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Large N asymptotics of orthogonal polynomials
From integrability to algebraic geometry

B. Eynard 1 Service de Physique Théorique de Saclay,

F-91191 Gif-sur-Yvette Cedex, France.

1 Introduction

Random matrices play an important role in physics and mathematics [30, 19, 6, 14, 25, 34, 13]. It

has been observed more and more in the recent years how deeply random matrices are related to

integrability (τ -functions), and algebraic geometry.

Here, we consider the computation of large n asymptotics for orhogonal polynomials as an example

of a problem where the concepts of integrability, isomonodromy and algebraic geometry appear and

combine.

The method presented here below, is not, to that date, rigorous mathematicaly. It is based on the

asumption that an integral with a large number of variables can be approximated by a saddle-point

method. This asumption was never proven rigorously, it is mostly based on “physical intuition”.

However, the results given by that method have been rigorously proven by another method, namely

the Riemann–Hilbert method [7, 8, 11, 12]. The method presented below was presented in many

works [17, 16, 2, 20, 18].

2 Definitions

Here we consider the 1-Hermitean matrix model with polynomial potential:

ZN :=

∫

HN

dM e−Ntr V (M)

=

∫

RN

dx1 . . . dxN (∆(x1, . . . , xN))2
N
∏

i=1

e−NV (xi) (2-1)

1E-mail:



where ∆(x1, . . . , xN) :=
∏

i>j(xi − xj), and the xi’s are the eigenvalues of the matrix M , and V (x)

is a polynomial called the potential:

V (x) =

deg V
∑

k=0

gkx
k (2-2)

Remark 2.1 All the calculations which are presented below, can be extended to a more general

setting, with no big fundamental changes:

- one can consider V ′(x) any rational fraction [3] instead of polynomial, in particular one can

add logarithmic terms to the potential V (x).

- one can consider arbitrary paths (or homology class of paths) of integrations ΓN insteaf of RN ,

in particular finite segments [1] ...

- one can study non hermitean matrix models [20], where the Vandermonde ∆2 is replaced by ∆β

where β = 1, 2, 4.

- one can consider multi-matrix models, in particular 2-matrix model [2, 17, 16].

3 Orthogonal polynomials

Consider the family of monic polynomials pn(x) = xn+O(xn−1), defined by the orthogonality relation:

∫

R

pn(x)pm(x)e−NV (x)dx = hnδnm (3-3)

It is well known that the partition function is given by [30]:

ZN = N !

N−1
∏

n=0

hn (3-4)

Such an orthogonal family always exists if the integration path is R or a subset of R, and if

the potential is a real polynomial. In the more general setting, the orthogonal polynomials “nearly

always” exist (for arbitrary potentials, the set of paths for which they don’t exist is enumerable).

We define the kernel:

K(x, y) :=

N−1
∑

n=0

pn(x)pn(y)

hn
(3-5)

One has the following usefull theorems:

Theorem 3.1 Dyson’s theorem [15]: any correlation function of eigenvalues, can be written in terms

of the kernel K:

ρ(λ1, . . . , λk) = det(K(λi, λj)) (3-6)



Thus, if one knows the orthogonal polynomials, then one knows all the correlation functions.

Theorem 3.2 Christoffel-Darboux theorem [30, 32]: The kernel K(x, y) can be written:

K(x, y) = γN
pN(x)pN−1(y) − pN(y)pN−1(x)

x− y
(3-7)

Thus, if one knows the polynomials pN and pN−1, then one knows all the correlation functions.

Our goal now, is to find large N ”strong” asymptotics for pN and pN−1, in order to have the large

N behaviours of any correlation functions.

Notation: we define the wave functions:

ψn(x) :=
1√
hn

pn(x) e−N
2

V (x) (3-8)

they are orthonormal:
∫

ψn(x)ψm(x) = δnm (3-9)

4 Differential equations and integrability

It can be proven that (ψn, ψn−1) obey a differential equation of the form [9, 7, 30, 33, 5]:

− 1

N

∂

∂x

(

ψn(x)
ψn−1(x)

)

= Dn(x)

(

ψn(x)
ψn−1(x)

)

(4-10)

where Dn(x) is a 2 × 2 matrix, whose coefficients are polynomial in x, of degree at most deg V ′. (In

case V ′ is a rational function, then D is a rational function with the same poles).

(ψn, ψn−1) also obeys differential equations with respect to the parameters of the model [7, 5], i.e.

the coupling constants, i.e. the gk’s defined in 2-2:

1

N

∂

∂gk

(

ψn(x)
ψn−1(x)

)

= Un,k(x)

(

ψn(x)
ψn−1(x)

)

(4-11)

where Un,k(x) is a 2 × 2 matrix, whose coefficients are polynomial in x, of degree at most k.

It is also possible to find some discrete recursion relation in n (see [5]).

The compatibility of these differential systems, i.e. ∂
∂x

∂
∂gk

= ∂
∂gk

∂
∂x

, ∂
∂gj

∂
∂gk

= ∂
∂gk

∂
∂gj

, as well as

compatibility with the discrete recursion, imply integrability, and allows to define a τ -function

[27, 5].

We define the spectral curve as the locus of eigenvalues of Dn(x):

En(x, y) := det(y1 −Dn(x)) (4-12)



Remark 4.1 In the 1-hermitean-matrix model, Dn is a 2 × 2 matrix, and thus degy En(x, y) = 2, i.e. the
curve En(x, y) = 0 is an hyperelliptical curve. In other matrix models, one gets algebraic curves which
are not hyperelliptical.

Remark 4.2 What we will se below, is that the curve EN (x, y) has a large N limit E(x, y), which is also
an hyperelliptical curve. In general, the matrix DN (x) has no large N limit.

5 Riemann-Hilbert problems and isomonodromies

The 2 × 2 system DN has 2 independent solutions:

− 1

N

∂

∂x

(

ψn(x)
ψn−1(x)

)

= Dn(x)

(

ψn(x)
ψn−1(x)

)

, − 1

N

∂

∂x

(

φn(x)
φn−1(x)

)

= Dn(x)

(

φn(x)
φn−1(x)

)

(5-13)

where the wronskian is non-vanishing: det

(

ψn(x) φn(x)
ψn−1(x) φn−1(x)

)

6= 0.

We define the matrix of fundamental solutions:

Ψn(x) :=

(

ψn(x) φn(x)
ψn−1(x) φn−1(x)

)

(5-14)

it obeys the same differential equation:

− 1

N

∂

∂x
Ψn(x) = Dn(x) Ψn(x) (5-15)

Here, the second solution can be constructed explicitely:

φn(x) = e+ N
2

V (x)

∫

dx′

x− x′
ψn(x′)e−N

2
V (x′) (5-16)

Notice that φn(x) is discontinuous along the integration path of x′ (i.e. the real axis in the most

simple case), the discontinuity is simply 2iπψn(x). In terms of fundamental solutions, one has the

jump relation:

Ψn(x+ i0) = Ψn(x− i0)

(

1 2iπ
0 1

)

(5-17)

Finding an invertible piecewise analytical matrix, with given large x behaviours, with given jumps

on the borders between analytical domains, is called a Riemann–Hilbert problem [7, 8, 4].

It is known that the Riemann–Hilbert problem has a unique solution, and that if two R-H problems

differ by ǫ (i.e. the difference between jumps and behaviours at ∞ is bounded by ǫ), then the two

solutions differ by at most ǫ (roughly speeking, harmonic functions have their extremum on the

boundaries). Thus, this approach can be used [7, 11, 12] in order to find large N asymptotics of

orthogonal polynomials: The authors of [7] considered a guess for the asymptotics, which satisfies

another R-H problem, which differs from this one by O(1/N).



Notice that the jump matrix in 5-17 is independent of x, of n and of the potential, it is a constant.

The jump matrix is also called a monodromy, and the fact that the monodromy is a constant, is

called isomonodromy property [27].

Consider an invertible, piecewise analytical matrix Ψn(x), with appropriate behaviours2 at ∞,

which satisfies 5-17, then, it is clear that the matrix − 1
N

Ψ′
n(x)(Ψn(x))−1, has no discontinuity, and

given its behaviour at ∞, it must be a polynomial. Thus, we can prove that Ψn(x) must satisfy

a differential system Dn(x) with polynomial coefficients. Similarly, the fact that the monodromy is

independent of gk and n implies the deformation equations, as well as the discrete recursion relations.

Thus, the isomonodromy property, implies the existence of compatible differential systems, and

integrability [6, 24, 26, 27, 33, 5].

6 WKB–like asymptotics and spectral curve

Let us look for a formal solution of the form:

ΨN(x) = AN(x) e−NT (x)BN (6-18)

where T (x) = diag(T1(x), T2(x)) is a diagonal matrix, and BN is independent of x. The differential

system DN (x) is such that:

DN(x) = − 1

N
Ψ′

NΨ−1
N = AN(x)T ′(x)A−1

N (x) − 1

N
A′

N(x)A−1
N (x)

= AN(x)T ′(x)A−1
N (x) +O(

1

N
) (6-19)

this means, that, under the asumption that AN(x) has a large N limit A(x), T ′
1(x) and T ′

2(x) are the

large N limits of the eigenvalues of DN(x).

With such an hypothesis, one gets for the orthogonal polynomials:

ψN(x) ∼ A11e
−NT1(x)B1,1 + A12e

−NT2(x)B2,1 (6-20)

We are now going to show how to derive such a formula.

7 Orthogonal polynomials as matrix integrals

7.1 Heine’s formula

Theorem 7.1 Heine’s theorem [32]. The orthogonal polynomials p− n(x) are given by:

pn(ξ) =

∫

dx1 . . . dxN

∏N
i=1(ξ − xi) (∆(x1, . . . , xN))2

∏N
i=1 e−NV (xi)

∫

dx1 . . . dxN (∆(x1, . . . , xN))2
∏N

i=1 e−NV (xi)

2The behaviours at ∞ are far beyond the scope of this short lecture. They are easily obtained by computing φn(x)
by saddle point method at large x.



= 〈det(ξ1−M)〉 (7-21)

i.e. the orthogonal polynomial is the average of the characteristic polynomial of the random matrix.

Thus, we can define the orthogonal polynomials as matrix integrals, similar to the partition

function Z define in 2-1.

7.2 Another matrix model

Define the potential:

Vh(x) := V (x) − h ln (ξ − x) (7-22)

and the partition function:

Zn(h, T ) := e− n2

T2 Fn(h,T ) :=

∫

dx1 . . . dxn (∆(x1, . . . , xn))2

n
∏

i=1

e− n
T

Vh(xi) (7-23)

i.e. ZN(0, 1) = Z is our initial partition function.

Heine’s formula reads:

pn(ξ) =
Zn(

1
N
, n

N
)

Zn(0,
n
N

)
= e−N2(Fn( 1

N
, n
N

)−Fn(0, n
N

)) (7-24)

The idea, is to perform a Taylor expansion in h close to 0 and T close to 1.

7.2.1 Taylor expansion

We are interested in n = N and n = N − 1, thus T = n
N

= 1 + n−N
N

= 1 + O(1/N) and h = 0 or

h = 1/N , i.e. h = O(1/N):

T = 1 +O(1/N) , h = O(1/N) (7-25)

Roughly speaking:

pn(ξ) ∼ e
−N2

(

h ∂F
∂h

+(T−1)h ∂2F
∂h∂T

+ h2

2
∂2F

∂h2 +O(1/N3)
)

∼ e−N ∂F
∂h e−(n−N) ∂2F

∂h∂T e− 1
2

∂2F

∂h2 (1 +O(1/N)) (7-26)

where all the derivatives are computed at T = 1 and h = 0.

7.2.2 Topological expansion

Imagine that Fn has a 1/n2 expansion of the form:

F = F (0) +
1

n2
F (1) +O(

1

n3
) (7-27)



where all F (0) and F (1) are analytical functions of T and h, than one needs only F (0) in order to

compute the asymptotics 7-26.

Actualy, that hypothesis is not always true. It is wrong in the so called ”mutlicut” case. But it

can be adapted in that case, we will come back to it in section 11.2. For the moment, let us conduct

the calculation only with F (0).

8 Computation of derivatives of F (0)

We have defined:

Zn(h, T ) = e− n2

T2 Fn(h,T ) =

∫

dMn×ne
− n

T
tr V (M) eh n

T
ln (ξ−M) (8-28)

this implies that:

− n2

T 2

∂Fn

∂h
=
〈n

T
tr ln (ξ −M)

〉

Vh

(8-29)

i.e.

∂Fn

∂h
= −T

n
〈tr ln (ξ −M)〉Vh

(8 − 30)

It is a primitive of −T
n
〈tr ln (x−M)〉Vh

, which behaves as −T
n

ln x + O(1/x) at large x. Therefore,

we define the resolvent W (x):

W (x) :=
T

n

〈

tr
1

x−M

〉

Vh

(8-31)

Notice that it depends on ξ through the potential Vh, i.e. through the average < . >. And we define

the effective potential:

Veff(x) = Vh(x) − 2T ln x− 2

∫ x

∞

(W (x′) − T

x′
)dx′ (8-32)

which is a primitive of V ′
h(x) − 2W (x). Thus , we have:

∂Fn

∂h
=

1

2
(Veff(ξ) − Vh(ξ)) (8-33)

We also introduce:

Ω(x) :=
∂W (x)

∂T
, ln Λ(x) := ln x+

∫ x

∞

(Ω(x′) − 1

x′
)dx′ = −1

2

∂

∂T
Veff(x) (8-34)

H(x, ξ) :=
∂W (x)

∂h
, lnH(ξ) :=

∫ ξ

∞

H(x′, ξ)dx′ (8-35)



i.e.
∂2Fn

∂h2
= − lnH(ξ) ,

∂2Fn

∂h∂T
= − ln Λ(ξ) (8-36)

With these notations, the asymptotics are:

ψn(ξ) ∼
√

H(ξ) (Λ(ξ))n−N e−N
2

Veff (ξ) (1 +O(1/N)) (8-37)

Now, we are going to compute W , Λ, H , etc, in terms of geometric properties of an hyperelliptical

curve.

Remark 8.1 This is so far only a sketch of the derivation, valid only in the 1-cut case. In general, Fn has
no 1/n2 expansion, and that case will be addressed in section 11.2.

Remark 8.2 These asymptoics are of the form of 6-18 in section.6, and thus, 1
2V ′(x) − W (x) is the limit

of the eigenvalues of DN (x).

9 Saddle point method

There exists many ways of computing the resolvent and its derivatives with respect to h, T , or other

parameters. The loop equation method is a very good method, but there is not enough time to

present it here. There are several saddle-point methods, which all coincide to leading order. We

are going to present one of them, very intuitive, but not very rigorous on a mathematical ground,

and not very appropriate for next to leading computations. However, it gives the correct answer to

leading order.

Write:

Zn(h, T ) = e− n2

T2 Fn(h,T ) =

∫

dx1 . . . dxne
− n2

T2 S(x1,...,xn) (9-38)

where the action is:

S(x1, . . . , xn) :=
T

n

n
∑

i=1

Vh(xi) − 2
T 2

n2

∑

i>j

ln (xi − xj) (9-39)

The saddle point method consists in finding configurations xi = xi where S is extremal, i.e.

∀i = 1, . . . n,
∂S
∂xi

∣

∣

∣

∣

xj=xj

= 0 (9-40)

i.e., we have the saddle point equation:

∀i = 1, . . . n, V ′
h(xi) = 2

T

n

∑

j 6=i

1

xi − xj
(9-41)



The saddle point approximation3 consists in writting:

Zn(h, T ) ∼ 1
√

det
(

∂S
∂xi∂xj

)

e− n2

T2 S(x1,...,xn) (1 +O(1/n)) (9-42)

where (x1, . . . , xn) is the solution of the saddlepoint equation which minimizes ℜS.

Remark 9.1 The saddle point equation may have more than one minimal solution (x).
- in particular if ξ ∈ R, there are two solutions, complex conjugate of each other.
- in the multicut case, there are many saddlepoints with near-minimal action.
In all cases, one needs to sum over all the saddle points. Let us call {x}I , the collection of saddle points.

We have:

Zn ∼
∑

I

CI
√

S ′′({x}I)
e
− n2

T2 S({x}I) (1 + O(1/n)) (9-43)

Each saddle point {x}I corresponds to a particular minimal n-dimensional integration path in C
n,noted ΓI ,

and the coefficients CI ∈ Z are such that:
R

n =
∑

I

CIΓI (9-44)

10 Solution of the saddlepoint equation

We recall the saddle point equation:

∀i = 1, . . . n, V ′
h(xi) = 2

T

n

∑

j 6=i

1

xi − xj
(10-45)

We introduce the function:

ω(x) :=
T

n

n
∑

j=1

1

x− xj
(10-46)

in the large N limit, ω(x) is expected to tend toward the resolvent, at least in the case there is only

one minimal saddle point. Indeed, the xi’s are the position of the eigenvalues minimizing the action,

i.e. the most probable positions of eigenvalues of M , and thus 10-46 should be close to T
n
tr 1

x−M
.

10.1 Algebraic method

Compute ω2(x) + T
n
ω′(x), you find:

ω2(x) +
T

n
ω′(x) =

T 2

n2

n
∑

i=1

n
∑

j=1

1

(x− xi)(x− xj)
− T 2

n2

n
∑

i=1

1

(x− xi)2

3The validity of the saddle point approximation is not proven rigorously for large number of variables. But here,
we have many evidences that we can trust the results it gives. The asymptotics we are going to find have been proven
rigorously by other methods. Basicaly, it is expected to work because the number of variables n is small compared to
the large parameter n2 in the action.



=
T 2

n2

n
∑

i6=j

1

(x− xi)(x− xj)

=
T 2

n2

n
∑

i6=j

(

1

x− xi
− 1

x− xj

)

1

xi − xj

=
2T 2

n2

n
∑

i=1

1

x− xi

n
∑

j 6=i

1

xi − xj

=
T

n

n
∑

i=1

V ′
h(xi)

x− xi

=
T

n

n
∑

i=1

V ′
h(x) − (V ′

h(x) − V ′
h(xi))

x− xi

= V ′
h(x)ω(x) − T

n

n
∑

i=1

V ′
h(x) − V ′

h(xi)

x− xi

= (V ′(x) − h

x− ξ
)ω(x) − T

n

n
∑

i=1

V ′(x) − V ′(xi)

x− xi
+ h

ω(ξ)

x− ξ

(10 − 47)

i.e. we get the equation:

ω2(x) +
T

n
ω′(x) = V ′(x)ω(x) − P (x) − h

ω(x) − ω(ξ)

x− ξ
(10-48)

where P (x) := T
n

∑n
i=1

V ′(x)−V ′(xi)
x−xi

is a polynomial in x of degree at most deg V − 2.

In the large N limit, if we assume4 that we can drop the 1/NW ′(x) term, we get an algebraic

equation, which is in this case an hyperelliptical curve. In particular at h = 0 and T = 1:

ω(x) =
1

2

(

V ′(x) −
√

V ′2(x) − 4P (x)
)

(10-49)

The properties of this algebraic equation have been studied by many authors, and the T and h

derivatives, as well as other derivatives were computed in various works. Here, we briefly sketch the

method. See [29, 28, 21] for more details.

10.2 Linear saddle point equation

In the large N limit, both the average density of eigenvalues, and the density of x tend towards a

continuous compact support density ρ(x). In that limit, the resolvent is given by:

ω(x) = T

∫

supp ρ

ρ(x′) dx′

x− x′
(10-50)

4It is possible to do the calculation without droping the 1/N term. One gets a Ricati equation, which is equivalent
to a Schroedinger equation. If one is interested in a large N limit for the resolvent, the asymptotic analysis of that
Schroedinger equation (Stokes phenomenon) gives, to leading order, the same thing as when one drops the 1/N term.
If one whishes to go beyond leading order, many subtleties occur.



i.e.

∀x ∈ supp ρ, ρ(x) = − 1

2iπT
(ω(x+ i0) − ω(x− i0)) (10-51)

and the saddle point equation 10-45, becomes a linear functional equation:

∀x ∈ supp ρ, V ′
h(x) = ω(x+ i0) + ω(x− i0) (10-52)

The advantage of that equation, is that it is linear in ω, and thus in ρ. The nonlinearity is hidden

in supp ρ.

10.2.1 Example: One cut

If the support of ρ is a single interval:

supp ρ = [a, b] , a < b (10-53)

then, look for a solution of the form:

ω(x) =
1

2

(

V ′
h(x) −Mh(x)

√

(x− a)(x− b)
)

(10-54)

The saddle point equation 10-52 implies that Mh(x+i0) = Mh(x−i0), i.e. Mh has no discontinuities,

and because of its large x behaviour, as well as its behaviours near ξ, it must be a rational function

of x, with a simple pole at x = ξ. Mh, a and b are entirely determined by their behaviours near

poles, i.e.:

ω(x) ∼
x→∞

T

x
(10-55)

ω(x) ∼
x→ξ

regular −→Mh(x) ∼
x→ξ

− h

x− ξ
(10-56)

Thus, one may write:

ω(x) =
1

2

(

V ′(x) −M(x)
√

(x− a)(x− b) − h

x− ξ

(

1 −
√

(x− a)(x− b)
√

(ξ − a)(ξ − b)

))

(10-57)

where M(x) is now a polynomial (which still depends on h and T and the other parameters), it is

such that:

M(x) = Pol
x→∞

V ′(x)
√

(x− a)(x− b)
(10-58)

The density is thus:

ρ(x) =
1

2πT
Mh(x)

√

(x− a)(b− x) , supp ρ = [a, b] (10-59)



a zero of Mzero of M b

(x)ω

x

10.2.2 Multi-cut solution

Let us assume that the support of ρ is made of s separated intervals:

supp ρ = ∪s
i=1[ai, bi] (10-60)

then, for any sequence of integers n1, n2, . . . , ns such that
∑s

i1
ni = n, it is possible to find a solution

for the saddle point equation. That solution obeys 10-52, as well as the conditions:

∀i = 1, . . . , s ,

∫ bi

ai

ρ(x)dx = T
ni

N
(10-61)

The solution of the saddle point equation can be described as follows:

let the polynomial σ(x) be defined as:

σ(x) :=
s
∏

i=1

(x− ai)(x− bi) (10-62)

The solution of the saddle point equation 10-52, is of the form:

ω(x) =
1

2

(

V ′
h(x) −Mh(x)

√

σ(x)
)

(10-63)

where Mh(x) is a rational function of x, with a simple pole at x = ξ. Mh, and σ(x) are entirely

determined by their behaviours near poles, i.e.:

ω(x) ∼
x→∞

T

x
(10-64)

ω(x) ∼
x→ξ

regular −→Mh(x) ∼
x→ξ

− h

x− ξ
(10-65)

and by the conditions that:

∀i = 1, . . . , s ,

∫ bi

ai

Mh(x)
√

σ(x)dx = 2iπT
ni

n
(10-66)



10.3 Algebraic geometry: hyperelliptical curves

Consider the curve given by:

ω(x) =
1

2

(

V ′
h(x) −Mh(x)

√

(x− a)(x− b)
)

(10-67)

It has two sheets, i.e. for each x, there are two values of ω(x), depending on the choice of sign of the

square-root.

- In the physical sheet (choice +
√

), it behaves near ∞ like ω(x) ∼ T/x

- In the second sheet (choice −√
), it behaves near ∞ like ω(x) ∼ V ′

h(x)

Since ω(x) is a complex valued, analytical function of a cmplex variable x, the curve can be

thought of as the embedding of a Riemann surface into C × C.

I.e. we have a Riemann surface E , with two (monovalued) functions defined on it: p ∈ E , →
x(p) ∈ C, and p ∈ E , → ω(p) ∈ C. For each x, there are two p ∈ E such that x(p) = x, and this is

why there are two values of ω(x).

Each of the two sheets is homeomorphic to the complex plane, cut along the segments [ai, bi], and

the two sheets are glued together along the cuts. The complex plane, plus its point at infinity, is

the Riemann sphere. Thus, our curve E , is obtained by taking two Riemann spheres, glued together

along s circles. It is a genus s− 1 surface.

8

8

−

+

a ab b
2 32 3b11a



10.4 Genus zero case (one cut)

If the curve as genus zero, it is homeomorphic to the Riemann sphere E = C. One can always choose

a rational parametrization:

x(p) =
a + b

2
+ γ(p+ 1/p) , γ =

b− a

4
(10-68)

√

(x− a)(x− b) = γ(p− 1/p) (10-69)

so that ω is a rational function of p.

That representation maps the physical sheet onto the exterior of the unit circle, and the second

sheet onto the interior of the unit circle. The unit circle is the image of the two sides of the cut

[a, b], and the branchpoints [a, b] are maped to −1 and +1. Changing the sign of the square root is

equivalent to changing p→ 1/p.

The branch points are of course the solutions of dx/dp = 0, i.e. dx(p) = 0:

dx(p) = γ

(

1 − 1

p2

)

dp , dx(p) = 0 ↔ p = ±1 ↔ x(p) = a, b (10-70)

There are two points at ∞, p = ∞ in the physical sheet, and p = 0 in the second sheet.

8

8
a b p

pξ

ξ

ξ

8

0−1 1 pξ

p
ξ

Since the resolvent ω(p) is a rational function of p, it is then entirely determined by its behaviour

near its poles. the poles are at p = ∞, p = 0, p = pξ and p = pξ (the two points of E such

that x(p) = ξ, such that pξ is in the physical sheet, and pξ is in the second sheet): The boundary

conditions:






































ω(p) ∼
p→∞

T

x(p)

ω(p) ∼
p→0

V ′(x(p)) − T

x(p)
− h

x(p)

ω(p) ∼
p→pξ

− h

x(p) − ξ
ω(p) ∼

p→pξ

regular

(10-71)



10.4.1 T derivative

Now, let us compute ∂ω(p)/∂T at x(p) fixed. Eq. 10-71 becomes:















































∂ω(p)

∂T
∼

p→∞

1

x(p)
∂ω(p)

∂T
∼

p→0
− 1

x(p)
∂ω(p)

∂T
∼

p→pξ

regular

∂ω(p)

∂T
∼

p→pξ

regular

(10-72)

Moreover, we know that ω(x) has a square-root behaviour near a and b, in
√

(x− a)(x− b), and a

and b depend on T , thus ∂ω/∂T may behave in ((x − a)(x − b))−1/2 near a and b, i.e. ∂ω/∂T may

have simple poles at p = ±1.

Finaly, ∂ω(p)/∂T , has simple poles at p = 1 and p = −1, and vanishes at p = 0 and p = ∞, the

only possibility is:
∂ω(p)

∂T

∣

∣

∣

∣

x(p)

=
p

γ(p2 − 1)
=

1

p

dp

dx
(10-73)

which is better written in terms of differential forms:

∂ω(p)

∂T

∣

∣

∣

∣

x(p)

dx(p) =
dp

p
= d ln p (10-74)

the RHS is independent of the potential, it is universal.

With the notation 8-34, we have:

Ω(p)dx(p) =
dp

p
, Λ(p) = γp (10-75)

10.4.2 h derivative

The h derivative is computed in a very similar way.











































∂ω(p)

∂h
∼

p→∞
O(p−2)

∂ω(p)

∂h
∼

p→0
− 1

x(p)
∂ω(p)

∂h
∼

p→pξ

− 1

x(p) − ξ
∂ω(p)

∂h
∼

p→pξ

regular

(10-76)



implies that ∂ω/∂h can have poles at p = ±1 and at p = pξ, and vanishes at p = 0. The only

possibility is:
∂ω(p)

∂h

∣

∣

∣

∣

x(p)

=
−p pξ

γ(p− pξ)(p
2 − 1)

(10-77)

i.e.
∂ω(p)

∂h

∣

∣

∣

∣

x(p)

dx(p) =
dp

p
− dp

p− pξ

= d ln
p

p− pξ

(10-78)

which again is universal.

With the notation 8-35, we have:

H(p, pξ)dx(p) =
dp

p
− dp

p− 1
pξ

, H(pξ) = ln

(

pξ

pξ − pξ

)

= − ln

(

1

γ

dx

dp
(ξ)

)

(10-79)

10.5 Higher genus

For general genus, the curve can be parametrized by θ-functions. Like rational functions for genus

0, θ-functions are the building blocks of functions defined on a compact Riemann surface, and any

such function is entirely determined by its behaviour near its poles, as well as by its integrals around

irreducible cycles. All the previous paragraph can be extended to that case.

Let ∞+ and ∞− be the points at infinity, i.e. the two poles of x(p), with ∞+ in the physical

sheet and ∞− in the second sheet. Let p = pξ and p = pξ be the two points of E such that x(p) = ξ,

and with pξ in the physical sheet, and pξ in the second sheet.

The differential form ω(p)dx(p) is entirely determined by:



























































ω(p)dx(p) ∼
p→∞+

T
dx(p)

x(p)
, Res

∞+

ω(p)dx(p) = −T

ω(p)dx(p) ∼
p→∞−

dV (x(p)) − T
dx(p)

x(p)
− h

dx(p)

x(p)
, Res

∞−

ω(p)dx(p) = T + h

ω(p)dx(p) ∼
p→pξ

−h dx(p)

x(p) − ξ
, Res

pξ

ω(p)dx(p) = −h
ω(p)dx(p) ∼

p→pξ

regular , Res
pξ

ω(p)dx(p) = 0
∮

Ai

ω(p)dx(p) = T
ni

n
=
ni

N

(10-80)

Since ∂ω/∂T, h can diverge at most like (x− ai)
−1/2 near a branch point ai, and dx(p) has a zero at

ai, the differential form ∂ωdx/∂T, h has no pole at the branch points.

10.6 Introduction to algebraic geometry

We introduce some basic concepts of algebraic geometry. We refer the reader to [22, 23] for instance.



Theorem 10.1 Given two points q1 and q2 on the Riemann surface E , there exists a unique differ-

ential form dSq1,q2(p), with only two simple poles, one at p = q1 with residue +1 and one at p = q2

with residue −1, and which is normalized on the Ai cycles, i.e.



















Res
p→q1

dSq1,q2(p) = +1

Res
p→q2

dSq1,q2(p) = −1
∮

Ai

dSq1,q2(p) = 0

(10-81)

dS is called an “abelian differential of the third kind”.

Starting from the behaviours near poles and irreducible cycles 10-80, we easily find:

Ω(p)dx(p) =
∂ω(p)dx(p)

∂T

∣

∣

∣

∣

x(p)

= −dS∞+,∞−
(p) (10-82)

H(p, pξ)dx(p) =
∂ω(p)dx(p)

∂h

∣

∣

∣

∣

x(p)

= −dSpξ,∞−
(p) = dSpξ,∞+(p) − d ln (x(p) − x(pξ)) (10-83)

Theorem 10.2 On an algebraic curve of genus g, there exist exactly g linearly independent “holo-

morphic differential forms” (i.e. with no poles), dui(p), i = 1, . . . , g. They can be chosen normalized

as:
∮

Ai

duj(p) = δij (10-84)

For hyperelliptical surfaces, it is easy to see that if L(x) is a polynomial of degree at most g−1 = s−2,

the differential form L(x)√
∏s

i=1(x−ai)(x−bi)
dx is regular at ∞, at the branch points, and thus has no poles.

And there are g linearly independent polynomials of degree at most g− 1. The irreducible cycles Ai

is a contour surrounding [ai, bi] in the positive direction.

Definition 10.1 The matrix of periods is defined by:

τij :=

∮

Bi

duj(p) (10-85)

where the irreducible cycles Bi are chosen canonicaly conjugated to the Ai, i.e. Ai ∩Bj = δij. In our

hyperelliptical case, we choose Bi as a contour crossing [ai, bi] and [as, bs].

The matrix of periods is symmetric τij = τji, and its imaginary part is positive ℑτij > 0. It

encodes the complex structure of the curve.

The holomrphic forms naturaly define an embedding of the curve into Cg:



Definition 10.2 Given a base point q0 ∈ E , we define the Abel map:

E −→ C
g

p −→ ~u(p) = (u1(p), . . . , ug(p)) , ui(p) :=

∫ p

q0

dui(p) (10-86)

where the integration path is chosen so that it does not cross any Ai or Bi.

Definition 10.3 Given a symmetric matrix τ of dimension g, such that ℑτij > 0, we define the

θ-function, from Cg → C by:

θ(~u, τ) =
∑

~m∈Zg

eiπ ~mtτ ~m e2iπ ~mt~u (10-87)

It is an even entire function. For any ~m ∈ Zg, it satisfies:

θ(~u+ ~m) = θ(~u) , θ(~u+ τ ~m) = e−iπ(2~mt~u+~mtτ ~m) θ(~u) (10-88)

Definition 10.4 The theta function vanishes on a codimension 1 submanifold of Cg, in particular,

it vanishes at the odd half periods:

~z =
~m1 + τ ~m2

2
, ~m1 ∈ Z

g , ~m2 ∈ Z
g , (~mt

1 ~m1) ∈ 2Z + 1 −→ θ(~z) = 0 (10-89)

For a given such odd half-period, we define the characteristic ~z θ-function:

θ~z(~u) := eiπm2~u+ θ(~u+ ~z) (10-90)

so that:

θ~z(~u+ ~m) = eiπ ~mt
2 ~m θ~z(~u) , θ~z(~u+ τ ~m) = e−iπ ~mt

1 ~m e−iπ(2~mt~u+~mtτ ~m) θ~z(~u) (10-91)

and

θ~z(~0) = 0 (10-92)

Definition 10.5 Given two points p, q in E , as well as a basepoint p0 ∈ E and an odd half period z,

we define the prime form E(p, q):

E(p, q) :=
θ~z(~u(p) − ~u(q))
√

dh~z(p)dh~z(q)
(10-93)

where dh~z(p) is the holomorphic form:

dh~z(p) :=

g
∑

i=1

∂θ~z(~u)

∂ui

∣

∣

∣

∣

~u=~0

dui(p) (10-94)



Theorem 10.3 The abelian differentials can be written:

dSq1,q2(p) = d ln
E(p, q1)

E(p, q2)
(10-95)

With these definitions, we have:

Λ(p) = γ
θ~z(~u(p) − ~u(∞−))

θ~z(~u(p) − ~u(∞+))
, γ := lim

p→∞+

x(p) θ~z(~u(p) − ~u(∞+))

θ~z(~u(∞+) − ~u(∞−))
(10-96)

H(pξ) =
θ~z(~u(pξ) − ~u(∞−))θ~z(~u(∞+) − ~u(pξ))

θ~z(~u(pξ) − ~u(pξ))θ~z(~u(∞+) − ~u(∞−))
= −γ θ~z(~u(∞+) − ~u(∞−))

θ~z(~u(pξ) − ~u(∞+))2

dh~z(pξ)

dx(pξ)
(10-97)

11 Asymptotics of orthogonal polynomials

11.1 One-cut case

In the one-cut case, (i.e. genus zero algebraic curve), and if V is a real potential, there is only one

dominant saddle point if ξ /∈ [a, b], and two conjugated dominant saddle points if x ∈ [a, b]. More

generaly, there is a saddle point corresponding to each determination of pξ such that x(pξ) = ξ. i.e.

pξ and pξ = 1/pξ. The dominant saddle point is the one such that ℜ(Veff(pξ) − V (ξ)) is minimal.

The two cols have a contribution of the same order if:

ℜVeff(pξ) = ℜVeff(pξ) (11-98)

i.e. if ξ is such that:

ℜ
∫ pξ

pξ

W (x)dx = 0 (11-99)

If the potential is real, it is easy to see that the set of points which satisfy 11-99 is [a, b], in general,

it is a curve in the complex plane, going from a to b, we call it the cut [a, b] (similar curves were

studied in [31]).

Then we have:

• For x /∈ [a, b], we write ξ = a+b
2

+ γ(pξ + 1/pξ), γ = b−a
4

:

pn(ξ) ∼
√

H(pξ) (Λ(pξ))
n−N e−N

2
(Veff (pξ)−V (ξ))(1 +O(1/N)) (11-100)

i.e.

pn(ξ) ∼
√

γ

x′(pξ)
(γ pξ)

n−N e−N
2

(Veff (pξ)−V (ξ))(1 +O(1/N)) (11-101)



• For x ∈ [a, b], i.e. p is on the unit circle p = eiφ, ξ = a+b
2

+ 2γ cos φ:

pn(ξ) ∼
√

H(pξ) (Λ(pξ))
n−N e−N

2
(Veff (pξ)−V (ξ))(1 +O(1/N))

+
√

H(pξ)
(

Λ(pξ)
)n−N

e−N
2

(Veff (pξ)−V (ξ))(1 +O(1/N)) (11-102)

i.e.

pn(ξ) ∼ γn−N

√

2 sinφ(ξ)
2 cos

(

Nπ

∫ ξ

a

ρ(x)dx− (n−N +
1

2
)φ(ξ) + α

)

(1 +O(1/N)) (11-103)

i.e. we have an oscillatory behaviour

p (x)
n

a xb

11.2 Multi-cut case

In the multicut case, in addition to having saddle-points corresponding to both determinantions of

pξ, we have a saddle point for each filling fraction configuration n1, . . . , ns with
∑s

i=1 ni = n. We

write:

ǫi =
ni

N
(11-104)

The saddle point corresponding to filling fractions which differ by a few units, contribute to the

same order, and thus cannot be neglected. One has to consider the sommation over filling fractions

[10].

Thus, one has to consider the action of a saddle point as a function of the filling fractions. We

leave as an exercise for the reader to prove that the derivatives of F are given by:

∂F

∂ǫi
= −

∮

Bi

W (x)dx (11-105)



and:
∂2F

∂ǫi∂T
= −2iπ(ui(∞+) − ui(∞−)) (11-106)

∂2F

∂ǫi∂h
= −2iπ(ui(pξ) − ui(∞+)) (11-107)

∂2F

∂ǫi∂ǫj
= −2iπτij (11-108)

The last relation implies that ℜF is a convex function of ǫ, thus it has a unique minimum:

~ǫ∗ , ℜ ∂F

∂ǫi

∣

∣

∣

∣

~ǫ=~ǫ∗
= 0 (11-109)

We write:

ζi := − 1

2iπ

∂F

∂ǫi

∣

∣

∣

∣

~ǫ=~ǫ∗
, ζi ∈ R (11-110)

We thus have the Taylor expansion:

F (T, h,~ǫ) ∼ F (1, 0,~ǫ∗) − 2iπ~ζ t(~ǫ−~ǫ∗) + (T − 1)
∂F

∂T
+
h

2
(Veff(pξ) − V (ξ))

+
(T − 1)2

2

∂2F

∂T 2
− (T − 1)h ln Λ(pξ) −

h2

2
lnH(pξ)

−2iπ(~ǫ−~ǫ∗)tτ(~ǫ−~ǫ∗) − 2iπ(T − 1)(~ǫ−~ǫ∗)t(~u(∞+) − ~u(∞−))

−2iπh(~ǫ−~ǫ∗)t(~u(pξ) − ~u(∞+)) + . . . (11-111)

Thus:

Z ∼
∑

I

CIe
−N2F ({x}I)

∼
∑

p=pξ,pξ

e−N2F (1,0,~ǫ∗)e
N2

(

−(T−1)∂F
∂T

−h
2
(Veff (p)−V (ξ))− (T−1)2

2
∂2F

∂T2 +(T−1)h lnΛ(p)+ h2

2
ln H(p)

)

∑

~n

eiπ(~n−N~ǫ∗)tτ(~n−N~ǫ∗)e2iπN~ζt(~n−N~ǫ∗)

e2iπN(T−1)(~n−N~ǫ∗)t(~u(∞+)−~u(∞−))e2iπNh(~n−N~ǫ∗)t(~u(p)−~u(∞+))

(11 − 112)

In that last sum, because of convexity, only values of ~n which don’t differ from N~ǫ∗ form more than

a few units, contribute substantialy. Therefore, up to a non perturbative error (exponentialy small

with N), one can extend the sum over the ni’s to the whole Zg, and recognize a θ-function (see

10-87):

Z ∼
∑

p=pξ,pξ

e−N2F (1,0,~ǫ∗)e
N2

(

(T−1)∂F
∂T

+ h
2
(Veff (p)−V (ξ))+ (T−1)2

2
∂2F

∂T2 +(T−1)h ln Λ(p)+ h2

2
lnH(p)

)



eiπN2~ǫ∗tτ~ǫ∗e−2iπN2~ζt~ǫ∗e−2iπN2(T−1)~ǫ∗t(~u(∞+)−~u(∞−))e−2iπN2h~ǫ∗t(~u(p)−~u(∞+))

θ(N(~ζ − τ~ǫ∗) +N(T − 1)(~u(∞+) − ~u(∞−)) +Nh(~u(p) − ~u(∞+)), τ)

(11 − 113)

with T − 1 = n−N
N

and h = 0 or h = 1/N , we get the asymptotics:

pn(ξ) ∼
∑

x(p)=ξ

√

H(p) (Λ(p))n−N e−N
2

(Veff (p)−V (ξ)) e−2iπN~ǫ∗t(~u(p)−~u(∞+))

θ(N(~ζ − τ~ǫ∗) + (n−N)(~u(∞+) − ~u(∞−)) + (~u(p) − ~u(∞+)), τ)

θ(N(~ζ − τ~ǫ∗) + (n−N)(~u(∞+) − ~u(∞−)), τ)
(11 − 114)

Again, depending on ξ, we have to choose the determination of pξ which has the minimum energy.

If we are on a cut, i.e. if condition 11-99 holds, both determinations contribute. To summarize,

outside the cuts, the sum 11-114 reduces to only one term, and along the cuts, the sum 11-114

contains two terms.

12 Conclusion

We have shown how the asymptotics of orthogonal polynomials (a notion related to integrability) is

deeply related to algebraic geometry. This calculation can easily be extended to many generalizations,

for multi-matrix models [17, 16, 2, 18], non-hermitean matrices (β = 1, 4) [20], rational potentials

[3], ...
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