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351, cours de la Libération, 33405 Talence Cedex, FRANCE

∗ To whom correspondence should be addressed; E-mail: laurent.nony@l2mp.fr

PACS 05.45.-a, 07.79.Lh, 45.20.Jj

Submitted April 12, 2001, published in European Physical Journal B 24, pp221-229 (2001)

Abstract

This work is a theoretical investigation of the stability of the non-linear behavior of an oscillating

tip-cantilever system used in dynamic force microscopy. Stability criterions are derived that may

help to a better understanding of the instabilities that may appear in the dynamic modes, Tapping

and NC-AFM, when the tip is close to a surface. A variational principle allows to get the temporal

dependance of the equations of motion of the oscillator as a function of the non-linear coupling term.

These equations are the basis for the analysis of the stability. One find that the branch associated to

frequencies larger than the resonance is always stable whereas the branch associated to frequencies

smaller than the resonance exhibits two stable domains and one unstable. This feature allows to

re-interpret the instabilities appearing in Tapping mode and may help to understand the reason

why the NC-AFM mode is stable.
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I. INTRODUCTION

During the last decade, Dynamic Force Microscopy (DFM) used in the Tapping mode has

been found as a suitable tool to investigate surface morphology, particularly of soft materials

and has been widely used to investigate a very large range of samples including polymers1,2,

biological materials3,4 or organic layers5,6,7. In recent years, the DFM was developed around

the Non-Contact Atomic Force Microscopy (NC-AFM) mode and has shown that contrasts

at the atomic scale could be achieved on semiconductors and insulators surfaces8,9,10,11,12,13.

Experimental and theoretical features dedicated to the description of these two dynamic

modes have been widely discussed in previous papers14,15,16,17,18,19,20. It was shown that the

large sensitivity of the oscillating tip-cantilever system (OTCS) was based on the large value

of its quality factor and on its non-linear dynamics in the vicinity of the surface21,22. Even if

the precise origin of the NC-AFM images contrast remains an open question, Tapping and

NC-AFM results are the consequence of the same non-linear behavior of the OTCS so that

their differences are purely technical. The aim of this article is to show from a theoretical

point of view that the non-linear dynamics of the OTCS leads to various stability domains

that may help to a better understanding of the way the instabilities appear in Tapping and

the reason why the NC-AFM mode, while being so sensitive, keeps, in most of cases, a stable

behavior.

The experimental study of the stability of the non-linear behavior of the OTCS can

be performed through the study of approach-retract curves, from which are deduced the

variations of the oscillations properties as a function of the tip-sample distance17,23. But

the ultimate goal of the approach-retract curves is to extract the surface properties from

amplitude and phase variations (Tapping) or from frequency shift and damping signal (NC-

AFM). In other words, the measure of the evolution of the amplitude with a fixed drive

frequency and a drive amplitude or the one of the frequency shift are two complementary

ways to investigate the non-linear behavior of the OTCS. Thus in this work, the analysis of

the stability of the oscillations will be done from the study of the distortion of the resonance

peak of the oscillator due to the coupling with the surface.

The paper is organized as follow. The first part is dedicated to a description of the

non-linear behavior of the OTCS at the proximity of the surface. To do so, a specific
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theoretical frame giving the explicit temporal dependance of equations of motion of the

OTCS is developed. The description is then based on the equations of the stationary state

of the OTCS that can be interpreted either for the Tapping or for the NC-AFM. In the

second part, these equations are used to analyze the stability of the stationary state. The

third part is a discussion of the results obtained and the way they can be interpreted for

DFM experiments.
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II. NON-LINEAR BEHAVIOR OF THE OTCS AT THE PROXIMITY OF A SUR-

FACE

A. General features

The sketch of the OTCS and notations used in the present work are shown in fig.1. When

a tip oscillates above a surface, several situations can occur. If the oscillation amplitude A is

smaller than the distance D between the surface and the equilibrium position of the OTCS,

the tip never touches the surface. On the contrary, for oscillation amplitudes larger than

D, the tip exhibits intermittent contact situations. The time during which the tip touches

the surface depends on several factors, among which, the local stiffness of the surface is

a key parameter. For example, for very soft materials, the indentation depth can be as

much as the oscillation amplitude24, thus the tip spends half of the oscillation period into

the substrate. For hard materials, the time during which the tip touches the surface is

negligible compared to the oscillation period. Thus, when intermittent contact situations

occur, various assumptions are required to describe the contact between the tip and the

surface23,25,26. For the present purpose, such an analysis introduces useless complications,

therefore we only focus on the non-contact situations. When uniquely non-contact situations

take place, the tip never touches the surface during the whole oscillation period so that the

interaction between the tip and the surface can be described with a simple expression.

The attractive coupling force between the tip and the sample is assumed to derive from

a sphere-plane interaction involving the disperse part of the Van der Waals potential27. The

differential equation describing the position of the tip’s apex as a function of time, z (t), is

given by :

m∗z̈ (t) +
m∗ω0

Q
ż (t) + kcz (t) = Fexc cos (ωt) − ▽Vint [z (t)] , (1)

with :

Vint [z (t)] = − HR

6 [D − z (t)]
(2)

ω0, Q, m∗ and kc = m∗ω2
0 are respectively the resonance pulsation, quality factor, effective

mass and cantilever’ stiffness of the OTCS. Fexc and ω are the external drive force and drive

pulsation. H , R and D are the Hamaker constant, the tip’s apex radius and the distance
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between the surface and the equilibrium position of the OTCS (see fig.1).

Different ways can be used to observe the non-linear behavior of the oscillating nanosphere

at the vicinity of a surface. The most informative is to record several resonance curves as

a function of the distance D16,19,22,28. Another possibility is to keep the oscillation at a

given frequency with a fixed excitation amplitude and to record variations of the oscillation

amplitude and of the phase as a function of D. This latter measurement is readily done by

performing approach curves with the Tapping mode15,16,23,29. As noted in the introduction,

the difference between Tapping and NC-AFM is purely technical but, from a practical point

of view, a description of the variation of the oscillating behavior showing the correspondence

between the two modes is not straightforward. For example, the NC-AFM mode is probably

the simplest way to describe a DFM experiment14, but the non-linear behavior appears in a

quite subtle way while it is immediately observed with the Tapping mode.

The present section is divided into three parts. The first one details the specific theoretical

frame for the obtention of the equations of motion in amplitude and phase of the OTCS.

A coarse-grained method gives the equation describing the time evolution of the stationary

state of the OTCS as a function of the coupling term between the tip and the surface. This

allows to compute the stability of the stationary state. The next part is a description of the

distortion of the resonance peak as a function of the distance. This provides the basis of the

discussion about the oscillating behavior and the stability of the branches which is detailed

in section III. This also provides an easier way to discuss experimental measurements as

those obtained in Tapping and NC-AFM modes. As an example, we use the evolution of the

resonance peak to discuss typical variations of the amplitude and phase in Tapping mode

when the drive frequency is slightly below the resonance one23. These variations, regularly

observed, are the most obvious experimental evidences of the non-linear dynamics of the

OTCS. The third part deals with the analysis of the resonance frequency shift observed in

NC-AFM and the way its stability can be interpreted.

B. Theoretical frame

We search a solution to the temporal evolution of the OTCS by using a variational

solution based on the principle of least action. Even though this approach exploits the same

5



physical concepts than the one which had led to the coupled equations in amplitude and

phase of the stationary state of the OTCS17,22,23, it appears to be more general since here,

the temporal dependance is explicitly obtained. We start from the definition of the action

of the OTCS coupled to an interaction potential :

S =

∫ tb

ta

L (z, ż, t) dt, (3)

where L is the Lagrangian of the system23 :

L (z, ż, t) = T − V + W (4)

=
1

2
m∗ż (t)2 −

[

1

2
kcz (t)2 − z (t)Fexc cos (ωt) + Vint [z (t)]

]

− m∗ω0

Q
z(t)ż (t)

Due to the large quality factor, we assume that a typical temporal solution is on the form :

z (t) = A (t) cos [ωt + ϕ (t)] , (5)

where A (t) and ϕ (t) are assumed to be slowly varying functions with time compared to the

period T = 2π/ω. The underlined variables of ż (t) :

ż (t) = Ȧ (t) cos
[

ωt + ϕ (t)
]

− A (t)
[

ω + ϕ̇ (t)
]

sin
[

ωt + ϕ (t)
]

,

are calculated along the physical path, thus they are not varied into the calculations30.

While among the trial functions solutions that can be chosen the present one is not the

more general, the principle of least action ensures that functionals of this type are the best.

The equations of motion in amplitude and phase of the OTCS are obtained by considering

the following coarse-grained operation. Let’s assume a long duration ∆t = tb − ta with

∆t ≫ T and calculate the action as a sum of small pieces of duration T :

S =
∑

n

∫ (n+1)T

nT

L (z, ż, t) dt =
∑

n

(

1

T

∫ (n+1)T

nT

L (z, ż, t) dt

)

T =
∑

n

LeT (6)

Le is the mean Lagrangian during one period and appears as an effective Lagrangian for

a large time scale compared to the period. Owing to the quasi-stationary behavior of the

amplitude and the phase over the period, the effective Lagrangian is calculated by keeping

them constant during the integration. The calculations give :

Le

(

A, Ȧ, ϕ, ϕ̇
)

=
m∗

4

[

Ȧ2 + A2
(

ω + ϕ̇2
)

]

− kcA
2

4
+

FexcA cos (ϕ)

2
− 1

T

∫ T

0

Vint [z (t)] dt

−m∗ω0

2Q

[

AȦ cos
(

ϕ − ϕ
)

− AA
(

ω + ϕ̇
)

sin
(

ϕ − ϕ
)

]

(7)
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Note that the effective Lagrangian is now a function of the new generalized coordinates A, ϕ

and their associated generalized velocities Ȧ, ϕ̇. At this point, remembering that the period

is small regardless to ∆t = tb − ta during which the total action is evaluated, the continuous

expression of the action is :

S =

∫ tb

ta

Le

(

A, Ȧ, ϕ, ϕ̇
)

dτ , (8)

where the measure dτ is such that T ≪ dτ ≪ ∆t.

Applying the principle of least action δS = 0 to the functional Le, we obtain the Euler-

Lagrange equations for the effective Lagrangian :

d

dτ

(

∂Le

∂Ȧ

)

− ∂Le

∂A
= 0 and

d

dτ

(

∂Le

∂ϕ̇

)

− ∂Le

∂ϕ
= 0 (9)

The amplitude and phase equations of motion of the OTCS coupled to an interaction po-

tential Vint [z (t)] are :























Ä =

[

(

ω

ω0
+ ϕ̇

)2

− 1

]

A − 1

Q
Ȧ +

Fexc cos (ϕ)

kc
− ω

πkc

∂I (A, ϕ)

∂A

ϕ̈ = −
(

2Ȧ

A
+

1

Q

)

(

ω

ω0
+ ϕ̇

)

− Fexc sin (ϕ)

kc

1

A
− ω

πkc

1

A2

∂I (A, ϕ)

∂ϕ

, (10)

with :

I (A, ϕ) =

∫ T

0

Vint [z (t)] dt (11)

The system given by equs.10 is defined for any kind of interaction potential and no particular

hypothesis are required to perform the calculations. This implies that, provided that I (A, ϕ)

is analytical, the equations of motion can be obtained for any kind of non-linearity. For

instance, in ref.31, analogous calculations were performed for the Duffing’s oscillator. If

we consider the sphere-plane interaction involving the disperse part of the Van der Waals

potential (see equ.2), it was shown23 that :

I (A, ϕ) = −πHR

3ω

1√
D2 − A2

(12)

Thus :

∂I (A, ϕ)

∂A
= −πHR

3ω

A

(D2 − A2)3/2
and

∂I (A, ϕ)

∂ϕ
= 0 (13)
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Using usual dimensionless notations23, the equs.10 of the coupled equations of motion be-

comes :















ä =
[

(u + ϕ̇)2 − 1
]

a − ȧ

Q
+

cos (ϕ)

Q
+

aκa

3 (d2 − a2)3/2

ϕ̈ = −
(

2ȧ

a
+

1

Q

)

(u + ϕ̇) − sin (ϕ)

aQ

, (14)

d = D/A0 is the reduced distance between the location of the surface and the equilibrium

position of the OTCS normalized to the resonance amplitude A0 = QFexc/kc, a = A/A0 is

the reduced amplitude, u = ω/ω0 is the reduced drive frequency normalized to the resonance

frequency of the free OTCS and κa = HR/ (kcA
3
0) is the dimensionless parameter that

characterizes the strength of the interaction. The explicit dependance of the coupling term κa

with the oscillation amplitude through the power law A−3
0 indicates the non-linear character

of the dynamics.

C. Resonance peak and amplitude variation recorded during a Tapping experi-

ment

The equations of motion of the stationary solutions a and ϕ are obtained by setting

ȧ = ϕ̇ = 0 and ä = ϕ̈ = 0 in equ.14 and lead to two coupled equations of the sine and cosine

of the phase of the OTCS previously calculated23 :











cos (ϕ) = Qa(1 − u2) − aQκa

3 (d2 − a2)3/2

sin (ϕ) = −ua

, (15)

Solving equ.15 gives the relationship between the sweep frequency and the amplitude at a

given distance d22 :

u± (a) =

√

√

√

√

√

1

a2
− 1

4Q2



1 ∓

√

√

√

√1 − 4Q2

(

1 − 1

a2
− κa

3 (d2 − a2)3/2

)





2

(16)

The signs plus and minus are deduced from the sign of cos (ϕ) and correspond to values of

the phase ranging from 0 to −90◦ (u−, cos (ϕ) > 0) or from −90◦ to −180◦ (u+, cos (ϕ) < 0),

in agreement with the sign convention of the phase in equ.5. From equ.16 is calculated the

resonance peak at any reduced distance for a given strength of the sphere-surface interaction.
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The two branches define the distortion of the resonance peak as a function of d. u− gives

the evolution of the resonance peak for frequency values below the resonance one and u+

for frequency values above the resonance.

For the description of a Tapping experiment, the variation of the amplitude a as a function

of the distance d is readily obtained by rewriting equ.16 as follow :

d
±

=

√

√

√

√

√a2 +





Qκa

3
{

Q (1 − u2) ∓
√

1/a2 − u2
}





2/3

(17)

Consequently, depending on the drive frequency and the drive amplitude (through the A−3
0

dependance into κa), bifurcations from a stable to a bistable state may occur leading to

amplitude and phase jumps. From an experimental point of view, the conditions required for

the appearance of the bifurcations have been extensively discussed in refs.17,23. In particular,

the use of drive frequencies lower than the resonance frequency favor the measurement of

the bifurcations corresponding to the non-contact situations.

In figs.2 and 3 are given the distortion of the resonance peak and the evolution of the

amplitude as a function of d for an identical set of parameters. For large values of d,

e.g. when the surface is far from the OTCS (point K), the non-linear effects are negligible

and the peak keeps a well-defined Lorentzian shape (see equ.16 with κa = 0). When the

OTCS is approached towards the surface, because the interaction is attractive, the resonance

peak starts to distort towards the low frequencies. The distortion of the peak increases as

d decreases. In the vicinity of the resonance, u . 1, a & 1 and for small values of d the

branches u+ and u− become very close. To mimic a Tapping experiment, the drive frequency

is fixed to udrive in fig.3. With the parameters used, at d1 = 2 the oscillations properties are

nearly identical to those at d infinite. When the peak starts to distort the amplitude and

the phase (not shown) vary (L). In the present example, because udrive is chosen below the

resonance, the amplitude first increases. When the OTCS is further approached it reaches

an unstable branch (M) and jumps to the stable branch (N) such that the bistable structure

of the oscillator can be experimentally observed. At a closer distance, the peak further

distorts and the amplitude is reduced since it follows the variations of u+ (point O on fig.3).

Then, when the oscillator is retracted, it follows the upper stable branch until the resonance

value corresponds to the fixed frequency udrive (point P on fig.3) and then jumps down to

the lower stable branch. The curve exhibits a hysteresis cycle (points M, N, P and L). On
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the figs.2 and 3, the branches that are supposed unstable are shown with dashed lines.

D. Resonance frequency shift

Using equ.16, the resonance frequency shift as a function of the distance d is obtained by

setting a = 1. This former condition ensures the required condition for the NC-AFM mode.

Thus, the normalized frequency shift, (ν − ν0) /ν0, is given by u − 122 :

u
±

(d) − 1 =

√

√

√

√1 − 1

4Q2

(

1 ∓
√

1 +
4

3

Q2κa

(d2 − 1)3/2

)2

− 1 (18)

In fig.4 is given the frequency shift as a function of the distance d for the same set of

parameters than the one of figs.2 and 3. Following the previous discussion about the stability

of the different parts of the resonance peak during the distortion, since the measure is

performed as a function of d with a = 1, no bistable behavior can be observed. The

OTCS follows the same branch u− or u+ whose location is always stable whatever the peak

distortion.

Nevertheless, note that it should exist only one branch of variation for the frequency shift

which is defined from the condition a = 1. But two branches are obtained as a consequence

of the two solutions d
±
. When the peak is distorted, the branches u− and u+ become very

close as Q becomes large (see for instance, fig.2 with d3 = 1.012). Therefore even with an

oscillation amplitude kept constant, question rises about the ability of the OTCS to remain

on the same branch. Qualitatively, one may expect that around a ∼= 1, the branch u− is

unstable and u+ is stable (see fig.2). If this is true, any small fluctuation of the oscillation

amplitude might produce a jump from one branch to the other one as discussed in ref.22.

Since the branch u− seems to be unstable, a jump to this branch should lead to an abrupt

decrease of the amplitude, which in turn might produce an apparent abrupt decrease of the

quality factor. Because such a jump should show accidents, both on the resonance frequency

shift curve and on the damping signal, accidents which are, in most cases, not observed, it

becomes useful to determine more accurately the stability of the two branches.

The main aim of the variational method is to define a theoretical frame describing at the

same time the evolution of all the variables : a, ϕ, u and d of the OTCS dynamics. Thus,

it becomes useless to discuss about the stability of each kind of branch for the two dynamic
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modes since the stability of a given couple (a, ϕ), or (a, u) as a function of d can be deduced

for any other couple. The discussion will be made on the branches of the resonance peak.

III. STABILITY CRITERIONS

The stability of the branches u± of the resonance peak (see equ.16) is obtained from

equations of motion of the OTCS (see equ.14). These equations are linearized around the

stationary solution which will be now identified by the index “s”. At this stage, we fall into

the well-known linear theory (see for instance refs.32 and33). Writing into a four dimensions

matrix the linearized system corresponding to the generalized coordinates (a, ϕ) and their

associated generalized velocities (ȧ, ϕ̇), we extract the eigenvalues and discuss the stability

as a function of the sign, negative (stable solution) or positive (unstable solution), of their

real part. The calculations are detailed in the appendix.

The stability criterion for each one of the two branches is given by the following inequation

(see equ.29) :

(

u

Q

)2

−
(

u2 − 1 + ∆
) cos (ϕs)

Qas

> 0 (19)

∆ is proportional to κa (see appendix, equ.22), thus characterizes the non-linear attractive

coupling term. Solving the associated equality gives the critical branch ucrit
±

whose loca-

tion regardless u± defines the stability of each branch. Unfortunately, ucrit
±

has no simple

expression. Therefore the stability condition 19 can not be exploited as is. Nevertheless a

numerical routine allows to get its main features. The fig.5(a) shows the distortion of the

resonance peak and the critical branch ucrit
±

numerically computed for each branch. ucrit
+

never crosses u+ and is always located below it. On the contrary, ucrit
−

crosses u− twice and

their relative position depends on the value of the amplitude which, in turn, is going to

define two domains of stability. The figs.5(b) and 5(c) are zooms on the regions α and β of

u−. The intersection spots are exactly located where the curvature of u− changes. Therefore

it’s worth discussing the stability as a function of the local curvature of the branches u±

and so introducing their derivative das/du±. As shown in the appendix, the inequation 19
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can be summarized as follow :























das

du
> 0 and cos (ϕs) > as/ (2Q) (i)

or
das

du
< 0 and cos (ϕs) < as/ (2Q) (ii)

(20)

The aim of this former expression is to exhibit an explicit and particularly simple dependence

of the stability of the branches as a function of their derivative :

# For the u+ branch, das/du+ being always negative and the associated value of the

phase being always defined beyond −90◦ (see section IIC), thus cos (ϕs) < 0, the criterion

(ii) implies that the u+ branch is always stable, whatever the value of as.

# Concerning u−, the sign of the derivative changes twice. For this branch, the phase is

always defined above −90◦ which in turn means cos (ϕs) > 0. Therefore on the lower part of

the branch (small a), das/du− > 0 and the criterion (i) indicates that the branch is locally

stable. When das/du− becomes negative (see fig.5(b)), because cos (ϕs) is still positive, the

criterion (i) is no more filled. As a consequence, u− is locally unstable and the instability

is precisely located where the infinite tangent appears. On the upper part of the resonance

peak, the curvature of u− changes again and das/du− > 0 (see fig.5(c)), implying that it

is again a locally stable domain. Thus the branch u− exhibits two stable domains and one

unstable.

Note also that the resonance condition is deduced from das/du = 0 which implies

cos (ϕs) = as/ (2Q). This equality is the usual resonance condition of a free harmonic

oscillator. If as = 1, e.g. without any coupling, the resonance phase is therefore

ϕs = arccos [1/ (2Q)]. For the OTCS we used, Q ≃ 500, and so ϕs
∼= −90◦.

IV. DISCUSSION

The previous criterions allow to conclude to the stability of the OTCS for each dynamic

mode. It was shown that, for an attractive coupling, the branch u+ was always stable and

that the instability was controlled by u−. For frequencies lower than the resonance (branch

u−), when the tangent das/du− is positive, the branch is stable. Thus, there is a small

domain close to the resonance value for which the u− branch remains stable.
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For the Tapping, this result implies that the OTCS is locked on a stable branch until

das/du− → ±∞ (see figs.2 and 3, point M) which makes the amplitude jumping up to the

upper stable branch u+ (point N on fig.3) during the approach and jumping down to the

lower stable one u− (point P) during the retract.

For the NC-AFM, the result of the present work shows that u+ is always stable but that

also a small domain of u− around the resonance value remains stable. If the resonance

value would have been located at the point where das/du− is infinite, an infinitely small

fluctuation would have been able to generate a catastrophic behavior like large variations of

the oscillation amplitude and lead to an abrupt increase of the damping signal as previously

discussed and suggested in ref.22.

Nevertheless, the size of the u− stable domain is Q dependant. The more the Q factor

is large, the more the size of the domain is reduced. The fig.6 illustrates the reduction of

the size of the domain for Q = 500 and Q = 5000. With Q = 5000, the size of the domain

is so weak that it nearly no appears on the scale of the figure. As a consequence, even if

the previous discussion may help to understand why abrupt increases of the damping signal

do not systematically occur, question remains unclear for the very high Q factors that can

be obtained in ultra-high vacuum (Q & 10000). At this step, it’s worth giving orders of

magnitude. During a NC-AFM experiment, an electronic feedback loop keeps constant the

amplitude of the OTCS and locks its phase at −90◦. Therefore question rises about the

size of the stable domain in phase around −90◦. If any fluctuation around the locked value

goes beyond the stable domain, the OTCS behavior becomes unstable. For Q = 500, the

size of the stable domain is of about 1.5◦ whereas it’s reduced to 0.15◦ for Q = 5000 (data

not shown). Thus, if the electronic loop is able to control the phase locking with a better

accuracy than 0.15◦, the OTCS will be locked within a stable domain and in turn won’t

give rise to instabilities. In addition, since the ability of the electronic loop to control the

oscillating behavior depends on the value of the quality factor34, the reduction of the domain

of stability might not be a key parameter.

Practically, during our experiments, even with quality factors larger than 10000, drastic

variations of the oscillation amplitude are never observed. Thus, the main aim of the present

work is to show that, if the oscillator is properly locked at the −90◦ value throughout an

experiment, this value corresponds to a stable domain.
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V. CONCLUSION

This paper was a theoretical investigation of the stability of the non-linear behavior of

an oscillating tip-cantilever system close to a surface. A variational principle has allowed

to get the temporal dependance of equations of motion of the oscillator as a function of

the non-linear attractive coupling. The interaction potential chosen is a disperse Van der

Waals one, calculated between a sphere and a plane. The stationary state is obtained and

can be interpreted either in the Tapping mode or in the NC-AFM mode. The stability of

the stationary state is analyzed in terms of distortion of the resonance peak as a function of

the coupling. It is found that stability criterions can be expressed from a simple inequality

involving the sign of the derivative of the curve. The branch associated to the frequencies

larger than the resonance is always stable whereas the branch associated to the frequencies

smaller than the resonance exhibits two stable domains. The instability appears when the

branch exhibits an infinite tangent. This feature allows to re-interpret the instabilities

appearing in Tapping mode and may help to understand why the NC-AFM mode is stable

most of time.

Appendix: Computation of the stability of the branches

Let’s note a = as (1 + ξ) and ϕ = ϕs + p with ξ, p ≪ 1. The index s is attributed to the

stationary solution. Keeping the terms of first order in equ.14, equations of motion of the

variations ξ and p regardless as and ϕs respectively, may be written as :











ξ̈ = (u2 − 1 + ∆) ξ +
u

Q
p − 1

Q
ξ̇ + 2uṗ

p̈ = − u

Q
ξ − cos (ϕs)

Qas
p − 2uξ̇ − 1

Q
ṗ

, (21)

with :

∆ =
κa

3 (d2 − a2
s)

3/2

(

1 +
3as

d2 − a2
s

)

(22)
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The system is solved by setting Ξ = ξ̇, and Ψ = ṗ leading to a linear system of the fourth

order :















ξ̇

ṗ

Ξ̇

Ψ̇















= M















ξ

p

Ξ

Ψ















, (23)

with :

M =















0 0 1 0

0 0 0 1

u2 − 1 + ∆ u/Q −1/Q 2u

−u/Q − cos (ϕs) / (Qas) −2u −1/Q















(24)

The eigenvalues of the matrix are obtained by solving the characteristic polynom given by

P = det (M − λI). P can then be written as :

P =
(

λ2 + λ/Q + M
) (

λ2 + λ/Q + N
)

(25)

By identification :











M + N = 3u2 + 1 − ∆ +
cos (ϕs)

Qas

MN = (u/Q)2 − (u2 − 1 + ∆)
cos (ϕs)

Qas

(26)

The characteristic equation P = 0 is then equivalent to the following system :







λ2 + λ/Q + M = 0

λ2 + λ/Q + N = 0
⇔















λ1,2 =

(

−1/Q ±
√

(1/Q)2 − 4M

)

/2

λ3,4 =

(

−1/Q ±
√

(1/Q)2 − 4N

)

/2
(27)

The stable solutions are the ones given by ℜ (λi) < 032, thus :



















1/Q >
√

(1/Q)2 − 4M

and

1/Q >
√

(1/Q)2 − 4N

⇔ M > 0 and N > 0 (28)
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According to relationships 26, two conditions are necessary to fill equ.28 and in turn to

ensure the stability of the solutions : MN > 0 and M + N > 0.

#Let’s first consider MN > 0 which is the main of the both (see below) :

MN =

(

u

Q

)2

−
(

u2 − 1 + ∆
) cos (ϕs)

Qas

> 0 (29)

The equation MN = 0 can be numerically solved using a Maple routine. Nevertheless a

tractable stability criterion requires to write in a different way the expression 29. Using the

relationship cos (ϕs) = ±
√

1 − (uas)
2 (see equ.15), the two coupled equations of the sine

and cosine of the phase of the stationary state imply :

G (as, u) = Qas

(

1 − u2
)

− g (as) ∓
√

1 − (uas)
2 = 0, (30)

with :

g (as) =
asQκa

3 (d2 − a2
s)

3/2
(31)

Therefore :

dG (as, u) = ∂as
G (as, u) das + ∂uG (as, u)du = 0, (32)

and so :

das

du
= − ∂uG (as, u)

∂as
G (as, u)

(33)

The calculations lead to :

das

du
=

u

Q
× 2 cos (ϕs) − as/Q
(

u

Q

)2

− (u2 − 1 + ∆)
cos (ϕs)

Qas

(34)

The denominator is exactly the product MN , thus :

MN > 0 ⇔ u

Q
× 2 cos (ϕs) − as/Q

das

du

> 0 (35)
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u/Q being always positive, the stability condition MN > 0 is reduced to :

2 cos (ϕs) − as/Q

das

du

> 0 ⇔























das

du
> 0 and cos (ϕs) > as/ (2Q)

or
das

du
< 0 and cos (ϕs) < as/ (2Q)

(36)

#Let’s now consider the condition M + N > 0 :

M + N = 3u2 + 1 − ∆ +
cos (ϕs)

Qas

> 0 (37)

Considering that as varies within the range [0..1 + ε], with 1 ≫ ε > 0, it’s straightforward

to show that the inequality is always filled so that the stability criterions are only given by

the condition MN > 0 and equ.36.
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21 Aimé, J.-P., Couturier, G., Boisgard, R., Nony, L. Relationship between the non linear behaviour

of an oscillating tip-microlever system and the contrast at the atomic scale. Appl. Surf. Sci.,

140:333–338, 1999.
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Figures

FIG. 1: Sketch of the OTCS and notations used.
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FIG. 2: Evolution of the resonance peak computed from equation (16) for three values of the

distance, d1 = 2, d2 = 1.11 and d3 = 1.012. The numerical parameters are A0 = 20 nm, Q = 400

and κa = 8 × 10−4. For an attractive coupling, the peak is more and more distorted towards the

low frequencies as d is reduced, e.g. the surface is approached and lead to the bifurcations observed

on the tapping curve (Fig. 3, point M) when the drive frequency, udrive = 0.9985, is chosen below

the resonance and to the variations of the resonance frequency shift (Fig. 4). For each value of d,

the unstable domains of u− are shown with dashed lines.

21



FIG. 3: Variations of the amplitude as a function of the distance, e.g. approach-retract curve in

the tapping mode computed from equation (17). The numerical parameters are the same than in

Figure 1 and the drive frequency chosen is udrive = 0.9985. The curve exhibits a hysteresis cycle

(MNPL) due to the non-linear coupling that characterizes bifurcations (points M and P) from a

monostable to a bistable state (see text). The stable domains of the branches are shown with

continuous lines and the unstable domain with dashed line.
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FIG. 4: Variations of the frequency shift of the resonance peak of the oscillator as a function of

the distance, e.g. approach-retract curve in NC-AFM mode computed from equation (18). The

numerical parameters are the same than in Figure 1. It’s predicted that the curve is stable with d.
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FIG. 5: (a) Distortion of the resonance peak computed from equation (16). The numerical param-

eters are d = 1.05, A0 = 10 nm, Q = 500 and κa = 2.5 × 10−4. The critical branches ucrit
± are

calculated from equation (19). u+ is always located above its critical branch ucrit
+ and in turn is

always stable. ucrit
− crosses u− twice. This leads to define three domains to describe the stability

of the branch. The domains are defined between the spots where the derivative da/du− diverges

(see text). (b) Zoom in the region α of u−. The stability criterion foresee that below ucrit
− , u− is

stable and unstable above. This is illustrated by the dashed lines. (c) Zoom in the region β of u−.

As da/du− diverges again, it defines a new domain of u− which is predicted to be stable.
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FIG. 6: Zoom on the same scale than Figure 5c of the distortion of the resonance peak for two

values of the quality factor of the OTCS, Q = 500 and Q = 5000. The numerical parameters are

the same than in Figures 5. The unstable domain of u− is still shown with dashed lines but the

size of the second stable domain is drastically reduced for the larger value of Q so that it nearly no

appears on this scale. The associated phase variations regardless −90◦ (not shown) are of about

1.5◦ and 0.15◦ for Q = 500 and 5000, respectively (see text).
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