation, we can obtain 

the growth strain of the newly-formed xylem (εL
X).  

In order to integrate the eq.(12), we also need to know the changes of EL
g and EL

n during the 

process of the secondary wall maturation. It is considered that deposition of the matrix constituents 

have almost no effect on the increases of EL
g and EL

n since the stiffness of the matrix substance is 

quite smaller than that of the framework bundle. Therefore, it is rather natural to consider that 

increases of EL
g and EL

n are caused by a certain qualitative change of the CMF, such as further 

crystallization of cellulose.17) Unfortunately, it is still quite difficult to know the time-dependent 

change of the CMF crystallinity in the cell wall. In the present study, for convenience, we assumed 

that the crystallinity in each layer is almost unchanged during the cell wall maturation, then, we 

hypothesized the EL
g and EL

n becomes constant through the cell wall maturation. 

The growth stress generation is a biomechanical process during the maturation (lignification) 

of the secondary wall.11,17,18) Thus, we integrate eq.(12) along the cell wall maturation in the G-fiber. 

As the result, we obtain the following formula: 



εL
X (≅ εL

F) =
φ ⋅ EL

g ⋅εL
g + (1−φ) ⋅EL

n ⋅εL
n

φ ⋅ EL
g + (1−φ) ⋅EL

n =
EL

g ⋅εL
g − EL

n ⋅εL
n( )⋅φ + EL

n ⋅εL
n

EL
g − EL

n( )⋅φ + EL
n   (13) 

where             εL
g = dεL

g

Maturation
process

∫ ,               εL
n = dεL

n

Maturation
process

∫ .  

Results (7) were used as the values of EL
g and EL

n in this formula. Observed relationship between φ 
and εL

X (=εL
F), which was shown in Table 1, was approximated by the following curvilinear 

regression: 

εL
F = − 0.5554 +

0.6003
φ +1.098

. (r = 0.956*** )     (14) 

Then, comparing the eqs.(13) and (14) directly, we obtained the growth strains of G-fiber (εL
g) and 

the N-fiber (εL
n) as follows: 

  εL
g = -0.2693 [%] , εL

n = -0.0087 [%] .     (15) 

 

Simulation based on the G-fiber model 

 

We integrated the basic formula (1) during the G-fiber wall maturation under the assumption of 

dPL=0. As initial conditions, we adopted εL (t) t=0 = 0, εT (t) t= 0
= 0 . Results (9) were used as the 

values of C1, C2, and C3. Values of the parameters assumed in Table 3 were also used for the 

calculation. Then, we optimized the increments and t-dependent patterns of ε1
f, ε2

f, ε3
f, ε1

m, ε2
m, and 

ε3
m so as to obtain the results (15). However, before integrating eqs.(1), we need to know how the 

maturation of the G-fiber wall proceeds.  

Some scientists clarified the lignification process in the secondary wall of the softwood 

tracheid and the hardwood normal-fiber,19,20) on the other hand, maturation of the G-fiber has 

remained still unclear. Lately, based on the technique of immuno-TEM observation, Kim et al. 

discovered that the activity of the peroxidase is localized in the secondary wall rather after the 

completion of the G-layer.21) This suggests that lignification proceeds in the secondary wall after the 

formation of the thick G-layer. Then, with reference to those investigations, we assumed the 

following conditions as to the maturation of the G-fiber.  

Subsidiary Condition 1: Firstly, lignification in the S1 layer starts at t = 0 after the formation of the 

frameworks of the cellulose and the other oriented polysaccharide in the secondary wall and the 

G-layer, and ends at t = T1. This is the first integration interval. Secondly, the lignification in the S2 

layer starts at t = T1, and ends at t = T2. This is the second integration interval. In the G-layer, 

deposition of a certain matrix substance should proceed, however, no lignification occurs. In this 

study, as the third integration interval, the deposition of the matrix substance in the G-layer starts at 

t = T2 and ends at t = T3. Then the G-fiber maturation is completed at t = T3. S1, S2, and S3 tend to 



increase monotonously and smoothly from very small values to their final values in their respective 

integration intervals. 

Then, we integrate eqs.(1) as follows: 

εL =
dεL

dt

 
 
  

 
 dt

t=0

t=T3

∫
 
 
 

 
 
 =

dεL

dt

 
 
  

 
 dt

The first 
integration 
interval

∫ +
dεL

dt

 
 
  

 
 dt

The second 
integration
interval

∫ +
dεL

dt

 
 
  

 
 dt

The third 
integration 
interval

∫   (1’) 

We need to impose certain subsidiary conditions on values and t-dependent patterns of ε1
f, ε2

f, 

ε3
f, ε1

m, ε2
m, and ε3

m so as to simulate the observed values of εL
n and εL

g. By the way, in the case of the 

softwood xylem, the observed relationship between the longitudinal growth strain and the MFA in the 

latewood tracheid can be simulated by supposing [increment in ε1
m] = 1%, [increment in ε2

m] = 0.5%, 

and [increment in ε1
f] = [increment in ε2

f] = -0.15%.11) With reference to this result, we assumed the 

following subsidiary conditions. 

Subsidiary Condition 2: The values of ε1
m and ε2

m take positive values. Each of them increases 

monotonously and smoothly from 0 to a certain value (= increment) as the lignification proceeds in 

each integration interval.11) It is natural to consider that increments in ε1
m and ε2

m depend on the 

lignin content in respective layers. This is based on the lignin swelling hypothesis. However, we 

assume ε3
m = 0, since no lignification occurs in the G-layer. On the other hand, the values of ε1

f and 

ε2
f take negative values. Each of them tends to change monotonously and smoothly from 0 to a 

certain value (= increment) with the maturation in each integration interval. This postulates the 

cellulose tension hypothesis which considers that the CMF framework tends to contract in the 

direction parallel to the cellulose molecular chain with the aging of the CMF.17, 22) 

Firstly, we simulated the generation of the growth strain of the N-fiber (εL
n = -0.0087%) by 

integrating eq.(1’) under the above subsidiary conditions, and optimized the increments in ε1
f and ε2

f 

so as to obtain the observed value of εL
n (= -0.0087%). Thereafter, we tried to simulate the generation 

of the growth strain of the G-fiber (εL
g = -0.2693%) and optimized the increment ε3

f. In this 

simulation, we assumed the following subsidiary condition in addition to above two conditions: 

Subsidiary Condition 3: According to the observations by using the light- or ultraviolet 

microscopes, there is no specific difference in the morphological appearance between the secondary 

wall of the N-fiber and that of the G-fiber.23) From this fact, we assumed that t-dependent patterns 

and increments in each of ε1
m, ε2

m, ε1
f and ε2

f take identical values between in the N-fiber and in the 

G-fiber. 

S1, ε1
f, and ε1

m are all expressed as monotonously increasing (or decreasing) functions of t in 

the first integration interval. S2, ε2
f, and ε2

m are also monotonously increasing (or decreasing) 

functions of t in the second integration interval. The same can be said for S3, ε3
f, and ε3

m in the third 

integral interval. Each of those monotonously increasing (decreasing) functions can be transformed 

into the function which do not contain T1, T2, and T3 explicitely by transforming the integral variable 



t into γ (=t/T1; 0<t<T1), or ξ (= (t-T1)/(T2-T1); T1<t<T2) or κ (= (t-T2)/(T3-T2); T2<t<T3). Moreover, we 

know those variable transformations alter corresponding integration intervals in eq.(1’) into an 

identical one that is from 0 to 1. Thus, the concrete value of eq.(1’) does not depend on T1, T2, and T3. 

Furthermore, we should notice that integration of eq.(1’) is not affected by the functional shapes of 

t-dependent variables if each variable would change its value very smoothly in each integration 

interval. This is rather reasonable since we consider that the t-dependent changes of those variables 

gradually proceed by the maturation of the matrix skeleton in respective layers (see APPENDIX (B)). 

Thus, we can optimize the value of the increment in ε3
f as displayed in Table 5 which became 

quite larger than those in ε1
f and ε2

f as shown in Tables 4. 

 

 

 

 

 

Drying shrinkage of the G-layer 

 



Experimental results 

 

We can describe the shrinking process of the wood as the function of the moisture content τ that is 
normalized by the moisture content at the fiber saturation point (FSP). We denote the longitudinal 

shrinking process of the wood as αL
X(τ). According to the definition, the longitudinal shrinkage 

αL
X(τ) must satisfy the following boundary condition, αL

X τ( )
τ =1

= 0 .  

αL
X(τ)｜｜｜｜τ=0 (= αL

X) means the oven-dried shrinkage of the wood. An infinitesimal increase of the 

moisture content (dτ) causes an infinitesimal change in the shrinkage of the wood (dαL
X), which is 

described as the following formula: 

dαL
X =

F ⋅E L
F ⋅ dαL

F + V ⋅ E L
V ⋅ dαL

V + R ⋅E L
R ⋅ dα L

R + P ⋅E L
P ⋅ dα L

P

F ⋅E L
F +V ⋅E L

V + R ⋅E L
R + P ⋅ E L

P ,     (16) 

where dαL
F, dαL

V, dαL
R, and dαL

P stand for infinitesimal changes of the longitudinal shrinkage in 

respective tissues. E L
F , E L

V , E L
R , and E L

P are respective Young’s moduli at the moisture content ). 

Assuming E L
V/E L

F << 1, E L
R /E L

F << 1, E L
P /E L

F << 1, and F+V+R+P=1, we obtain 

dαL
X ≅ dαL

F . 

We apply the simple mixture law to the fiber domain consisting of the N- and G-fibers in parallel, 

then, we obtain the following formula: 

 dαL
F (≅ dαL

X) =
φ ⋅ E L

g ⋅ dα L
g + (1−φ) ⋅E L

n ⋅ dαL
n

φ ⋅E L
g + (1−φ) ⋅E L

n =
E L

g ⋅ dα L
g − E L

n ⋅ dα L
n( )⋅φ + E L

n ⋅ dαL
n

E L
g − E L

n( )⋅φ + E L
n ,  (17) 

where dαL
g and dαL

n are infinitesimal changes in the shrinkage of the G-fiber and that of the N-fiber, 

respectively, and E L
g  and E L

n  are axial Young’s moduli of G-fibers and N-fiber, respectively. 

We obtain an oven-dried shrinkage of the wood fiber domain αL
F (=αL

X(τ)｜｜｜｜τ=0) by integrating 

eq.(17) from an arbitrary τ to FSP (τ =1) and extrapolating τ → 0, provided that we need to know the 

τ-dependent patterns of E L
g  and E L

n  in advance. Then, we tentatively expressed E L
g  and E L

n  as 

follows: 

E L
n = EL

n ⋅ξ τ( ) , E L
g = EL

g ⋅ζ τ( ) ,     (18) 

where ξ(τ) and ζ(τ) are monotonously decreasing functions for τ, and they satisfy ξ(τ)｜｜｜｜τ=1 =1, and 

ζ(τ)｜｜｜｜τ=1 =1. EL
n and EL

g are constants, which stand for the axial Young’s moduli of the green N-fiber 

and the green G-fiber, respectively. For simplification, we assumed ξ(τ) = ζ(τ) for all τ, which means 

the decreasing pattern of the longitudinal Young’s modulus in the G-fiber is similar as that in the 

N-fiber. Then, eq.(15) becomes 

dαL
F (≅ dαL

X) =
EL

g ⋅ dα L
g − EL

n ⋅ dαL
n( )⋅φ + EL

n ⋅ dα L
n

EL
g − EL

n( )⋅φ + EL
n .    (19) 

Under those assumptions, we substituted the results (7) to EL
g and EL

n in eq.(19). As the initial 

conditions, αL
g(τ) ｜｜｜｜ τ=1=αL

n(τ) ｜｜｜｜ τ=1=0, were required. Thus, eq.(19) can be integrated during the 

increasing process of the moisture content (from an arbitrary τ to τ=1). We obtain the oven-dried 



shrinkage of the wood fiber domain αL
F ( =αL

F(τ)｜τ=0) as the following formula.  

αL
X (≅ α L

F) =
EL

g ⋅α L
g − EL

n ⋅αL
n( )⋅φ + EL

n ⋅α L
n

EL
g − EL

n( )⋅φ + EL
n .     (20) 

Observed relationship between φ and αL
F, which was shown in Table 1, was approximated by the 

following curvilinear regression: 

  αL
F = − 2.429 +

2.363
φ +1.098

. (r = 0.867***)     (21) 

Then, comparing eqs.(20) and (21) directly, we obtain the oven-dried shrinkage of the N-fiber (αL
n) 

and the G-fiber (αL
g) as follows: 

  αL
n = 0.2771 [%] ,      αT

g = 1.3026 [%] .     (22) 

 

Simulation based on the G-fiber model 

 

Free dimensional change of the single wood fiber due to the moisture adsorption was simulated on the 

basis of the conditions assumed in Table 3. Thus, dPL should be null in eqs.(1). For convenience, we 

calculated the swelling deformation of the wood fiber model εL(τ) by integrating eqs.(1) from τ=0 to 

τ=1. Relationship between the swelling εL (=εL(τ)｜τ=1) and the oven-dried shrinkage αL (=αL(τ)｜τ=0) 

are related each other by the following formulas: 

αL =
εL

εL +1
, εL =

αL

1−α L

.      (23) 

The integral interval for calculating εL (=εL(τ)｜｜｜｜τ=1) is from the oven-dried state (t=T4; τ=0) to the fiber 
saturation point (t=T3; τ=1). It is regarded that increasing moisture content τ is equivalent to the 
reciprocal elapsed time t. The results (9) were used as the values of C1, C2, and C3 in this simulation. 

Then, we optimized the increments in ε1
m, ε2

m, ε3
m, ε1

f, ε2
f, and ε3

f so as to obtain the observed values 

of αL
n and αL

g .  

 Swelling of the softwood tracheid cell wall is mainly caused by the swelling of the matrix 

substance, e.g. hemicellulose, lignin, and noncrystalline cellulose.12,24-27) Therefore, it is quite natural 

to postulate that ε1
m, ε2

m, and ε3
m take positive values with the increase of the moisture content, and 

increase monotonously from 0 to the final values, that is to say, increments. 

 Firstly, we simulated the swelling of the N-fiber (εL
n = 0.2779%). Concretely to say, we 

optimized the values of increments in ε1
m, ε2

m, ε1
f, and ε2

f so as to give the observed value of the 

oven-dried shrinkage αL
n (= 0.2771%). In the present simulation, we assumed ε1

m = ε2
m = ε3

m, and ε1
f 

= ε2
f for convenience.  

 Optimized values of the increments in ε1
m, ε2

m, ε1
f, and ε2

f were obtained by the simulation as 

displayed in Table 6. In our previous report, we succeeded in simulating the observed relationships 

between the longitudinal and the tangential swellings, and the MFA in the clear wood specimen of 



sugi (Cryptomeria japonica) by supposing that ε1
m = ε2

m = 12 ~ 15%, and ε1
f = ε2

f = 0~1%.12) In the 

present simulation, optimized ε1
f and ε2

f became very small but negative, which means that the 

polysaccharide framework bundles in the S1 and the S2 layers tend to contract in the direction parallel 

to the cellulose molecular chains in spite that the moisture content increases in the cell wall. This 

gives us a very strange impression. It is impossible for the authors to give any comment on this result 

at this stage, then, we withhold our mention on this result for the time being. However, their absolute 

values were so small as compared with the increment in ε1
m and ε2

m.  

Secondly, we simulated the oven-dried shrinkage of the G-fiber (αL
g = 1.3026%), and optimized the 

value of the increment in ε3
f. In this simulation it is assumed that increment in each of ε1

m, ε2
m, ε1

f, and 

ε2
f takes an identical value between in the N-fiber and in the G-fiber (see Subsidiary Condition 3). For 

convenience, we assume ε1
m=ε2

m=ε3
m in this simulation. Thereafter, we optimized the value of the 

increment in ε3
f so as to obtain the observed value of αL

g. Results are displayed in Table 7. Optimized 

value of the increment in ε3
f became a large positive value which is quite different from those in ε1

f 

and ε2
f.  

 

 

 



Discussion 

 

Young’s modulus of the green G-layer (EG
g) 

  

According to the results (7), (9), and (10), the predicted Young's modulus of the green G-layer (EG
g) 

became 2.15 times as large as that of the lignified layer in N-fiber (EN
n), and 1.74 times as large as the 

one in the G-fiber (EN
g). In any case, we can say that the longitudinal Young's modulus of the G-layer 

becomes more or less larger than that of the lignified layer in the G- and N-fibers. By the way, the 

predicted value of Young's modulus of the lignified layer in the G-fiber (EN
g) became slightly larger 

than the one in the N-fiber (EN
n). This is because we calculated the value of EN

g in due consideration 

of an experimental fact that the MFA of the S2 layer in the G-fiber was a little smaller than in the 

N-fiber. This may be one of the factors to increase the Young's modulus of the TW xylem. 

  It is well known that the TW becomes very stiffer in the longitudinal direction as it dries. The 

increase of Young's modulus of the TW xylem due to drying is highly correlated with the percentage 

of the G-fiber in the fiber domain.4) This suggests that the G-layer becomes abruptly rigid as the water 

molecule is released. However, the propriety of this suggestion remains to be proved in a next work. 

 Strangely to say, predicted value of the relative crystallinity in the framework bundle of the 

oriented polysaccharide in the G-layer was quite smaller than that in the secondary wall (see results 

(9)). According to the formula derived in our previous paper,12) Young's modulus of the G-layer is 

highly dependent on the ratio of the cellulosic component. In the present simulation, we supposed it to 

be 90% in the G-layer, which may be a little larger than the true value in the green G-layer. It is 

imagined that the G-layer contains not a few amount of non-crystalline polyose, e.g. hemicellulose. 

As another possibility, we indicate a fact that the green G-layer is highly swollen by the water, which 

causes an apparent decrease in the relative crystallinity of the cellulose in the green G-layer. Hitherto, 

we have referred to Norberg and Meier’s classical data on the chemical and physical properties of the 

G-layer in aspen.7) However, we need to verify their conclusion critically for various species. 

 

Growth strain in the G-layer (ε3
f) 

 

Simulated value of ε3
f is quite larger negative than that in the lignified layer (ε1

f and ε2
f). This 

indicates that a large contractive internal strain originates in the polysaccharide framework of the 

G-layer in the direction of the cellulose molecular chain, which causes a high longitudinal tensile 

growth stress in the TW xylem.  

 

Shrinkage and swelling of the G-layer due to moisture adsorption  

 



Many authors have considered that the polysaccharide framework does not swell or shrink by the 

moisture adsorption. However, present simulation shows that the value of ε3
f, which is the swelling 

ability of the polysaccharide framework in the G-layer, becomes a large positive value. Conversely to 

say, the polysaccharide framework in the G-layer tends to shrink in the direction parallel to the 

cellulose molecular chain during the moisture adsorption. This means that the high longitudinal 

drying shrinkage in the TW xylem is induced by the drying shrinkage of the G-layer in its axial 

direction. Lately, Clair and Thibaut observed that the dried G-layer tends to be depressed from 

surrounding lignified layer by using the SEM observation,28) which supports the predicted results in 

the present simulation. 
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APPENDIX (A)  Deriving eqs. (2). 

 

We denote the number of the G-fiber in the wood fiber domain with an area of A as G and that of the 

N-fiber as N, provided that G + N = X. We set the following assumption. 

(Assumption A) The thickness of the lignified wall in the G-fiber is identical with that of the N-fiber 

regardless of the measuring position.  

This assumption is not so inappropriate to the wood fiber domain in the real xylem since the observed 

values of s and X/A (= f ) became almost unchanged regardless of measuring positions as seen from 

Table 1. Moreover, we set the following assumptions. 

(Assumption B) The diameter of the G-fiber is similar as that of the N-fiber.  

(Assumption C) Cellular arrangement in the crosscut surface of the xylem takes a tessellation 

structure consisting of a polygonal cell. 

Then, we can connect the area ratio of the lignified layer [s], and that of the gelatinous layer [g] to ρ0, 

ρ1, ρ2, and ρ3 under the assumptions (A), (B), and (C).  

It may be a little hasty to apply calculated values of ρ0, ρ1, ρ2, and ρ3 to the simulation using 

eqs.(1) since the crosscut shape of the G-fiber model displayed in Fig.1 is accurately circular. 

However, we know that the hexagon is the most closely allied to the circle in shape among the 

polygons which constitute the tessellation arrangement. Then, we set the following assumption 

(Assumption D) Crosscut shape of the wood fiber in the cellular arrangement is a hexagon with an 

area of 
    
3 3 2( )r02  as displayed in Fig.2. 

We denote the thickness of the lignified layer as 
    

3 2( )r0 − r3( ), and that of the G-layer as 

    
3 2( )r3 − r4( ). Distances from the central point of the hexagonal to the lignified and the gelatinous 

layers are denoted as 
    

3 2( )r3  and     3 2( )r4 , respectively. s can be given as the following formula: 

s =
3
2

3 r0
2 − r3

2( )X A =1−
3
2

3 ⋅ r3
2 ⋅ f .    (A1) 

In a similar manner, g is given as the following formula: 

g =
3
2

3 r3
2 − r4

2( )G A = 1− s( )G
X

−
3
2

3 ⋅ r4
2 ⋅
G

A
.   (A2) 

X/A, G/A, s, and g can be decided experimentally as displayed in Table 1. Then, from (A1) and (A2), 

we can obtain r3 and r4 as follows: 

r3 =
1
3

2 3 1− s( ) A
X

, r4 =
1
3

2 3 1− s( ) A
X

− g
A

G

 
 
  

 
 (G ≠ 0). (A3) 



If we denote r0/r1, r1/r2, r2/r3, r3/r4 as ρ0, ρ1, ρ2, ρ3 respectively, we obtain the following equation: 

ρ0 ρ1 ρ2 =
1

1− s
, ρ3 =

1− s( )
1− s( )− g ⋅ f Ng

(for  Ng ≠ 0), ρ3 =1 (for  Ng = 0) ,  (A4) 

where f = X/A, and Ng = G/A. 

 

 

APPENDIX (B)  Integration (1’) is not affected by the functional shapes of 

t-dependent variables, S1, S2, S3, ε1m, ε2m, ε3m, ε1f, ε2f, and ε3f. 
 

We introduce functions ϕ1, ϕ2, and ϕ3 which vary from 0 to 1 in the range of 0 ≤ t ≤ T3  as follows: 

ϕ1 t( ) =
P t( ) 0 ≤ t ≤ T1( )
1 T1 ≤ t ≤ T3( )

 
 
 

, ϕ2 t( )=
0 0 ≤ t ≤ T1( )
Q t( ) T1 ≤ t ≤ T2( )
1 T2 ≤ t ≤ T3( )

 

 
 

  
, ϕ3 t( ) =

0 0 ≤ t ≤ T2( )
R t( ) T2 ≤ t ≤ T3( )
 
 
 

, (B1) 

where P(t), Q(t), and R(t) are monotonously increasing and differentiable functions which vary from 

0 to 1 smoothly in respective domains. With reference to Subsidiary Conditions 1 and 2, we assume 

the following condition as the functional shapes of t-dependent variables Si(t), εi
m(t), and εi

f(t) (i =1, 2, 

3): 

Si(t) = ki ⋅ϕ1(t), εi
m (t) = mi ⋅ϕ i(t), ε i

f (t) = n i ⋅ϕ i(t) .   (i = 1, 2, 3)  (B2) 

where ki, mi, and ni are constants. It is enough natural to assume this condition if those t-dependent 

variables change the values smoothly during the maturation of the matrix skeleton in their respective 

integration intervals. Then, by substituting (B2) into eq.(1’), we obtain the following expression:  

εL = g1 ϕ1(t)( ) dϕ1 t( )
dt

 
 
 

 
 
 

0

T1

∫ dt + g2 ϕ2 (t)( ) dϕ2 t( )
dt

 
 
 

 
 
 

T1

T2

∫ dt + g3 ϕ3(t)( ) dϕ3 t( )
dt

 
 
 

 
 
 

T2

T3

∫ dt . (B3) 

where  

g1 ϕ1( t)( )= m1 ⋅ f11(p) S1 =k1 ⋅ϕ1( t )
+ n1 f14 (p) S1 = k1 ⋅ϕ1 ( t )

(0 ≤ t ≤ T1)

g2 ϕ2 (t)( )= m2 ⋅ f12(p) S2 =k 2⋅ϕ 2( t )
+ n2 f15(p) S2 =k2 ⋅ϕ 2( t )

(T1 ≤ t ≤ T2)

g3 ϕ3 (t)( )= m3 ⋅ f13(p) S3 =k 3⋅ϕ 3( t )
+ n3 f16(p) S3 =k3 ⋅ϕ 3( t )

(T2 ≤ t ≤ T3)

 

 
  

 
 
 

 



From (B1), eq.(B3) is modified into the following expression. 

εL = g1 P(t)( )dP
t=0

t=T1

∫ (t) + g2 Q( t)( )
t=T1

t=T2

∫ dQ(t) + g3 R(t)( )
t=T2

t=T3

∫ dR(t) .   (B4) 

By the way, P(t), Q(t), and R(t) change the values from 0 to 1 monotonously and continuously for 

elapsed time t in their respective integration intervals, then, we can rewrite eq.(B4) as the following 

expression:  

εL = g1 P( )dP
0

1

∫ + g2 Q( )
0

1

∫ dQ + g3 R( )
0

1

∫ dR .     (B5) 

This result indicates that the integration value in eq.(B5) does not depend on the concrete values of T1, 

T2 and T3, furthermore, it is not affected by the functional shapes of t-dependent variables S1, S2, S3, 

ε1
m, ε2

m, ε3
m, ε1

f, ε2
f, and ε3

f if we assume the condition (B2). 


