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Abstract 

 

A review of the use and limitations of Population Balance Equations (PBE) in 

the modeling of emulsion polymerisation (EP), and in particular of the particle size 

distribution of the dispersed system is presented. After looking at the construction of the 

general form of PBEs for EP, a discussion of the different approaches used to model 

polymerization kinetics is presented. Following this, specific applications are presented 

in terms of developing a two-dimensional PBE for the modeling of more complex 

situations (for example the particle size distribution, PSD, and the composition of 

polymerizing particles). This review demonstrates that while the PBE approach to 

modeling EP is potentially very useful, certain problems remain to be solved, notably: 

the need to make simplifying assumptions about the distribution of free radicals in the 

particles in order to limit the computation complexity of the models; and the reliance of 

full models on approximate coagulation models. The review finishes by considering the 

different numerical techniques used to solve PBEs. 
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Nomenclature 

 

a dimensionless entry frequency 

ct termination coefficient (s-1) 

Ci ith cell of the particle size domain 

D dispersion coefficient (m2 s-1) 

),( tvf n  number density function for particles having n radicals (part m-3 m-3) 

),,( txF r  number density function (part m-3 [x]-1) 

),( tF mm  number density function (part m-3 kg-c) 

),,( tmF ww  number density function (part m-3 kg-1) 

)(tFi  average value of F(r,t) over Ci (part m-3 m-1) 

G hydrodynamic interaction function 

i oligomer length 

I ionic strength (mol m-3) 

jcrit critical degree of polymerization for particle formation by homogeneous 

nucleation 

kB Boltzmann’s constant (J K-1) 

kdes desorption frequency (s-1) 

kdM rate coefficient for desorption of monomeric radicals from particles (s-1) 

kfM rate coefficient for transfer to monomer (m3 mol-1 s-1) 

kp propagation rate coefficient (m3 mol-1 s-1) 

pijk  propagation rate coefficient for radical ending in monomer i adding 

monomer j (m3 mol-1 s-1) 

kt termination rate coefficient (m3 mol-1 s-1) 
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ij
tk  termination rate coefficient between chains of length i and j (m3 mol-1 s-1) 

K rate coefficient of volume growth (m3 s-1) 

L length of the reactor (m) 

m dimensionless desorption frequency 

m total mass of polymer in a particle (kg) 

mi mass of polymer i in a particle (kg) 

m vector of polymer masses (kg) 

p[M]  concentration of monomer in a particle (mol m-3) 

M number of finite volumes 

MW molecular weight (kg mol-1) 

n number of radicals per particle 

n  average number of radicals per particle 

N0 initial number of particles (part) 

NA Avogradro’s number (mol-1) 

iN  number of particles in Ci (part m-3) 

pi probability of a particle having a radical ending in monomer i 

Q volumetric flow rate (m3 s-1) 

r unswollen radius of a particle (m) 

rco cross-over radius (m) 

ri average unswollen radius of Ci (m) 

rmax upper bound of the unswollen radius domain (m) 

rs swollen radius of a particle (m) 

ir∆  size of Ci (m) 

r position coordinate (m) 
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R center-to-center distance between particles (m) 

Ri average number of growing chains of length i per particle 

Rnuc rate of particle nucleation (part m-3 s-1)  

R&  rate of change of the external coordinates (m s-1) 

ℜ  net rate of particle generation (part s-1 m-3 [x]-1) 

−ℜcoag  particle depletion rate due to coagulation (part s-1 m-3 [x]-1) 

+ℜcoag  particle formation rate due to coagulation (part s-1 m-3 [x]-1) 

t time (s) 

T temperature (K) 

u(r) spatial distribution of the particles at 0=t  (m-3) 

uz average velocity (m s-1) 

v unswollen volume of a particle (m3) 

vi unswollen volume corresponding to ri (m3)  

vs swollen volume of a particle (m3) 

V volume (m3) 

VR electrostatic repulsion energy (J) 

VT total particle interaction energy (J) 

w(x) size distribution of the particles at 0=t  ([x]-1) 

wi mass fraction of polymer i in a particle 

w vector of mass fractions 

W Fuchs’ stability ratio  

x size coordinate ([x])  

z critical degree of polymerization for entry into particles or micelles 

z length coordinate (m) 
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Subscripts and superscripts 

0 surface 

c number of monomers 

d diffuse layer 

in reactor inlet 

m monomer 

M monomeric radical 

nuc nucleated particles 

out reactor outlet 

P polymeric radical 

w aqueous phase 

  

Greek Symbols 

α  dimensionless entry frequency 

β  coagulation rate coefficient (m3 part-1 s-1) 

δ  Dirac delta-function 

ji ,δ  Kronecker delta 

ε  rate of energy dissipation (m2 s-3) 

pφ  volume fraction of polymer in a particle 

wφ  volume fraction of the aqueous phase 

Φ  particle flux (part m-3 s-1) 

η  aggregation function, Eq. (38) 

κ  inverse double layer thickness (m-1) 



9 

µ  viscosity (Pa s) 

ρ  total entry frequency of radicals into particles (s-1) 

Eρ  entry frequency of monomeric radicals into particles (s-1) 

Iρ  entry frequency of initiator-derived radicals into particles (s-1) 

pρ  density of the polymer (kg m-3) 

σ  surface charge density (C m-2) 

Ω  coordinate domain 

ψ  electric potential (V) 
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1. Introduction 

 

First implemented at an industrial scale during World War II as a means to 

overcome the urgent need for synthetic rubber, emulsion polymerization (EP) developed 

rapidly and is nowadays the process of choice to prepare millions of tonnes of synthetic 

polymer latexes. Most synthetic elastomers and water-borne coatings, and a significant 

part of plastics, are, in fact, prepared by this process.  

The particle size distribution (PSD) is one of the most important characteristics 

of a latex, determining its rheological properties, maximum solid content, adhesion, 

drying time, etc. High solid content (HSC) latexes [1] are an excellent example of a 

product requiring an accurate control of the PSD. Their formulation usually requires a 

very well-defined PSD in order to maintain acceptable levels of viscosity. Some 

processes call for a bimodal PSD, where the distribution must contain a certain volume 

fraction of large and small particles, and where the ratio of the diameters of each 

population must be within set limits. The development of tools for PSD prediction is 

thus well motivated. 

Emulsion polymerization is a very complex heterogeneous process involving a 

multitude of chemical and physical phenomena, many of which have not yet been 

completely elucidated (namely nucleation and coagulation). Moreover, first-principles 

mathematical models tend to be numerically intensive, especially those accounting for 

PSD. Regardless of these difficulties, significant progress has been made during the past 

decade in EP modeling, and particularly in modeling the PSD. 

Models for EP can be classified in two levels according to the way they account 

for particle size [2]. Level-one models are based on the monodispersed approximation, 

i.e., they assume that all particles have the same average volume. Level-two models, on 
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the other hand, account for the latex PSD by means of population balances. The type of 

model you choose depends on the system you have and the results you need. Models of 

the first level are still used at present, and will often provide useful results. However, in 

certain cases they are limited in nature because: i) the polymerization kinetics are only 

approximate, since the average number of radicals per particle is in general a non-linear 

function of the particle volume, and therefore a single average volume is not sufficient 

to describe the system; ii) systems with complex PSDs cannot be modeled. Level-two 

models suffer from none of these restrictions, being therefore the appropriate tool for 

modeling EP reactors when it is important to understand the dynamics of nucleation and 

growth, when simplifying assumptions are not acceptable, or in cases where one needs 

to account for differences in kinetics, composition, etc. as a function of particle size.  

Some interesting reviews on the modeling of EP reactors have already been 

published. The first comprehensive discussion on the subject was given by Min and Ray 

[3], who presented a very general model framework including population balance 

equations to describe PSD and molecular weight distribution (MWD) in emulsion 

homopolymerization reactors. Saldívar et al. [4] did an excellent review on the 

modeling of emulsion copolymerization reactors, accounting for PSD but neglecting 

particle coagulation. Dubé et al. [5] also reviewed the modeling of copolymerization 

reactors, but on the basis of the monodispersed approximation. More recently, Gao and 

Penlidis [6] described a database/model for emulsion homo- and copolymerization, also 

based on the monodispersed approximation.  

Since the subject of the present review is specifically the modeling of the PSD, 

the discussion will center on what distinguishes level-two from level-one models, for 

which updated reviews are available [5, 6]. The fundamental difference between these 

two approaches is that level-two models include an additional transport equation: the 
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population balance equation (PBE). Thus, we will look in detail at the formulation of 

full population balances for emulsion polymerization processes. Also, we will pay 

particular attention to the modeling of particle coagulation, given the importance of this 

phenomenon for the evolution of PSD. Finally, numerical methods for the solution of 

the governing equations will be discussed, since the accuracy and speed of the solution 

greatly determines the model applicability. 
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2. Formulation of the population balance 

 

The exact form of the population balance depends both on the type of process 

under study and on the modeling assumptions one necessarily has to make. Table 1 lists 

the population balance models (PBMs) developed during the last decade and specifies 

their major features: the type of reactor, the type of polymerization 

(homo/copolymerization), and the kinetics assumed (zero-one, pseudo-bulk, etc.). In 

this section, we will review and discuss the formulation of population balances in a 

systematic manner, so as to cover the most frequent situations one can encounter when 

modeling EP processes.  

 

 

2.1 Principles of PBEs 

 

Some principles of the theory of population balance equations relevant for the 

subject of this review will be presented here. In particular, we will discuss the choice of 

internal coordinates, the formulation of the boundary condition (often incorrectly 

written in the literature), and some aspects of particle coagulation. For an interesting 

and detailed discussion on theory and application of population balances, the reader is 

referred to Ramkrishna [7].  

Consider an open system where the particles are distributed according to their 

size, x, and position, r, and let the domains of x and r be represented by xΩ  and rΩ . 

These two variables are also designated by internal and external coordinates, 

respectively. In addition, postulate that there exists an average number density function, 

),,( txF r , such that rr dVdxtxF ),,(  is the number of particles with size between x and 
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dxx +  in the infinitesimal volume rdV . Although this is not the most general case, it 

suffices for most applications in EP. The population balance for this density function is 

obtained through a number balance on the particles of state (x,r), and can be shown to 

give [7]:  

 

( ) ( ) ),,(),,(),,(),,( txtxFtxFx
xt

txF rrRrr
r ℜ+⋅∇−

∂
∂

−=
∂

∂ &&    (1) 

 

Here, ),,( txx r&  is the rate of particle growth, ),,( tx rR&  is the rate of change of the 

external coordinates, and rr dVdxtx ),,(ℜ  is the net rate of generation of particles with 

size between x and dxx +  in the infinitesimal volume rdV . The first term on the RHS 

of Eq. (1) accounts for particle growth (i.e. motion through the internal property space), 

and the second term for particle transport (i.e. motion through physical space). The last 

term may include a variety of phenomena, namely particle formation and depletion due 

to coagulation. It may also account for nucleation, but as shown subsequently 

nucleation is usually treated through the boundary condition. If particle coagulation is 

included, ),,( tx rℜ  will be a nonlinear functional of ),,( txF r , giving rise to an integro-

hyperbolic partial differential equation.  

The PBE needs to be complemented with initial and boundary conditions. The 

initial condition (IC) must define the particle distribution, both in size and position. A 

typical example is, 

 

)()()0,,( 0 xwuNxF rr =          (2) 
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where N0 is the initial number of particles, and u(r) and w(x) are integral-normalized 

functions accounting respectively for their spatial and size distribution. The boundary 

condition (BC) will in turn account for the rate of particle nucleation. For example, if 

the new particles are formed with size xnuc and the nucleation rate is ),( tRnuc r , the BC is 

[7], 

 

),,(
),(

),,(
txx

tR
txF

nuc

nuc
nuc r

r
r

&
=          (3) 

 

since the particle flux at xnuc – given by ),,(),,( txxtxF nucnuc rr &  – must equal the rate of 

nucleation. This is equivalent to the existence of a source term of the form 

),()( tRxx nucnuc r−δ  on the RHS of Eq. (1). From the definition of xnuc, it is clear that the 

domain of the internal coordinate must be [,[ ∞≡Ω nucx x . Though simple, this BC is 

well suited for EP. In fact, sensitivity analysis shows that, within reasonable limits, the 

value of xnuc has a negligible influence over the results [8]. Consequently, there is no 

need to define two distinct sizes and to account separately for particles formed by 

homogeneous and micellar nucleation.  

The choice of the particle size for internal coordinate deserves a remark. Particle 

size is clearly the most intuitive choice when the objective is to compute the PSD, but 

there are alternatives, in particular, the birth time. Formulating the problem in terms of 

the birth time has the advantage of simplifying the PBE, because the divergence with 

respect to the internal coordinate becomes zero, but also the inconvenience of making it 

difficult to describe particle coagulation [9]. Therefore, in general, the particle size is 

the appropriate internal coordinate. 



16 

The equations presented above hold true irrespectively of the variable chosen as 

a measure of the particle size (radius, volume, mass, etc.). However, the derivation of 

the PBE is somewhat simpler when done in terms of the unswollen volume of the 

particles or the mass of polymer in the particles. This is because both the expression for 

the rate of particle growth and the coagulation kernels are easier to write in terms of 

these variables. Thus, in what follows, we will write the population balances in terms of 

the unswollen volume (v). Nevertheless, equivalent relations can be written in terms 

other variables, namely the unswollen radius (r), which is more convenient for the 

numerical solution of the equations. The relationship between the two density functions 

is given by: 

 

),,(4),,(),,( 2 tvFr
dr
dvtvFtrF vvr rrr π==       (4) 

 

The different variables, swollen and unswollen, are trivially related by, 

 

p
s

ps
r

vrv φ
π

φ
π

3
4

3
4 33

===         (5) 

 

where pφ  is the volume fraction of polymer in the particles, and the index s denotes the 

swollen property. 

 When coagulation is the only phenomenon, apart from nucleation, contributing 

to the net particle generation rate, its value is just given by nuccoagcoag vv >ℜ−ℜ=ℜ −+   , . 

Here, the terms +ℜcoag  and −ℜcoag  account for particle formation and depletion due to 

coagulation, respectively. If we assume binary aggregation to be the dominant 
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aggregation mechanism (i.e. no more than two particles aggregate simultaneously), it is 

possible to develop fairly simple expressions for the two coagulation terms [7], 
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∫
∞− =ℜ
nucvcoag dvtvFtvvtvFtv '),,'(),;',(),,(),,( rrrr β      (7) 

 

where nucv  is the unswollen volume of the nucleated particles (and also the lower bound 

of the internal coordinate domain), and ),;',( tvv rβ  is the coagulation rate coefficient 

between particles of unswollen volume v  and 'v . The computation of β  is the object of 

Section 3. Concerning the details of Eq. (6), note that it is impossible to form particles 

with nucvv 2<  by coagulation. In addition, note that both expressions are equivalent; 

they are just different ways to avoid double counting the coagulation events. Finally, we 

underline that the boundary condition, Eq. (3), is not affected by the inclusion of 

coagulation [7, 10]. Unfortunately, there is a fair amount of confusion in the literature 

regarding this issue. 

The assumption of binary aggregation implies dilute systems, where the 

probability of more than two particles aggregating at the same time is reduced [7, 11]. 

Nevertheless, Eqs. (6) and (7) have been used irrespectively of the solid content of the 

latex. For example, this formulation was used at solid content of 55 wt% [12] and 20 

wt% [13]. Researchers working in other areas where PBEs are used seem to be facing 

the same problem (e.g. [14]). The reasons for this are most likely to be the extreme 
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complexity of formulating and solving the equations for multi-body collisions, and the 

associated difficulty of identifying the parameters and experimentally validating the 

results. As will be shown bellow, this is a challenging task to do exactly for 2-body 

aggregation. Simply put, we are constrained to use this approximation by the 

impracticality of considering higher order phenomena. 

 

 

2.2 Kinetics 

 

2.2.1 Introduction 

 

In an emulsion homopolymerization system, the latex particles can differ in size 

as well as in the number of radicals per particle, and in the degree of polymerization of 

these radicals. The growth rate of a particle obviously depends on the number of 

radicals, but is also affected by their degree of polymerization since the termination rate 

coefficient depends on the length of the terminating chains [15]. This is the so-called 

chain-length-dependent (CLD) termination. Because, in general, both the number and 

the degree of polymerization of the radicals affect the particle growth rate, such 

parameters should be included as additional internal coordinates in the PBE. 

Unfortunately, this leads to an intractable multidimensional PBE. The only way to 

overcome this difficulty is to reduce the dimensionality of the problem by making some 

approximations. The most common alternatives are: 

 

• To neglect CLD termination. In this way we can remove the degree of 

polymerization of the radicals from the PBE. 
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• To neglect particles with two or more radicals: zero-one model. This 

automatically eliminates the problems related with termination and reduces 

the dimensionality of the equations since the number of radicals is limited to 

zero or one. 

• To neglect compartmentalization [15] effects (i.e. the isolation of radicals in 

separate particles): pseudo-bulk model. The number of radicals is no longer 

an internal coordinate, since particles of the same size are assumed to have 

the same (average) number of radicals. One may or may not account for 

CLD termination, but in either case the chain length distribution of the 

growing chains does not appear as an internal coordinate in the PBE. 

 

Using the first hypothesis, we are still left with two internal coordinates: particle 

size and number of radicals per particle. This remains a complex problem, but Min and 

Ray [3] showed how to solve it by defining an infinite set of particle density functions, 

each accounting for the PSD of the particles having a given number of radicals. For a 

general case involving nucleation, coagulation, variable coefficients, etc., the infinite set 

of integro-hyperbolic partial differential equations given by Min and Ray can only be 

solved by numerical methods, at the expense of large computation times. Consequently, 

this approach (even if approximate) is rarely used to compute the PSD. In fact, to the 

best of our knowledge, only Min and Ray [16] made use of it. For special cases, analytic 

solutions are available. In particular, Giannetti derived a solution applicable to the 

Interval II of emulsion polymerization (no nucleation, no coagulation, constant 

coefficients, etc.) and later extended it to the Interval I [17, 18]. This kind of solutions 

may be used to gain insight into system behavior and to check numerical results, but 

they are of limited interest for reactor simulation. 
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The other two alternatives to handle the kinetics, i.e. the zero-one and the 

pseudo-bulk model, are substantially simpler and thus widely used in EP models (see 

Table 1). These will be reviewed in the following. For simplicity, the PBEs are 

presented for ideal stirred tank reactors (STRs) (batch, semi-batch and continuous). 

Generalizations to multicomponent systems and to other types of reactors are the 

subject of Sections 2.3 and 2.4, respectively. 

 

 

2.2.2 Zero-one model 

 

 In a zero-one system, the entry of a radical into a particle already containing a 

radical causes termination at a rate much higher than that of the overall polymerization 

[19]. Therefore, a particle can have either zero or one radicals. For zero-one systems, it 

becomes feasible to use an exact mathematical formulation because: i) the number of 

PBEs is reduced given that }1,0{=n ; ii) termination does not have to be taken into 

consideration.  

There are two alternative treatments for zero-one systems. One possibility is to 

distinguish only between particles having zero or one radicals [15, 20]. Another 

possibility, more frequently used [8, 19, 21, 22], consists in further dividing particles 

having one radical in two populations, according to whether the radical is monomeric or 

polymeric. Since only monomeric radicals are assumed to desorb, this facilitates the 

description of radical desorption [23-25]. For an ideal STR, the corresponding PBEs 

are, 
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where ρ  is the total entry frequency, Iρ  is the entry frequency of initiator-derived 

(polymeric) radicals, Eρ  is the entry frequency of monomeric radicals, kdM is the rate 

coefficient for desorption of monomeric radicals from particles, and kfM is the rate 

coefficient for transfer to monomer. The density functions of the particles containing 

zero radicals, one monomeric radical and one polymeric radical are, respectively, 

),(0 tvf , ),(1 tvf M  and ),(1 tvf P . By definition, PM fff 111 +=  and 10 ffF += . The 

reader is referred to Nomenclature for the meaning of the remaining variables. For a 
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homopolymerization system, the volume growth rate of a particle containing one radical 

is given by the well-known expression: 
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tvKtvv
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Notice that, in general, K will be a function of particle size and time. As a 

simplification, the quasi-steady state assumption can be applied to Eq. (10), and the 

coagulation and flow terms neglected in order to obtain an algebric expression for 

),(1 tvf M ,  
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 Gilbert [19] and Coen et al. [8, 21] were the first to present the PBEs (including 

coagulation) for this version of the zero-one model. However, note that in these works 

the terms accounting for particle formation due to coagulation were incorrectly 

transcribed in press (although the authors have affirmed that the correct formulation was 

used in the simulations [26]). These PBEs can easily be derived if we recognize that, 

termination being instantaneous, both the entry of a radical into a particle already 

containing a radical and the coagulation between two active particles lead to a dead 

particle. Concerning the coagulation terms, note that the factor 21  must only be 

included in the rate of particle formation due to coagulation when the same particle 

density function appears twice in the kernel (to avoid double counting). A good way to 

check these PBEs for consistency is to add them so as to derive a population balance for 
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),( tvF . We must obtain the global population balance expressed in the next section by 

Eq. (15), with ),(),(),( 1 tvFtvftvn = . 

 The initial and boundary conditions can be easily deduced from Eqs. (2) and (3). 

The ICs are, 
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since seed particles, if present, do not contain radicals. If we suppose that new particles 

always contain one polymeric radical (entry of i-mers into micelles, with critjiz <≤ , or 

precipitation of jcrit-mers), the BC for Eq. (9) is given by, 
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tvf
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nucP =         (14) 

 

where Rnuc(t) is the total (micellar and homogenous) nucleation rate. 

 In order to use these equations it is essential to determine under which 

conditions the zero-one model can be used to describe the PSD. Theoretical and 

experimental tests to check if a given system obeys zero-one kinetics have been 

developed by Gilbert and co-workers [15, 24, 27, 28]. For example, a necessary but not 

sufficient condition is that 5.0≤n . Nevertheless, it is necessary to make a clear 

distinction between the applicability of the zero-one model for the prediction of the 

kinetic behavior of the system (i.e. n ) and the prediction of PSD. This problem was 

discussed in detail by Giannetti [17] and is of primary importance for the modeling of 

PSD. According to this author, even if the contribution of particles with more than one 
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radical is negligible for the kinetic behavior of the system when 5.0<<n , the same is 

not true for the PSD. Actually, the fact that particles with more than one radical do 

exist, increases the broadness of the PSD with respect to that predicted by the zero-one 

model. This is a shortcoming to bear in mind when using this approach to compute the 

PSD. 

Since this approach is only suitable for systems following zero-one kinetics, its 

applicability is somewhat limited. In fact, zero-one systems generally concern small 

particles (for which the rate of radical entry is low and the rates of radical desorption 

and termination are high) and low conversions (as to avoid a significant Trommsdorff 

effect). Despite its inherent limitations, the zero-one model can be of great value in 

interpreting mechanistic studies. In particular, it has been used by Gilbert’s workgroup 

to investigate the mechanisms of particle formation in the emulsion polymerization of 

styrene [8, 15, 19]. This approach has also been used in a few reaction engineering 

studies. Zeaiter et al. [29] extended Coen et al.’s model [8] to predict the evolution of 

PSD and MWD during the semi-batch emulsion polymerization of styrene. The model 

was used to study the possibility of controlling PSD and MWD by manipulation of the 

reactor temperature and monomer flow rate. Crowley et al. [30] simplified the model 

proposed by Coen et al., by neglecting particle coagulation, and used it to investigate 

the optimization of the surfactant feed profile given a target bimodal PSD. Meadows et 

al. [31] extended the model by Coen et al. to non-isothermal conditions, neglecting 

particle coagulation, and used it to explore methods for controlling the PSD. 
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2.2.3 Pseudo-bulk model 

 

As mentioned in Section 2.2.1, an alternative approximation is to average the 

number of radicals over all particles of size v, and define an average growth rate 

),(),(),( tvntvKtvv =& . This leads to the pseudo-bulk (PB) model. On the basis of this 

approximation, the PBE for an ideal STR can be derived without difficulty from the 

principles exposed in Section 2.1, 
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Since this approximation decouples F(v,t) from the distribution of the number of 

radicals, an expression for ),( tvn  must also be supplied (see Section 2.2.4). The initial 

and boundary conditions can be easily deduced from Eqs. (2) and (3), 

 

( ) )()0,( 0 vwVNvF w=         (16) 

 

),(
)(

),(
tvv

tR
tvF

nuc

nuc
nuc &

=          (17) 

 

 The validity of the PB model is conditioned by the assumption of uniform 

growth. In general, this hypothesis only holds true for high values of ),( tvn , since only 
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then is the radical distribution among particles sufficiently uniform to validate the 

averaging procedure. Note that the limits of applicability of Eq. (15) are not to be 

confused with those of the pseudo-bulk equation for n  (see Section 2.2.4), which, 

under certain circumstances, is also valid for low values of n . If the condition of 

uniform growth is not satisfied, then particles with nn <  will lag behind and particles 

with nn >  will grow more quickly. This will give rise to what is called stochastic 

broadening [15], a phenomena not taken into account by the PB approach. Accordingly, 

the accuracy of the results obtained with the PB model will depend on the relative 

importance of stochastic broadening. For example, stochastic broadening will not be of 

importance for CSTRs since the PSD is inherently broad [9, 32]. 

Despite this shortcoming, the compromise between simplicity and predictability 

appears to have favored the generalized use of the PB approach for modeling PSD in EP 

reactors, as seen in Table 1. This is probably because: i) the PB model has the merit of 

reducing the computation of F(v,t) to the solution of a single PBE; ii) unlike the zero-

one model, the PB model presents no restrictions with regards to the maximum number 

of radicals per particle, thus allowing one to simulate the entire conversion range; iii) 

stochastic broadening is perhaps comparable in significance to other phenomena not 

accounted for, or accounted for in approximate ways (e.g. coagulation). 

A somewhat different method has recently been proposed by Coen et al. [22]. 

The purpose was to extend the previous model by Coen et al. [8] to systems where 

pseudo-bulk kinetics are important during the nucleation period. The authors defined a 

cross-over radius rco and used it to divide the particle size domain in two regions: zero-

one kinetics for corr < , and pseudo-bulk kinetics for corr > . To simplify the 

mathematics, the authors did not include coagulation above rco. However, this 

assumption seems questionable, as there is no reason to believe that the coagulation rate 
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of small-big particles is insignificant with respect to that of small-small particles.  The 

equations presented in Section 2.2.2 were employed to describe the zero-one region, 

while the PB domain was described by Eq. (15) without the coagulation terms. The 

effect of CLD termination was included in the computation of ),( tvn , as described in 

Section 2.2.4. The authors do not mention how they linked the two PBEs; in particular, 

it is not clear if the formation of particles with corr >  by coagulation of two particles 

with corr <  was taken into account. This approach was applied to the ab initio 

polymerization of butyl acrylate. The evolution of conversion and the effects of initiator 

and surfactant concentration on the final particle number were correctly predicted, but 

no comparison was made with experimental measures of the PSD.  

Combining the zero-one and PB models (hybrid model) seems an interesting 

way to overcome some limitations of the individual methods. Small particles in the size 

range where termination is not rate-determining are best described by the zero-one 

model. The remaining particles are described by the PB model.  

 

 

2.2.4 Average number of radicals per particle 

 

 The PB model requires an expression for the average number of radicals in 

particles of size v, ),( tvn . There are basically two ways of deriving approximate 

equations for this quantity: i) to account for compartmentalization, while neglecting 

CLD termination; ii) to account for CLD termination, while ignoring 

compartmentalization. 

The first method is used almost exclusively in the field of polymer reaction 

engineering, but is prone to contestation. First, because there is strong evidence that 
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CLD termination cannot be neglected [33, 34]. Second, because Eq. (15) is only valid 

for conditions where compartmentalization is not significant. Hence, one could question 

the usefulness of an equation for ),( tvn  that takes compartmentalization into account. 

The justification for this choice is that the PB model is frequently used to describe the 

evolution of PSD outside its limits of validity, where compartmentalization effects may 

indeed be relevant. In addition, for reactor modeling it is usually found that an 

“average” value of the termination rate coefficient is sufficient to reproduce the 

experimental results.  

If CLD termination is neglected, an approximate solution can be found by 

solving a simplified form of the infinite set of density functions mentioned in Section 

2.2.1 [4, 9]. Assuming that radical entry, desorption and termination are much faster 

than coagulation, growth and inflow/outflow, we obtain a set of PBEs which is simply a 

slightly modified version of the Smith-Ewart differential equations [35]. If we further 

apply the quasi-steady-state assumption, the steady-state value of ),( tvn  can be 

determined analytically from the Stockmayer-O’Toole solution [36],  
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where ),( tva  and ),( tvm  are, respectively, the argument and order of the modified 

Bessel function of the first kind )(aI m . These two parameters are given by, 
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where kdes is the desorption frequency [25], and ct is the termination coefficient.  

 Usually, to avoid the computation of the modified Bessel functions in Eq. (18), 

the partial fraction expansion proposed by Ugelstad et al. [37] is employed, 
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According to Dubé et al. [5], approximately ten levels of fractions are necessary to 

obtain convergence. Notice, however, that the number of levels required increases with 

the value of ),( tvn , and should preferably be determined by trial and error for the 

particular application. 

More recently, Li and Brooks [38] proposed a semi-theoretical expression for 

determining both the time-dependent and steady state values of the average number of 

radicals. The steady-state solution is particularly interesting, as it compares very well 

with Eq. (18) and is explicit:  
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The relative error of the ),( tvn  values obtained by this expression with respect to Eq. 

(18) is shown in Fig. 1. The difference is seen to be at most 4%, demonstrating that Eq. 

(22) might be a good alternative to the more time-consuming Eqs. (18) and (21). 

 Another option to compute the average number of radicals per particle is the 

pseudo-bulk equation [15]: 
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This expression results from a further simplification of the modified Smith-Ewart 

equations mentioned above. As a result, this equation is only valid for 7.0>n  or for 

dest kc ,ρ<<  [15, 39]. 

 The inclusion of chain-length dependency in the Smith-Ewart equations is rather 

difficult, although not impossible [39]. Nevertheless, for pseudo-bulk systems, where 

compartmentalization effects are not important, a mechanistic approach is feasible. 

Russel et al. [40] addressed this issue in detail; thus only the main features of the 

treatment will be outlined here. The first step is to establish the balances for the chain 

distribution {Ri}, where Ri denotes the average number of growing chains of length i per 

particle. This requires a physical model for the termination rate coefficient between 

chains of length i and j, ij
tk . Then, one of several approximations available may be used 

to compute {Ri}, from which ),( tvn  can be determined. A formal average termination 

rate coefficient can also be defined: 
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In particular, this average value may be used together with Eq. (23) to compute ),( tvn .  

The choice between these two approaches is dictated by the kinetics of the 

system, the modeling objectives, the level of complexity desired and the available data 

(diffusion coefficients, etc.).  

 

 

2.3 Multicomponent systems 

 

2.3.1 Pseudo-homopolymerization approach 

 

 Given the practical importance of emulsion copolymerization, it is natural that 

one wishes to extend the methods developed for the modeling of PSD in 

homopolymerization systems to copolymerization reactors. The PBEs governing 

multicomponent systems are far more complex than those of homopolymer systems (see 

Section 2.2.1), as particles can have radicals with different end groups (and 

composition). The dimensionality of the problem is thus superior. Fortunately, under 

certain conditions, such multivariate PBEs can be reduced to the homopolymer 

equations described in the foregoing sections by use of the so-called pseudo-

homopolymerization approach [4, 41-43]. Thanks to this treatment, the only difference 

is that some parameters are replaced by proper averages. 
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In particular, the PB model described in Section 2.2.3 is extensively employed in 

the modeling of multicomponent systems (see Table 1). Saldívar et al. [4] reviewed in 

detail the modeling of copolymerization reactors, and especially the use of this approach 

for computing the evolution of PSD in the absence of coagulation. The simulation of a 

multicomponent system requires a number of additional relations in order to account for 

comonomer partition, comonomer conservation, etc. The PBE, however, is the same as 

for a homopolymer system: Eq. (15). The only difference concerns the growth rate, 

which is given by the following average [4],  
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where pi is the probability of a particle having a radical ending in monomer i. The value 

of ),( tvn  can be determined from Eqs. (18)-(23), with appropriate average coefficients 

[4].   

Asúa’s workgroup used this approach to model the evolution of PSD and 

conversion in the emulsion copolymerization of vinyl acetate and Veova 10 in a 

continuous loop reactor [12, 44, 45]. Good agreement was achieved between 

experimental and computed PSDs. As the reactivity ratios of these monomers are close 

to unity, copolymer composition was not an issue. It is worth pointing out that this type 

of process specifically calls for a population balance approach because of the broad 

PSDs obtained. Saldívar et al. [4, 46] used their comprehensive model to simulate 

various binary systems and polymerization strategies. In particular, they validated their 

model against experimental data on the copolymerization of styrene and methyl 

methacrylate in batch and continuous stirred tank reactors. The model was capable of 
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predicting the effect of a number of variables on conversion, average particle diameter 

and copolymer composition. Unfortunately, no comparison with experimental PSDs 

was made. Immanuel et al. [13, 47] developed two models for the semi-batch emulsion 

copolymerization of vinyl acetate and butyl acrylate: a coagulation-free and a 

coagulation-inclusive model. The latter model was shown to provide better predictions 

of the PSD, but only at a qualitative level. Kammona et al. [48] modeled the emulsion 

copolymerization of styrene and 2-ethylhexyl acrylate. The simulations compared 

successfully with experimental data on overall conversion and average particle diameter 

at different monomer, initiator and emulsifier concentrations. An example of 

comparison between experimental and predicted PSDs was given, showing good 

agreement. 

 

 

2.3.2 Multicomponent approach 

 

An important limitation of Eq. (15) is that it contains no information on the 

composition of the particles (the only internal coordinate is the particle size). As a 

result, when such a PBE is employed for the modeling of multicomponent systems, it is 

implicitly assumed that every latex particle has the same polymer composition. Even if 

convenient, this simplifying hypothesis is only a plausible approximation for systems 

comprised of particles with similar histories. For instance, one may expect this approach 

to be valid for the modeling of the ab initio synthesis of a monodispersed latex. 

Examples of systems for which the uniform composition hypothesis will not be 

applicable can also provided. Consider a semi-batch process involving two monomers 

with distinct reactivity ratios where a second population of particles is formed by 
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secondary nucleation. It is clear that, unless some special feed policy is used, the new 

particles will be richer in the less reactive monomer. As a second example, suppose a 

train of two CSTRs operating in steady-state. If the comonomers have different 

reactivity ratios and no supplemental feed is added to the second reactor, the final latex 

will contain particles of the same size and different composition [32]. 

 Particle composition can play a key role in the evolution of PSD. In fact, particle 

composition may affect the monomer concentrations in the particle, which in turn can 

have an effect upon the particle growth rate. In addition, the composition of the particles 

can also affect their colloidal stability (e.g. surface hydrophilicity, surfactant adsorption, 

Hamaker constant, etc.), and thus the coagulation rate. To take these effects into 

consideration, a PBE that explicitly includes particle composition in the particle state 

vector must be used. In what follows, we will illustrate this procedure by deriving an 

extended PBE that accounts for the cumulative composition of the polymer in the 

particles. Of course, more general treatments are possible. 

The set of internal coordinates used to define the particle state in the extended 

PBE must be chosen in such way that one can determine univocally the amount of each 

type of polymer in the particles. For convenience, we will define and use two mass-

based particle state vectors (see Section 2.1). Let m be the total mass of polymer in a 

given particle, mi the mass of polymer of type i in the particle, and mmw ii =  the mass 

fraction of polymer of type i in the particle. Based on these quantities, we can define the 

vector of polymer masses, ),...,,( 21 cmmm=m , and the vector of mass fractions 

),...,,( 121 −= cwwww , where c is the number of comonomers. Clearly, the particle state 

can be determined from m or, alternatively, from ),( wm .  

Let us now proceed to the definition of the density functions. We postulate that 

there exists a number density function ),( tF mm , such that cdmdmdmtF ...),( 21mm  is the 



35 

number of particles per unit volume of aqueous phase with state m at time t. In the same 

way, we define ),,( tmF ww , such that 121 ...),,( −cdwdwdwdmtmF ww  is the number of 

particles per unit volume of aqueous phase with state ),( wm  at time t. The relation 

between these two density functions can be obtained from the Jacobian of the 

transformation ),( wmm m= : 

 

),,(),( 1 tmFmtF c wm wm =−         (26) 

  

The definition of two density functions is not of necessity, but it is rather useful. The 

PBE is easier to derive in terms of ),( tF mm , since the expressions for the growth and 

coagulation terms are much simpler in terms of m. On the other hand, ),,( tmF ww  is 

best suited for computing the relevant properties of the dispersed phase. For example, 

the PSD is simply given by: 
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 The PBE for the number density function ),( tF mm  can be derived from the 

more general version of Eq. (1) (see, for instance, Ramkrishna [7]). For an ideal STR it 

reads: 
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Here, mΩ  is the domain of the particle state, and nucm  is a vector describing the mass 

of each type of polymer in the nucleated particles. This is the multicomponent 

equivalent of the one-dimensional Eq. (15). For the chosen particle state vector, the rate 

of change of the internal coordinates simply corresponds to the rate of production of 

polymer of type i in the particle, which may be computed from the standard expression 

[4]: 
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The coagulation rate coefficient, )',( mmβ , is computed by the usual procedure. 

However, it may now include explicit dependency on particle composition.  

 To the best of our knowledge, the application of this approach to modeling EP 

reactors has not yet been published. 

 

 

2.4 Other types of reactors  

 

 Aside from the very common stirred tank reactors (batch, semi-batch and 

continuous), tubular reactors are also used for emulsion polymerization. In addition, 

non-ideal behavior (i.e. imperfect mixing) may in certain cases affect significantly the 

performance of stirred tank reactors [49, 50]. Here, we will review the modeling of the 

PSD for these types of reactors. All equations presented in this section are based on the 
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one-dimensional PB approach, given its widespread use. Extension to the zero-one 

model should pose no major problem. 

 

 

2.4.1 Tubular reactors 

 

 Continuous tubular reactors have also been used for emulsion polymerization, 

though to a lesser extent than semi-batch reactors and CSTRs [32, 51]. A wide range of 

reactors fall into this category, namely: single-pass reactors, continuous loop reactors, 

packed beds, etc. 

A key point in modeling a tubular reactor is the description of the flow pattern. 

Depending on the flow regime and reactor geometry, two distinct models have been 

used to describe the flow pattern in emulsion tubular reactors [52]: i) laminar flow with 

radial dispersion; ii) one-dimensional flow with axial dispersion. Usually, the residence 

time distribution (RTD) is determined experimentally and the model that best describes 

the results is applied [45, 51, 52]. Paquet and Ray [52] mention that the axial dispersion 

model is applicable to a wider range of reactors.  

It is worth noting that a continuous loop reactor [53] operating at high recycle 

ratios has a RTD similar to that of an ideal CSTR. If this is the case, the non-distributed 

equations presented in Section 2.2 may be used to compute the PSD, with much less 

computational effort. For example, Asúa and co-workers [12, 44] made use of this 

approximation in developing a PSD model for emulsion copolymerization in a loop 

reactor, after having measured its RTD. 

Once the model for the flow pattern is chosen, it can be combined with Eq. (1) to 

obtain the required PBE. We will illustrate how this may be done for the axial 
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dispersion model, which is the most frequently used. Using the PB approach, we can 

take Eq. (1) and write (with z≡r ), 
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where z is the length coordinate of the reactor, and z&  is the velocity of the particles in 

the axial direction. The terms +ℜcoag  and −ℜcoag  are given by Eqs. (6) and (7). The 

particle transport term can now be divided in two components, accounting 

independently for transport by convection and dispersion, 
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where uz is the average velocity, and D is the dispersion coefficient (assumed to be 

constant). 

The IC is given by Eq. (2). As before, the BC with respect to the internal 

coordinate (v) is given by, 
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Because the differential equation above is also second order with respect to z, two 

additional BCs are required. These may be given by the Danckwerts conditions (the 

reactor is assumed to be closed), 
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where L is the length of the reactor. Other BCs are possible for the axial dispersion 

model; see for example Froment and Bichoff [54]. In general, for high Peclet numbers 

(small deviations from plug-flow) the solution is not significantly affected by the type 

of boundary conditions. 

 Despite the renewed interest in the use of tubular reactors for EP [55, 56], the 

literature is still scarce in modeling studies and particularly in population balance 

models. Paquet and Ray [51, 52] did a good review on the use of this type of reactor for 

EP and laid the bases for their dynamic modeling. However, the model they proposed 

does not account for PSD, since it is based on the monodispersed approximation. To the 

best of our knowledge, Abad et al. [45] were the only ones who have attempted to 

model PSD using the tubular reactor formalism. The authors determined the RTD of 

their continuous loop reactor and found that it could be represented by a loop composed 

of two axial dispersion sections: the tube and the pump. They applied the set of 

equations described above, neglecting particle coagulation, to each of these sections and 

solved for the outlet PSD. The time evolution of the PSD predicted by the model agreed 

reasonably with the experimental distributions. 
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2.4.2 Non-ideal stirred tank reactors 

 

Thus far, when dealing with STRs (independently of the operating mode), we 

have always assumed ideal behavior (i.e. homogeneity of the reactor contents). This is 

usually a reasonable approximation for small reactors, since efficient mixing can easily 

be achieved. However, this does not generally hold true for large-scale reactors, 

especially when operating at high solid contents. The PSD will be affected by such 

inhomogeneities, as the rates of nucleation, growth, and coagulation may vary from one 

zone of the reactor to another. For example, in a semi-batch process, the PSD may 

broaden as a result of the spatial gradients of monomer, initiator and surfactant. 

In principle, the PSD in a non-ideal STR could be computed by solving the 

appropriate PBE (to be derived from Eq. (1)) together with the equations of continuity 

for each chemical species, and the Navier-Stokes equations. Nevertheless, such 

approach would require prohibitive computational times, since the solution of a 

population balance model based on the equations presented in Section 2.2 is already 

lengthy. In some research fields, like in precipitation modeling, this problem is being 

surmounted by using the method of moments to compute just the first moments of the 

distribution, instead of the full PSD (e.g. [57, 58]). Unfortunately, the method of 

moments is best suited for unimodal distributions; thus, this strategy would not be 

applicable to the situations where PSD models are most needed in EP applications. 

As an alternative to the direct application of computational fluid dynamics 

(CFD), hybrid approaches have been proposed [59]. In those, CFD is used to determine 

the flow field, while the remaining (material and/or population) balances are 

subsequently solved in a custom-built compartmental network. Each compartment is 

assumed homogeneous and modeled as a CSTR, with inter-compartmental flow rates 
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previously determined by CFD. The most delicate part of this method is probably the 

definition of the compartments, though some heuristic rules have been suggested [59]. 

This kind of approach has been used by Alopaeus et al. [60, 61] for the modeling 

of drop size distribution in liquid-liquid systems, and by Kiparissides’ workgroup [62, 

63] for the modeling of PSD in suspension polymerization. The PBEs governing these 

two systems are quite similar in the sense that they are both controlled by the rates of 

drop breakage and aggregation, which in turn depend on the rate of energy dissipation, 

ε . Hence, for these systems, ε  can be used as the main criterion for the definition of 

the compartmental network. This is most clearly seen in the models developed 

Kiparissides and co-workers, where the reactor was divided into just two compartments: 

impeller zone (high ε ) and circulation zone (low ε ). 

In emulsion polymerization, however, the phenomena that control PSD 

(nucleation, growth and coagulation) depend to a much greater extent on the 

concentrations of the reactants (initiator, surfactant and monomer). The reader is 

referred to Section 3.1 for details on the relative importance of physicochemical factors 

and shear rate on the coagulation rate. Consequently, when modeling non-ideal EP 

reactors, the concentrations of the reactants (affected by the location of the feeding 

tubes, etc.) must play a key role in the definition of the compartments [59, 64]. This 

significantly complicates the situation with respect to the cases exposed in the previous 

paragraph. Rigopoulos and Jones [59] proposed to address this type of problems by 

means of a virtual tracer experiment that emulates the actual feeding policy.  

Recently, Alexopoulos and Kiparissides [65] extended their two-compartment 

model to describe a semi-batch EP reactor. However, it is not clear how the authors 

defined the compartments. Defining the compartments based on ε , as they did for 

suspension polymerization, does not seem appropriate given the reasons presented 
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above. Using the volumes of the compartments and the exchange flow rates as fitting 

parameters does not add much insight into system behavior in so far as predicting the 

impact of changing mixing conditions, viscosity, etc. are concerned. On the other hand, 

the approach did allow the authors to at least model a given reactor configuration – a 

point not devoid of interest in industrial conditions. 
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3. Coagulation modeling 

 

It is nowadays widely accepted that precursor particles have insufficient 

colloidal stability and therefore undergo limited coagulation, both when surfactant 

concentrations are below and above the CMC [15, 66]. Despite this fact, coagulation is 

still frequently neglected in models developed for emulsion polymerization (see Table 

1), perhaps because of the increased mathematical complexity and consequent solution 

time required include it. However, the truth is that with actual computer power and 

numerical methods (see Section 4) this can no longer be considered a major obstacle to 

the inclusion of coagulation, even though population balance models accounting for this 

phenomenon are yet cumbersome to solve. As we will see here, nowadays, the problem 

is far more likely to be the quality of the models available to describe particle 

coagulation. The reader is referred to references [67-69] for an introduction to the 

stability of polymer colloids. 

 

 

3.1 Coagulation mechanisms 

 

Two distinct mechanisms may lead to particle coagulation in emulsion 

polymerization: perikinetic aggregation (due to Brownian motion), and shear or 

orthokinetic aggregation (due to transport by fluid motion). The contributions of these 

two mechanisms to the overall coagulation rate are not necessarily additive [70] and 

depend both on the polymerization recipe and the mixing conditions, namely, on 

particle size, shear rate and colloidal stability.  
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A useful rule of thumb can be established by computing the quotient of the rate 

coefficients derived for the limiting cases of pure perikinetic and orthokinetic 

aggregation of two non-interacting particles [71, 72]. It results that orthokinetic 

aggregation is favored by high shear rates and large particle sizes. Based on this formula 

and assuming what the authors claimed is a typical value for the average shear rate in a 

stirred vessel (100 s-1), Verduyn et al. [72] computed the critical particle diameter (at 

which both mechanisms are equally important) to be 0.5 µm. Ottewill [67] indicates that 

orthokinetic aggregation can become the dominant effect above 1 µm. From this 

range of particle diameters (0.5-1.0 µm), a rough estimate of the relative importance of 

Brownian and shear aggregation can be obtained, but one should keep in mind that this 

is a very simplified picture of the reality. In the next paragraph, a more detailed 

treatment is presented.  

In real emulsion systems, particles are subject to interaction forces and tend to 

collide as a result of both Brownian and bulk fluid motion. Melis et al. [70] theoretically 

analyzed such cases by numerically solving the pair probability equation for a system of 

two equal-sized particles subject to interaction forces of the DLVO type (see Section 

3.2.1) in an axisymmetrical flow field. The authors found that for unstable systems (fast 

aggregation) the contributions from both mechanisms are independent, making it 

possible to compute the total aggregation rate by adding the two fluxes. In contrast, for 

more stable systems (slow aggregation) the two mechanisms are nonlinearly coupled, 

invalidating the flux additivity assumption. Based on their simulation results, the 

authors also proposed a criterion in terms of a modified Peclet number as a means to 

check the influence of fluid dynamics on the aggregation rate. This criterion clearly 

shows that, in addition to the particle diameter, the ionic strength of the medium also 

plays a role in determining the importance of fluid motion. 
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Some experimental studies have been conducted with the purpose of quantifying 

the importance of perikinetic and orthokinetic aggregation. Chern et al. [73] 

investigated the effect of several reaction variables on the stability of methyl 

methacrylate/butyl acrylate latexes. They found that the agitation speed does not 

significantly affect the coagulation process. Kemmere et al. [71, 74] studied the 

influence of process conditions on the coagulation behavior of polystyrene and 

polyvinyl acetate latexes. In a first study [71], concerning latexes with 25% solids 

content, coagulation was found to be governed by physicochemical factors, without any 

significant effect of energy dissipation rate, tank scale, impeller type or impeller 

diameter. Perikinetic aggregation was pointed to be the dominating mechanism for 

particle coagulation.  In a subsequent work [74], the authors analyzed the influence of 

solids content on the colloidal stability of the abovementioned latex systems. They 

concluded that even for high-solids latexes (up to 50%), perikinetic coagulation 

dominates over orthokinetic coagulation. The mixing conditions did not affect the 

colloidal stability of the latexes, although for polystyrene latexes they appeared to 

influence the extent of coagulum formation. Zubitur and Asúa [75, 76] analyzed the 

effect of the agitation rate on the emulsion copolymerization of styrene and butyl 

acrylate. The degree of agitation was found to affect the rate of mass transfer and the 

amount of coagulum formed, but no proof of orthokinetic coagulation was observed. 

For modeling purposes, it is of paramount importance to determine the 

magnitude of orthokinetic aggregation with respect to Brownian agregation. This is 

because the case of pure Brownian aggregation is much simpler to treat than the 

combined mechanism case. In fact, accounting for both coagulation mechanisms in a 

rigorous manner, like Melis et al. [70] did, demands a very complex mathematical 

treatment. The computation of the total coagulation rate coefficient requires the 
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numerical solution a second order partial differential equation, which may become 

prohibitive considering that such a problem must be solved simultaneously with the 

population balance equation. Fortunately, as shown in the last paragraph, there is 

experimental evidence that, for certain emulsion systems and operating conditions, 

Brownian aggregation is the only relevant mechanism. Of course, despite this general 

tendency, one should always examine the significance of orthokinetic aggregation for 

the system under consideration, either experimentally (most recommended) or 

theoretically. 

For these reasons, as will be seen in the next section, only perikinetic 

aggregation is considered in the coagulation models developed by most authors working 

in emulsion polymerization. An exception to this rule, is the work of Forcolin et al. [77] 

where the authors employed the more complete approach developed by Melis et al. [70]. 

However, Forcolin et al. found a limited contribution of the fluid flow to the 

coagulation rate, thereby justifying this simplification. 

As a final remark, note that if coagulum formation is significant, some means 

must be employed to take it into account. Unfortunately, this is not an easy task since 

coagulum may be formed by different mechanisms [78], and the available models are 

essentially semi-empirical [79-82]. 

 

 

3.2 Modeling coagulation rate coefficients 

 

 In general, perikinetic coagulation is the only mechanism of aggregation taken 

into account in the population balance models developed for EP, probably for the 

reasons cited in the previous section. Essentially, two distinct strategies have been used 
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to estimate the rate of Brownian coagulation in EP: the DLVO theory of colloid 

stability, and semi-empirical approaches. Both of these methods are reviewed in the 

following sections. 

 

 

3.2.1 DLVO-based models 

 

 A number of  models based on the (classical and extended) DLVO theory [83, 

84] have been proposed to predict the coagulation rate coefficients of latex particles 

stabilized both by anionic surfactants (Coen et al. [8, 22], Fortuny et al. [85], 

Kiparissides et al. [86], and Melis et al. [87, 88]), or of non-ionic surfactants (Immanuel 

et al. [13], Kammona et al. [48], and Lazaridis [89]). Next, we will take a look at the 

key steps of the DLVO approach, followed by a discussion of its major limitations. 

Finally, some modeling results are presented in order to evaluate the potentialities of 

this method.  

 

 

3.2.1.1 Overview of the DLVO approach 

 

The coagulation rate coefficient, β , between particles of swollen radii rsi and rsj 

is computed from the Fuchs’ modification of the Smoluchowski equation for perikinetic 

aggregation [90, 91], 
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where µ  is the viscosity of the continuous phase and W is the Fuchs’ stability ratio. The 

stability ratio is the inverse of the collision efficiency and accounts for the presence of 

colloidal and hydrodynamic interactions between the particles. An expression 

considering these two effects was given by Spielman [92],  
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where R is the center-to-center distance between particles, VT is the total particle 

interaction energy, and G is the hydrodynamic interaction function which can be 

calculated with help from references [92-95]. This equation was used in references [13, 

48, 85, 87-89] assuming G=1, i.e. neglecting the hydrodynamic interaction. However, 

these authors did not comment on the importance of this approximation, which only 

becomes valid when R is large compared to the radii of the particles. Coen et al. [8] 

used a simpler expression to compute W that only requires determining the maximum of 

VT(R), but as remarked by Lazaridis et al. [89] such treatment may lead to large errors. 

Note that care must be taken while numerically evaluating the improper integral in Eq. 

(36) so that convergence is attained.  

 The total particle interaction energy, VT, is conventionally assumed to be the sum 

of all the attractive and repulsive (electrostatic and steric) contributions. This hypothesis 

has however been questioned by Einarson and Berg [96] and Porcel at al. [97], who 

argue that the electrostatic and steric potentials are not totally independent.  

The van der Waals attractive potential energy is generally computed by the 

Hamaker-De Boer equation for two unlike spheres, retardation effects being neglected 
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(e.g. [98]). The only parameter in this equation is the Hamaker constant, which accounts 

for the nature of the polymer particles (eventually different) and the interacting medium. 

Values for a number of polymers are given by Morrison and Ross [99]. 

The electrostatic repulsion potential energy, VR, for unlike particles is rather 

difficult to compute because no exact analytical solution exists and the different 

approximations available [100] are not valid for the entire range of radius, surface 

potential, and ionic strength typical of EP systems. Therefore, different choices have 

been made by researchers, but not always justifiable. For example, Coen et al. [8], 

Fortuny et al. [85], and Melis et al. [87, 88] used the Hogg-Healy-Fürstenau (HHF) 

expression, valid for constant surface potential, 10>>sirκ  and mV 25<dψ  [100-102]. 

Nevertheless, the condition imposed on the dimensionless particle size shows that the 

applicability of the HHF equation to the small precursor particles is questionable. 

Lazaridis et al. [89], on the other hand, used a set of three expressions to compute VR 

according to the particle size. However, a similar approach had been used some years 

before by Feeney et al. [103], who concluded that these expressions significantly 

overestimate the repulsive barrier for the coagulation of unlike spheres. The absence of 

a reliable analytical expression for VR raises a problem, since VR has a strong influence 

on the values of stability ratio. If necessary, this difficulty could be overcome by using 

the exact non-linear treatment by Overbeek [100], but given the inherent limitations of 

the DLVO theory (see the next section) such treatment in not likely to worth the effort.      

The number of EP models incorporating purely steric stabilization is still 

restricted. Lazaridis et al. [89] developed expressions for the steric potential energy 

between unlike particles stabilized by oligomeric non-ionic surfactants. The volume 

restriction and osmotic contributions were accounted for, and the extent of lateral 

migration controlled by means of an adjustable parameter. Immanuel et al. [13] 
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described the steric repulsive potential due to non-ionic poly(ethylene oxide) surfactants 

through a simple formula given by Israelachvili [104], which accounts for osmotic and 

elastic contributions. 

The particle surface coverage is a fundamental parameter for the computation of 

the repulsive potentials. Chemical equilibrium is invariably assumed between the 

aqueous phase and the surface of the particles. Some authors use a surfactant adsorption 

isotherm [105], but often the amount of free surfactant in the aqueous phase is 

neglected. The adsorption of ionic and non-ionic surfactants on latex particles is 

frequently well described by a simple Langmuir isotherm [106-108]. On the other hand, 

the adsorption of mixed ionic/non-ionic systems appears to be more complex to 

describe quantitatively due to the complex mechanisms involved [97, 109]. 

The last step in the computation of the electrostatic repulsive potential is to 

relate the diffuse potential, dψ , to the total surface charge density of the particles, 0σ , 

given by the sum of the surface charges due to adsorbed surfactant, ionic end groups 

and in situ generated surfactant [15]. A number of authors [85, 86, 89] followed the 

approach given by Coen et al. [8] and used the Debye-Huckel or the Gouy-Chapman 

equations to relate 0σ  to the surface potential 0ψ , and then a Stern layer model to 

compute dψ  from 0ψ . However, as noted by Melis et al. [88], such a procedure seems 

to be incorrect since the Debye-Huckel and Gouy-Chapman equations cannot be used to 

relate 0σ  to the surface potential 0ψ . An alternative formulation that overcomes this 

inconsistency was given by the same authors and recently extended by Sefcik et al. 

[110] to describe the charging of latexes stabilized by sodium dodecyl sulfate. 
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3.2.1.2 Limitations of the DLVO approach 

 

The use of the DLVO theory to compute the coagulation rate coefficients is 

becoming standard practice among researchers, and is sometimes presented as a 

guarantee of the quality of the model. Nevertheless, there is substantial evidence of the 

quantitative limitations of this theory with respect to the prediction of the aggregation 

rate of colloids [101, 111-113]. According to Behrens et al. [111], there are two major 

incoherencies: i) the sensitivity of aggregation rates to variations in ionic strength is 

overestimated; ii) the effect of particle size on the double layer repulsion has not been 

confirmed by aggregation experiments. These authors measured the influence of pH and 

ionic strength on the stability ratio of polystyrene carboxylated particles and observed 

that the DLVO theory only worked for low surface charges ( 0σ <3 mC/m2) and low 

ionic strengths (I<10 mM). A prior study [114] performed with polystyrene particles 

stabilized by sulfate groups led to the same conclusions. Behrens et al. [111] claim that 

the theory breaks down above these limits because the potential barrier is located at 

surface distances below 1-2 nm, where non-DLVO forces [104] are known to exist. 

Thus, simplified models not accounting for the structure of the solution and the particle 

surface (roughness, discrete nature of charges, etc.) cannot be expected to work in that 

region. These findings raise serious questions on the applicability of the DLVO theory 

to emulsion polymerization, since typical operating conditions would make the zone of 

1-2 nm around the particle surface important for the calculation of the stability ratio. 

Besides, the usual picture of a precursor particle [15] is far from homogeneous in terms 

of geometry and surface charge density. 

Another important aspect has to do with the fact that the DLVO theory supposes 

dilute dispersions, for which the influence of the surrounding particles on the pair of 
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interacting particles can be neglected. In concentrated systems, however, the 

surrounding particles cause an effective reduction of the total potential energy of the 

interacting particles, and hence a lower stability ratio [115-117]. This may have 

important implications in the modeling of particle coagulation in emulsion 

polymerization, particularly for high solid content processes. In ab initio 

polymerizations, particle formation often takes place at low solid contents, and thus one 

may claim that the effect of particle concentration on the stability ratio is perhaps not 

significant (although the remarks in the preceding paragraph still apply). On the 

contrary, the production of bimodal HSC latexes without intermediate seeds involves 

the in situ nucleation of a second population of particles in a latex of at least 50% (v/v) 

polymer content. Under such circumstances, it is entirely conceivable that the 

concentration effect will be relevant. 

 A further aspect is the assumption that every latex particle in the system has the 

same (equilibrium) surfactant coverage (see the previous section). As perhaps first noted 

by Hansen and Ugelstad [118], this may not be true for the precursor particles formed 

by homogeneous nucleation, which may undergo coagulation at a faster rate than the 

rate of surfactant diffusion. This issue was also addressed by Giannetti [17], who 

compared the characteristic times for adsorption and coagulation, concluding that the 

surface coverage of the precursor particles cannot be evaluated from an adsorption 

isotherm. Obviously, this is not a limitation of the DLVO theory itself, but a 

consequence of applying an equilibrium hypothesis to a dynamic process such as 

emulsion polymerization. 

The previous paragraphs clearly show that the DLVO approach is faced with 

two fundamental problems. First, the difficulty in obtaining reliable estimates for a 

number of input parameters, namely: the surface charge density, the diffuse potential 
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and the electrostatic repulsion potential energy. It is worth noting that a deviation of 

10% in 0σ  or dψ  can lead to differences of two orders of magnitude in the predicted 

stability ratio. Second, and more important, the fact that the DLVO theory itself is 

possibly not applicable under emulsion polymerization conditions.   

 

 

3.2.1.3 Experimental validation 

 

Despite these objections, the DLVO theory remains essentially the only 

description of particle coagulation available when modeling the PSD in EP. In addition, 

it appears that by appropriately fitting certain model parameters, e.g. the Hamaker 

constant, it is possible to predict values of the coagulation rate coefficients in such a 

way that the model can be used to simulate experimental results. We will review some 

examples of this. 

Coen et al. [8] were the first to develop a full PBM accounting for particle 

coagulation by means of the DLVO theory. The authors validated their model against 

experimental data on the ab initio and seeded polymerization of styrene. With respect to 

ab initio systems, the model could adequately reproduce the effect of the surfactant 

(SDS) concentration on the final particle number, despite some mismatch around the 

CMC. The effect of electrolyte (NaCl) addition on the particle number was well 

described by the model for surfactant concentrations above the CMC, but not below. At 

equal conversions, the general shape of the PSD was correctly predicted, but since the 

PSDs were essentially symmetrical this does not tell much about the model capabilities. 

Concerning the seeded experiments, the influence of the number and size of the seed 

particles on the amount of secondary nucleation (given by the ratio new/old particles) 
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was successfully predicted by the model. However, a prior model by the same group 

[119] but without considering particle coagulation had also been capable of explaining 

the observed results. 

Kiparissides et al. [86] developed a model to predict the effect of oxygen 

concentration on the emulsifier-free polymerization of vinyl chloride. Particle stability 

arises from the surface charge density generated by the sulfate groups, which is 

quantified by an empirical formula. The model performed well when validated against 

experimental data on conversion and average particle diameter obtained from a batch 

reactor operated at various initial oxygen and initiator concentrations. The U-shaped 

behavior of the average particle diameter with respect to the initial oxygen 

concentration was correctly explained by the model. This effect was attributed to the   

competition between the increase in radical production and the decrease in particle 

stability caused by the formation of HCl. No comparison between experimental and 

computed PSDs was given. 

Lazaridis et al. [89] compared the predictions of their steric stabilization model 

with experimental data on the copolymerization of vinyl acetate and butyl acrylate. The 

model was able to describe the effect of the surfactant structure (expressed by the 

number of stabilizing and adsorbing segments) on the cumulative conversion and the 

average particle size. For each type of oligomeric surfactant, the maximum surface 

coverage of the particles was used as a fitting parameter. The differences between 

experimental and predicted PSDs led the authors to conclude that the stabilization 

model underestimates heterocoagulation. 

 Immanuel et al. [13] developed a PBM for the emulsion copolymerization of 

vinyl acetate and butyl acrylate stabilized by a non-ionic poly(ethylene oxide) 

surfactant. Simulations were compared with experimental values of the solids content, 
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number of particles and PSD, obtained for different feed profiles of the monomers, 

surfactant and initiator. The model showed poor quantitative validity regarding the 

evolution of the number of particles and PSD, despite the qualitative agreement. 

It seems hard, if not impossible, to draw firm conclusions regarding the quality 

of the coagulation models used by these authors on the basis of the results reported. 

Essentially, this has to do with the fact that the coagulation models are not tested per se, 

but are used as a part of complete EP models that also account for particle nucleation 

and growth. As a result, errors may add, cancel out, or be irrelevant. The consequences 

are most evident when modeling ab initio polymerizations, since such systems can be 

described almost completely by conversion and number of particles. Thus, as long as 

the mismatches in nucleation and coagulation compensate for each other, the model will 

lead to the correct number of particles. Actually, one should keep in mind that level-one 

models (see Section 1), which do not account for particle coagulation, are also capable 

of the predicting reasonably well the evolution of conversion and number of particles 

for various systems (e.g. [6]). For systems with electrostatic stabilization, it is possible 

to overcome this cancellation effect by analyzing the influence of electrolyte addition, 

as did Coen et al. [8], since this only interferes with coagulation. Unfortunately, this test 

is not very practical because it requires data outside typical reaction conditions. Another 

alternative is to test the complete models under complex situations, as done by 

Immanuel et al. [13], since then one assures that agreement between simulation and 

experimental results will only be achieved if every piece of the model is working 

correctly. But again, in case of failure, it is difficult to identify the source(s) of error. 

In the first instance, the obvious way to go around this interdependency problem 

would be to test the coagulation model under non-reacting conditions, as done by Melis 

et al. [88] and Fortuny et al. [85]. For example, the model could be compared with 
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experimental data for the coagulation of monomer swollen particles or with 

experimental values of the stability ratio (obtained by turbidimetry, dynamic light 

scattering, etc. [120]). However, because of the shortcomings of the DLVO theory, this 

does not guarantee that the model will be successful in simulating coagulation under 

reaction conditions. In fact, the diameter of the latex particles used in these tests is 

necessarily higher than the diameter of the precursor particles and the ionic strengths 

required to coagulate these particles are also above the typical values encountered in 

emulsion polymerization. Hence, even if the model is fitted for these conditions, the 

quantitative failure of the theory with respect to the effects of particle size and ionic 

strength will most likely lead to incorrect results when applied to predict the rate of 

coagulation in emulsion polymerization. 

 

 

3.2.2 Non DLVO-based models 

 

 Some authors have preferred simpler empirical or semi-empirical approaches to 

the more fundamental (but not necessarily more accurate) DLVO theory. Unzueta and 

Forcada [121] developed a model to predict the effect of mixed anionic/non-ionic 

surfactant systems on the emulsion copolymerization of  methyl methacrylate and butyl 

acrylate. The mixture of surfactants is described by a thermodynamic model for non-

ideal mixtures, from which the CMC of the surfactant mixture and the composition of 

the micelles are determined. The surface coverage of the latex particles is then 

computed from a Langmuir adsorption isotherm. Finally, the coagulation rate 

coefficients are defined, in analogy with Eq. (3.1), by a simple size-independent kernel 

of the type W0ββ = . The stability ratio is an empirical function of the surface 
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coverage of the particles. Despite the simplicity of the treatment, the results obtained 

with this semi-empirical model agreed well with experimental data concerning the 

effect of surfactant concentration and surfactant mixture composition on the evolution 

of conversion, average particle diameter, and copolymer composition. Furthermore, this 

is, to our knowledge, the only PBM dealing with mixed surfactant systems. 

 Another example of the use of simple coagulation models was given by Araújo 

et al. [12]. The authors defined a critical stability diameter and used it to divide the latex 

particles in two distinct populations. Particles with diameters below and above the 

critical value were designated, respectively, precursor and stable particles. Precursor 

particles can coagulate both with themselves (rate coefficient ppβ ) and with stable 

particles (rate coefficient psβ ). Stable particles do not coagulate among themselves. 

Such a procedure may be seen as a discretization of the continuous kernel ),( sjsi rrβ . 

The coagulation rate constants ppβ  and psβ  were obtained by fitting the reactor model 

to the experimental data. The authors were able to describe, at least qualitatively, the 

main dynamic features of the emulsion copolymerization of vinyl acetate and Veova 10 

in a continuous loop reactor. 
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4. Numerical solution of the population balance model  

 

4.1 Introduction 

 

A large number of articles were published in the recent years dealing with the 

solution of population balances. A fairly complete review of the available numerical 

methods can be found in references [122-124]. Rather than aiming at an exhaustive 

description of all these works, this section will focus on methods that have proven their 

capacity to solve the type of PBEs involved in EP models. However, before looking at 

the resolution methods, it is useful to consider some of the difficulties faced when 

resolving equations of this form. 

The PBEs described in this review may be seen as hyperbolic balance laws with 

special source terms [7, 125]. From the standpoint of numerical solution, two major 

difficulties are associated this type of partial differential equations (PDEs): i) the 

hyperbolic nature of PDE leads to numerical dispersion (i.e. nonphysical oscillations) 

and/or numerical diffusion (i.e. smearing) problems, which can only be surmounted by 

the use of sophisticated discretization methods [125]; ii) the evaluation of the net source 

function is a delicate matter, since any errors in the computation of the coagulation 

integrals (particularly in +ℜcoag ) will result in non-conservation of polymer mass [126]. 

The numerical solution of the PBEs is typically done in terms of the unswollen 

radius (see Section 2.1). The infinite radius domain must be truncated to a maximum 

value, rmax, which has to be chosen wisely in order to control the finite-domain error 

[127, 128]. Some researchers have applied a logarithmic transformation to the particle 

size domain (e.g. [86, 127]). This kind of transformation improves the description of 

nucleation, since it expands the small particle region, but it tends to perform poorly as 
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particles grow by polymerization and coagulation [128]. We thus recommend the use of 

uniform grids in terms of the unswollen radius. 

The solution of PBE by the method of lines leads to a large set (set A) of 

ordinary differential equations (ODEs) in time that must be integrated together with the 

remaining ODEs comprising the reactor model (set B). Normally, the latter equations 

describe the evolution of the concentrations of initiator, surfactant, ion-oligoradicals, 

monomers, etc. In certain cases, e.g. when the concentration of ion-oligoradicals is 

computed from the corresponding transient balances, the total set of ODEs (A+B) is 

highly stiff. This results in a waste of computational resources, because small time steps 

must be used for the solution of the complete system of ODEs. Immanuel et al. [123] 

proposed to overcome this problem by using a two-tier hierarchical solution strategy. In 

the first tier, the set B is solved, holding the PSD fixed. In the subsequent tier, the PSD 

(set A) is updated using the values computed from set B. The computation then 

proceeds to the next time step. 

The calculation of the coagulation rate coefficients deserves a final remark. If 

Eqs. (35) and (36) are used for this purpose, the evaluation of the 2D function )',( vvβ  

will involve a considerable computational load, because of the integration process. 

Accordingly, if this procedure is repeated at each integration step, the model solution 

will be very time consuming. A good way to avoid this problem is to monitor the 

evolution of the parameters affecting the coagulation rate coefficients ( 0σ , I, T, etc.) 

and to recompute )',( vvβ  only when one of these parameters changes by more than a 

certain amount. 
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4.2 Finite elements 

 

 The finite element (FE) method [129, 130] is widely used in science and 

engineering for solving PDEs, and was first applied to PBEs by Gelbard and Seinfeld 

[127]. The technique of orthogonal collocation on finite elements (OCFE), in particular, 

has been used by several authors to describe the evolution of PSD in EP reactors (see 

Table 1). By means of the OCFE method, the PBE is semi-discretized and transformed 

into a system of differential algebraic equations (DAEs), whose unknowns are the 

values of the number density function at the collocation points. The reader is referred to 

references [30, 47, 124, 130] for details on the implementation of this numerical 

technique. As shown in Table 1, the OCFE method has mostly been used in 

coagulation-free models. Araújo et al. [12] are apparently an exception to this rule, but 

recall that these authors used a simplified coagulation kernel. For the solution of 

coagulation-inclusive models, other discretization methods have been preferred, namely 

discretized population balances (DPBs) and finite difference/volume methods (see next 

section). 

In a recent theoretical study, Alexopoulos et al. [124] evaluated the performance 

of both the OCFE method and the discretization method of Lister et al. [131] for 

processes undergoing combined growth and aggregation. The effect of different kernels 

over a wide range of dimensionless growth and aggregation times was analyzed. The 

OCFE method was found to be, in general, more accurate. Nevertheless, for growth 

dominated problems, the results obtained with the OCFE method presented non-

negligible instabilities and dissipation. The spurious oscillations affecting the numerical 

solutions near the moving fronts could be reduced by adding an artificial diffusion term 

(a common practice in hyperbolic PDEs [132]), but obviously that further increased the 
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amount of numerical dissipation. This stabilization trick was also used by Saldívar and 

Ray [46] in conjunction with the OCFE method. Rigopoulos and Jones [126] proposed a 

different type of FE scheme featuring enhanced stability and conservation of moments 

with respect to other FE methods, while being easy to implement and fast. The scheme 

consists of collocation on linear elements with a first order backward approximation for 

the growth term. However, this method suffers from significant dissipation, as is usual 

with first order upwind schemes. 

The oscillation and/or dissipation problems reported in the above paragraph are 

characteristic of FE schemes for hyperbolic problems [129]. Classical finite difference 

and finite volume schemes also suffer from this limitation, perhaps even more seriously. 

The latter methods, however, have the advantage of being simpler to implement and 

computationally less demanding. This probably explains why the FE method has not 

been employed in coagulation-inclusive models, inherently heavier. In the following 

section, an alternative approach is described which we believe is more efficient. 

 

 

4.3 Finite differences/volumes  

 

 The finite difference (FD) method of is one of the most popular for solving 

PDEs. The finite volume (FV) method is closely related to the FD method, but is 

derived from the integral form of the differential equations, a starting point that is 

reflected in a number of advantages [125].  

 The limitations of linear FD schemes when applied to hyperbolic problems are 

well documented [129, 132]. The use of second order central (C2) schemes to discretize 

the convective term invariably leads to spurious oscillations, even with fine mesh 
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spacing. Stable solutions can be obtained if the first order backward (B1) difference 

approximation is employed. Unfortunately, this upwind formula is only first order 

accurate and leads to excessive numerical diffusion; therefore a very fine grid is 

required throughout the entire domain to obtain correct solutions. The same difficulties 

are encountered with the FV formulation when first order upwind and second order 

central schemes are used to compute the particle flux at the cell boundaries [125]. 

Despite their limitations, the above mentioned schemes have been used by various 

authors to solve PBEs (see Table 1). For example, the inconvenience of using schemes 

of type C2 can be clearly seen in the plots given by Coen et al. [8]. 

In order to obtain high order ( 2≥ ) accuracy and oscillation-free solutions, high 

resolution methods must be employed [125]. In particular, semi-discrete schemes have 

been developed that can be used to convert the PDE into a system of ODEs in time, 

which are then integrated (method of lines). Such methods can be applied both to FD 

and FV formulations and are fairly simple to implement. This approach has been in use 

for some time in other research fields, but only recently was it applied to PBEs [122, 

133, 134]. As demonstrated by these recent works, the combination of the FV method 

with a semi-discrete high resolution scheme is particularly suited for the solution of 

PBEs. This is because: i) the difficulties related to the hyperbolic nature of the PBE 

(dispersion and dissipation) are subdued by the use of a high resolution scheme; ii) the 

FV method ensures that the number of particles is conserved [125]; iii) point sources, 

such as particle nucleation (see Section 2.1), can be easily treated; iv) the FV 

formulation is fully compatible with the simple yet efficient discretization methods 

developed for particle aggregation, namely the well-reputed fixed pivot technique of 

Kumar and Ramkrishna [135]. For these reasons, this approach is, in our opinion, the 

best choice for solving the full PBEs appearing in EP models.  
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The key steps of this method are outlined below, taking Eq. (15) as an example. 

The PBEs described in Sections 2.2.2 and 2.4.1 can be solved in a similar way. As 

depicted in Fig. 2, the truncated radius domain is subdivided into M cells 

],[ 2121 +−≡ iii rrC , with center 2)( 2121 +− += iii rrr , and size ir∆ . The average value of 

the density function over Ci at time t is,  
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where )(tN i  is the number of particles per unit volume of aqueous phase in that cell. 

According to the FV method, we do not solve the PBE directly, but its integrated 

version. Integrating Eq. (15) over the ith cell and dividing by ir∆  gives: 
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Here, 21
ˆ

+Φi  stands for the numerical approximation of the flux ),(),( trFtrr&≡Φ  at 

21+= irr . For instance, if a first order upwind scheme is used, the numerical flux reads 

)(),(ˆ
2121 tFtrr iii ++ ≡Φ & . In high resolution methods, the numerical flux is computed by a 

suitable high order non-linear scheme [125, 136, 137]. A good option is to employ the 

so-called weighted essentially non-oscillatory (WENO) methods [136, 138, 139], in 
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particular the third and fifth order schemes. The corresponding algorithms are explained 

in detail by Shu [136]. Referring back to Eq. (38), note that the inclusion of nucleation 

is quite straightforward, the corresponding term being accounted for in the first cell. The 

last two terms on the RHS of Eq. (38) are simply the discretized equations for pure 

aggregation developed by Kumar and Ramkrishna [135]. Although other discretization 

schemes exist [131, 140-142], the fixed pivot technique is the suggested choice, since 

this method is robust, versatile, accurate, and simple to implement [141]. 

The approach just described is applicable to problems involving simultaneous 

nucleation, growth and coagulation. In addition, it is both oscillation-free and accurate, 

can be used with arbitrary non-uniform grids, and is easier to implement than the OCFE 

method. This method is also superior to the moving grid technique proposed by Kumar 

and Ramkrishna [143], as the latter is not well suited for problems involving nucleation.  

In order to illustrate the capacities of this approach, let us look at some simulation 

results. Fig. 3 depicts the growth of a 100 nm-seed. The advantages of the fifth order 

WENO scheme over the first order upwind scheme are quite evident. Note that for 

M=300 the B1 solution still reveals significant numerical diffusion. In contrast, the two 

WENO5 curves are indistinguishable. Fig. 4 illustrates the synthesis of a bimodal latex 

starting from a 400 nm-seed. In this simulation we employed a simple coagulation 

kernel like the one used by Araújo et al. [12]. Population balance models are 

particularly useful for this type of processes, as they allow one to describe the sizes and 

relative amounts of both populations. 
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5. Conclusions 

 

PBEs bring added dimension to the modeling of EP in so far as they provide a 

structure that can be used to link reaction kinetics, particle nucleation and growth, as 

well as coagulation to the PSD. This type of model should, in theory, allow one to 

develop significant insights into the relationship between the reactor, reaction 

conditions and latex quality (PSD, MWD, composition distribution, etc.) in ways that 

cannot be achieved using level-one models (i.e. assuming a monodisperse PSD). 

The objective of this review was to evaluate the progress in EP modeling using 

PBEs. It is clear that significant advances have been made, but certain challenges 

subsist. As with many types of problems, the more complete the models, the more 

computationally intensive they become. Even if one sets aside difficulties related to 

modeling coagulation, it is clear that PBEs are difficult to solve if one includes full 

hydrodynamic and/or kinetic models. Therefore, while useful, a number of PBE-based 

approaches that one finds in the literature are obliged to rely upon assumptions about, 

among other things, the distribution of free radicals in the particles in order to reduce 

model complexity to a computationally manageable level. However, with the correct 

choice of numerical solution techniques, full PBEs, and eventually two dimension PBE 

models of EP will allow us to more fully describe the evolution of the PSD coupled 

with another property distribution such as the composition of different particles. 

On the other hand, it appears that the major obstacle to a more widespread and 

effective use of PBEs in modeling the PSD is not a challenge intrinsic to the PBEs 

themselves, rather it is related to a lack of physical models of some of the more 

important phenomena in EP. Of course, a number of difficulties are encountered when 

including coagulation, not the least of which is the inherent uncertainty of modeling the 
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particle coagulation rate using the only available tool – the DLVO theory. It is 

nevertheless true that a judicious choice of model parameters by certain authors have 

allowed them to successfully model EP using DLVO and either zero-one or PB kinetics. 

An obvious conclusion is that a better model of particle coagulation is needed if we are 

to increase the accuracy and robustness of PBEs in modeling the PSD of emulsion 

polymerization. Such a model should include: ortho- and perikinetic contributions to 

coagulation, a means of assessing the stability of particles on length scale 

commensurate with emulsion polymerization, as well as a means of including the 

influence of the composition of mixed surfactant systems. To be fair, it is entirely 

unclear from the literature reviewed here how one could go about doing that! 

In conclusion, PBEs are a promising tool for the modeling of various important 

aspects of emulsion polymerization, not the least of which is the inclusion of the 

development and the contribution of complex PSDs. Very positive advances in the use 

of this type of model have been made over the course of the last decade, and reasonable 

approximations and simplifications of complex physical parameters have been used 

with success in a number of publications. Advances in inexpensive computational 

power and in the development of evermore sophisticated numerical solution algorithms, 

coupled with progress in the area of modeling emulsion stability will make PBEs 

ubiquitous tools for the modeling of EP in the near future. 
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Figure Captions 

 

Fig. 1  Relative error of the n values computed by Eq. (22) with respect to Eq. (18). 

 

Fig. 2  Subdivision of the particle size domain ],[ maxrrnucr ≡Ω  into M cells. 

 

Fig. 3. Growth of a 100 nm seed. Numerical results obtained with the fifth order WENO 

and first order upwind schemes, for two values of M (uniform grids). 

 

Fig. 4. Synthesis of a bimodal latex by seeded polymerization. Evolution of the mass-

averaged PSD along the course of the batch.  
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Tables 

 

Table 1 Population balance models of emulsion polymerization 

 

 

 


