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2 Section 1
1. Introduction.

In a recent paper [BaMe], Bauke and Mertens have formulated an interesting conjecture
on the behavior of local energy level statistics in disordered systems. Roughly speaking,
their conjecture can be formulated as follows. Consider a random Hamiltonian, Hy (o), i.e. a
random function from some product space, S, where S is a finite space, typically {—1,1},
to the real numbers. We may assume for simplicity that EHx (o) = 0. In such a situation, for
typical o, Hy (o) ~ v/N, while sup, Hy (o) ~ N. Bauke and Mertens then ask the following
question: Given a fixed number, F, what are the statistics of the values N~'/2H ~ (o) that are
closest to this number F, and how are configurations, o, for which these good approximants
of E are realized, distributed on SV? Their conjectured answer, which at first glance seems
rather surprising, is simple: find §x g such that P(IN"Y2Hy(0) — E| < bdn.g) ~ |S|7Vb
for any constant b > 0; then the collection of points 5;,,1E|N_1/2HN(0) — E| over all 0 € SV
converges to a Poisson point process on R, , with intensity measure the Lebesgue measure.

L o2, ...,0", where the k best

Furthermore, for any finite k, the k-tuple of configurations o
approximations are realized, is such that all of its elements have maximal Hamming distance
between each other. In other words, the asymptotic behavior of these best approximants
of E is the same, as if the random variables Hy (o) were all independent Gaussian random
variables with zero mean and variance N, i.e. as if we were dealing with the random energy
model (REM) [Derl]; for this reason, Bauke and Mertens call this phenomenon “universal

REM like behavior”.

This conjecture was proven recently [BK2| in a wide class of models, including mean field
models and short range spin glass models. In the case of Gaussian interactions, it was shown
to hold even for energies that diverge with the volume of the system, N, as En = ¢N¢, for

0 < a < ag, where o is model dependent.

Is is rather clear that the conjecture must break down in general for @ such that ¢N¢ is of
the order of the maximum of Hy (o). It is a natural question to ask what will happen in this
regime. Naturally, the answers will become model dependent, and in general very difficult
to obtain. The only (non-trivial) models where we are able to carry out such an analysis
in detail are the so-called generalized random energy models (GREMs) of Derrida [Der2].
In these models, the extremal process was analyzed in full in [BK1]. The result we obtain
gives a somewhat extreme microcanonical picture of the GREM, exhibiting in a somewhat

tomographic way the distribution of states in a tiny vicinity of any value of the energy.

Let us briefly recall the definition of the GREM. We consider parameters ag = 1 <
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Q1yeey o <2with [, 0, =2,a0=0<ay,...,a, <1,> " a;=1. Let 5y = {-1,1}
be the space of 2V spin configurations o. Let X,,....,, [ = 1,...,n, be independent standard
Gaussian random variables indexed by configurations oy ...0; € {—1,1}¥ In(a-aq)/In2 = yye
define the Hamiltonian of the GREM as Hy (o) = VN X,, with

XO' = \/aXo'l +o \% anXal"'o'n' (1.1)

Then cov (X,, X,/) = A(dn(0,0")), where dn(0,0’) = N~ min{i : 0; # o/} —1], and A(z) is
a right-continuous step function on [0, 1], such that, for any i = 0,1,...,n, A(z) = ap+- - -+a;,

for x € [In(apay, - a;)/In2, In(apay, -+ @iy1)/In2).
Set Jo = 0, and, define, for [ > 0,

In(ag, 41 ay) < (a1 am)
it Ay gt T an

Jl:min{n2J>Jl_1: Vm2J+1}. (1.2)

up to Ji = n. Then, the k segments connecting the points (ag+- - -+ay, , In(apas - - ay,)/1In2),
for [ =0,1,...,k form the concave hull of the graph of the function A(x). Let

ap=ajy_,+1tay 42+ +ajy, Q=0a5 4107 42 0y. (13)
Then
Ina Ina Ina
Lo 2o (1.4)
a a2 ag
Moreover, as it is shown in Proposition 1.4 of [BK1], for any [ = 1,...,k, and for any
Ji—1+1<i<J, wehave In(ay,_, 41 a;)/(ay_,+1+ -+ a;) > In(a;)/a;. Hence
Ina In(a e
na _ i (Qny41---05) (15)
ap j=lica+lJii+2,nag,_ 11+ -+ ay

To formulate our results, we also need to recall from [BK1] (Lemma 1.2) the point process
of Poisson cascades P! on R!. It is best understood in terms of the following iterative
construction. If [ = 1, P! is the Poisson point process on R! with the intensity measure
Kie ®dx. To construct P!, we place the process P'~! on the plane of the first [—1 coordinates
and through each of its points draw a straight line orthogonal to this plane. Then we put on
each of these lines independently a Poisson point process with intensity measure K;e~%dx.
These points on R! form the process P'. The constants Ki,...,K; > 0 (that are different

from 1 only in some degenerate cases) are defined in the formula (1.14) of [BK1].
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We will also need the following facts concerning P! from Theorem 1.5 of [BK1]. Let
Y1 > Y2 > -+ >y > 0. There exists a constant A > 0, such that, for all y > 0,

P(3(21,....m) € PL3i=1,... iz + Yo+ +v25 > (14 +75)y) < exp(—hy).
(1.6)
Here and below we identify the measure P! with its support, when suitable. Furthermore,

for any y € R,
#{(x1,...,m) EP iy + - F oy >yl <00 as. (1.7)

Moreover, let 3 > 0 be such that Gv; > --- > B+ > 1. The integral

Al = /66(71$1+-"71wl)73l(d$1, . ,dl‘l). (18)

R?

is understood as lim,_, o [;(y) with

IL(y) = / eﬁ(vler---erzz)pl(dwl, o dxy)

(xq,..., II)GRZ:
3i,1<i<lyyey+ o Fyge > ()Y

(1.9)
= Z / eﬁ(’h$1+---+%$z)pl(d$1’“"dajl’)‘

J:1 (avl,,..,avl)E]Rl:

Vi=1,...,j—Llivyiz1+-Fv;2; <(v1++v)y
viz1too e >t )y

It is finite, a.s., by Proposition 1.8 of [BK1]. To keep the paper self-contained, let us recall
how this fact can be established by induction starting from [ = 1. The integral (1.8), in

the case | = 1, is understood as lim,_, o I1(y). Here I;(y) = [ ePn®1P;(dx) is finite,

a.s., since P; contains a finite number of points on [y, o], a.s. yFurtherrnore, by [BKL]
or Proposition 1.8 of [BK1], lim, .  I;(y) is finite, a.s., since Esup, <, (I1(y") — 11(y))
converges to zero exponentially fast, as y — —oo, provided that Gv; > 1. If [ > 1, each term
in the representation (1.9) is determined and finite, a.s., by induction. In fact, to see this for
the jth term, given any realization of P’ in R, take its projection on the plane of the first
j coordinates. Then by (1.7), there exists only a finite number of points (z1,...,z;) of P7,
such that yizq + -+ + vj2; > (71 + -+ +7;)y, a.s. Whenever the first j coordinates of a
point of P! in R! are fixed, the remaining [ — j coordinates are distributed as P'~7 on R!=7.
Then the integral over the function e?(Vi+1%i+1++m21) gyer these coordinates is defined by
induction and is finite, a.s., provided that 8v;4+1 > --- > vy > 1. Thus the jth term in (1.9)

is the sum of an a.s. finite number of terms and each of them is a.s. finite. Finally, again by
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Proposition 1.8 of [BK1], lim, ., I;(y) is finite, a.s., since Esup,, <, (I;(y") — Li(y)) — 0 as
y — —oo exponentially fast provided that 8y > --- > By > 1.

Let us define the constants d;, [ = 0,1,... ,k, where dg =0 and

l
d =Y \a2lna;. (1.10)
=1

Finally, we define the domains Dy, for [ =0,...,k — 1, as

21n Qa1
Dy ={ |yl <d+ T* Z aj o (1.11)
AR m
It is not difficult to verify that Dy C D; C --- C Di_1. We are now ready to formulate the
main result of this paper.
Theorem 1.1: Let a sequence cxy € R be such that lim sup cy € Dy and lim inf cy €

N —o0 N—oo

Dy. Then, the point process

0
My = Z {2N+1(2ﬂ_) 1/2, c N/2|X _CN\/_‘} (1.12)
TEXN
converges to the Poisson point process with intensity measure the Lebesgue measure.
Let, forl=1,...,k—1, c€ D;\ D;_1 (where D;_1 is the closure ofD;_1 ). Define
El = |C| - dl, (1.13)
¢ — - .
= i =vVa;/(2Inay), i=1,...,1, 1.14
b= 2ina;) (1.14)
and l
2w ---an)NV -N 2)
Ri(N) = (41 C_Yk) exp( apb/2) H (4N7Ina;) B /2. (1.15)
\/27T(Cll+1 + -+ ak j=1
Then, the point process
My = (1.16)

= UEZE:N 5{RZ(N)‘\/HXGIJP”%"\/EXUL,AU”*C\/N‘}

converges to mized Poisson point process on [0,00]: given a realization of the random variable
Ay, its intensity measure is Ajdx. The random variables A; is defined in terms of the Poisson
cascades Py via

A = /eﬂl<%m1+"'%ml>7>l(dx1,...,d:c,). (1.17)

R
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The next section will be devoted to the proof of this result. Before doing this, we conclude

the present section with a heuristic interpretation of the main result.

Let us first look at (1.12). This statement corresponds to the REM-conjecture of Bauke
and Mertens [BaMe]. It is quite remarkable that this conjecture holds in the case of the
GREM for energies of the form ¢N (namely for ¢ € Dy).

In the REM [Derl], X, are 2 independent standard Gaussian random variables and a
statement (1.12) would hold for all ¢ with |¢| < v2In2: it is a well known result from the
theory of independent random variables [LLR]. The value ¢ = v/21n 2 corresponds to the max-
imum of 2V independent standard Gaussian random variables, i.e., max,ecx, N 125, —
v2In2 a.s. Therefore, at the level ¢ = v/21n 2, one has the emergence of the extremal process.

More precisely, the point process

22: 5{\/2N1ﬂ2(xg*\/2N1n2+1n(47rN1n2)/\/m)}’ (1.18)
o N
that is commonly written as )y 5“131 (X.) with
In(47N In2
un(z) = VENTp - BTN D) | ¢ (119)

+ )
2vV2N In2 V2N 1In2

converges to the Poisson point process P! defined above (see e.g. [LLR]). For ¢ > v2In2,
the probability that one of the X, will be outside of the domain {|z| < ¢v/N}, goes to zero,

and thus it makes no sense to consider such levels.

In the GREM, N—1/2 maX, ey, Xo converges to the value dy, € 0Dy (1.10) (see Theorem
1.5 of [BK1]) that is generally smaller than v/21n 2. Thus it makes no sense to consider levels
with ¢ € Dj,_;. However, the REM-conjecture is not true for all levels in Dj_1, but only in

the smaller domain Dg.

To understand the statement of the theorem outside Dy, we need to recall how the extremal
process in the GREM is related to the Poisson cascades introduced above. Let us set ¥, =
{—=1,1}V* where

w; =In(a; -+~ a;)/In2 (1.20)

with the notation (1.3). Let us also define the functions

l
Un(z) = NY2d = N7'2) " yiIn(4rNnay) /2 + N~z (1.21)
i=1
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with the notations (1.3), (1.10), (1.14), and set

J n
Xg = Z \/aiXdlmo'iv Xgr = Z \/aiXo'Lno'i' (122)
i=1

i=j+1
From what was shown in [BK1], for any [ = 1,...,k, the point process,
SN = Z 5(%(@) (1.23)
GESNw,

converges in law to the Poisson cluster process, &, given in terms of the Poisson cascade, P,

as

&= | POz, ... dz)s . 1.24

= [ PO )i (1.24)
R?

In view of this observation, we can re-write the definition of the process MY, as follows:

I
My = Z Z 5{RI(N)|X’;g—\/ﬁ[|c|—dl—N*1(Fl,N—UE;,()/(\;’))}‘}, (1.25)

GEL N FES(1—w))N

with the abbreviation l
Tin =) viln(4rNIna;)/2 (1.26)
i=1
(c is replaced by |c| due to the symmetry of the standard Gaussian distribution). The
normalizing constant, R;(V), is chosen such that, for any finite value, U, the point process

Z 5{R1(N)‘X;gf\/ﬁ[\c\fdszfl(Fl)NfU)]‘}, (1.27)

FES (1w N

converges to the Poisson point processes on R, with intensity measure given by eV times
Lebesgue measure, which is possible precisely because ¢ € D;\ D;_1, that is |c| — d; is smaller
that the a.s. limit of N—1/2 MAX5ES (1 4, N XUJ(’T This is completely analogous to the analysis
in the domain Dy. Thus each term in the sum over ¢ in (1.25) that gives rise to a “finite”
UlT]\lf ()/f fj), i.e., to an element of the extremal process of X é, gives rise to one Poisson process
with a random intensity measure in the limit of ./\/llN This explains how the statement of the
theorem can be understood, and also shows what the geometry of the configurations realizing

these mixed Poisson point processes will be.

Let us add that, if ¢ € D1, i.e. |¢| = dj, then one has the emergence of the extremal

point process (1.23) with I =k, i.e. > 5 O /(X —di/ N+ N-1/2T_y)} COBVErges to (1.24)
with | = k, see [BK1].



8 Section 2
2. Proof of Theorem 1.1.

Note that (1.17) is finite a.s. since ;3 > --- > ; by (1.4) and f;y; > 1 by the definition of
0. Note also that ¢ can be replaced by |c| in (1.12) and (1.16) due to the symmetry of the

standard Gaussian distribution.

Let MY (A) be the number of points of MY, in a Borel subset A C R,. We will show that

for any finite disjoint union of intervals, A = ngl [aq, by), the avoidance function converges
P(Miy(A) = 0) — Eexp(—|A[Ay), (2.1)

where of course Ag = 1 in the case [ = 0. Note that in that case, the right-hand side is the
avoidance function of a Poisson point process with intensity 1, while in all other cases, this

is the avoidance function of a mixed Poisson point process.

To conclude the proof in the case [ = 0, it is enough to show that for any segment A = [a,b)
EMY(A) — (b—a), N — oco. (2.2)
Then the result (1.12) would follow from Kallenberg’s theorem, see [Ka] or [LLR].

In the cases | = 1,...,k — 1 we will prove that the family { MY, }3°_; is uniformly tight:
by Proposition 9.1V of [DV], this is equivalent to the fact that, for any compact segment,

A = [a,b], and for any given € > 0, one can find a large enough integer, R, such that
PMY(A) > R) <e, VN>1. (2.3)

Finally, we will show that the limit of any weakly convergent subsequence of M, is a simple
point process, that is without double points (see Definition 7.1IV in [DV]). Theorem 7.3II of
[DV] asserts that a simple point process is uniquely characterized by its avoidance function,

which then implies the result (1.16) claimed in Theorem 1.1.
To prove (2.1), we need the following lemma.

Lemma 2.1: Let A = U)_j[ag,b,), 0 < a1 < by < ag < by < -+ < ag < by, with
|Al =370 _1(bg—ay). Let0 < f <1, K(N) > 0 be a polynomial in N. We write K(N)fNA=

ngl [K(N)fNaq’ K(N)beq)-

Foranyi=1,2,...,n, any € >0, § > 0 small enough, and M > 0, there exists Ny, such
that, for all N > Ny and for all y, such that
( (@i +-+a)2nay, +--+2lna, +2In f +¢)
max max )
m=i+1,....,n am + -+ an (24)

(2In @41 +---+21nan+21nf+e)) <y’ <M,
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the probability,

X N[ gKmA) e

P(vs € {—1. 1\ NOn(aian)/2) . |__ X5
(e N

with Xé_l defined by (1.22), is bounded from above and below, respectively, by

exp ( — (1£0)|4]@2m) V2K (N)fNal ol - age—ym/?). (2.6)

Proof. Let us define the quantity

Xt
PN(Z, Y, f, K(N)) = ]P(Hé' c {—1, 1}(111 Qip1+om)/In2 : +—U_’__y\/ﬁ S K(N)fNA) .
(2.7)
We will show that, for any € > 0 small enough and M > 0 large enough, we have
P (iyy, f, K(N)) ~ (2m) 722K (N) SN[ Alafyy - e N2 as N oo, (28)
uniformly for the parameter y in the domain
ax (ai—l—---—I—an)(Zlnam—l—---—|—21nozn—|—21nf—|—e)gyng. (2.9)

m=i+1,...,n Ay, + -+ ap,

N
Then, the probability (2.5) equals (1 — Py (i,y, f, K(N)))a , where the asymptotics of the
quantity Py (i,y, f, K(N)) is established in (2.8). Moreover, by the assumption (2.4),

Pn(i,y, f, K(N)) < (27)"Y22K (N)|A| exp(—eN/2) — 0. (2.10)

Then the elementary inequality, —z — 2% < In(1 —z) < —x, that holds for |z| < 1/2, leads to
(2.6).

Therefore we concentrate on the proof of the asymptotics (2.8). Let X be a standard

Gaussian random variable. Then

Py(n,y, f,K(N)) = P(|X —yV'N| € K(N)fN A) ~ (2m) 722K (N) fV|A]e™ N2, N — o0,
(2.11)
uniformly for y? < M. This implies (2.8) for i = n. Note also that
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so that the upper bound for (2.8) is immediate. We will establish the lower bound by induction

downwards from i = n to ¢ = 1, using the identity

Py (iyy, f,K(N [ dre s 1- 1
Y, T = — - —
w0y, £ K(N)) N [
- (2.13)
) Va; + - nUVIN — it PRNEIA o al
(i1, Y FayVN - ot |, Vet g K)] ",
VN (i1 4+ ay) Vair1+--+ay
By the induction hypothesis for ¢ + 1,
. Vai - Fapy — Jait PR -
Py(i+1, Gt oy Vil Veid T K(N))
VN(ais1 + - +an) Vaiyr +-+ay
; _ (Vait FanyVN—yat)?
~ (27T)_1/2 a; + + Qn QK(N)fN‘A|a’JL\_/’—2af\i3 .. aive 2(a; 41+ +an) ,
Vair1+ -+ ay
(2.14)
uniformly for all y,t that satisfying
i (ajg1 4+ +ap)2nay, +---+2na, +2In f 4+ €,41)
m=i+2,....n A, + ..+ an
(2.15)

Vi T FayVN - Jaity?
S( a; + -+ apyV'N \/a_t) < Mip,
\/N(ai+1+"'+an)
for any €;41 > 0 small enough and M;,; > 0 large enough. The right-hand side of this
inequality reads
B fa; + - - Y — \Ja; M
\/NTl(y)E\/N a; + +ay \/a+1+ +a M+]_St
Vi
S\/N\/a ++a y+ja_+1+ +a L NTH ().
a;

Obviously, the left-hand side of (2.15) holds for all ¢t € (—o0,00), if Ina, + -+ + Ina;10 +

(2.16)

2In f < 0 and €;41 is small enough. Otherwise, it holds, if either

VN

t> max (\/ai+"'+any
Vv al 1nan+"-’-Lj—/Ll<:2(;:,,;,:l:‘2:1n f>0 (2,17)
4 it j’r _ i“" V2Inam, + - +2hae, +2In f + 6i+1) = VNT; (y),
am o aTL

or

=

t <

min (x/ai Tt any

a; m=i+2,...,n:

V% han+-+lnam+21n £30 (2.18)
Aiy1+ -+ ay

_ 2o, + - +2na, +21 i)zNT*.
am—l—---—l—an\/ Ny + -+ 2oy, +2In f + 61 ) = VNTy (y)
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Let us put for convenience T (y) = —oco and Ty (y) = 00, if 2In a, +- - -+2In ;1o +21In f < 0.
Finally,

Vai+ - +any — ait poVait -t an
\/N (@ip1+ - +an) \/az+1+ ~Fan

ol Py (z +1, K) 0, (2.19)

uniformly in the domain where

ﬁ N — it\ 2
( a; + +a y\/_ \/a_> >2lnaj+ -+ 2Ina, +2In f +€41. (2.20)
\/N(ai+1+“'+an)

This domain is equivalent to —oo < t < 400, if 2Inay, + - +2Ina;41 +2In f < 0 and

€i+1 > 0 is small enough. Otherwise, it is reduced to the union of the domains

. VN

(x/ai—l—---any—l- V(a1 + -+ an)(2In oy —|—---—|—21nan—|—21nf—|—ei+1))
T (y)VN

3

(2.21)

and

(\/al Capy — \/(ai“ +-4a)2najy + -+ 2Ina, +2In f + ei+1))

=T5 (y)VN
(2.22)
Then, using the elementary inequalities
—z—2?<In(l—2)< -z, 1+z<e® <14a+2? for|z] <1/2, (2.23)

it is easy to deduce from (2.13), (2.14), and (2.19) the following asymptotic lower bound, if
2lnay, + -+ 2lna;1 +2In f >0

B PR n
(271) 1 Va; + +a

\/ai+1+”'+an

N N
( )f 'L+1a1+2a1+3 Ty

P(i,y, [, K(N)) =

min(7T," - +
(Ty (), Ty W)IVN T (y)VN A (2.24)
T (y)VN max(Ty (y),75" (¥))VN

If2lnajr1+---+2lna,+21n f < 0, then from the same assertions we deduce the same bound,
but with the domain of integration ranging over the entire interval [T} (y)v'N, T3 (y)V/N].
By the change of variables,

V az -+ ant - \/a_zy
\/az+1 + -+ an

(2.25)
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the right-hand side of (2.24) equals

KN min(S; (y),5;5 (¥))VN SY (VN
2
2( )fNaﬁMﬁzaﬁ?) e agefyzNﬂ( / + / )6752/2d8
T
ST (VN max (53 (y).S3 (¥)VN
(2.26)
where
_ Veiy1i + - Faytai + -+ an M
ST (), ST (y) = T , (2.27)
Ssw)= . min  ag totan)/a
Inanp+---+In ;i;2llrl f>0
Vai+--+ay
- Wy + -+ + I f + e ),
x(y m\/na +--+ha,+Inf+e41
(2.28)
S5 (y) = max V(a1 + -+ an)/a;

m=i+1,..., n:

Inap+-+Inam+21In f>0

am+...+an

VIna, + - +Inay, +1nf+ei+1),
(2.29)
if T3 (y) are finite, and, of course, S5 (y) = —oo, if Ty (y) = —o0, Sy (y) = 400, if Ty (y) =

x(y—l—

+00, and finally

_ Vet FanyEVait o Fany/mai + o+ Inag +Inf + e

N (2.30)

S5 (y)

Now let us take any € > ¢;5.1 and M = M; 1 Then, there exist § > 0 and @ > 0, such
that, for all y > 0 satisfying (2.9), we have S (y) < —Q and min(S; (y), S5 (y)) > J; and for
all y < 0 satisfying (2.9), we have S} (y) > Q and max(S; (y), S5 (y)) < —d. Hence

min(S; (),55 (¥))VN SY (VN

2 5\/N 2
(zw)*lﬂ( / + / )efs 12ds > (2%)1/2/ e 2ds — 1,

—QVN
57 (VN max(S; (4),55 W)V
(2.31)

as N — oo. In the case when 21In,, +---+2In ;11 +21In f < 0, we have the analogue of (2.24)
with the integral over [T} (y)V'N,T; (y)v/N], and by the same change we get the bound

ST wVN QvVN
(2m)~1/2 / e % 2ds > (2m) /2 / e /2ds -1, N — oo. (2.32)
ST (VN —-QVN



Beyond the REM conjecture 13

Since €;41 [resp. M;1] could be chosen arbitrarily small [resp. large], by the induction hy-
pothesis, the estimates (2.24), (2.26), and (2.31), (2.32) show that, for any € > 0 small
enough, and M > 0 large enough, the assertion (2.8) holds uniformly in the domain (2.9).
This finishes the proof of the lemma. <$

Lemma 2.1 implies the next lemma.

Lemma 2.2: Letl € {0,...,k—1}, ¢ be with |c| < /2Indy41(@41 + - + ag)/@+1. For
any €,0 > 0 small enough, and M > 0, there exists No = Ny(€,0, M), such that, for all
N > Ny, the probability

X2 >
P(vs e {—1,1}0-w0N . 5 — (|| + \/N‘ K(N)eN2(ay, - ap) N A
( o { } m (|C| Z) € ( )6 (al+1 Clk) )
(2.33)
18 bounded from above and below, respectively, by
exp ( 1+ 6)(27r)_1/22K(N)|A|e_(2‘C‘Z+Z2)N/2) (2.34)

for any —e < z < M.

Proof. If |c| < \/2In @41 (@41 + - - - + @x) /@41, then by (1.5) we have 602/2(54“ ceag)Tl <
1 and with some ¢y > 0 small enough:
(@41 + - +an)2nay, +---+2na, —|—2(02/2 —ln(@Jl+1 —ay,)) + €o)

maX( max s
m:Jl+2,...,n am+ _|_an

(2o + -+ 2na, +2(c*/2 — In(ay,, ---o_zjk))+eo) <

(2.35)
This last inequality remains true with ¢? replaced in the left-hand side by (|c|+ 2)? if z > —e
with € > 0 small enough. Then Lemma 2.1 applies with i = J;+1 and f = 602/2(071+1 ceag) 7t

and gives the asymptotics (2.34).<

Lemma 2.2 with [ =0, 2 =0, K(N) = v/27/2 implies immediately the convergence of the

avoidance function (2.1) in the case | = 0. To conclude the proof of (1.12), let us note that

EMQ(A) = 3 P(|1X, — enVN| € 27N 71 (2m)eN V2 4) (2.36)
oEXN
is the sum of 2%V identical terms, each of them being 27| A|(1 4 o(1)) by the trivial estimate

for standard Gaussian random variables (2.11). Then (2.36) converges to |A| and the proof
of (1.12) is finished.
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To prove the convergence of the avoidance function (2.1) in the case [ > 1, let us write the
event { MY (A) = 0} in terms of the functions U; y defined in (1.21) as

{Miy(4) =0}
= {¥6 € .6 € D [ XS = VN[a + N7 Loy = U (X)) & Ru(N) 4}
(2.37)
with the abbreviations (1.20), (1.22), (1.26). Let us introduce the following event with a
parameter y > 0:

Bﬁv(y):{w:1,...,l,vaezwlN:
(2.38)
20 — 2Nd; = (1 4+ + %)y < U V() <yln +---+ 7).

By the convergence (1.23) to (1.24), the property (1.6) and the symmetry of the standard
Gaussian distribution, the probability of the complementary event satisfies the following
bound:

lim sup P(BY(y)) < 2exp(—hy), (2.39)

N—oo

with some constant h > 0. Now, let us fix any arbitrarily large y > 0 and consider

P(Miy(A4) = 0) =E[T{p1 )y B gt (4120 | X5V 1’VU € S (2.40)
+E [T () B pae, a0y | X57, V521,V € Suyn)].

Due to the representation (2.37), the conditional expectation IE(I[{Mz (4)=0} | X{7 ,VJ 1, Vo €

Yu,~N) can be viewed as the product over o € ¥, y of the quantities (2.33) with

& V2T o

) = ——, K(N)="=][[(4N7Ina,)" /2, (2.41)
ajy1+ -+ ag 2 =1
and
2= 2(6) = (@gr + - +ay) VAN (r,,N - Ulj]é()?gl)), 5 € Sun. (2.42)
Furthermore, on B! , we have z2(o) € (—e, S —— NV RS Zw ~ (with some small
N \/T 1
ar41 ag

Vo € ZwlN)'
Hence, by (2.40) and by Lemma 2.2, for any § > 0 small enough, there exists Ny(d,y) such

enough € > 0), so that Lemma 2.2 applies to I[{Bz (y)}E(I[{Mz (4)=0} | P J 1
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that for all N > N

B[ [T e (0 -o)@n)2ar(N)]ale BNy pBl ()

GEXw, N

> E_]I{Bﬁ\,(y)} H exp ( . (1 o 5)(27T)71/22K(N)‘A|67(2\C\z(6)+z (&))N/2)_ "‘]P)(Bﬁv(y))
&EZwlN

> P(MY (A) =0)

>E|Tpyey [[ e ( — (14 8)(2m) 22K ()] AJe (215 (&))N/Q)_

GEXwN

>E [ H exp ( —(1+ 5)(277)*1/22K(N)|A|e*(2\0\2(6)+22(&))N/2)] ~ P(BY ().

-&EEwZN

(2.43)
Using the convergence (1.23) to (1.24), we derive that for any y > 0 large enough and ¢ > 0

small enough

E T exp(-( =9t 4 lim sup P(By(y)

N—oo
(z1,..,x1)EPy
> lim sup P(Mpy(A) =0) > lim Ninf P(Mny(A) =0) (2.44)
N—oo —0o0

>E [ exp(-(48)Ale 0 00) —lim sup B(By(y)).
N—o00
(Z1,...,21)EP)

Thus (2.44) and (2.39) imply the following bounds:

Eexp(—(1 — 0)|A]A;) + 2exp(—hy) > lim sup P(MY(A) = 0)
e 2.45
>lim inf P(MY (A) =0) > Eexp(—(1 + 0)|A|A;)) — 2exp(—hy). (2.45)

N —o00

Since y > 0 can be chosen arbitrarily large and 6 > 0 fixed arbitrarily small, this finishes the

proof of the convergence of the avoidance function (2.1) in the case of [ =1,2,... k — 1.

To proceed with the proof of tightness (2.3), we need the following lemma.

Lemma 2.3: Letl € {0,...,k—1}, || < v/2Inay1(ap1 + - + ag) /a1, K(N) > 0 is

polynomial in N, z € R. For any segment B C Ry, let us define an integer-valued random

variable
c,z, K(N
T (B)
X' 2N/2 N
= #{c’f € RawN | e VN(le| + 2)| € K(N)e” N (G -+ au) ™ B},

(2.46)
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(i) For any bounded segment A C Ry, any €,0 > 0 small enough and M > 0 there ezists
No = No(6, M, €) such that for all N > Ny, for any B C A and any z €] — €, M[ we have:

P(T %N (B) > 1) < (1 + )| BIK(N)(2/v/2m)e @lelz)N/2, (2.47)

(ii) For any bounded segment A C Ry, any § > 0 small enough, K > 0 large enough and
M > 0 there exists Ng = No(0, M, K) such that for all N > Ny, for any segment B C A with
|B] < K~ and for any

In(2K(N)/v27) —In K
|| N

Z:ZNE] ) M[ (2.48)

we have:
c,z, K(N
P(T " ™M (B) > 2)

_ . 2 (2.49)
< 8|B|K(N)(2/V2m)e Glel=t=0N/2 1. (|B\K(N)(2/\/%)e—<2lclz+z W?) /2.

Remark: The bound (2.49) is far from being the optimal one, but it is enough for our
purpose. Therefore, we do not prove a precise bound that requires much more tedious

computations.

Proof. The right-hand side of (2.47) is bounded from above by
(Qg - @k)NP(\X — VN(|e| +2)| € K(N)GCZN/z(@l+1 e dk)fNB> (2.50)

with X a standard Gaussian random variable. Since by the assumption of the lemma and by

(1.5) we have ¢ /2(ay 1 -~ @) ' < 1, then (2.47) is obvious from the trivial estimate (2.11).

To prove (ii), note that Eﬂf’]\z,’K(N)(B) just equals (2.50), whence
ET % N(B) < (1+6)| BIK (N)(2/v/2m)e~ Clel=+5N72, (2.51)
Finally
BT M (B) 2 2) < BTN (B) - (1-P(Iiy ™M) =0))  (252)
where by Lemma 2.2 ]P’(Tlf’]\zf’K(N)(B) = 0) is bounded from above by the exponent (2.34).

The assumption (2.48) and the fact that |B| < 1/K assure that the argument of this exponent

is smaller than 1 by absolute value, i.e.

0 < (1—68)|BIK(N)(2/v2r)e @lel=+=N/2 1 _ 5 (2.53)
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Then (2.52), (2.51), the bound (2.34) with (2.53) and the elementary fact that e™ < 1—x+
22/2 for 0 < x < 1 yield the estimate (2.49). $

We are now ready to prove the tightness (2.3) of the family {M Yo fori=1,... k-1
For a given € > 0, let us first fix y large enough and N;(y) such that

P(BY(y)) < €/4 VN > N; = Ny(y), (2.54)

which is possible due to (2.39). Now let us split the segment A = [a,b] into R disjoint
segments Aj,... ,Ar of size (b —a)/R, R > 1. Then

R
P({M(4) > Ry N Biy(y Z ({Miy(4) = 2} N By (y))

R
<> > P(CK(Ai,8) N Biy(y,5)) (2.55)

i=1 6E€S,, N

R
+>° ) P(DN(Ai,7) N Dy (Ai,7) N Biy(y,7) N By (y, 7))

=1 7:777762wlNa7’;7£ﬁ
where
Ch(43,7) = {3,7 € S uywii £ 7

X5 = VN[ + N Dy = U (R99)]| € Ri(N) ™ 4 for 5 = .6 = 7,

Diy(Ai,8) = {30 € Sa_wyw 1 | X = VN[a+ N7 (Tuw = Un(X9)]

m
=
3
>
H“,—’

and

By (y,5) = {Vj =1,...,0: 20§ —2Nd; — (v +- - +7)y < U; p(X) < y(n +---+w)}-
(2.57)
Each term in the first sum of (2.55) equals

[ {B (yﬁ)} ( {Cl (AHG)}| a’ J 1)]

(2.58)
1
=E[I 5y (o0} BT oo} | K57 ¥5mn)]

with the random variables Tf}f,’KW) defined in Lemma 2.3 and with parameters ¢, K (N), 2(o)
defined by (2.41) and (2.42). Furthermore, on BX (y,7), the parameter z(5) satisfies the
condition (2.48) with the constant K = e® 1t 4 and M = 2dj(agey + -+~ +an) /% + €



18 Section 2

with some small € > 0. Therefore, if |[4;| = (a — b)/R < e~/ 1+ +7)Y_ then the assertion
(ii) of Lemma 2.3 applies to the conditional expectation in (2.58). Next, each term of the

second sum of (2.55) equals

|: {B (y:1), BN(yﬂ')} ( {D (A,,n)} ‘Xn ) J 1) (]I{Dl (A“,;.)} ‘Xq—’ j= 1):|

J l
[ {B (y,7), BN(y,T)} ( {T°’z(’7)’K(N)(Ai)21}| n]’vJ 1) (2.59)

X E(]I{Tf’]f,(%)’K(N)(Ai)zl} ‘ XT ,Vé 1)}

where on Bl (y,7) N By (y,7) we have —e < 2(7),2(7) < 2dj(aj41 + - + ax)~ /2 + ¢ with
some small € > 0. Then the assertion (i) of Lemma 2.3 applies to the conditional expectations

n (2.59). Thus by Lemma 2.3, for any § > 0, there exists Na(y,d) such that for all N > Ny

R

ZIP’{MO ) > 23N By (y)

62/VIMEN)b - a)R'E( > T o) (2|C|Z(&)+z2(&))N/2)

||'M:g

GEXw, N
R
+) (4/2m) K (N)?(b - a)*R™>
=1
1 —(20elz(6)+22(6)) N
s E( 2 Lot o}

6eX wy N

— (2le|=(3)+22(F) +2lelz(R)+22 (7)) N/z)
> L Bt o L€

+7ﬁ62w1N3+7£ﬁ

=6(b—a)In(y) + R~ (b—a)*In(y)/2

where
fN(?J)Z@/@)K(N)E( > I[{Bgv(y,a—)}e(ch(&Hz (6))N/2)7
GESy, N

In(o) = WEOEWNPE( 3y, e @@

UEEwlN

Here, the quantity In(y) converges to

I(y) =E / eﬁ(“zﬁ”m”)ﬂ(dazl ooy dry)
vi<ji<i:
vizitotvizi<(vitov)y
= / eﬁwlzﬁ”'w”)*“*"'*‘”dwl, o dr < 00
vi<ji<i:

yiwy+otyjey<(yiteovy)y
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Therefore, one can fix N3 = N3(y) large enough and then § = §(y) so small that §(b —
a)Jy(y) < €/4, YN > N3(y). The term Jy(y) converges to

2
It) = E( / AN Py - diy)) (2.60)

Vi=1,...,0:
(viz1+ Az <(vit+-+v)v

which is finite. In fact, J(y) is the sum of [ + 1 terms, the kth of them being

Tk 62,5'1 (v171 +"'+’Ykiﬂk)eﬁz (Ye4+1V0+1 +"'+’szz)e,5'l (YerrWrg1+-+yiwy)

V1<i<k:(ypzp+-v2) <(vi++v)y
Vet1<i<l:(yizy+e+ygzetviv) <(vi+e+v5)y
Ve+1<i<l:(yiazp 4+ Fvgep+ovw) <(vi vy
X e P T ER T UL T T U T WAL T T W ey A dUg g - dUpdwggq - - - dwyp < 00,
(2.61)
Then for any € > 0, one can choose Ny = N4(y) such that for all N > Ny(y) |JIn(y)—J(y)| <
¢/4. Next, let us choose Ry = Ro(y) > K = e+ 71¥(h — @) such that (b —a)?Ry* < 1
and also such that (b—a)2Ry ' J(y) < €/4. Thus (b—a)2R™'Jn(y)/2 < ¢/2 YN > Ny(y) and

VR > Ry. Hence,

R
D PUMY(Ai) > 23N B (y)) < 3¢/4 VR > Ry, and VN > Na(5(y), y), Na(y), Na(y).

i=1

(2.62)
Taking into account (2.54), we obtain that
P(MY(A) > R) <e VR > Ryand VN > max(Ny, Ny, N3, Ny), (2.63)
whence
P(Ml(A) > max(Ry, 2™, 2N2 2Ns 9N4)) < ¢ YN > 1, (2.64)

then MY, is tight.

It remains to show that the limit M! of any weakly convergent subsequence of {./\/llN} isa
simple process, that is very easy. Consider any segment A = [a,b) and its dissecting system
{A;;,i=1,2,...,2",r =1,2,... } such that A11 = [a,(a +b)/2) and A; 2 = [(a + b)/2,D)
are obtained by splitting [a,b) in the middle and the system of disjoint intervals {A, ;,i =
1,2,...,2"} is obtained from {A,_ 1,4 =1,2,...,2""!} by splitting similarly each segment
of the latter system into two parts in the middle. It follows from the estimates (2.54) and

(2.62) that for any € > 0 there exists Ny and rg such that

P(3i=1,...,2" : M (4,;) >2) <e VN > Ny, Vr >r,. (2.65)
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Then for any € > 0 there exists rg such that

P(Fi=1,...,2" : M'(A,;) >2) <e Vr>rg. (2.66)

Then M! can have double points within A with probability smaller than €. Since ¢ > 0 is
arbitrary, it follows that M is simple. Thus the proof of the theorem is complete. ¢

REFERENCES
[BaMe] H. Bauke and St. Mertens. Universality in the level statistics of disordered systems. Phys. Rev. E,
70:025102(R), 2004.

[BK1] A. Bovier and I. Kurkova. Derrida’s generalized random energy models. I. Models with finitely many
hierarchies. Ann. Inst. H. Poincaré Probab. Statist., 40(4):439-480, 2004.

[BK2] A.Bovier and I. Kurkova. Local energy statistics in disordered system: a proof of the local REM conjecture.
Preprint of the University Paris 6, April (2005).

[BKL] A. Bovier, I. Kurkova, M. Lowe. Fluctuations of the free energy in the REM and the p-spin SK models,
Ann. Probab. 30 (2002) 605-651.

[DV] D.J. Daley, D. Vere-Jones, An introduction to the theory of point processes. Springer Series in Statistics,
Springer-Verlag (1988).

[Derl] B. Derrida. Random-energy model: an exactly solvable model of disordered systems. Phys. Rev. B (8),
24(5):2613-2626, 1981.

[Der2] B. Derrida. A generalization of the random energy model that includes correlations between the energies.
J. Phys. Lett., 46:401-407, 1985.

[LLR] M.R. Leadbetter, G. Lindgren, and H. Rootzén. Eztremes and related properties of random sequences and
processes. Springer Series in Statistics. Springer-Verlag, New York, 1983.

[Ka] O. Kallenberg, Random Measures, fourth ed., Akademie Verlag, Berlin, 1986.



