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Abstract

This paper is a theoretical and a numerical investigation of the stability of a tip-cantilever system

used in Non-Contact Atomic Force Microscopy (NC-AFM) when it oscillates close to a surface.

No additional dissipative force is considered. The theoretical approach is based on a variationnal

method exploiting a coarse grained operation that gives the temporal dependence of the nonlinear

coupled equations of motion in amplitude and phase of the oscillator. Stability criterions for the

resonance peak are deduced and predict a stable behavior of the oscillator in the vicinity of the

resonance. The numerical approach is based on results obtained with a virtual NC-AFM developped

in our group. The effect of the size of the stable domain in phase is investigated. These results

are in particularly good agreement with the theoretical predictions. Also they show the influence

of the phase shifter in the feedback loop and the way it can affect the damping signal.

keywords : NC-AFM, Variational principle, Stability, Virtual machine, Phase shifter, Damping

variations.
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I. INTRODUCTION

In recent years, the use of the Non-Contact Atomic Force Microscopy (NC-AFM) mode

has shown that contrasts at the atomic scale could be achieved on semiconductors and insu-

lators surfaces1,2,3,4,5. Experimental and theoretical features dedicated to the description of

this dynamic mode have been widely discussed in previous papers6,7,8,9,10,11,12. In particular,

it was shown that the high sensitivity of the oscillating tip-cantilever system (OTCS) was

based on the value of the quality factor and on its nonlinear dynamics in the vicinity of the

surface10,13. Current considerations of the authors focus on the origin of the increase of the

damping signal when the tip comes close to the surface, in the range of a few angstroms.

Some claim that the origin of this apparent increase could be due to the hysteretic behavior

of the OTCS10,14. These interpretations implicitly rise the question of the stability of the

OTCS when it is at the proximity of the surface.

The aim of this paper is to show from a theoretical and a numerical point of view that the

nonlinear dynamics of the OTCS leads to various stability domains of its resonance peak that

may help to understand the reason why the NC-AFM mode, while being so sensitive, keeps,

in most of cases, a stable behavior. In other words, this work is an attempt to show that,

if no additional dissipative force is considered between the tip and the surface, an apparent

increase of the damping signal cannot be the consequence of the nonlinear behavior of the

OTCS.

The paper is organized as follow. The first part is dedicated to a description of the non-

linear behavior of the OTCS at the proximity of the surface. To do so, a specific theoretical

frame based on a variational method using a coarse grained operation has been developed.

This gives the explicit temporal dependance of the OTCS equations of motion. These equa-

tions are the basis to analyze the stability of the stationary state. A large part of this work is

detailed in ref.15. Experimentally, as the NC-AFM mode requires the use of a feedback loop

to maintain constant the amplitude at the resonance frequency, which in turn requires to

maintain constant the phase of the oscillator around its resonance value, e.g. −π/2 rd, the

phase variations of the OTCS will be extracted and discussed. The second part of the paper

deals with numerical results obtained with the virtual NC-AFM16 which is very similar to

the experimental machine. These results show unambiguously the contribution of the phase

shifter in the feedback loop and the way it can lead to damping variations.

2



II. THEORETICAL APPROACH OF THE NC-AFM

The present section is divided into three parts. The first one details the specific theoretical

frame for the obtention of the equations of motion in amplitude and phase of the OTCS.

A coarse-grained method gives the equation describing the time evolution of the stationary

state of the OTCS as a function of the coupling term between the tip and the surface.

The second part is a description of the distortion of the resonance peak as a function of the

distance. This part was detailed in ref.15 so that only the main results are given. The results

provide the basis of the discussion about the stability of the branches which is detailed in

the third part.

A. Theoretical frame

We search a solution to the temporal evolution of the OTCS by using a variational

solution based on the principle of least action. Even though this approach exploits the same

physical concepts than the one which had led to the coupled equations in amplitude and

phase of the stationary state of the OTCS10,17, it appears to be more general since here, the

temporal dependance is explicitly obtained. We start from the definition of the action of

the OTCS coupled to an interaction potential :

S =

∫ tb

ta

L (z, ż, t) dt, (1)

where L is the Lagrangian of the system and z (t) the position of the tip with time17 :

L (z, ż, t) = T − V + W (2)

=
1

2
m∗ż (t)2

−

[

1

2
kcz (t)2

− z (t)Fexc cos (ωt) + Vint [z (t)]

]

−
m∗ω0

Q
z(t)ż (t)

ω0, Q, m∗ and kc = m∗ω2
0 are respectively the resonance pulsation, quality factor, effective

mass and cantilever’ stiffness of the OTCS. Fexc and ω are the external drive force and drive

pulsation. Due to the large quality factor, we assume that a typical temporal solution is on

the form :

z (t) = A (t) cos [ωt + ϕ (t)] , (3)
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where A (t) and ϕ (t) are assumed to be slowly varying functions with time compared to the

period T = 2π/ω. The underlined variables of ż (t) in equ.2, e.g. A (t), ϕ (t), Ȧ (t) and ϕ̇ (t),

are calculated along the physical path, thus they are not varied into the calculations18.

To describe the interaction between the tip and the surface, the attractive coupling force

is assumed to derive from a sphere-plane interaction involving the disperse part of the Van

der Waals potential19 :

Vint [z (t)] = −
HR

6 [D − z (t)]
(4)

H , R and D are the Hamaker constant, the tip’s apex radius and the distance between the

surface and the equilibrium position of the OTCS.

The equations of motion in amplitude and phase of the OTCS are obtained by considering

the following coarse-grained operation. Let’s assume a long duration ∆t = tb − ta with

∆t ≫ T and calculate the action as a sum of small pieces of duration T :

S =
∑

n

∫ (n+1)T

nT

L (z, ż, t) dt =
∑

n

(

1

T

∫ (n+1)T

nT

L (z, ż, t) dt

)

T =
∑

n

LeT (5)

Le is the mean Lagrangian during one period and appears as an effective Lagrangian for

a large time scale compared to the period. Owing to the quasi-stationary behavior of the

amplitude and the phase over the period, the effective Lagrangian is calculated by keeping

them constant during the integration. The calculations give :

Le

(

A, Ȧ, ϕ, ϕ̇
)

=
m∗

4

[

Ȧ2 + A2
(

ω + ϕ̇2
)

]

−
kcA

2

4
+

FexcA cos (ϕ)

2
−

1

T

∫ T

0

Vint [z (t)] dt

−
m∗ω0

2Q

[

AȦ cos
(

ϕ − ϕ
)

− AA
(

ω + ϕ̇
)

sin
(

ϕ − ϕ
)

]

(6)

Note that the effective Lagrangian is now a function of the new generalized coordinates A, ϕ

and their associated generalized velocities Ȧ, ϕ̇. At this point, remembering that the period

is small regardless to ∆t = tb − ta during which the total action is evaluated, the continuous

expression of the action is :

S =

∫ tb

ta

Le

(

A, Ȧ, ϕ, ϕ̇
)

dτ , (7)

where the measure dτ is such that T ≪ dτ ≪ ∆t.

Applying the principle of least action δS = 0 to the functional Le, we obtain the Euler-

Lagrange equations for the effective Lagrangian. Thus, the amplitude and phase equations
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of motion of the OTCS coupled to the surface through an interaction involving the disperse

part of the Van der Waals potential are obtained :















ä =
[

(u + ϕ̇)2
− 1
]

a −
ȧ

Q
+

cos (ϕ)

Q
+

aκa

3 (d2 − a2)3/2

ϕ̈ = −

(

2ȧ

a
+

1

Q

)

(u + ϕ̇) −
sin (ϕ)

aQ

, (8)

In equ.8, specific notations were used. d = D/A0 is the reduced distance between the

location of the surface and the equilibrium position of the OTCS normalized to the resonance

amplitude A0 = QFexc/kc, a = A/A0 is the reduced amplitude, u = ω/ω0 is the reduced drive

frequency normalized to the resonance frequency of the free OTCS and κa = HR/ (kcA
3
0) is

the dimensionless parameter that characterizes the strength of the interaction.

B. Resonance frequency shift

The equations of motion of the stationary solutions a and ϕ are obtained by setting

ȧ = ϕ̇ = 0 and ä = ϕ̈ = 0 in equ.8 and lead to two coupled equations of the sine and cosine

of the phase of the OTCS previously calculated17 :











cos (ϕ) = Qa(1 − u2) −
aQκa

3 (d2 − a2)3/2

sin (ϕ) = −ua

, (9)

Solving equ.9 gives the relationship between the frequency and the amplitude at a given

distance d10 :

u± (a) =

√

√

√

√

√

1

a2
−

1

4Q2



1 ∓

√

√

√

√1 − 4Q2

(

1 −
1

a2
−

κa

3 (d2 − a2)3/2

)





2

(10)

The signs plus and minus are deduced from the sign of cos (ϕ) and correspond to values of

the phase ranging from 0 to −90◦ (u−, cos (ϕ) > 0) or from −90◦ to −180◦ (u+, cos (ϕ) < 0),

in agreement with the sign convention of the phase in equ.3. From equ.10 is calculated the

resonance peak at any reduced distance for a given strength of the sphere-surface interaction

and equ.9 give the associated phase variations. The two branches define the distortion of

the resonance peak as a function of d. u− gives the evolution of the resonance peak for

frequency values below the resonance one and u+ for frequency values above the resonance.
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In fig.1 is given the distortion of the resonance peak vs. the reduced distance d. For large

values of d, e.g. when the surface is far from the OTCS, the nonlinear effects are negligible

and the peak keeps a well-defined Lorentzian shape (see equ.10 with κa = 0). When the

OTCS is approached towards the surface, because the interaction is attractive, the resonance

peak starts to distort towards the low frequencies. The distortion of the peak increases as

d decreases. On the fig.1, the branches that are supposed unstable are shown with dashed

lines.

Using equ.10, the resonance frequency shift as a function of the distance d is obtained by

setting a = 1. This former condition ensures the required condition for the NC-AFM mode.

Thus, the normalized frequency shift, (ν − ν0) /ν0, is given by u − 110 :

u
±

(d) − 1 =

√

√

√

√1 −
1

4Q2

(

1 ∓

√

1 +
4

3

Q2κa

(d2 − 1)3/2

)2

− 1 (11)

The frequency shift given by equ.11 vs. d can be deduced from the fig.1 (see the arrows on

the figure). Following the previous discussion about the stability of the different parts of

the resonance peak during the distortion, since the measure is performed as a function of d

with a = 1, no bistable behavior can be observed.

However, in the vicinity of the resonance the branches u+ and u− become very close

(see for instance fig.1 with d3 = 1.012). Therefore, even with an oscillation amplitude

kept constant, question rises about the ability of the OTCS to remain on the same branch.

Qualitatively, one may expect that around a ∼= 1, the branch u− is unstable and u+ is

stable (see fig.1). If this is true, any small fluctuation of the oscillation amplitude might

produce a jump from one branch to the other one as discussed in refs.10,14. Since the branch

u− seems to be unstable, a jump to this branch should lead to an abrupt decrease of the

amplitude, which in turn might produce an apparent abrupt increase of the damping signal

as a consequence of the hysteretic behavior. Because such a jump is, in most of cases, never

observed, it becomes useful to determine more accurately the stability of the two branches.

C. Stability criterions

The stability of the branches u± of the resonance peak is obtained from equations of mo-

tion of the OTCS (see equ.8). By linearizing these equations around the stationary solution
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(now identified by the index “s”) and using classical considerations of the linear theory, one

gets the stability criterions of the branches u± . The stability criterions can be expressed

from the derivatives das/du± of the branches and reduced to the simple expression15:























das

du
> 0 and cos (ϕs) > as/ (2Q) (i)

or
das

du
< 0 and cos (ϕs) < as/ (2Q) (ii)

(12)

The figs.2(a) and (b) show the distortion of the resonance peak and of the associated phase

curve, respectively. The figs.3(a) and 3(b) are zooms on the region α of the figs.2(a) and

(b), respectively.

For the branch u+, das/du+ being always negative and the associated value of the phase

being always defined beyond −π/2 (see section IIB), the criterion (ii) implies that u+ is

always stable, whatever the value of as.

For u−, the sign of the derivative changes twice. For this branch, the phase is always

defined above −π/2. Therefore on the lower part of the branch (small a), das/du− > 0 and

the criterion (i) indicates that the branch is locally stable. When das/du− becomes negative

(see fig.2(a)), because ϕs > −π/2 (see fig.2(b)), the criterion (i) is no more filled. As a

consequence, u− is locally unstable and the instability is precisely located where the infinite

tangent appears. On the upper part of the resonance peak, the curvature of u− changes

again and das/du− > 0 (see fig.3(a)), implying that it is again a locally stable domain.

Thus the branches u− and ϕ− exhibit two stable domains and one unstable.

Note also that the resonance condition is deduced from das/du = 0 which implies

cos (ϕs) = as/ (2Q), or equivalently u− = u+ or again ϕ− = ϕ+. This equality is the

usual resonance condition of a free harmonic oscillator. If as = 1, e.g. without any coupling,

the resonance phase is therefore ϕs = arccos [1/ (2Q)]. For the OTCS we used, Q ≃ 500,

and so ϕs
∼= −π/2. But taking into account the fact that the coupling only slightly modifies

the value of the resonance amplitude, as ≃ 1.0013 (see fig.2(a)), we still obtain ϕs
∼= −π/2

so that we can consider that the nonlinear resonance is always given by the relationship

ϕs = −π/2.

Therefore the theoretical approach foresees that u+ is always stable but that also a small

domain of u− around the resonance value remains stable. If the resonance value would have
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been located at the point where das/du− is infinite, an infinitely small fluctuation would

have been able to generate an abrupt increase of the damping signal as discussed previously

and suggested in ref.10, or more recently in ref.14. Experimentally, an electronic feedback

loop keeps constant the amplitude of the OTCS so that its phase is located around −π/2

(see section below). As a consequence, question rises about the size of the stable domain

in phase around −π/2. If any fluctuation around −π/2 makes the phase going beyond the

stable domain, the OTCS behavior becomes unstable. For Q = 500, the size of the stable

domain is of about 2.6.10−2 rd (see fig.3(b)) whereas it’s reduced to 2.6.10−3 rd for Q = 5000

(data not shown). Thus, if the electronic loop is able to control the phase locking with a

better accuracy than 2.6.10−3 rd, the OTCS will be locked on a stable domain.

Therefore, if the setpoint of the oscillator is properly located at the −π/2 value throughout

an experiment, this value corresponds to a stable domain and consequently will neither give

rise to amplitude or phase variations nor to damping variations.

III. VIRTUAL NC-AFM RESULTS

In a recent paper, we have described a virtual NC-AFM machine built using the Matlab

language and the Simulink toolbox16. This machine is very similar to our own experimental

hybrid machine built with Digital Instruments20 and Omicron21 blocks. The virtual ma-

chine has been extensively used to study the frequency shift and the damping signal in the

approach-retract mode. Two types of situations have been investigated : i− the first one

corresponds to the case where no dissipative force is introduced in the tip-surface interaction,

ii− the second one deals with dissipative forces. In both cases an attractive sphere-plane

Van der Waals interaction is taken into account.

In spite of previous results that have already shown that the damping signal could be

considered as a constant when no dissipative force was introduced16, here we want to inves-

tigate with the virtual machine the stability of the OTCS by looking accurately at its phase

variations within the electronic feedback loop that maintains constant the amplitude of the

oscillations and compare these results with the theoretical predictions. To do so, we still do

not consider any additional dissipative force.

The theoretical results have led to the conclusion that, provided that the OTCS phase is

in the close vicinity of −π/2, this setpoint corresponds to a stable branch. As a consequence,
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the questions are : i− What is the part of the feedback loop that controls the size of the

phase stable domain of the OTCS around -π/2 rd ? and ii− Would it be possible to change

the parameters of this element in order to change the size of the phase stable domain and

thus observe phase variations? As a consequence of these changes, variations of the damping

signal should also be observed.

A. The phase shifter of the feedback loop

In fig.4 is drawn a very simplified schematic diagram of the feedback loop of the NC-

AFM (for more details, see ref.16). Usually, the phase φ (ω) of the phase shifter transfer

function is adjusted to −3π/2 so that the loop oscillates at ν0 which is the free resonance

frequency of the cantilever, corresponding to a tip-surface distance D → ∞. We recall that

the oscillations of the loop are ruled by the relation :

φ (ω) + ϕ (ω) = 0 ± 2nπ, (13)

where n is an integer and ϕ (ω) is the phase difference between the oscillations and the

excitation of the cantilever. If the setpoint is fixed to the resonance frequency, then ϕ (ω0) =

−π/2. The phase adjustment in the Omicron electronics is obtained by changing the bias

of varicap diodes22. The phase shifter transfer function in terms of the p Laplace variable

can be written as H (p) =

(

1 − τp

1 + τp

)2

, the time constant τ being adjusted by the user such

that, at the resonance :

φ (ω0) = −4 arctan (τω0) = −
3π

2
(14)

When the tip-surface distance D is reduced, due to the coupling, ω0 decreases. As a

consequence, φ (ω0) and ϕ (ω0) and are no more equal to −3π/2 and −π/2 respectively.

According to equ.13, the variation of ϕ (ω) is governed by the one of φ (ω). Assuming a

small variation around the resonance frequency ∆ω = ω − ω0, one gets :

φ (ω) ≃ −3π/2 −
4τ

1 + (τω0)
2 ∆ω (15)

As D decreases, ∆ω is negative. Therefore φ (ω) becomes larger than −3π/2 and ϕ (ω)

smaller than −π/2. The decrease of ϕ (ω), ϕ (ω) . −π/2, means that the phase of the

9



OTCS follows the phase branch associated to u+, ϕ+, which is always stable (see fig.2(b)).

Thus the loop is always stable. Moreover, the hypothesis implying that ϕ (ω) keeps a

value close to −π/2 is a very good assumption. To proof that, let us consider for instance

ν0 = 150 kHz, which is a reasonable value for a cantilever. Therefore τ = 2.56.10−6 s (see

equ.14). Assuming now a large frequency shift, ∆ν = −200 Hz, we get ∆φ (ω) = 1.9.10−3 rd

and therefore ∆ϕ (ω) = −1.9.10−3 rd. In spite of the rough assumption of a first order

expansion of the phase of the phase shifter, the typical phase variations of the OTCS around

the nonlinear resonance are less than 2.10−3 rd. This implies that the machine properly

follows the nonlinear resonance, even when large frequency shifts are considered.

The curves [a] in figs.5 and 6 show the phase ϕ (ω) and the damping signal vs. the

distance D, respectively. As expected, the variations are very weak.

B. ”Controlled” damping variations

If we want to observe the phase instability predicted by the theoretical calculations,

the phase shifter transfer function should have been on the form dφ (ω) /dω > 0 around

ω0. A possible expression of such a transfer function would be : H (p) =

(

1 + τp

1 − τp

)2

.

Experimentally, this form is not feasible and even if it were, the loop would become unstable

and therefore no stationary state could be reached. The reason is that the inverse Laplace

transform of 1/ (1 − τp) varies as et/τ which diverges as t → ∞.

In the virtual machine, it is possible to implement a phase shifter with a slope dφ (ω) /dω

larger than the phase shifter built by Omicron. We have retained the following transfer

function which is easy to do with electronic components :

H (p) =







p2 −
ω1

Q1
p + ω2

1

p2 +
ω1

Q1
p + ω2

1






(16)

The parameters ω1 and Q1 may be adjusted to obtain for instance φ (ω0) = −3π/2. The

phase of the transfer function is then :

φ (ω) = −2 arctan

(

ω1ω

Q1 (ω2
1 − ω2)

)

(17)
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For a small frequency shift, dφ (ω) /dω ≃ −4Q1/ω0. Keeping the same values than previously

ν0 = 150 kHz and ∆ν = −200 Hz and assuming Q1 = 50, we now obtain a change ∆φ (ω) of

about 0.26 rd. Consequently, the change ∆ϕ (ω) becomes larger (see the curve [b] in fig.5)

and we now observe an increase of the damping signal as shown in fig.6, curve [b].

The previous examples are pedagogical cases for which an arbitrary large value of the

slope of the phase of the phase shifter was considered. The ideal phase shifter should

maintain the phase φ (ω0) at −3π/2 so that the frequency of the loop remains equal to the

resonance frequency of the cantilever. This is not possible in practice, however it is clear

that the solution retained by Omicron is very close to the ideal case φ (ω0) = −3π/2 because

dφ (ω) /dω is very weak.

IV. CONCLUSION

A variational method based on a coarse-grained operation has been used to investigate

in details the stability of an oscillating tip-cantilever system near a surface. The tip-surface

interaction is described by Van der Waals forces. Results show that the resonance peak of

the oscillator can be described from two branches. The first one, named u+, corresponds to

frequencies larger than the resonance. Stability criterions deduced foresee that it is always

stable. The second one, u−, may be decomposed into three domains : two are stable and one

is unstable. The second stable domain of u− is small and is defined at the upper extremity

of the resonance peak. The phase at the resonance ϕ (ω0) = −π/2 is at the overlap of the

u+ and of this former second stable domain of u−, thus the setpoint ϕ (ω0) = −π/2 belongs

to a stable zone.

This result is of great importance to understand the stability in NC-AFM. In this tech-

nique, the phase of the cantilever is adjusted to −π/2 within an electronic feedback loop

as the tip-surface distance D is infinite. In the approach mode, the frequency of the loop

decreases, consequently the phase becomes smaller than −π/2 because the slope dφ (ω) /dω

of the phase of the phase shifter transfer function is always negative. Thus the oscillator

always “slides” along u+ and the system is unconditionally stable. This is what is usually

observed experimentally and confirmed by the results of the virtual NC-AFM we have built.

Because the slope dφ (ω) /dω and the frequency shift are very weak, we may consider that

the phase ϕ (ω0) of the oscillator is always very close to −π/2, typical variations being less
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than 2.10−3 rd. Consequently, the damping signal keeps constant if no dissipative force is

introduced in the tip-surface interaction.
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Figures

FIG. 1: Distortion of the resonance peak computed from equ.10 for three values of the distance,

d1 = 2, d2 = 1.11 and d3 = 1.012. The numerical parameters are A0 = 20nm, Q = 400 and

κa = 8.10−4. For an attractive coupling, the peak is more and more distorted towards the low

frequencies as d is reduced, e.g. the surface is approached. For each value of d, the unstable

domains of u− are shown with dashed lines. The arrows indicate the resonance frequency shift vs.

d.
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FIG. 2: (a)- Distortion of the resonance peak computed from equ.10. The numerical parameters

are d = 1.05, A0 = 10nm, Q = 500 and κa = 2.5.10−4. The stability criterions foresee that

u+ is always stable whereas u− exhibits two stable domains (continuous lines) and one unstable

(dashed lines). The domains are separated by the spots where the derivative da/du− is infinite.

(b)- Distortion of the phase curve computed from equs.9 associated to the resonance peak. As a

consequence of the stability of u+, ϕ+ is always stable whereas ϕ− exhibits two stable domains

and one unstable.
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FIG. 3: (a)- Zoom in the region α of the resonance peak. As da/du− becomes infinite again, the

criterions define a new domain of u− which is stable. The resonance is located where u+ = u−.

(b)- Zoom in the region α of the phase curve. The resonance is located at −π/2 where ϕ+ = ϕ−

and belongs to a stable domain.
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FIG. 4: Schematic diagram of the feedback loop used in the virtual NC-AFM which is very similar

to the one of the experimental machine.
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FIG. 5: Variations of the phase of the OTCS ϕ (ω) within the feedback loop vs. the distance

D computed from the virtual NC-AFM. The numerical parameters are : resonance amplitude

A0 = 15 nm, spring constant kc = 40 N.m−1, quality factor Q = 5000, tip’s radius R = 10 nm

and Hamaker constant H = 2.10−19 J. Curve [a] : The phase φ (ω) of the transfer function H (p)

of the phase shifter is the one given by equ.14, e.g. is similar to the experimental machine. As

D decreases, ϕ (ω) becomes weakly smaller than −π/2 (less than 2.10−3 rd), therefore follows the

stable branch ϕ+. The machine follows accurately the setpoint, which is always stable, even when

the tip is in the very close vicinity of the surface. The associated damping variation nearly no

varies (see fig.6). Curve [b] : φ (ω) is the phase of H (p) whose expression is given by equ.16.

Around −π/2, the slope dφ (ω) /dω is larger than in case [a] so that ϕ (ω) decreases more quickly.

As a consequence, the damping signal increases.
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FIG. 6: Variations of the damping signal vs. the distance D. Curve [a] : No damping variation is

observed if the phase of the virtual NC-AFM phase shifter is similar to the one of the experimental

machine. In the very close vicinity of the surface, as ϕ (ω0) ' −π/2, e.g. the amplitude of the

oscillations slightly decreases, a weak increase is observed. Curve [b] : As ϕ (ω0) varies more

quickly than in curve [a] due to the different expression of H (p), a larger increase of the damping

is obtained.
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