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Phase-space reconstruction of an atomic chaotic system

Hugo L. D. de Souza Cavalcante, Carlos Renato de Carvalho,∗ and Jean Claude Garreau
Laboratoire de Physique de Lasers, Atomes et Molécules,

Université des Sciences et Technologies de Lille,

Bat. P5, F-59650 Villeneuve d’Ascq Cedex, France†

(Dated: 19 March 2005)

We consider the dynamics of a single atom submitted to periodic pulses of a far-detuned standing
wave generated by a high-finesse optical cavity, which is an atomic version of the well-known “kicked
rotor”. We show that the classical phase-space map can be “reconstructed” by monitoring the
transmission of the cavity. We also studied the effect of spontaneous emission on the reconstruction,
and put limits to the maximum acceptable spontaneous emission rate.

PACS numbers: 42.65.Sf, 03.75.Dg, 39.20.+q 32.80.Pj

I. INTRODUCTION

The kicked rotor (KR) is a widely explored system that
has a paradigmatic status in studies of classical [1] and
quantum chaos [2, 3]. In recent years, the advent of laser
cooling of atoms allowed the realization of an atomic ver-
sion of the KR [4, 5], which has been used in experiments
by many groups [5, 6, 7, 8]. This consists simply in plac-
ing laser-cooled atoms in a pulsed laser standing wave.
In adequate (but rather general) conditions, the atomic
center of mass motion“feels” the presence of the standing
wave as an “optical potential” which varies sinusoidally
in space. One can then easily modulate (with period T )
the light intensity in the form of short pulses to obtain a
hamiltonian of the form [18]

H =
p2

2M
+ V0 cos(2kLx)

N−1
∑

n=0

δτ (t′ − nT ), (1)

where M and p are resp. the atom mass and center
of mass momentum, V0 is the amplitude of the optical
potential (which is proportional to I/∆, where I is the
intensity of the standing wave and ∆ the laser-atom de-
tuning), kL = 2π/λL the wave number of the standing
wave (in the x−direction), and δτ a square function of
duration τ and amplitude 1. In the limit τ → 0, or, more
exactly, in the limit

〈

p2
〉1/2

τ

M
≪ λL, (2)

one can put δτ/τ → δ and one obtains exactly the
hamiltonian of the KR. In order to obtain this hamilto-
nian in its standard form, we perform the normalizations
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t′/T → t, 2kLx → X , (2kLT/M)p → P :

H =
P 2

2
+ K cosX

N−1
∑

n=0

δ(t − n) (3)

where the only free parameter is the normalized kick
strength K = 4V0k

2
LTτ/M .

Many of the recent experimental studies were aimed
at quantum aspects of the KR dynamics, as “dynamical
localization” [5, 9], quantum resonances [10], or “chaos-
assisted” tunneling [11, 12]. Quantum effects in such sys-
tem manifest for times larger than the “Ehrenfest time”,
when quantum dynamics begins to take over classical dy-
namics. This is the domain of “quantum chaos”, which is
defined as the quantum dynamics of systems which are
chaotic in the classical limit. It is well known that the
quantum behavior of such systems bears little relation to
the classical chaotic behavior of their classical counter-
parts, basically because Schrödinger equation is linear.
One of the most exciting questions about quantum chaos
is “How the initially classical dynamics and latter quan-
tum dynamics diverge from one another?” Clearly, the
critical point in this divergence is situated between the
Ehrenfest time tE ∼ T ln(1/k̄) and the so-called“localiza-
tion time” tL ∼ T (K/k̄)2, where k̄ is the effective Planck
constant [19]. Fortunately, in the atomic KR the param-
eters can be widely changed which allows one to adjust
these times to experimentally convenient scales. How-
ever, even if the adequate time domain is accessible, it is
still difficult to put into evidence the transition between
classical and quantum regimes because, usually, the kind
of measurements performed on a microscopic system is
different from – and often not simply related to – the
kind of measurement performed on macroscopic systems.
Typically, studies of classical dynamics rely on the no-
tion of trajectory (phase-space maps, first-return maps,
Poincaré sections...) whereas studies of quantum dynam-
ics emphasize mean quantities and probability distribu-
tions. The purpose of the present paper is to describe and
study an experimentally realizable situation in which re-
construction of the atom center of mass dynamics can
be done, thus reconciliating quantum- and classical-type
measurements. Hopefully, such a setup would provide a
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better understanding of the above-mentioned transition
between classical and quantum dynamics. Throughout
this paper, we shall treat the atomic motion as a classi-
cal motion: we shall consider that the atomic center of
mass position and momentum are enough to character-
ize the dynamics. This is true as long as the dynamics
is essentially classical, that is, for times shorter than the
localization time, or as far as the sources of decoherence
– mainly spontaneous emission in the present case – act
often enough to provoke a quantum coherence collapse
before interference effects can develop and appreciably
change the classical behavior.

II. KICKED ROTOR DYNAMICS

In recent years, the quality of optical cavities has been
dramatically improved. It is now possible to build cav-
ities of very high finesse [13, 14]. In such a cavity, the
index of refraction generated by one atom is enough to
change mesurably the resonance condition, and the cav-
ity can thus be used to “count atoms one by one” [15].
As an atom moves inside the cavity, it “probes” regions
where the radiation intensity is not the same. For exam-
ple, cavity modes usually have a gaussian profile, whose
intensity is larger at the center than in the border. In the
same way, as the field inside the cavity forms a standing
wave, changing the longitudinal position of the atom also
changes the intensity to which it is submitted (Fig. 1).
This is the situation we shall consider in the present pa-
per. Because of the Kerr effect, the refractive index of the
atom is modified by the intensity of the radiation to which
it is exposed, and the changing of the refractive index in
turn changes the cavity resonance condition. By measur-
ing the cavity transmission one can extract information
on the position of the atom. This is an “autoconsistency”
problem: the change in the resonance condition changes
the cavity field, that in turn changes the atom refractive
index. This means that the amplitude of the kicks felt
by the atom will also depend on its position, which is in
contradiction with the standard definition of the KR. We
shall take this fact into account in our simulations, but
will arrange parameters in order to make the variation
of the kick strength K small enough to not disturb too
much the dynamics of the KR.

An experimental limitation that must also be taken
into account is that one cannot change instantaneously
the radiation intensity inside a cavity. The “lifetime”of a
photon inside the cavity is roughly τc = L/(cT ), where T
is the (intensity) transmission coefficient of the mirrors
and L the length of the cavity. The duration τ of the
kicks shall thus be at least of a few τc. However, the
validity condition for identifying the kicks with a delta
function, Eq. (2), must also be satisfied. This implies
that

2hL

λ2
LMc

√
N ≪ T (4)

(a)

(b)
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Figure 1: Schematic view of the proposed setup. If the atom
is at a crest (a) or at a node (b) of the cavity electromagnetic
field, the Kerr nonlinear refractive index produced is differ-
ent, the resonance condition of the cavity is modified, and
the transmitted intensity changes, allowing detection of the
longitudinal position of the atom.

where we used the order of magnitude value
〈

p2
〉1/2 ∼

2~kL

√
N after N kicks are performed [20]. Thus given

T , there is a maximum number of kicks (i.e. a maximum

duration of the experiment), Nmax ∼
[

λ2
LMcT /(2hL)

]2
.

For cesium this gives Nmax ∼ (T /L)2 × 109 m2. This
condition is not hard to satisfy: for T = 10−6 and L =
10−4 m, Nmax ∼ 105, whereas experiments currently last
only for a few hundred kicks.

Integrating the equations of motion obtained from
Eq. (3) over one period T = 1 produces the so-called
“standard map” [1]

Xn+1 = Xn + Pn (5a)

Pn+1 = Pn − Kn+1 sin Xn+1. (5b)

where we took into account the fact that, due to the
nonlinear Kerr effect, Kn = K(Xn): the intensity of the
kick depends on the position of the atom. In constructing
the phase-space portrait of the kicked rotor, it is usual
to simplify the display by taking all the quantities “mod-
ulus 2π” (we shall represent the modulus 2π of a given
quantity A by A[2π]). This is due to the fact taht the
potential is periodic in space, of period 2π in reduced
units. This means that if Pn = 2πq + p, with p < 2π and
q integer, then, after Eq. (5a), Xn+1 = Xn + p + 2πq.
Thus Xn+1[2π] = Xn[2π] + p: the physics is the same
for momenta differing by an integer multiple of 2π. We
shall thus, according to the usual convention, draw phase-
space maps by plotting X [2π] vs. P [2π]. We show a
typical plot of the KR phase-space in Fig. 4(a).

III. CAVITY DYNAMICS

A schematic view of the proposed experiment is shown
in Fig. 1. The atom is placed inside a high-finesse cavity,
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and its presence shifts the resonance condition of the cav-
ity in a nonlinear way: this shift depends on the radiation
intensity seen by the atom, and thus on its longitudinal
position. The intensity transmitted through the cavity
can thus be related to the position of the atom. However,
this position is defined only with respect to the closest
node; shifting the position of the atom by a period of
the standing wave produces the same transmission signal
[21].

If a laser beam of wavenumber kL intensity I0 is in-
jected into an empty Fabry-Perot cavity made of two
identical mirrors a distance L/2 apart, of transmission
coefficient T and reflection coefficient R = 1−T , the in-
tracavity intensity is given by the well-known Airy func-
tion

Ic =
1/T

1 + F 2 sin2
(

kLLopt

2

)I0, (6)

leading to a resonance Rabi frequency

Ω2 = Ω2
0 cos2 (kLx) (7)

=

(

3πΓ

~ck3
L

)

1/T
1 + F 2 sin2

(

kLLopt

2

)I0 cos2 (kLx) (8)

where F = 2
√
R/T is the finesse of the cavity divided

by π/2 and Γ the natural width of the atomic transition.
The parameter K [Eq. (3] turns out to be [5]:

K =
1

2
ωrT

2 Ω2
0

∆

= (ωrT ) (ΓT )

(

Γ

∆

)

1/T
1 + F 2 sin2

(

kLLopt

2

)

I0

Is

where Is ≡ ~ck3
LΓ/(6π) is the saturation intensity ∼ 2

mW/cm2 for cesium, ωr = ~k2
L/(2M) is the recoil fre-

quency (ωr/(2π) ∼ 2 kHz for cesium) and ∆ the laser-
atom detuning.

In Eq. (8), Lopt = L + ∆L is the optical length of the
cavity, L is its physical length and ∆L is the correction
due to the presence of the atom:

kL∆L =
3πΓ

2k2
LL2

at

∆

∆2 + Ω2

2 + Γ2

4

=

(

3π

2k2
LL2

at

)

∆/Γ
∆2

Γ2 + Ω2

2Γ2 + 1
4

where Lat is the linear size of the effective volume occu-
pied by the atom. The definition of this volume depends
on the details of the experiment being performed. In the
case of laser-cooled atoms, we can take this volume as
the volume of the atom cloud in a magneto-optical trap,
roughly Lat ∼ 100 µm, which gives 3π/[2(kLLat)

2] ∼
10−5. For ∆ ≈ 103Γ, which is a typical value, the de-
phasing kL∆L induced by a lone atom is roughly 10−8,
which is hard to detect directly. The effect is however
enhanced by the presence of the cavity.

The detected signal is the intensity transmitted
through the cavity, given by

S =
1

1 + F 2 sin2
(

kLLopt

2

)I0 = Ic/T (9)

which depends on the radiation intensity seen by the
atom through Lopt , and thus on the atom position. If
F ≫ 1, the half-width of the Airy peak corresponds
roughly to

F 2 sin2

(

kLLopt

2

)

≈ F 2 (kLLopt)
2

4
= 1, (10)

thus

kLLopt =
2

F
. (11)

One easily finds

∣

∣

∣

∣

∆It

I0

∣

∣

∣

∣

≈ F 2kLL

4
|kL∆L| =

F

2
|kL∆L|

where we supposed kLL ≈ 2/F . Then, taking kL∆L ≈
10−8, an experimentally realistic value [13] of F ≈ 106

produces a detectable 1%-variation of the transmitted
intensity [22].

Techniques based on the Kerr nonlinearity similar to
that proposed here have been recently used for monitor-
ing the radial motion of an atom trapped in high-finesse
cavity [13, 14]. In our case, it is the longitudinal motion of
the atom that should be monitored. This is complicated
by the periodic character of the standing wave inside the
cavity. We shall discuss in the next section the algorithm
we developed to deal with this problem.

IV. THE RECONSTRUCTION ALGORITHM

In order to reconstruct the phase-space map from the
cavity transmission signal, we suppose that the trans-
mission value corresponding to each kick n is recorded,
forming a temporal series Sn. The information given by
the bare signal is however incomplete. Fig. 2 displays the
first return map corresponding to the temporal series Sn.
Its topology do not evoke at all the KR phase-space map
shown in Fig. 4a. Let us consider the information that
can be extracted from two successive values of the cavity
transmission, S1 at kick 1 and S2 at kick 2. Referring
to Fig. 3, we see that the cavity transmission leaves an
indeterminacy on the position, as the points X1, X ′

1 and
X ′′

1 correspond to the same transmission. Generally two
classes of points lead to the same transmission

X and X ′ = X + 2πq (12a)

X and X ′′ = 2πq − X. (12b)

(q is an integer).
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Figure 2: First return map Sn × Sn+1 for the cavity-
transmission signal, with F = 106. Structures are clearly
visible, but no direct relation to the topology of the phase-
space of the KR (Fig. 4a) can be drawn.

X

V(X)

S

S1
S2

X1X2 X’1X’2X’’2X’’1

Figure 3: Correspondence between the transmission signal
and the atom longitudinal position inside the cavity.

X X1 X1 + 2πq1 2πq1 − X1

X2 X2 − X1 X2 − X1 − 2πq1 X2 + X1 − 2πq1

X2 + 2πq2 X2 − X1 + 2πq2 X2 − X1 + 2π(q2 − q1) X2 + X1 + 2π(q2 − q1)

2πq2 − X2 −(X2 + X1) + 2πq2 −(X2 + X1) + 2π(q2 − q1) −(X2 − X1) + 2π(q2 − q1)

Table I: Possible momentum (X2 − X1) determinations for different choices of the position determination (q1 and q2 are
integers). Eliminating the terms of the form 2π×(integer number), the only possibilities are x2 + x1, −(x2 + x1), x2 − x1

and −(x2 − x1), with xi = Xi[2π]. Considering that trajectories corresponding to momenta P and −P are identical in the
phase-space map leaves only two choices, x2 + x1 and x2 − x1.

However, as it is X [2π] that is displayed in the phase-
space map, the value of the integer number q in Eqs. (12)
is irrelevant. This leaves us with just two possible values,
x and 2π − x, where x = X [2π]. As the motion of the
atom is free between two kicks, the momentum associated
to the kick n is Pn = Xn+1 − Xn. Moreover, we note
that P and −P lead to the same trajectory in the phase
portrait. Introducing the relevant (for phase-portrait-
plotting purposes) value pn = Pn[2π], we find that there
are only two distinct choices for the momentum: p1 =
x2−x1 or p1 = x2 +x1 (see table I). We must thus chose

arbitrarily one of the two. If we now include the next
value x3 of the position (with its own arbitrary choice
of the determination), we can deduce in the same way
a value for p2. But Eq. (5b) implies that the successive
values p1 and p2 of the momentum must satisfy

p2 = p1 − (K2 sin x2) [2π], (13)

which allows us to test the coherence of the choices.
In practice, our algorithm proceeds as follows: i) For

each point Sn in the time series of cavity transmission, we

first estimate a value for the intracavity intensity I
(0)
c us-
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Figure 4: Comparison between the original (a) and the recon-
structed (b) KR phase space-map. Parameters are K = 0.8,
F = 106. Larger structures are easier to reconstruct than
smaller ones.

ing Eq. (6) with Lopt = L. This value of I
(0)
c is then used

to estimate the atom position x
(0)
n and to calculate a first

correction to L, L(1) = L + ∆L1, which in turn is used

to determine a corrected value I
(1)
c and a corrected value

of the position x
(1)
n . The process is iterated until it con-

verges to produce the value of the position correspond-
ing to the nth kick, xn. Ten steps are usually enough to
insure the convergence of the process. ii) We choose ar-
bitrarily between the two possible determinations xn or
2π − xn of the position and calculate the corresponding
value of pn (choosing arbitrarily between xn − xn−1 and
xn + xn−1). iii) Each time three successive momentum
values have been determined, we use Eq. (13) to test the
coherence of the choices. If this condition is violated, we
recalculate the last three points with a different choice
of the position determinations. iv) Once a trajectory is
reconstructed, one starts again with another time series
corresponding to another set of initial conditions.

Fig. 4 compares the exact KR phase-space map with
the reconstructed one. We see that the agreement is
good. The number of restarts due to the coherence test
is 380 over 3000 data points.

V. EFFECT OF THE SPONTANEOUS

EMISSION

The good reconstruction obtained in the preceding sec-
tion is however impossible to achieve in a real experiment,
because of the unavoidable presence of spontaneous emis-
sion in the system. However, the spontaneous emission
rate can be controlled – to a certain extent – in such sys-
tems, because it roughly scales with the inverse of the
square of the laser-atom detuning, whereas the optical
potential amplitude V0 scales with the inverse of the de-
tuning; one can thus adjust the parameter in such way
that spontaneous emission level is tolerable during the
experiment duration. In the one dimensional situation
we are considering, the effect of spontaneous emission is
to add to the value of p in the average a unit of photon

momentum ±~kL (corresponding to k̄/2 = 2~k2
LT/M in

reduced units), with an arbitrary sign, each time it hap-
pens. We introduced spontaneous emission in our simu-
lations by a simplified Monte-Carlo procedure. For each
pulse of duration τ , we calculate the probability for a
fluorescence cycle to happen

ga =
Γ

2

Ω2/2

∆2 + Ω2

2 + Γ2

4

τ. (14)

We suppose that this probability is less than one, that
is, there is at most one fluorescence cycle per pulse. A
random number 0 ≤ αa < 1 is picked, and if αa < ga

the atom performs a fluorescence cycle. In such case,
another number ηa taking randomly one of two possible
values −k̄/2 and +k̄/2 is picked to decide of the direc-
tion of the recoil of the atom [23]. The atom decay back
to the ground state produces a new recoil in a random
direction given by another random number ηsp = ±k̄/2.
We suppose that T ≫ Γ−1 [24], so that, with respect
to the atom dynamics, the whole fluorescence cycle can
be considered as instantaneous. The effect of the spon-
taneous emission during the nth kick is thus to change
the momentum pn → pn + (ηa + ηsp). This change in
the momentum displaces the point corresponding to the
pn in the phase-space of a quantity that can be as large
as k̄[2π], compared to the width of the map 2π. The
effect of spontaneous emission thus increases as the ef-
fective Planck constant k̄ of the system increases, that
is, as the system becomes more “quantum”. Fortunately,
the classical type of dynamics we are interested in here
corresponds to k̄ < 1.

Fig. 5 compares the phase-space reconstruction ob-
tained with different values of ga. The number of restarts
due to bad choices of position/momentum determina-
tions was typically two times larger than in the absence
of spontaneous emission. We can estimate the maximum
spontaneous emission rate per kick still allowing the re-
construction of the phase map as gmax ∼ 0.05, which
means that, in order to perform this experiment, the pa-
rameters should be chosen so that the localization time
be of the order of tL ∼ g−1

max ∼ 20 kicks. However, 20
kicks are not enough to produce a good phase space por-
trait; a better combination of parameters would be, e.g.,
g ∼ 0.01 and tL ∼ 100. This values are still compatible
with current experimental values.

VI. CONCLUSION

We have proposed and numerically tested a method
allowing reconstruction of the classical dynamics of the
“atom-optics” kicked rotor formed by an atom exposed
to pulses of an intracavity standing wave. We have dis-
cussed the relevant parameters of the system and showed
that they can fit with real experimental situations. Our
method can be used to probe interesting phenomena, like
the transition from the classical dynamics to the quan-
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Figure 5: Influence of the spontaneous emission in the phase-
space reconstruction. Parameters are K = 0.8 and F = 106.

tum dynamics as the spontaneous emission rate becomes
smaller than the inverse of the localization time.

It is rather difficult to guess what will happen when
this limit is approached. In the quantum case, the atom
cannot be characterized by a single point in the phase
space. This means that the spreading of the wavefunction
must be considered, and the classical notion of trajectory
is not any more a good one. In particular, the the cavity
transmission will be affected by the spatial spreading, as
it allows the atom to “probe” different intensity regions.
One must also consider the decoherence effect of spon-
taneous emission that reduces the wavepacket if it hap-
pens often enough. An interesting way to explore such
situation is to compare a Wigner-function picture of the
quantum phase-space in presence of decoherence with the
classical map [16]. If the present method proves able to
experimentally explore the classical/quantum transition,
it would be highly valuable for studies of the nontrivial
relation between classical and quantum chaos.
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