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Abstract

This review is devoted to the study of the mechanism of electroweak symmetry breaking
and this first part focuses on the Higgs particle of the Standard Model. The funda-
mental properties of the Higgs boson are reviewed and its decay modes and production
mechanisms at hadron colliders and at future lepton colliders are described in detail.
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Préambule

A short praise of the Standard Model

The end of the last millennium witnessed the triumph of the Standard Model (SM) of

the electroweak and strong interactions of elementary particles [1, 2]. The electroweak the-

ory, proposed by Glashow, Salam and Weinberg [1] to describe the electromagnetic [3] and

weak [4] interactions between quarks and leptons, is based on the gauge symmetry group

SU(2)L × U(1)Y of weak left–handed isospin and hypercharge. Combined with Quantum

Chromo–Dynamics (QCD) [2], the theory of the strong interactions between the colored

quarks based on the symmetry group SU(3)C, the model provides a unified framework to de-

scribe these three forces of Nature. The theory is perturbative at sufficiently high energies [2]

and renormalizable [5], and thus describes these interactions at the quantum level.

A cornerstone of the SM is the mechanism of spontaneous electroweak symmetry breaking

(EWSB) proposed forty years ago by Higgs, Brout, Englert, Guralnik, Hagen and Kibble [6]

to generate the weak vector boson masses in a way that is minimal and, as was shown later,

respects the requirements of renormalizability [5] and unitarity [7]. An SU(2) doublet of

complex scalar fields is introduced and its neutral component develops a non–zero vacuum

expectation value. As a consequence, the electroweak SU(2)L × U(1)Y symmetry is sponta-

neously broken to the electromagnetic U(1)Q symmetry. Three of the four degrees of freedom

of the doublet scalar field are absorbed by the W± and Z weak vector bosons to form their

longitudinal polarizations and to acquire masses. The fermion masses are generated through

a Yukawa interaction with the same scalar field and its conjugate field. The remaining degree

of freedom corresponds to a scalar particle, the Higgs boson. The discovery of this new type

of matter particle is unanimously considered as being of profound importance.

The high–precision measurements of the last decade [8, 9] carried out at LEP, SLC,

Tevatron and elsewhere have provided a decisive test of the Standard Model and firmly

established that it provides the correct effective description of the strong and electroweak

interactions at present energies. These tests, performed at the per mille level accuracy, have

probed the quantum corrections and the structure of the SU(3)C × SU(2)L × U(1)Y local

symmetry. The couplings of quarks and leptons to the electroweak gauge bosons have been

measured precisely and agree with those predicted by the model. The trilinear couplings

among electroweak vector bosons have also been measured and agree with those dictated by

the SU(2)L × U(1)Y gauge symmetry. The SU(3)C gauge symmetric description of the strong

interactions has also been thoroughly tested at LEP and elsewhere. The only sector of the

model which has not yet been probed in a satisfactory way is the scalar sector. The missing

and most important ingredient of the model, the Higgs particle, has not been observed [9,10]

and only indirect constraints on its mass have been inferred from the high–precision data [8].
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Probing electroweak symmetry breaking: a brief survey of recent developments

The SM of the electroweak interactions, including the EWSB mechanism for generating par-

ticle masses, had been proposed in the mid–sixties; however, it was only in the mid–seventies,

most probably after the proof by ’t Hooft and Veltman that it is indeed a renormalizable

theory [5] and the discovery of the weak neutral current in the Gargamelle experiment [11],

that all its facets began to be investigated thoroughly. After the discovery of the W± and

Z bosons at CERN [12], probing the electroweak symmetry breaking mechanism became

a dominant theme of elementary particle physics. The relic of this mechanism, the Higgs

particle, became the Holy Grail of high–energy collider physics and l’objet de tous nos désirs.

Finding this particle and studying its fundamental properties will be the major goal of the

next generation of high–energy machines [and of the upgraded Tevatron, if enough lumino-

sity is collected]: the CERN Large Hadron Collider (LHC), which will start operation in a

few years, and the next high–energy and high–luminosity electron–positron linear collider,

which hopefully will allow very detailed studies of the EWSB mechanism in a decade.

In the seventies and eighties, an impressive amount of theoretical knowledge was amassed

on EWSB and on the expected properties of the Higgs boson(s), both within the framework

of the SM and of its [supersymmetric and non supersymmetric] extensions. At the end of the

eighties, the basic properties of the Higgs particles had been discussed and their principal

decay modes and main production mechanisms at hadron and lepton colliders explored.

This monumental endeavor was nicely and extensively reviewed in a celebrated book, The

Higgs Hunter’s Guide [13] by Gunion, Haber, Kane and Dawson. The constraints from

the experimental data available at that time and the prospects for discovering the Higgs

particle(s) at the upcoming high–energy experiments, the LEP, the SLC, the late SSC and

the LHC, as well as possible higher energy e+e− colliders, were analyzed and summarized.

The review indeed guided theoretical and phenomenological studies as well as experimental

searches performed over the last fifteen years.

Meanwhile, several major developments took place. The LEP experiment, for which the

search for the Higgs boson was a central objective, was completed with mixed results. On the

one hand, LEP played a key role in establishing the SM as the effective theory of the strong

and electroweak forces at presently accessible energies. On the other hand, it unfortunately

failed to find the Higgs particle or any other new particle which could play a similar role.

Nevertheless, this negative search led to a very strong limit on the mass of a SM–like Higgs

boson, MH >∼ 114.4 GeV [10]. This unambiguously ruled out a broad low Higgs mass region,

and in particular the range MH <∼ 5 GeV, which was rather difficult to explore1 before the

advent of LEP1 and its very clean experimental environment. The mass range MH <∼ 100

1This is mainly due to the hadronic uncertainties which occur for such a small Higgs mass. Almost an
entire chapter of Ref. [13] was devoted to this mass range; see pp. 32–56 and 94–129.
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GeV would have been extremely difficult to probe at very high–energy hadron colliders such

as the LHC. At approximately the same period, the top quark was at last discovered at

the Tevatron [14]. The determination of its mass entailed that all the parameters of the

Standard Model, except the Higgs boson mass, were then known2, implying that the profile

of the Higgs boson will be uniquely determined once its mass is fixed.

Other major developments occurred in the planning and design of the high–energy collid-

ers. The project of the Superconducting Super Collider has been unfortunately terminated

and the energy and luminosity parameters of the LHC became firmly established3. Further-

more, the option of upgrading the Tevatron by raising the c.m. energy and, more importantly,

the luminosity to a value which allows for Higgs searches in the mass range MH <∼ 2MZ was

not yet considered. In addition, the path toward future high–energy electron–positron col-

liders became more precise. The feasibility of the next generation machines, that is, e+e−

linear colliders operating in the energy range from MZ up to 1 TeV with very high lumi-

nosities has been demonstrated [as in the case of the TESLA machine] and a consensus on

the technology of the future International Linear Collider (ILC) has recently emerged. The

designs for the next generation machines running at energies in the multi–TeV range [such

as the CLIC machine at CERN] also made rapid developments. Added to this, the option

of turning future linear colliders into high–energy and high–luminosity γγ colliders by using

Compton back–scattering of laser light off the high–energy electron beams and the possibility

of high–energy muon colliders have been seriously discussed only in the last decade.

In parallel to these experimental and technological developments, a huge amount of effort

has been devoted to the detailed study of the decay and production properties of the Higgs

particle at these colliders. On the theoretical side, advances in computer technology allowed

one to perform almost automatically very complicated calculations for loop diagrams and

multi–particle processes and enabled extremely precise predictions. In particular, the next–

to–leading order radiative corrections to Higgs production in all the important processes at

hadron and e+e− colliders were calculated4. The radiative corrections to the cross sections

2Another important outcome is due to the heaviness of the top quark [15]: the search of the Higgs boson
would have been extremely more difficult at hadron colliders if the top quark mass were smaller than MW , a
possibility for which many analyses were devoted in the past and which is now ruled out. As a by–product of
the large mt value, the cross sections for some Higgs production channels at both hadron and e+e− machines
became rather large, thus increasing the chances for the discovery and/or study of the particle.

3The SSC was a project for a hadron machine with a center of mass energy of
√

s = 40 TeV and a yearly
integrated luminosity of 10 fb−1 on which most of the emphasis for Higgs searches at hadron colliders was
put in Ref. [13]. Of course these studies can be and actually have been adapted to the case of the LHC.
Note that in the late eighties, the c.m. energy and the luminosity of the LHC were expected to be

√
s = 17

TeV and L = 1033 cm−2s−1, respectively, and the discovery range for the SM Higgs boson was considered
to be rather limited, 2MW <∼ MH <∼ 300 GeV [13].

4This started in the very late eighties and early nineties, when the one–loop QCD corrections to associated
Higgs production with W/Z bosons and the WW/ZZ and gluon–gluon fusion mechanisms at hadron colliders
and the electroweak corrections to the Higgs–strahlung production mechanism at e+e− colliders have been
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for some production processes, such as Higgs–strahlung and gluon–gluon fusion at hadron

colliders, have been calculated up to next–to–next–to–leading order accuracy for the strong

interaction part and at next–to–leading order for the electroweak part, a development which

occurred only over the last few years. A vast literature on the higher order effects in Higgs

boson decays has also appeared in the last fifteen years and some decay modes have been

also investigated to next–to–next–to–leading order accuracy and, in some cases, even beyond.

Moreover, thorough theoretical studies of the various distributions in Higgs production and

decays and new techniques for the determination of the fundamental properties of the Higgs

particle [a vast subject which was only very briefly touched upon in Ref. [13] for instance]

have been recently carried out.

Finally, a plethora of analyses of the various Higgs signals and backgrounds, many de-

tailed parton–level analyses and Monte–Carlo simulations taking into account the experi-

mental environment [which is now more or less established, at least for the Tevatron and

the LHC and possibly for the first stage of the e+e− linear collider, the ILC] have been

performed to assess to what extent the Higgs particle can be observed and its properties

studied in given processes at the various machines.

Objectives and limitations of the review

On the experimental front, with the LEP experiment completed, we await the accumulation

of sufficient data from the upgraded Tevatron and the launch of the LHC which will start

operation in 2007. At this point, we believe that it is useful to collect and summarize the

large amount of work carried out over the last fifteen years in preparation for the challenges

ahead. This review is an attempt to respond to this need. The review is structured in

three parts. In this first part, we will concentrate on the Higgs boson of the Standard

Model, summarize the present experimental and theoretical information on the Higgs sector,

analyze the decay modes of the Higgs bosons including all the relevant and important higher

order effects, and discuss the production properties of the Higgs boson and its detection

strategies at the various hadron and lepton machines presently under discussion. We will

try to be as extensive and comprehensive as possible.

However, because the subject is vast and the number of studies related to it is huge5,

it is almost an impossible task to review all its aspects. In addition, one needs to cover

derived, and continued until very recently when the QCD corrections to associated Higgs production with
heavy quarks at hadron colliders and the electroweak corrections to all the remaining important Higgs
production processes at lepton colliders have been completed.

5Simply by typing “find title Higgs” in the search field of the Spires database, one obtains more than
6.700 entries. Since this number does not include all the articles dealing with the EWSB mechanism and
not explicitly mentioning the name of Prof. Higgs in the title, the total number of articles written on the
EWSB mechanism in the SM and its various extensions may, thus, well exceed the level of 10.000.
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many different topics and each of them could have [and, actually, often does have] its own

review. Therefore, in many instances, one will have to face [sometimes Cornelian...] choices.

The ones made in this review will be, of course, largely determined by the taste of the

author, his specialization and his own prejudice. I therefore apologize in advance if some

important aspects are overlooked and/or some injustice to possibly relevant analyses is made.

Complementary material on the foundations of the SM and the Higgs mechanism, which will

only be briefly sketched here, can be found in standard textbooks [16] or in general reviews

[17,18] and an account of the various calculations, theoretical studies and phenomenological

analyses mentioned above can be found in many specialized reviews; see Refs. [19–23] for

some examples. For the physics of the Higgs particle at the various colliders, in particular

for the discussion of the Higgs signals and their respective backgrounds, as well as for the

detection techniques, we will simply summarize the progress so far. For this very important

issue, we refer for additional and more detailed informations to specialized reviews and, above

all, to the proceedings which describe the huge collective efforts at the various workshops

devoted to the subject. Many of these studies and reviews will be referenced in due time.

Synopsis of the review

The first part of this review (Tome I) on the electroweak symmetry breaking mechanism

is exclusively devoted to the SM Higgs particle. The discussion of the Higgs sector of the

Minimal Supersymmetric extension of the SM is given in an accompanying report [24], while

the EWSB mechanism in other supersymmetric and non–supersymmetric extensions of the

SM will be discussed in a forthcoming report [25]. In our view, the SM incorporates an

elementary Higgs boson with a mass below 1 TeV and, thus, the very heavy or the no–Higgs

scenarios will not be discussed here and postponed to Ref. [25].

The first chapter is devoted to the description of the Higgs sector of the SM. After

briefly recalling the basic ingredients of the model and its input parameters, including an

introduction to the electroweak symmetry breaking mechanism and to the basic properties of

the Higgs boson, we discuss the high–precision tests of the SM and introduce the formalism

which allows a description of the radiative corrections which involve the contribution of the

only unknown parameter of the theory, the Higgs boson mass MH or, alternatively, its self–

coupling. This formalism will be needed when we discuss the radiative corrections to Higgs

decay and production modes. We then summarize the indirect experimental constraints on

MH from the high–precision measurements and the constraints derived from direct Higgs

searches at past and present colliders. We close this chapter by discussing some interesting

constraints on the Higgs mass that can be derived from theoretical considerations on the

energy range in which the SM is valid before perturbation theory breaks down and new

phenomena should emerge. The bounds on MH from unitarity in scattering amplitudes,
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perturbativity of the Higgs self–coupling, stability of the electroweak vacuum and fine–tuning

in the radiative corrections in the Higgs sector, are analyzed.

In the second chapter, we explore the decays of the SM Higgs particle. We consider all

decay modes which lead to potentially observable branching fractions: decays into quarks

and leptons, decays into weak massive vector bosons and loop induced decays into gluons and

photons. We discuss not only the dominant two–body decays, but also higher order decays,

which can be very important in some cases. We pay particular attention to the radiative

corrections and, especially, to the next–to–leading order QCD corrections to the hadronic

Higgs decays which turn out to be quite large. The higher order QCD corrections [beyond

NLO] and the important electroweak radiative corrections to all decay modes are briefly

summarized. The expected branching ratios of the Higgs particle, including the uncertainties

which affect them, are given. Whenever possible, we compare the various decay properties

of the SM Higgs boson, with its distinctive spin and parity JPC = 0++ quantum numbers,

to those of hypothetical pseudoscalar Higgs bosons with JPC = 0+− which are predicted in

many extensions of the SM Higgs sector. This will highlight the unique prediction for the

properties of the SM Higgs particle [the more general case of anomalous Higgs couplings will

be discussed in the third part of this review].

The third chapter is devoted to the production of the Higgs particle at hadron machines.

We consider both the pp̄ Tevatron collider with a center of mass energy of
√
s = 1.96 TeV

and the pp Large Hadron Collider (LHC) with a center of mass energy of
√
s = 14 TeV. All

the dominant production processes, namely the associated production with W/Z bosons, the

weak vector boson fusion processes, the gluon–gluon fusion mechanism and the associated

Higgs production with heavy top and bottom quarks, are discussed in detail. In particular, we

analyze not only the total production cross sections, but also the differential distributions and

we pay special attention to three important aspects: the QCD radiative corrections or theK–

factors [and the electroweak corrections when important] which are large in many cases, their

dependence on the renormalization and factorization scales which measures the reliability of

the theoretical predictions, and the choice of different sets of parton distribution functions.

We also discuss other production processes such as Higgs pair production, production with a

single top quark, production in association with two gauge bosons or with one gauge boson

and two quarks as well as diffractive Higgs production. These channels are not considered

as Higgs discovery modes, but they might provide additional interesting information. We

then summarize the main Higgs signals in the various detection channels at the Tevatron

and the LHC and the expectations for observing them experimentally. At the end of this

chapter, we briefly discuss the possible ways of determining some of the properties of the

Higgs particle at the LHC: its mass and total decay width, its spin and parity quantum

numbers and its couplings to fermions and gauge bosons. A brief summary of the benefits
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that one can expect from raising the luminosity and energy of hadron colliders is given.

In the fourth chapter, we explore the production of the SM Higgs boson at future lepton

colliders. We mostly focus on future e+e− colliders in the energy range
√
s = 350–1000

GeV as planed for the ILC but we also discuss the physics of EWSB at multi–TeV machines

[such as CLIC] or by revisiting the Z boson pole [the GigaZ option], as well as at the γγ

option of the linear collider and at future muon colliders. In the case of e+e− machines,

we analyze in detail the main production mechanisms, the Higgs–strahlung and the WW

boson fusion processes, as well as some “subleading” but extremely important processes for

determining the profile of the Higgs boson such as associated production with top quark pairs

and Higgs pair production. Since e+e− colliders are known to be high–precision machines,

the theoretical predictions need to be rather accurate and we summarize the work done on

the radiative corrections to these processes [which have been completed only recently] and

to various distributions which allow to test the fundamental nature of the Higgs particle.

The expectation for Higgs production at the various possible center of mass energies and the

potential of these machines to probe the electroweak symmetry breaking mechanism in all

its facets and to check the SM predictions for the fundamental Higgs properties such as the

total width, the spin and parity quantum numbers, the couplings to the other SM particles

[in particular, the important coupling to the top quark] and the Higgs self–coupling [which

allows the reconstruction of the scalar potential which generates EWSB] are summarized.

Higgs production at γγ and at muon colliders are discussed in the two last sections, with

some emphasis on two points which are rather difficult to explore in e+e− collisions, namely,

the determination of the Higgs spin–parity quantum numbers and the total decay width.

Since the primary goal of this review is to provide the necessary material to discuss Higgs

decays and production at present and future colliders, we present the analytical expressions

of the partial decay widths, the production cross sections and some important distributions,

including the higher order corrections or effects, when they are simple enough to be displayed.

We analyze in detail the main Higgs decay and production channels and also discuss some

channels which are not yet established but which can be useful and with further effort

might prove experimentally accessible. We also present summary and updated plots as

well as illustrative numerical examples [which can be used as a normalization in future

phenomenological and experimental studies] for the total Higgs decay width and branching

ratios, as well as for the cross sections of the main production mechanisms at the Tevatron,

the LHC and future e+e− colliders at various center of mass energies. In these updated

analyses, we have endeavored to include all currently available information. For collider

Higgs phenomenology, in particular for the discussion of the Higgs signals and backgrounds,

we simply summarize, as previously mentioned, the main points and refer to the literature

for additional details and complementary discussions.
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1 The Higgs particle in the SM

1.1 The SM of the strong and electroweak interactions

In this section, we will present a brief introduction to the Standard Model (SM) of the strong

and electroweak interactions and to the mechanism of electroweak symmetry breaking. This

will allow us to set the stage and to fix the notation which will be used later on. For more

detailed discussions, we refer the reader to standard textbooks [16] or reviews [17].

1.1.1 The SM before electroweak symmetry breaking

As discussed in the preamble, the Glashow–Weinberg–Salam electroweak theory [1] which

describes the electromagnetic and weak interactions between quarks and leptons, is a Yang–

Mills theory [26] based on the symmetry group SU(2)L × U(1)Y. Combined with the SU(3)C

based QCD gauge theory [2] which describes the strong interactions between quarks, it pro-

vides a unified framework to describe these three forces of Nature: the Standard Model. The

model, before introducing the electroweak symmetry breaking mechanism to be discussed

later, has two kinds of fields:

• There are first the matter fields, that is, the three generations of left–handed and right–

handed chiral quarks and leptons, fL,R = 1
2
(1∓ γ5)f . The left–handed fermions are in weak

isodoublets, while the right–handed fermions are in weak isosinglets6

I3L,3R
f = ±1

2
, 0 :

L1 =

(
νe

e−

)

L

, eR1
= e−R , Q1 =

(
u
d

)

L

, uR1
= uR , dR1

= dR

L2 =

(
νµ

µ−

)

L

, eR2
= µ−

R , Q2 =

(
c
s

)

L

, uR2
= cR , dR2

= sR

L3 =

(
ντ

τ−

)

L

, eR3
= τ−R , Q3 =

(
t
b

)

L

, uR3
= tR , dR3

= bR

(1.1)

The fermion hypercharge, defined in terms of the third component of the weak isospin I3
f

and the electric charge Qf in units of the proton charge +e, is given by (i=1,2,3)

Yf = 2Qf − 2I3
f ⇒ YLi

= −1, YeRi
= −2, YQi

=
1

3
, YuRi

=
4

3
, YdRi

= −2

3
(1.2)

Moreover, the quarks are triplets under the SU(3)C group, while leptons are color singlets.

This leads to the relation

∑

f

Yf =
∑

f

Qf =0 (1.3)

6Throughout this review, we will assume that the neutrinos, which do not play any role here, are massless
and appear only with their left–handed components.
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which ensures the cancellation of chiral anomalies [27] within each generation, thus, preserv-

ing [28] the renormalizability of the electroweak theory [5].

• Then, there are the gauge fields corresponding to the spin–one bosons that mediate

the interactions. In the electroweak sector, we have the field Bµ which corresponds to the

generator Y of the U(1)Y group and the three fieldsW 1,2,3
µ which correspond to the generators

T a [with a=1,2,3] of the SU(2)L group; these generators are in fact equivalent to half of the

non–commuting 2 × 2 Pauli matrices

T a =
1

2
τa ; τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
(1.4)

with the commutation relations between these generators given by

[T a, T b] = iǫabcTc and [Y, Y ] = 0 (1.5)

where ǫabc is the antisymmetric tensor. In the strong interaction sector, there is an octet of

gluon fields G1,···,8
µ which correspond to the eight generators of the SU(3)C group [equivalent

to half of the eight 3×3 anti–commuting Gell–Mann matrices] and which obey the relations

[T a, T b] = ifabcTc with Tr[T aT b] =
1

2
δab (1.6)

where the tensor fabc is for the structure constants of the SU(3)C group and where we have

used the same notation as for the generators of SU(2) as little confusion should be possible.

The field strengths are given by

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gs f

abcGb
µG

c
ν

W a
µν = ∂µW

a
ν − ∂νW

a
µ + g2 ǫ

abcW b
µW

c
ν

Bµν = ∂µBν − ∂νBµ (1.7)

where gs, g2 and g1 are, respectively, the coupling constants of SU(3)C, SU(2)L and U(1)Y.

Because of the non–abelian nature of the SU(2) and SU(3) groups, there are self–

interactions between their gauge fields, Vµ ≡Wµ or Gµ, leading to

triple gauge boson couplings : igi Tr(∂νVµ − ∂µVν)[Vµ, Vν ]

quartic gauge boson couplings :
1

2
g2

i Tr[Vµ, Vν ]
2 (1.8)

The matter fields ψ are minimally coupled to the gauge fields through the covariant

derivative Dµ which, in the case of quarks, is defined as

Dµψ =

(
∂µ − igsTaG

a
µ − ig2TaW

a
µ − ig1

Y

2
Bµ

)
ψ (1.9)
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and which leads to unique couplings between the fermion and gauge fields Vµ of the form

fermion gauge boson couplings : −giψVµγ
µψ (1.10)

The SM Lagrangian, without mass terms for fermions and gauge bosons is then given by

LSM = −1

4
Ga

µνG
µν
a − 1

4
W a

µνW
µν
a − 1

4
BµνB

µν (1.11)

+L̄i iDµγ
µ Li + ēRi iDµγ

µ eRi
+ Q̄i iDµγ

µ Qi + ūRi iDµγ
µ uRi

+ d̄Ri iDµγ
µ dRi

This Lagrangian is invariant under local SU(3)C × SU(2)L × U(1)Y gauge transformations

for fermion and gauge fields. In the case of the electroweak sector, for instance, one has

L(x) → L′(x) = eiαa(x)T a+iβ(x)Y L(x) , R(x) → R′(x) = eiβ(x)YR(x)

~Wµ(x) → ~Wµ(x) − 1

g2
∂µ~α(x) − ~α(x) × ~Wµ(x) , Bµ(x) → Bµ(x) − 1

g1
∂µβ(x) (1.12)

Up to now, the gauge fields and the fermions fields have been kept massless. In the case

of strong interactions, the gluons are indeed massless particles while mass terms of the form

−mqψψ can be generated for the colored quarks [and for the leptons] in an SU(3) gauge

invariant way. In the case of the electroweak sector, the situation is more problematic:

– If we add mass terms, 1
2
M2

VWµW
µ, for the gauge bosons [since experimentally, they

have been proved to be massive, the weak interaction being of short distance], this will

violate local SU(2)×U(1) gauge invariance. This statement can be visualized by taking the

example of QED where the photon is massless because of the U(1)Q local symmetry

1

2
M2

AAµA
µ → 1

2
M2

A(Aµ − 1

e
∂µα)(Aµ − 1

e
∂µα) 6= 1

2
M2

AAµA
µ (1.13)

– In addition, if we include explicitly a mass term −mfψfψf for each SM fermion f in

the Lagrangian, we would have for the electron for instance

−meēe = −meē
(1

2
(1 − γ5) +

1

2
(1 + γ5)

)
e = −me(ēReL + ēLeR) (1.14)

which is manifestly non–invariant under the isospin symmetry transformations discussed

above, since eL is a member of an SU(2)L doublet while eR is a member of a singlet.

Thus, the incorporation by brute force of mass terms for gauge bosons and for fermions

leads to a manifest breakdown of the local SU(2)L × U(1)Y gauge invariance. Therefore,

apparently, either we have to give up the fact that MZ ∼ 90 GeV and me ∼ 0.5 MeV for

instance, or give up the principle of exact or unbroken gauge symmetry.

The question, which has been asked already in the sixties, is therefore the following:

is there a [possibly nice] way to generate the gauge boson and the fermion masses with-

out violating the SU(2)×U(1) gauge invariance? The answer is yes: the Higgs–Brout–

Englert–Guralnik–Hagen–Kibble mechanism of spontaneous symmetry breaking [6] or the

Higgs mechanism for short. This mechanism will be briefly sketched in the following subsec-

tion and applied to the SM case.
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1.1.2 The Higgs mechanism

The Goldstone theorem

Let us start by taking a simple scalar real field φ with the usual Lagrangian

L =
1

2
∂µφ ∂

µφ− V (φ) , V (φ) =
1

2
µ2φ2 +

1

4
λφ4 (1.15)

This Lagrangian is invariant under the reflexion symmetry φ→ −φ since there are no cubic

terms. If the mass term µ2 is positive, the potential V (φ) is also positive if the self–coupling

λ is positive [which is needed to make the potential bounded from below], and the minimum

of the potential is obtained for 〈0|φ|0〉 ≡ φ0 = 0 as shown in the left–hand side of Fig. 1.1.

L is then simply the Lagrangian of a spin–zero particle of mass µ.

0�2 > 0 >�

V(�)

+v0�2 < 0 >�

V(�)

Figure 1.1: The potential V of the scalar field φ in the case µ2 > 0 (left) and µ2 < 0 (right).

In turn, if µ2 < 0, the potential V (φ) has a minimum when ∂V/∂φ = µ2φ + λφ3 = 0, i.e.

when

〈0|φ2|0〉 ≡ φ2
0 = −µ

2

λ
≡ v2 (1.16)

and not at φ2
0 = 0, as shown in the right–hand side of Fig. 1.1. The quantity ±v ≡ 〈 0|φ|0 〉 is

called the vacuum expectation value (vev) of the scalar field φ. In this case, L is no more the

Lagrangian of a particle with mass µ and to interpret correctly the theory, we must expand

around one of the minima v by defining the field σ as φ = v + σ. In terms of the new field,

the Lagrangian becomes

L =
1

2
∂µσ ∂

µσ − (−µ2) σ2 −
√

−µ2λσ3 − λ

4
σ4 + const. (1.17)

This is the theory of a scalar field of mass m2 = −2µ2, with σ3 and σ4 being the self–

interactions. Since there are now cubic terms, the reflexion symmetry is broken: it is not

anymore apparent in L. This is the simplest example of a spontaneously broken symmetry.
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Let us make things slightly more complicated and consider four scalar fields φi with

i = 0, 1, 2, 3, with a Lagrangian [the summation over the index i is understood]

L =
1

2
∂µφi ∂

µφi −
1

2
µ2 (φiφi) −

1

4
λ(φiφi)

2 (1.18)

which is invariant under the rotation group in four dimensions O(4), φi(x) = Rijφj(x) for

any orthogonal matrix R.

Again, for µ2 < 0, the potential has a minimum at φ2
i = −µ2/λ ≡ v2 where v is the vev.

As previously, we expand around one of the minima, φ0 = v + σ, and we rewrite the fields

φi = πi with i = 1, 2, 3 (in analogy with pion physics). The Lagrangian in terms of the new

fields σ and πi becomes then

L =
1

2
∂µσ ∂

µσ − 1

2
(−2µ2)σ2 − λv σ3 − λ

4
σ4

+
1

2
∂µπi ∂

µπi −
λ

4
(πiπi)

2 − λvπiπiσ − λ

2
πiπiσ

2 (1.19)

As expected, we still have a massive σ boson with m2 = −2µ2, but also, we have three

massless pions since now, all the bilinear πiπi terms in the Lagrangian have vanished. Note

that there is still an O(3) symmetry among the πi fields.

This brings us to state the Goldstone theorem [29]: For every spontaneously broken

continuous symmetry, the theory contains massless scalar (spin–0) particles called Goldstone

bosons. The number of Goldstone bosons is equal to the number of broken generators. For

an O(N) continuous symmetry, there are 1
2
N(N − 1) generators; the residual unbroken

symmetry O(N −1) has 1
2
(N −1)(N −2) generators and therefore, there are N −1 massless

Goldstone bosons, i.e. 3 for the O(4) group.

Note that exactly the same exercise can be made for a complex doublet of scalar fields

φ =

(
φ+

φ0

)
=

1√
2

(
φ1 − iφ2

φ3 − iφ4)

)
(1.20)

with the invariant product being φ†φ = 1
2
(φ2

1 + φ2
2 + φ2

3 + φ2
4) = 1

2
φiφ

i.

The Higgs mechanism in an abelian theory

Let us now move to the case of a local symmetry and consider first the rather simple abelian

U(1) case: a complex scalar field coupled to itself and to an electromagnetic field Aµ

L = −1

4
FµνF

µν +Dµφ
∗Dµφ− V (φ) (1.21)

with Dµ the covariant derivative Dµ = ∂µ − ieAµ and with the scalar potential

V (φ) = µ2φ∗φ+ λ (φ∗φ)2 (1.22)
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The Lagrangian is invariant under the usual local U(1) transformation

φ(x) → eiα(x)φ(x) Aµ(x) → Aµ(x) −
1

e
∂µα(x) (1.23)

For µ2 > 0, L is simply the QED Lagrangian for a charged scalar particle of mass µ and

with φ4 self–interactions. For µ2 < 0, the field φ(x) will acquire a vacuum expectation value

and the minimum of the potential V will be at

〈φ 〉0 ≡ 〈 0|φ | 0 〉 =

(
−µ

2

2λ

)1/2

≡ v√
2

(1.24)

As before, we expand the Lagrangian around the vacuum state 〈φ〉

φ(x) =
1√
2
[v + φ1(x) + iφ2(x)] (1.25)

The Lagrangian becomes then, up to some interaction terms that we omit for simplicity,

L = −1

4
FµνF

µν + (∂µ + ieAµ)φ∗(∂µ − ieAµ)φ− µ2φ∗φ− λ(φ∗φ)2

= −1

4
FµνF

µν +
1

2
(∂µφ1)

2 +
1

2
(∂µφ2)

2 − v2λφ2
1 +

1

2
e2v2AµA

µ − evAµ∂
µφ2 (1.26)

Three remarks can then be made at this stage:

– There is a photon mass term in the Lagrangian: 1
2
M2

AAµA
µ with MA = ev = −eµ2/λ.

– We still have a scalar particle φ1 with a mass M2
φ1

= −2µ2.

– Apparently, we have a massless particle φ2, a would–be Goldstone boson.

However, there is still a problem to be addressed. In the beginning, we had four degrees

of freedom in the theory, two for the complex scalar field φ and two for the massless electro-

magnetic field Aµ, and now we have apparently five degrees of freedom, one for φ1, one for φ2

and three for the massive photon Aµ. Therefore, there must be a field which is not physical

at the end and indeed, in L there is a bilinear term evAµ∂µφ2 which has to be eliminated.

To do so, we notice that at first order, we have for the original field φ

φ =
1√
2
(v + φ1 + iφ2) ≡

1√
2
[v + η(x)]eiζ(x)/v (1.27)

By using the freedom of gauge transformations and by performing also the substitution

Aµ → Aµ − 1

ev
∂µζ(x) (1.28)

the Aµ∂
µζ term, and in fact all ζ terms, disappear from the Lagrangian. This choice of gauge,

for which only the physical particles are left in the Lagrangian, is called the unitary gauge.

Thus, the photon (with two degrees of freedom) has absorbed the would–be Goldstone boson

(with one degree of freedom) and became massive (i.e. with three degrees of freedom): the

longitudinal polarization is the Goldstone boson. The U(1) gauge symmetry is no more

apparent and we say that it is spontaneously broken. This is the Higgs mechanism [6] which

allows to generate masses for the gauge bosons.
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The Higgs mechanism in the SM

In the slightly more complicated non–abelian case of the SM, we need to generate masses for

the three gauge bosons W± and Z but the photon should remain massless and QED must

stay an exact symmetry. Therefore, we need at least 3 degrees of freedom for the scalar

fields. The simplest choice is a complex SU(2) doublet of scalar fields φ

Φ =

(
φ+

φ0

)
, Yφ = +1 (1.29)

To the SM Lagrangian discussed in the previous subsection, but where we ignore the strong

interaction part

LSM = −1

4
W a

µνW
µν
a − 1

4
BµνB

µν + L iDµγ
µ L+ eR iDµγ

µ eR · · · (1.30)

we need to add the invariant terms of the scalar field part

LS = (DµΦ)†(DµΦ) − µ2Φ†Φ − λ(Φ†Φ)2 (1.31)

For µ2 < 0, the neutral component of the doublet field Φ will develop a vacuum expectation

value [the vev should not be in the charged direction to preserve U(1)QED]

〈Φ 〉0 ≡ 〈 0 |Φ | 0 〉 =

(
0
v√
2

)
with v =

(
−µ

2

λ

)1/2

(1.32)

We can then make the same exercise as previously:

– write the field Φ in terms of four fields θ1,2,3(x) and H(x) at first order:

Φ(x) =

(
θ2 + iθ1

1√
2
(v +H) − iθ3

)
= eiθa(x)τa(x)/v

(
0

1√
2
(v +H(x) )

)
(1.33)

– make a gauge transformation on this field to move to the unitary gauge:

Φ(x) → e−iθa(x)τa(x) Φ(x) =
1√
2

(
0

v +H(x)

)
(1.34)

– then fully expand the term |DµΦ)|2 of the Lagrangian LS:

|DµΦ)|2 =
∣∣∣
(
∂µ − ig2

τa
2
W a

µ − ig1
1

2
Bµ

)
Φ
∣∣∣
2

=
1

2

∣∣∣∣
(
∂µ − i

2
(g2W

3
µ + g1Bµ) − ig2

2
(W 1

µ − iW 2
µ)

− ig2

2
(W 1

µ + iW 2
µ) ∂µ + i

2
(g2W

3
µ − g1Bµ)

)(
0

v +H

)∣∣∣∣
2

=
1

2
(∂µH)2 +

1

8
g2
2(v +H)2|W 1

µ + iW 2
µ |2 +

1

8
(v +H)2|g2W

3
µ − g1Bµ|2
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– define the new fields W±
µ and Zµ [Aµ is the field orthogonal of Zµ]:

W± =
1√
2
(W 1

µ ∓ iW 2
µ) , Zµ =

g2W
3
µ − g1Bµ√
g2
2 + g2

1

, Aµ =
g2W

3
µ + g1Bµ√
g2
2 + g2

1

(1.35)

– and pick up the terms which are bilinear in the fields W±, Z, A:

M2
WW

+
µ W

−µ +
1

2
M2

ZZµZ
µ +

1

2
M2

AAµA
µ (1.36)

The W and Z bosons have acquired masses, while the photon is still massless

MW =
1

2
vg2 , MZ =

1

2
v
√
g2
2 + g2

1 , MA = 0 (1.37)

Thus, we have achieved (half of) our goal: by spontaneously breaking the symmetry SU(2)L×
U(1)Y → U(1)Q, three Goldstone bosons have been absorbed by the W± and Z boson to

form their longitudinal components and to get their masses. Since the U(1)Q symmetry is

still unbroken, the photon which is its generator, remains massless as it should be.

Up to now, we have discussed only the generation of gauge boson masses; but what about

the fermion masses? In fact, we can also generate the fermion masses using the same scalar

field Φ, with hypercharge Y=1, and the isodoublet Φ̃ = iτ2Φ
∗, with hypercharge Y=–1. For

any fermion generation, we introduce the SU(2)L × U(1)Y invariant Yukawa Lagrangian

LF = −λe L̄Φ eR − λd Q̄Φ dR − λu Q̄ Φ̃uR + h. c. (1.38)

and repeat the same exercise as above. Taking for instance the case of the electron, one

obtains

LF = − 1√
2
λe (ν̄e, ēL)

(
0

v +H

)
eR + · · ·

= − 1√
2
λe (v +H) ēLeR + · · · (1.39)

The constant term in front of f̄LfR (and h.c.) is identified with the fermion mass

me =
λe v√

2
, mu =

λu v√
2

, md =
λd v√

2
(1.40)

Thus, with the same isodoublet Φ of scalar fields, we have generated the masses of both

the weak vector bosons W±, Z and the fermions, while preserving the SU(2)×U(1) gauge

symmetry, which is now spontaneously broken or hidden. The electromagnetic U(1)Q sym-

metry, as well as the SU(3) color symmetry, stay unbroken. The Standard Model refers, in

fact, to SU(3)×SU(2)×U(1) gauge invariance when combined with the electroweak symme-

try breaking mechanism. Sometimes, the electroweak sector of the theory is also referred to

as the SM; in this review we will use this name for both options.
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1.1.3 The SM Higgs particle and the Goldstone bosons

The Higgs particle in the SM

Let us finally come to the Higgs boson itself. The kinetic part of the Higgs field, 1
2
(∂µH)2,

comes from the term involving the covariant derivative |DµΦ|2, while the mass and self–

interaction parts, come from the scalar potential V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2

V =
µ2

2
(0, v +H)

(
0

v +H

)
+
λ

4

∣∣∣∣(0, v +H)

(
0

v +H

) ∣∣∣∣
2

(1.41)

and using the relation v2 = −µ2/λ, one obtains

V = −1

2
λv2 (v +H)2 +

1

4
λ(v +H)4 (1.42)

and finds that the Lagrangian containing the Higgs field H is given by

LH =
1

2
(∂µH)(∂µH) − V

=
1

2
(∂µH)2 − λv2H2 − λvH3 − λ

4
H4 (1.43)

From this Lagrangian, one can see that the Higgs boson mass simply reads

M2
H = 2λv2 = −2µ2 (1.44)

and the Feynman rules7 for the Higgs self–interaction vertices are given by

gH3 = (3!)iλv = 3i
M2

H

v
, gH4 = (4!)i

λ

4
= 3i

M2
H

v2
(1.45)

As for the Higgs boson couplings to gauge bosons and fermions, they were almost derived

previously, when the masses of these particles were calculated. Indeed, from the Lagrangian

describing the gauge boson and fermion masses

LMV
∼M2

V

(
1 +

H

v

)2

, Lmf
∼ −mf

(
1 +

H

v

)
(1.46)

one obtains also the Higgs boson couplings to gauge bosons and fermions

gHff = i
mf

v
, gHV V = −2i

M2
V

v
, gHHV V = −2i

M2
V

v2
(1.47)

This form of the Higgs couplings ensures the unitarity of the theory [7] as will be seen later.

The vacuum expectation value v is fixed in terms of the W boson mass MW or the Fermi

constant Gµ determined from muon decay [see next section]

MW =
1

2
g2v =

(√
2g2

8Gµ

)1/2

⇒ v =
1

(
√

2Gµ)1/2
≃ 246 GeV (1.48)

7The Feynman rule for these vertices are obtained by multiplying the term involving the interaction by
a factor −i. One includes also a factor n! where n is the number of identical particles in the vertex.
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We will see in the course of this review that it will be appropriate to use the Fermi coupling

constant Gµ to describe the couplings of the Higgs boson, as some higher–order effects are

effectively absorbed in this way. The Higgs couplings to fermions, massive gauge bosons as

well as the self–couplings, are given in Fig. 1.2 using both v and Gµ. This general form of

the couplings will be useful when discussing the Higgs properties in extensions of the SM.

•H

f

f̄

gHff = mf/v = (
√

2Gµ)1/2mf × (i)

•H

Vµ

Vν

gHV V = 2M2
V /v = 2(

√
2Gµ)1/2M2

V × (−igµν)

•H

H

Vµ

Vν

gHHV V = 2M2
V /v

2 = 2
√

2GµM
2
V × (−igµν)

•H

H

H

gHHH = 3M2
H/v = 3(

√
2Gµ)1/2M2

H × (i)

•H

H

H

H

gHHHH = 3M2
H/v

2 = 3
√

2GµM
2
H × (i)

Figure 1.2: The Higgs boson couplings to fermions and gauge bosons and the Higgs self–
couplings in the SM. The normalization factors of the Feynman rules are also displayed.

Note that the propagator of the Higgs boson is simply given, in momentum space, by

∆HH(q2) =
i

q2 −M2
H + iǫ

(1.49)
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The Goldstone bosons

In the unitary gauge, the physical spectrum of the SM is clear: besides the fermions and

the massless photon [and gluons], we have the massive V = W± and Z bosons and the

Goldstones do not appear. The propagators of the vector bosons in this gauge are given by

∆µν
V V (q) =

−i
q2 −M2

V + iǫ

[
gµν − qµqν

M2
V

]
(1.50)

The first term, ∝ gµν , corresponds to the propagation of the transverse component of the

V boson [the propagator of the photon is simply −igµν/q2], while the second term, ∝ qµqν ,

corresponds to the propagation of the longitudinal component which, as can be seen, does

not vanish ∝ 1/q2 at high energies. This terms lead to very complicated cancellations in the

invariant amplitudes involving the exchange of V bosons at high energies and, even worse,

make the renormalization program very difficult to carry out, as the latter usually makes

use of four–momentum power counting analyses of the loop diagrams. It is more convenient

to work in Rξ gauges where gauge fixing terms are added to the SM Lagrangian [30]

LGF =
−1

2ξ

[
2(∂µW+

µ −iξMWw
+)(∂µW−

µ −iξMWw
−) + (∂µZµ−iξMZw

0)2 + (∂µAµ)2
]
(1.51)

w0 ≡ G0 and w± ≡ G± being the neutral and charged Goldstone bosons and where different

choices of ξ correspond to different renormalizable gauges. In this case, the propagators of

the massive gauge bosons are given by

∆µν
V V (q) =

−i
q2 −M2

V + iǫ

[
gµν + (ξ − 1)

qµqν

q2 − ξM2
V

]
(1.52)

which in the unitary gauge, ξ = ∞, reduces to the expression eq. (1.50). Usually, one

uses the ’t Hooft–Feynman gauge ξ = 1, where the qµqν term is absent, to simplify the

calculations; another popular choice is the Landau gauge, ξ = 0. In renormalizable Rξ

gauges, the propagators of the Goldstone bosons are given by

∆w0w0(q2) =
i

q2 − ξM2
Z + iǫ

∆w±w±(q2) =
i

q2 − ξM2
W + iǫ

(1.53)

and as can be seen, in the unitary gauge ξ = ∞, the Goldstone bosons do not propagate and

decouple from the theory as they should, while in the Landau gauge they are massless and do

not interact with the Higgs particle. In the ’t Hooft–Feynman gauge, the Goldstone bosons

are part of the spectrum and have “masses” ∝ MV . Any dependence on ξ should however

be absent from physical matrix elements squared, as the theory must be gauge invariant.
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Note that the couplings of the Goldstone bosons to fermions are, as in the case of the

Higgs boson, proportional to the fermion masses

gG0ff = −2I3
f

mf

v

gG−ud =
−i√
2v
Vud[md(1 − γ5) −mu(1 + γ5)] (1.54)

where Vud is the CKM matrix element for quarks [see later] and which, in the case of leptons

[where one has to set md = mℓ and mu = 0 in the equation above], is equal to unity. The

couplings of the Goldstones to gauge bosons are simply those of scalar spin–zero particles.

The longitudinal components of the W and Z bosons give rise to interesting features

which occur at high energies and that we shortly describe below. In the gauge boson rest

frame, one can define the transverse and longitudinal polarization four–vectors as

ǫµT1
= (0, 1, 0, 0) , ǫµT2

= (0, 0, 1, 0) , ǫµL = (0, 0, 0, 1) (1.55)

For a four–momentum pµ = (E, 0, 0, |~p|), after a boost along the z direction, the transverse

polarizations remain the same while the longitudinal polarization becomes

ǫµL =

( |~p|
MV

, 0, 0,
E

MV

)
E≫MV−→ pµ

MV
(1.56)

Since this polarization is proportional to the gauge boson momentum, at very high energies,

the longitudinal amplitudes will dominate in the scattering of gauge bosons.

In fact, there is a theorem, called the Electroweak Equivalence Theorem [31–33], which

states that at very high energies, the longitudinal massive vector bosons can be replaced by

the Goldstone bosons. In addition, in many processes such as vector boson scattering, the

vector bosons themselves can by replaced by their longitudinal components. The amplitude

for the scattering of n gauge bosons in the initial state to n′ gauge bosons in the final state

is simply the amplitude for the scattering of the corresponding Goldstone bosons

A(V 1 · · ·V n → V 1 · · ·V n′

) ∼ A(V 1
L · · ·V n

L → V 1
L · · ·V n′

L )

∼ A(w1 · · ·wn → w1 · · ·wn′

) (1.57)

Thus, in this limit, one can simply replace in the SM scalar potential, the W and Z bosons

by their corresponding Goldstone bosons w±, w0, leading to

V =
M2

H

2v
(H2 + w2

0 + 2w+w−)H +
M2

H

8v2
(H2 + w2

0 + 2w+w−)2 (1.58)

and use this potential to calculate the amplitudes for the processes involving weak vector

bosons. The calculations are then extremely simple, since one has to deal only with interac-

tions among scalar particles.
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1.1.4 The SM interactions and parameters

In this subsection, we summarize the interactions of the fermions and gauge bosons in the

electroweak SM [for the strong interactions of quarks and gluons, the discussion held in

§1.1.1 is sufficient for our purpose] and discuss the basic parameters of the SM and their

experimental determination.

The equations for the field rotation which lead to the physical gauge bosons, eq. (1.35),

define the electroweak mixing angle sin θW

sin θW =
g1√
g2
1 + g2

2

=
e

g2

(1.59)

which can be written in terms of the W and Z boson masses as

sin2 θW ≡ s2
W = 1 − c2W = 1 − M2

W

M2
Z

(1.60)

Using the fermionic part of the SM Lagrangian, eq. (1.11), written in terms of the new fields

and writing explicitly the covariant derivative, one obtains

LNC = eJA
µ A

µ +
g2

cos θW
JZ

µ Z
µ

LCC =
g2√
2
(J+

µ W
+µ + J−

µ W
−µ) (1.61)

for the neutral and charged current parts, respectively. The currents Jµ are then given by

JA
µ = Qf f̄γµf

JZ
µ =

1

4
f̄γµ[(2I3

f − 4Qf sin2 θW ) − γ5(2I
3
f )]f

J+
µ =

1

2
f̄uγµ(1 − γ5)fd (1.62)

where fu(fd) is the up–type (down–type) fermion of isospin +(−)1
2
.

In terms of the electric charge Qf of the fermion f and with I3
f = ±1

2
the left–handed

weak isospin of the fermion and the weak mixing angle s2
W = 1 − c2W ≡ sin2 θW , one can

write the vector and axial vector couplings of the fermion f to the Z boson

vf =
v̂f

4sW cW
=

2I3
f − 4Qfs

2
W

4sW cW
, af =

âf

4sW cW
=

2I3
f

4sW cW
(1.63)

where we also defined the reduced Zff̄ couplings v̂f , âf . In the case of the W boson, its

vector and axial–vector couplings couplings to fermions are simply

vf = af =
1

2
√

2sW

=
âf

4sW

=
v̂f

4sW

(1.64)
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These results are only valid in the one–family approximation. While the extension to three

families is straightforward for the neutral currents, there is a complication in the case of

the charged currents: the current eigenstates for quarks q′ are not identical to the mass

eigenstates q. If we start by u–type quarks being mass eigenstates, in the down–type quark

sector, the two sets are connected by a unitary transformation [34]

(d′, s′, b′) = V (d, s, b) (1.65)

where V is the 3×3 Cabibbo–Kobayashi–Maskawa matrix. The unitarity of V insures that

the neutral currents are diagonal in both bases: this is the GIM mechanism [35] which

ensures a natural absence of flavor changing neutral currents (FCNC) at the tree–level in

the SM. For leptons, the mass and current eigenstates coincide since in the SM, the neutrinos

are assumed to be massless, which is an excellent good approximation in most purposes.

Note that the relative strength of the charged and neutral currents, Jµ
ZJµZ/J

µ+J−
µ can

be measured by the parameter ρ [36] which, using previous formulae, is given by

ρ =
M2

W

c2WM
2
Z

(1.66)

and it is equal to unity in the SM, eq. (1.60). This is a direct consequence of the choice of the

representation of the Higgs field responsible of the breaking of the electroweak symmetry.

In a model which makes use of an arbitrary number of Higgs multiplets Φi with isospin Ii,

third component I3
i and vacuum expectation values vi, one obtains for this parameter

ρ =

∑
i [Ii(Ii + 1) − (I3

i )2] v2
i

2
∑

i(I
3
i )2v2

i

(1.67)

which is also unity for an arbitrary number of doublet [as well as singlet] fields. This is due

to the fact that in this case, the model has a custodial SU(2) global symmetry. In the SM,

this symmetry is broken at the loop level when fermions of the same doublets have different

masses, and by the hypercharge group. The radiative corrections to this parameter will be

discussed in some detail in the next section.

Finally, self–couplings among the gauge bosons are present in the SM as a consequence

of the non abelian nature of the SU(2)L × U(1)Y symmetry. These couplings are dictated

by the structure of the symmetry group as discussed in §1.1.1 and, for instance, the triple

self–couplings among the W and the V = γ, Z bosons are given by

LWWV = igWWV

[
W †

µνW
µV ν −W †

µVνW
µν +W †

µWνV
µν
]

(1.68)

with gWWγ = e and gWWZ = ecW/sW .

This concludes our description of the gauge interactions in the SM. We turn now to the

list of the model parameters that we will need in our subsequent discussions.
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The fine structure constant

The QED fine structure constant defined in the classical Thomson limit q2 ∼ 0 of Compton

scattering, is one of the best measured quantities in nature

α(0) ≡ e2/(4π) = 1/137.03599976 (50) (1.69)

However, the physics which is studied at present colliders is at scales of the order of 100 GeV

and the running between q2 ∼ 0 and this scale must be taken into account. This running

is defined as the difference between the [transverse components of the] vacuum polarization

function of the photon at the two scales and, for q2 = M2
Z for instance, one has

α(M2
Z) =

α(0)

1 − ∆α
, ∆α(M2

Z) = Πγγ(0) − Πγγ(M
2
Z) (1.70)

Since QED is a vectorial theory, all heavy particles decouple from the photon two–point

function by virtue of the Appelquist–Carazzone theorem [37] and only the light particles,

i.e. the SM light fermions, have to be taken into account in the running. [For instance, the

top quark contribution is ∆topα ∼ −7 · 10−5, while the small W boson contribution is not

gauge invariant by itself and has to be combined with direct vertex and box corrections.]

The contribution of the e, µ and τ leptons to ∆α simply reads [38]

∆αlept(M2
Z) =

∑

ℓ=e,µ,τ

α

3π

[
log

M2
Z

m2
ℓ

− 5

3

]
+ O

(
m2

ℓ

M2
Z

)
+ O(α2) + O(α3) ≃ 0.0315 (1.71)

For the contribution of light quarks, one has to evaluate Πγγ at very low energies where

perturbation theory fails for the strong interaction. In fact, even if it were not the case, the

light quark masses are not known sufficiently precisely to be used as inputs. Fortunately, it

is possible to circumvent these complications and to derive the hadronic contribution in an

indirect way, taking all orders of the strong interaction into account. Indeed, one can use

the optical theorem to relate the imaginary part of the photon two–point function to the

γff̄ vertex amplitude and make use of the dispersion relation

∆αhad(M2
Z) = −αM

2
Z

3π
Re

(∫ ∞

4m2
π

ds′
Rγγ(s

′)

s′(s′ −M2
Z)

)
, Rγγ(s) =

σ(e+e− → γ∗ → had.)

σ(e+e− → γ∗ → µ+µ−)
(1.72)

with the quantity Rγγ(s) measured in the problematic range using experimental data, and

using perturbative QCD for the high energy range [39,40]. Taking into account all available

information from various experiments, one obtains for the hadronic contribution [40]

∆αhad(M2
Z) = 0.02761± 0.00036 (1.73)

This result is slightly improved if one uses additional information from τ decays τ− →
ντW

∗ → ντ+ hadrons, modulo some reasonable theoretical assumptions. The latest world

average value for the running electromagnetic coupling constant α at the scaleMZ is therefore

α−1(M2
Z) = 128.951 ± 0.027 (1.74)
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The Fermi coupling constant

Another quantity in particle physics which is very precisely measured is the muon decay

lifetime, which is directly related to the Fermi coupling constant in the effective four–point

Fermi interaction but including QED corrections [41]

1

τµ
=

G2
µm

5
µ

192π3

(
1 − 8m2

e

m2
µ

)[
1 + 1.810

α

π
+ (6.701 ± 0.002)

(α
π

)2
]

(1.75)

which leads to the precise value

Gµ = (1.16637± 0.00001) · 10−5 GeV−2 (1.76)

In the SM, the decay occurs through gauge interactions mediated by W boson exchange and

therefore, one obtains a relation between the W,Z masses, the QED constant α and Gµ

Gµ√
2

=
g2

2
√

2
· 1

M2
W

· g2

2
√

2
=

πα

2M2
Ws

2
W

=
πα

2M2
W (1 −M2

W/M
2
Z)

(1.77)

The strong coupling constant

The strong coupling constant has been precisely determined in various experiments in e+e−

collisions8 and in deep inelastic scattering; for a review, see Ref. [9, 42]. The most reliable

results have been obtained at LEP where several methods can be used: inclusive hadronic

rates in Z decays [Rℓ, σ
0
had and ΓZ , see 1.2.1 later], inclusive rates in hadronic τ decays, event

shapes and jet rates in multi–jet production. The world average value is given by [9]

αs = 0.1172 ± 0.002 (1.78)

which corresponds to a QCD scale for 5 light flavors Λ5
QCD = 216+25

−24 MeV. Using this value

of Λ, one can determine αs at any energy scale µ up to three–loop order in QCD [43]

αs(µ) =
4π

β0ℓµ

[
1 − 2β1

β2
0

log ℓµ
ℓµ

+
4β2

1

β4
0ℓ

2
µ

((
log ℓµ − 1

2

)2

+
β2β0

8β2
1

− 5

4

)]
(1.79)

with ℓµ ≡ log(µ2/Λ2) and the βi coefficients given by

β0 = 11 − 2

3
Nf , β1 = 51 − 19

3
Nf , β2 = 2857 − 5033

9
Nf +

325

27
N2

f (1.80)

with Nf being the number of quarks with a mass smaller than the energy scale µ.

8Note that measurements of αs have been performed at various energies, from
√

s ∼ 1.8 GeV in τ–lepton
decays at LEP1 to

√
s ∼ 210 GeV at LEP2, en passant par

√
s ∼ 20 GeV at JADE, confirming in an

unambiguous way the QCD prediction of asymptotic freedom. The non–abelian structure of QCD and the
three–gluon vertex has also been tested at LEP in four jet events.
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The fermion masses

The top quark has been produced at the Tevatron in the reaction pp̄ → qq̄/gg → tt̄ and in

the SM, it decays almost 100% of the time into a b quark and a W boson, t→ bW+. The top

quark mass is extracted mainly in the lepton plus jets and dilepton channels of the decaying

W bosons, and combining CDF and D0 results, one obtains the average mass value [15]

mt = 178.0 ± 4.3 GeV (1.81)

The branching ratio of the decay t→Wb [compared to decays t→Wq] has been measured

to be BR(t → Wb) = 0.94+0.31
−0.24 [9], allowing to extract the value of the Vtb CKM matrix

element, |Vtb| = 0.97+0.16
−0.12. The top quark decay width in the SM is predicted to be [44–46]

Γt ≃ Γ(t→ bW+) =
Gµm

3
t

8
√

2π
|Vtb|2

(
1 − M2

W

m2
t

)2(
1 + 2

M2
W

m2
t

)(
1 − 2.72

αs

π

)
+ O(α2

s, α)(1.82)

and is of the order of Γt ≃ 1.8 GeV for mt ≃ 180 GeV.

Besides the top quark mass, the masses of the bottom and charm quarks [and to a lesser

extent the mass of the strange quark] are essential ingredients in Higgs physics. From many

measurements, one obtains the following values for the pole or physical masses mQ [47]

mb = 4.88 ± 0.07 GeV , mc = 1.64 ± 0.07 GeV (1.83)

However, the masses which are needed in this context are in general not the pole quark

masses but the running quark masses at a high scale corresponding to the Higgs boson mass.

In the modified minimal subtraction or MS scheme, the relation between the pole masses

and the running masses at the scale of the pole mass, mQ(mQ), can be expressed as [48]

mQ(mQ) = mQ

[
1 − 4

3

αs(mQ)

π
+ (1.0414Nf − 14.3323)

α2
s(mQ)

π2

]

+(−0.65269N2
f + 26.9239Nf − 198.7068)

α3
s(mQ)

π2

]
(1.84)

where αs is the MS strong coupling constant evaluated at the scale of the pole mass µ = mQ.

The evolution of mQ from mQ upward to a renormalization scale µ is

mQ (µ) = mQ (mQ)
c [αs (µ)/π]

c [αs (mQ)/π]
(1.85)

with the function c, up to three–loop order, given by [49, 50]

c(x) = (25x/6)12/25 [1 + 1.014x+ 1.389 x2 + 1.091 x3] for mc < µ < mb

c(x) = (23x/6)12/23 [1 + 1.175x+ 1.501 x2 + 0.1725 x3] for mb < µ < mt

c(x) = (7x/2)4/7 [1 + 1.398x+ 1.793 x2 − 0.6834 x3] for mt < µ (1.86)
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For the charm quark mass for instance, the evolution is determined by the equation for

mc < µ < mb up to the scale µ = mb, while for scales above the bottom mass the evolution

must be restarted at µ = mb. Using as starting points the values of the t, b, c quark pole

masses given previously and for αs(MZ) = 0.1172 and µ = 100 GeV, the MS running t, b, c

quark masses are displayed in Table 1.1. As can be seen, the values of the running b, c

masses at the scale µ ∼ 100 GeV are, respectively, ∼ 1.5 and ∼ 2 times smaller than the

pole masses, while the top quark mass is only slightly different.

For the strange quark, this approach fails badly below scales of O(1 GeV) because of the

the too strong QCD coupling. Fortunately, ms will play only a minor role in Higgs physics

and whenever it appears, we will use the value ms(1 GeV) = 0.2 GeV.

Q mQ mQ(mQ) mQ(100 GeV)

c 1.64 GeV 1.23 GeV 0.63 GeV

b 4.88 GeV 4.25 GeV 2.95 GeV

t 178 GeV 170.3 GeV 178.3 GeV

Table 1.1: The pole quark masses and the mass values in the MS scheme for the running
masses at the scale mQ and at a scale µ = 100 GeV; αs(MZ) = 0.1172.

The masses of the charged leptons are given by

mτ = 1.777 GeV , mµ = 0.1056 GeV , me = 0.511 MeV (1.87)

with the electron being too light to play any role in Higgs physics. The approximation of

massless neutrinos will also have no impact on our discussion.

The gauge boson masses and total widths

Finally, an enormous number of Z bosons has been produced at LEP1 and SLC at c.m.

energies close to the Z resonance,
√
s ≃ MZ , and of W bosons at LEP2 and at the Tevatron.

This allowed to make very precise measurements of the properties of these particles which

provided stringent tests of the SM. This subject will be postponed to the next section. Here,

we will simply write the obtained masses and total decay widths of the two particles [8]

MZ = 91.1875 ± 0.0021 GeV (1.88)

ΓZ = 2.4952 ± 0.0023 GeV (1.89)

and, averaging the LEP2 [51] and Tevatron [52] measurements,

MW = 80.425 ± 0.034 GeV (1.90)

ΓW = 2.133 ± 0.069 GeV (1.91)

which completes the list of SM parameters that we will use throughout this review.
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1.2 High–precision tests of the SM

Except for the Higgs mass, all the parameters of the SM, the three gauge coupling constants,

the masses of the weak vector bosons and fermions as well as the quark mixing angles, have

been determined experimentally as seen in the previous section. Using these parameters, one

can in principle calculate any physical observable and compare the result with experiment.

Because the electroweak constants and the strong coupling constant at high energies are

small enough, the first order of the perturbative expansion, the tree–level or Born term, is

in general sufficient to give relatively good results for most of these observables. However,

to have a more accurate description, one has to calculate the complicated higher–order

terms of the perturbative series, the so–called radiative corrections. The renormalizability

of the theory insures that these higher–order terms are finite once various formally divergent

counterterms are added by fixing a finite set of renormalization conditions. The theory

allows, thus, the prediction of any measurable with a high degree of accuracy.

Very precise experiments have been made in the last fifteen years which allow a sensitiv-

ity to these quantum corrections. The e+e− colliders LEP and SLC, which started operation

in the late 80’s, have collected an enormous amount of electroweak precision data. Mea-

surements at the Z–pole [where the production cross section is extremely large, allowing to

collect more than ten million events at LEP1] of the Z boson partial and total decay widths,

polarization and forward–backward asymmetries where made at the amazing accuracy of one

percent to one per mille [8]. The W boson properties have been also determined at the pp̄

collider Tevatron with a c.m. energy of
√
s = 1.8 TeV [52] and at LEP2 with a c.m. energy

up to
√
s = 209 GeV [51] with a constant increase in accuracy. Many other high–precision

measurements have been performed at much lower energies.

At the same time, a large theoretical effort has been devoted to the calculation of the

radiative corrections to the electroweak observables, to match the accuracies which have been

or which could be reached experimentally [53–56]. The availability of both highly accurate

measurements and theoretical predictions, at the level of 0.1% precision and better, provides

stringent tests of the SM. These high-precision electroweak data are a unique tool in the

search for indirect effects, through possible small deviations of the experimental results from

the theoretical predictions of the minimal SM, and constitute an excellent probe of its still

untested scalar sector, as well as a probe of New Physics beyond the SM.

In this section, after summarizing the high–precision observables in the SM, we will

describe the formalism needed to incorporate the radiative corrections and how the dominant

part of the latter can be approximated. This will allow to set the notation which will be

used later and the framework which will be necessary to discuss the searches for the virtual

effects of the Higgs bosons in electroweak observables, and to incorporate the important

higher–order corrections in Higgs boson decay and production.
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1.2.1 Observables in Z boson decays

A large variety of precision tests can be performed in e+e− experiments with center–of–mass

energies near the Z–resonance, in the process e+e− → f f̄ which is mediated by the exchange

of a photon and a Z boson [57]. The differential cross section is a binomial in cos θ, where θ

is the angle between the electron and the final fermion f . At the tree–level, for unpolarized

initial beams and for massless final state fermions f 6= e, it is given by

dσ

d cos θ
=

4πα2

3s
Nc

[
3

8
(1 + cos2 θ)σU +

3

4
cos θσF

]
(1.92)

where σU and σF are given by [ΓZ is the total decay width of the Z boson]

σU = Q2
eQ

2
f + 2QeQfvevf

s(s−M2
Z)

(s−M2
Z)2 + Γ2

ZM
2
Z

+ (a2
e + v2

e)(v
2
f + a2

f)
s2

(s−M2
Z)2 + Γ2

ZM
2
Z

σF = 2QeQfaeaf
s(s−M2

Z)

(s−M2
Z)2 + Γ2

ZM
2
Z

+ aevevfaf
s2

(s−M2
Z)2 + Γ2

ZM
2
Z

(1.93)

where the vector and axial vector couplings of the fermion f to the Z boson vf and af [and

the reduced couplings v̂f and âf to be used later on] have been given in eq. (1.63).

For center of mass energies near the Z resonance,
√
s ≃ MZ , the Z boson exchange

largely dominates. Integrating eq. (1.92) over the entire range of the angle θ, one obtains

the total peak cross section

σ0(e
+e− → Z → f f̄) ≡

∫ +1

−1

dσ

d cos θ
=

12π

M2
Z

× ΓeΓf

Γ2
Z

(1.94)

with the partial Z boson decay widths into massless fermion pairs given by

Γf ≡ Γ(Z → f f̄) =
2α

3
NcMZ(v2

f + a2
f) (1.95)

Convenient measurable quantities which have been considered at LEP1 and SLC are in this

context the ratio of Z boson partial widths

Rf =
Γ(Z → f f̄)

Γ(Z → hadrons)
(1.96)

If one integrates asymmetrically eq. (1.92) and normalizes to the total cross section, one

obtains the forward–backward asymmetry for the decay of a Z boson into a fermion pair

Af
FB ≡

[∫ +1

0

dσ

d cos θ
−
∫ 0

−1

dσ

d cos θ

]
× σ−1

0

√
s=MZ
=

3

4
AeAf (1.97)

where the combinations Af are given, in terms of the vector and axial vector couplings of

the fermion f to the Z boson, by

Af =
2afvf

v2
f + a2

f

≡ 2âf v̂f

v̂2
f + â2

f

(1.98)
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Note that if the initial e− beams are longitudinally polarized [as it was the case at the SLC],

one can construct left–right asymmetries and left–right forward–backward asymmetries; in

addition one can measure the longitudinal polarization in τ decays and also define a po-

larization asymmetry. In terms of the combination of couplings Af defined above, these

observables can be written as

Af
LR = Ae , Af

LR,FB =
3

4
Af , Aτ

pol = Aτ (1.99)

In particular Af
LR [which is the same for all f 6= e] and Aτ

pol are very sensitive to the precise

value of sin2 θW , being proportional to the factor v̂e ≡ 1 − 4s2
W ∼ 0 for s2

W ∼ 1/4.

The tree–level expressions discussed above give results at the one percent level and hold in

most cases, except in the case of b–quark final states where mass effects, O(4m2
b/M

2
Z) ∼ 0.01,

have to be taken into account, and in the production of e+e− final states where the com-

plicated t–channel gauge boson exchange contributions have to be included [this process is

particularly important since it allows to determine the absolute luminosity at e+e− colliders].

However, for a very precise description of the Z properties, one needs to include the one–

loop radiative corrections and possibly some important higher–order effects. These radiative

corrections fall into three categories [see Fig. 1.3]:

• •
a)

e+

e−

γ, Z
q̄

q
g • • • •

• •
b)

e+

e−

γ, Z
f̄

f

γ • • • •

• •

c)

e+

e−

f f̄

f
V• •

• •

• •

V

V

Figure 1.3: Examples of Feynman diagrams for the radiative corrections to the process
e+e− → f f̄ : a) virtual and real QCD corrections for quark final states, b) virtual QED
corrections and initial and final state photon radiation and c) genuine electroweak correc-
tions including self–energy, vertex and box corrections.
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a) QCD corrections to final states quarks, where gluons are exchanged or emitted in the

final state. For massless quarks the correction factors are

KQCD
Z→qq̄ = 1 +

αs

π
+ 1.41

(αs

π

)2

(1.100)

for the partial decay widths Z → qq̄ or total cross section Γq ∝ σ(e+e− → qq̄), and

KQCD
Aq

FB

= 1 − αs

π
(1.101)

for the forward–backward quark asymmetries. In fact these QCD factors are known to O(α3
s)

for Γq and to O(α2
s) for Aq

FB; in the case of b–quarks one can include the mass effects at

O(αs) which are also known [for a detailed discussion of all these corrections, see Ref. [58] for

instance]. Note that Γq allows for one of the cleanest and precise determinations of αs [42].

b) Pure electromagnetic corrections. These consist of initial and final state corrections

where photons are exchanged in the Zff̄ vertices or emitted in the initial or final states.

For final state corrections, it is sufficient to include the small

KEM
Z→ff̄ = 1 +

3

4
Q2

f

α

π
, KEM

Af
F B

= 1 − 3

4
Q2

f

α

π
(1.102)

correction factors, while for initial state corrections, in particular the photon radiation (ISR),

one can use the standard approach of structure function where the corrections can be expo-

nentiated. This is performed by convoluting the Born cross section eq. (1.92) with a radiator

function G(s′) for the full accessible c.m. energies s′ = xs after photon radiation

σISR(s) =

∫ 1

x0

dxG(xs)σBorn(xs) , G(xs) = β(1 − x)β−1δV +S(x) + δH(x) (1.103)

where x0 is the minimum energy of the final state, x0 = 4m2
f/s for e+e− → f f̄ , and G(x)

is the radiator function, which is written in an exponentiated form to resum the infrared

sensitive and large corrections. In the previous equation, β = α/π× [log s/m2
e −1] and δV +S,

δH contain, respectively, the virtual plus soft–photon contributions, and the hard–photon

contributions, which are polynomials in log(s/m2
e). Their expressions, as well as many details

on ISR, FSR and their interference can be found in the reviews of Refs. [57, 59]. Note that

all these corrections do not involve any other physics than well known QED.

c) Electroweak corrections. They involve non–photonic “direct” vertex and box correc-

tions which are in general rather small [except in a few cases to be discussed later] as well as

the “oblique” γ,W and Z boson self–energy corrections and the γ–Z mixing, which give the

bulk of the contributions [56,60]. In particular, the top quark [which was not yet discovered

at the time LEP1 and SLC started] and the Higgs boson will enter the electroweak observ-

ables through their contributions to the W and Z boson self–energies. These electroweak

corrections are discussed in some detail in the next subsection.
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1.2.2 The electroweak radiative corrections

The electroweak radiative corrections can be cast into three main categories; Fig. 1.4:

a) The fermionic corrections to the gauge boson self–energies. They can be divided them-

selves into the light fermion f 6= t contributions and the contribution of the heavy

top quark f = t. For the contributions of quarks, one has to include the important

corrections stemming from strong interactions.

b) The contributions of the Higgs particle to the W and Z boson self–energies both at

the one–loop level and at the two–level when the heavy top quark is involved.

c) Vertex corrections to the Z decays into fermions, and in particular into bb̄ pairs, and

vertex plus box contribution to muon decay [in which the bosonic contribution is

not gauge invariant by itself and should be combined with the self–energy corrections].

There are also direct box corrections, but their contribution at the Z–peak is negligible.

a) f

V V
•• •• g

q

••

q

b)

••

H

W/Z W/Z

•• H •• H

t

c)

•
•

•t

t̄

b

b̄

Z
W •

•

•
•

µ−

νµ

e−

ν̄e
W

Z

Figure 1.4: Generic Feynman diagrams for the main electroweak radiative corrections: a)

fermionic contributions to the two–point functions of the V = W/Z bosons, b) Higgs boson

contributions to the two–point functions and c) vertex and box corrections.

The contribution of the light fermions to the vector boson self–energies can be essentially

mapped into the running of the QED coupling constant, which as discussed in the previous

section, is defined as the difference between the vacuum polarization function of the photon

evaluated at low energies and at the scale MZ , ∆α(M2
Z) = Πγγ(0) − Πγγ(M

2
Z) = 0.0590 ±

0.00036. Therefore, the only remaining fermionic contribution to the two–point functions is

the one due to the top quark on which, besides the effects of the Higgs boson, we will mainly

concentrate by studying three important quantities, ∆ρ, ∆r and the Zbb̄ vertex.
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The effective mixing angle and the ρ parameter

The effective weak mixing angle can be defined in the Born approximation in terms of the

W and Z boson masses9, eq. (1.60). To include higher orders, one has to renormalize the V

boson masses M2
V →M2

V −ΠV V (M2
V ) where ΠV V is the real part of the transverse component

of the self–energy of V at the scale MV . One obtains an effective mixing angle [56, 60]

s̄2
W = 1 − M2

W

M2
Z

+ c2W

(
ΠWW (M2

W )

M2
W

− ΠZZ(M2
Z)

M2
Z

)
∼ 1 − M2

W

M2
Z

+ c2W∆ρ (1.104)

This is in fact the correction to the ρ parameter [36] which, historically was used to measure

the strength of the ratio of the neutral current to the charged charged current at zero–

momentum transfer in deep inelastic neutrino–nucleon scattering, eq. (1.66). In the SM,

and as already mentioned, because of a global or custodial SU(2)R symmetry of the Higgs

Lagrangian [which survives the spontaneous breaking of the symmetry], this parameter is

equal to unity. However, it receives higher–order corrections usually parameterized by

ρ =
1

1 − ∆ρ
, ∆ρ =

ΠWW (0)

M2
W

− ΠZZ(0)

M2
Z

(1.105)

The main contribution to this parameter is due to the (t, b) weak isodoublet. Indeed, the

large mass splitting between the top and bottom quark masses, breaks the custodial SU(2)R

symmetry and generates a contribution which grows as the top mass squared10 [61]. Including

the dominant higher–order QCD and electroweak corrections, one finds

∆ρ = 3xt

[
1 + (∆ρ)QCD + (∆ρ)EW

]
(1.106)

xt =
g2

Htt

(4π)2
=

Gµm
2
t

8
√

2π2
∼ 0.3% (1.107)

The higher–order QCD corrections are known at the two–loop [62] and three–loop [63] orders;

with αs defined at the scale µ = mt with 6 flavors, they are given by

(∆ρ)QCD = −2

3

αs

π

(
π2

3
+ 1

)
− 14.59

(αs

π

)2

(1.108)

There are also two–loop electroweak corrections stemming from fermion loops. In particular,

there is a correction where a Higgs or a Goldstone boson is exchanged in loops containing

top quarks and which grows as G2
µm

4
t and G2

µm
2
tM

2
Z . In the limit where the Higgs boson

mass is much smaller than mt, the leading piece gives a tiny correction [64]

(∆ρ)EW ≃ (19 − 2π2)xt ∼ −xt (1.109)
9When higher–order corrections are included, different definitions of s2

W lead to different values. For

instance, s2
W as defined above is different from the effective leptonic s2

W |lept
eff defined in terms of ae and ve.

10Because mt is large, the contributions are approximately the same at the scale q2 ∼ 0 or q2 ∼ M2
V ; in

addition the light fermion contributions to ΠWW and ΠZZ almost cancel in the difference, ∼ log MW /MZ .
This is the reason why one can approximate the correction to s2

W in eq. (1.104) by the one in eq. (1.105).
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However, for the more realistic case of a finite Higgs mass, the correction can be much

larger [65]; in addition, the subleading O(G2
µm

2
tM

2
Z) are also significant [66, 67]. Recently,

the full fermionic contributions to ∆ρ and to sin2 θW have been derived at the two–loop

level [68]. Other higher–order corrections, such as the mixed QED–QCD contributions and

the three–loop EW corrections, are also available [69].

At the one–loop level the Higgs boson will also contribute to the ρ parameter [70]

(∆ρ)1−Higgs = −3GµM
2
W

8
√

2π2
f
(M2

H

M2
Z

)
, f(x) = x

[
ln c2W − ln x

c2W − x
+

ln x

c2W (1 − x)

]
(1.110)

This contribution vanishes in the limit s2
W → 0 or MW → MZ , i.e. when the hypercharge

group is switched off. For a very light Higgs boson the correction also vanishes

(∆ρ)1−Higgs → 0 for MH ≪ MW (1.111)

while for a heavy Higgs boson, the contribution is approximately given by

(∆ρ)1−Higgs ∼ −3GµM
2
W

8
√

2π2

s2
W

c2W
log

M2
H

M2
W

for MH ≫MW (1.112)

This contribution has only a logarithmic dependence in the Higgs boson mass. This has to

be contrasted with the general case, where the contribution of two particles with a large

mass splitting grows with the mass of the heaviest particle [as is the case of the top/bottom

weak isodoublet] and thus, can be very large. This logarithmic dependence is due to what is

called the “Veltman screening theorem” [70,71] which tells us that the quadratic corrections

∝ M2
H appear only at the two–loop level, and are therefore screened or damped by an extra

power of the electroweak coupling squared.

The two–loop Higgs corrections to the ρ parameter stemming from the exchange of the

Higgs particles [and the Goldstone bosons] is known in the large Higgs mass limit since quite

some time [72], but recently the three–loop contribution has been also calculated [73]. The

sum of the two contributions reads for MH ≫MW

(∆ρ)2+3−Higgs ∼ 0.15

(
GµM

2
W

2
√

2π2

)2
s2

W

c2W

M2
H

M2
W

− 1.73

(
GµM

2
W

2
√

2π2

)4
s2

W

c2W

M4
H

M4
W

(1.113)

Both the two– and three–loop corrections are extremely small for reasonable values of MH .

However, for MH ∼ 400 GeV, the two corrections become of the same size, O(10−5), but

with opposite sign and cancel each other. For MH ∼ 1.2 TeV, the three–loop correction is

comparable with the one–loop contribution and has the same sign.

Nevertheless, for a relatively light Higgs boson and except when it comes to very high–

precision tests, one can neglect these Higgs boson corrections to the ρ parameter, and keep

only the QCD and leading electroweak corrected top quark contribution. This ∆ρ correction

will be the largest contribution to the electroweak corrections after ∆α(M2
Z) since, for mt ∼

180 GeV, it is at the level of ∼ 1%.
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The Zbb̄ vertex

In the context of precision tests, the Z boson decays into bottom quarks has a special

status. First of all, because of its large mass and relatively large lifetime, the b quark can be

tagged and experimentally separated from light quark and gluon jets allowing an independent

measurement of the Z → bb̄ partial decay width and the forward backward asymmetry Ab
FB.

Since mb is sizable, mass effects of O(4m2
b/M

2
Z) ∼ 1% have to be incorporated in these

observables at both the tree–level and in the QCD corrections [74]. In addition, radiative

corrections involving the top quark and not contained in ∆ρ appear. Indeed, the latter can

be exchanged together with a W boson in the Zbb̄ vertex, and the longitudinal components

of the W boson [or the charged Goldstone whose coupling is proportional to the fermion

mass] lead to contributions that are quadratic in the top quark mass. These corrections can

be accounted for simply by shifting the reduced vector and axial–vector Zbb̄ couplings by

the amount

âb → 2I3
b (1 + ∆b) , v̂b → 2I3

b (1 + ∆b) − 4Qbs
2
W (1.114)

where the rather involved expression of the vertex correction ∆b is given in Ref. [75]. In the

limit of a heavy top quark, the correction can be cast into a rather simple form

∆b = − Gµm
2
t

4
√

2π2
− GµM

2
Z

12
√

2π2
(1 + c2W ) log

m2
t

M2
W

+ · · · (1.115)

This correction is large [note that the logarithmic piece is also important] being approxi-

mately of the same size as the ∆ρ correction. The Zbb̄ vertex allows thus an independent

probe of the top quark; see for instance the discussions in Ref. [76].

The Higgs boson will contribute to the Zbb̄ vertex in two ways. First, at the one–loop

level, it can be exchanged between the two bottom quarks, leading to a contribution that is

proportional to [75]

∆1−Higgs
b ∝ Gµm

2
b

4
√

2π2
(1.116)

Because the b–quark mass is very small compared to the W boson mass, m2
b/M

2
W ∼ 1/250,

this contribution is negligible in the SM. Another contribution, similarly to what occurs in

the ∆ρ case, is simply due to the two–loop corrections of O(G2
µm

4
t ) to ∆b, which in the limit

of small Higgs boson masses is given by [65, 77]

∆2−EW
b ∝ −2x2

t

(
9 − π2

3

)
(1.117)

which is again very small and can be safely neglected. Thus, only the Higgs boson contri-

butions to the two–point functions have to be taken into account.
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1.2.3 Observables in W boson production and decay

W pair production in e+e− collisions

The pair production of W bosons in e+e− collisions, e+e− → W+W−, is the best suited

process to test directly the gauge symmetry of the SM [55]. Indeed, the process is mediated by

t–channel neutrino exchange but also by s–channel photon and Z boson exchanges, Fig. 1.5,

which involve the triple γWW and ZWW couplings that are dictated by the SU(2)L × U(1)Y

gauge symmetry, eq. (1.68). There is an additional contribution from s–channel Higgs boson

exchange, but it is negligibly small, being proportional to the square of the electron mass11.

e+

e−

γ, Z W+

W−
νe

H

Figure 1.5: Feynman diagrams for the pair production of W bosons in e+e− collisions.

The total production cross section for the process e+e− → W+W− is given by [78]

σ =
πα2

2s4
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+
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+
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3
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+
M4

Z(8s4
W − 4s2
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48(s−M2
Z)2

[
s2

M4
W

+
20s

M2
W

+ 12

]}
(1.118)

with β = (1−4M2
W/s)

1/2 being the velocity of the W bosons. The W bosons will decay into

almost massless fermion pairs with partial decay widths given by

Γ(W → fif̄j) =
2

3
Nc α|Vij|2 (v2

f + a2
f) (1.119)

where Vij are the Cabibbo–Kobayashi–Maskawa matrix elements and vf and af the vector

and axial–vector couplings of the W boson to fermions given in eq. (1.64). The same type

of radiative corrections which affect the Z → f f̄ partial width appear also in this case.

Of course, to have an accurate description of the process, one has to consider many

differential distributions, the possibility of off–shell W bosons etc.., and higher–order effects

including radiative corrections, have to be implemented. A large theoretical effort has been

devoted to this topic in the last two decades; see e.g. Ref. [55] for a review. Let us simply

11Note, however, that at extremely high energies, this suppression is compensated by terms proportional
to the c.m. energies. In fact, the cross section with only the two other channels included, violates unitarity
at

√
s ≫ M2

W , and unitarity is restored only if the Higgs boson channel is included with the couplings of the
Higgs particle to electrons and W bosons exactly as predicted in the SM [7].

39



note here that the contribution of the Higgs particle to the radiative corrections to this

reaction [79, 80] are too small to be measurable.

This process also allows to make a very precise measurement of the W boson mass. This

can be performed not only via a scan in the threshold region where the cross section rises

steeply, σ ∼ β, but also in the reconstruction of the W bosons in mixed lepton/jet final states

for instance. The W boson width can also be measured by scanning around the threshold.

W production in hadronic collisions

W bosons can also be produced in hadronic collisions in the Drell–Yan process, qq̄′ → W ,

and detected in their leptonic decay channel W → ℓν for instance [81, 82]. The differential

cross section for the subprocess ud̄→ W+ → ℓ+ν is given by [83]

dσ̂

dΩ̂
=
α2|Vud|2
192s2

W

1

ŝ

û2

(ŝ−M2
W )2 + Γ2

WM
2
W

(1.120)

where ŝ is the center–of–mass energy of the subprocess, û the square momentum difference

between the up–type quark and the lepton and Ω̂ is the solid angle of the lepton ℓ in the

parton c.m. frame. The hadronic cross section can be obtained by convoluting the previous

equation with the corresponding (anti)quark densities of the protons. Defining τ0 = M2
W/s

with s being the total hadronic c.m. energy squared, one would then have

σ(pp→W ) =

∫ 1

τ0

dτ
∑

q

dLqq̄

dτ
σ̂(ŝ = τs) (1.121)

Here again, radiative corrections, in particular those due to the strong interaction [84,85] to

be discussed later, have to be implemented in order to describe accurately the process.

TheW boson mass can be determined [81,82] in the leptonic decay channels by measuring

the transverse mass mW
T =

√
2pℓ

Tp
ν
T (1 − cos φ) where φ is the angle between the charged

lepton and the neutrino in the transverse plane. While the lepton transverse momentum pℓ
T

is directly measured, pν
T is obtained from the momentum of the system recoiling against the

W in the transverse plane. The edge of the mW
T distribution is very sensitive to the W boson

mass. By fitting the experimental mW
T distribution with Monte–Carlo events generated with

different values of MW , one can determine the MW value which gives the best result fit. The

W boson width can also be measured with a reasonable accuracy since it enters the process.

However, besides the background problems, there are many uncertainties which are in-

volved in this measurement: the not very precise knowledge of the parton distributions, the

effect of the W boson total width, the radiative decays and the approximate knowledge of

the pT spectrum and distribution of the W boson. But most of these uncertainties can be

strongly constrained by using the much cleaner process pp → Z → ℓ+ℓ−, with the Z boson

mass accurately determined at LEP1/SLC.
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Muon decay and the radiative corrections to the W boson mass

As discussed in §1.1.4, the W boson mass is related to α,Gµ and MZ , eq. (1.77). Including

the radiative corrections, one obtains the celebrated relation [86]

M2
W

(
1 − M2

W

M2
Z

)
=

πα√
2Gµ

(1 + ∆r) (1.122)

The ∆r correction can be decomposed into three main components, and to effectively sum

many important higher–order terms, can be written as [60]

1 + ∆r =
1

(1 − ∆α)(1 +
c2
W

s2
W

∆ρ) − (∆r)rem

(1.123)

where the ∆α and ∆ρ contributions have been discussed previously and (∆r)rem collects the

remaining non–leading contributions. Among these are some non–quadratic but still sizable

corrections due to the top quark, additional light fermions contributions, as well as some

vertex and box corrections involved in muon decay [60]

(∆r)box+vertex
rem =

α

4πs2
W

(
6 +

7 − 4s2
W

2s2
W

log c2W

)

(∆r)light−fermions
rem =

α

4πs2
W

Nf

6

(
1 − c2W

s2
W

)
log c2W

(∆r)log−top
rem =

GµM
2
W

4
√

2π2

(
c2W
s2

W

− 1

3

)
log

m2
t

M2
W

(1.124)

Note that the factorization of the light and heavy fermion contribution and the presence of

the three terms in the denominators of eq. (1.123) effectively sums many important higher–

order terms [56, 60], such as those of the form (∆ρ)2, (∆ρ∆α), (∆α∆rrem) at the two–loop

level and the light fermion contribution (∆α)n to all orders.

At one–loop, the Higgs boson has a contribution to (∆r) that is also only logarithmically

dependent on MH , as in the case of ∆ρ. For a heavy Higgs, MH ≫MW , it reads [86, 87]

(∆r)1−Higgs
rem ≃ GµM

2
W

8
√

2π2

11

3

(
log

M2
H

M2
W

− 5

6

)
(1.125)

Again, the correction ∝M2
H appears only at the two–loop level.

The complete two–loop bosonic corrections to ∆r have been calculated recently [88],

including the full MH dependence and were found to be very small: a few times ×10−5 for

MH values in the range between 100 GeV to 1 TeV. There are also two–loop electroweak

corrections stemming from fermions; the main contribution is in fact contained in ∆ρ but

there is an extra piece contributing to (∆r)rem which, however, is small [66, 67]. Hence, the

theoretical knowledge of the W mass is rather precise, being approximately the same as for

the electroweak mixing angle.
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The trilinear gauge boson couplings

As mentioned previously, the gauge structure of the SU(2)L × U(1)Y theory is best tested by

the measurement of the triple gauge boson vertices at LEP2 and eventually at the Tevatron

[although possible, the test of the quartic couplings is very limited in these experiments].

This can be achieved by comparing the data with a general WWV vertex with V = γ, Z,

which includes the possibility of anomalous gauge boson couplings that can be induced, for

instance, by radiative corrections in the SM or by New Physics effects. We briefly discuss

this aspect below, as it will be needed in another part of this report.

The most general Lorentz invariant WWV vertex that is observable in processes where

the weak bosons couple to massless fermions, as is the case in the reaction e+e− → W+W−

for instance, can be written as12 [89, 90]

LWWV
eff = igWWV

[
gV
1 V

µ
(
W−

µνW
+ν −W+

µνW
−ν
)

+ κV W
+
µ W

−
ν V

µν (1.126)

+
λV

M2
W

V µνW+ρ
ν W−

ρµ + igV
5 εµνρσ

(
(∂ρW−µ)W+ν −W−µ(∂ρW+ν)

)
V σ

+ igV
4 W

−
µ W

+
ν (∂µV ν + ∂νV µ) − κ̃V

2
W−

µ W
+
ν ε

µνρσVρσ − λ̃V

2m2
W

W−
ρµW

+µ
νε

νραβVαβ

]

with the overall couplings defined by gWWγ = e and gWWZ = e cot θW , and where the reduced

field strengths Wµν = ∂µWν − ∂νWµ and Vµν = ∂µVν − ∂νVµ are used. For on–shell photons,

i.e. with q2 = 0, the couplings gγ
1 = 1 and gγ

5 = 0 are fixed by U(1)Q gauge invariance.

In the Lagrangian eq. (1.126), the couplings gV
1 , κV and λV separately conserve C and P

symmetries, while gV
5 violates them but conserves CP symmetry. The couplings gV

4 , κ̃V and

λ̃V parameterize a possible CP violation in the bosonic sector.

Note that the C and P conserving terms in LWWγ
eff correspond to the lowest order terms

in a multipole expansion of the W boson–photon interactions, the charge QW , the magnetic

dipole moment µW and the electric quadrupole moment qW of the W+ boson [90]

QW = egγ
1 , µW =

e

2MW

(gγ
1 + κγ + λγ) , qW = − e

M2
W

(κγ − λγ) (1.127)

In the SM, the Lagrangian eq. (1.126) reduces to the one given in eq. (1.68) and, thus, at the

tree–level, the trilinear couplings are simply given by gZ
1 = gγ

1 = κZ = κγ = 1, while all the

other couplings in eq. (1.126) are zero. It became common practice to introduce deviations

of the former set of couplings from their tree–level SM values

∆gZ
1 ≡ (gZ

1 − 1) , ∆κγ ≡ (κγ − 1) , ∆κZ ≡ (κZ − 1) (1.128)

The rather precise measurement of these quantities is one of the big achievements of LEP.

12Additional terms with higher derivatives may be present, but they are equivalent to a dependence of the
couplings on the vector boson momenta and thus, only lead to a form factor behavior of these couplings.
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1.2.4 Approximating the radiative corrections

The evaluation of the complete set of the previously discussed radiative corrections is a very

complicated task, in particular when initial and final state photonic corrections or processes

which need some special treatment, such as Bhabha e+e− → e+e− scattering, are involved.

This can be performed only with the help of very sophisticated programs which fortunately

exist [54]. However, in most practical purposes, in particular when effects of New Physics

are analyzed, it is sufficient to probe some quantities where the most important radiative

correctives are expected to occur. This is the case, for instance, of the ∆r and s̄2
W observables.

Here, we will shortly describe such approximations which will have some application later.

The improved Born approximation

One can express electroweak observables in the Born approximation in terms of the QED

constant α, but to be accurate, one should use the running α defined at the scale where the

considered process takes place, MZ or higher energies. Since the running of α between the two

latter scales is rather small, one can make the substitution α(0) → α(M2
Z) = α(0)/(1−∆α)

for scales larger than MZ . The ∆α corrections should in principle cancel the light fermion

contributions in the two–point functions when the radiative corrections to the observables

are calculated. This is in fact effectively done by using the Fermi decay constant in the tree

level expressions of the observables, α(0) → α(M2
Z) = (

√
2Gµ/π)M2

Ws
2
W , which implicitly

includes the ∆α contribution. Since ∆α is rather large being at the level of 6% [and which

for 2 → 2 (3) processes that are proportional to α2(α3), lead to contributions of the order of

12% (18%)], this gives a more accurate description of the observable, already at the tree–level.

This procedure is called the naive improved Born approximation (naive IBA) [91].

The IBA is said to be naive because there are still residual contributions from ∆ρ and

(∆r)rem and additional contributions to s̄2
W which, despite of the fact that there are smaller

than ∆α, should be taken into account. The dominant top quark contribution which is

contained in the ∆ρ piece given in eq. (1.106) can be simply included by performing the

shift

α→
√

2Gµ

π
M2

W

(
1 − M2

W

M2
Z

)
(1 + ∆r)−1 , ∆r ≃ ∆α(M2

Z) − 3∆ρ (1.129)

In the context of Z physics, the IBA maybe be sufficient in many purposes and can be

implemented in the electroweak observables by simply performing the following substitutions:

(i) replace the electromagnetic couplings of fermions by

Qfe→ Qf

√
4πα/[1 − ∆α(M2

Z)]−1 (1.130)
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(ii) replace the Born couplings of the fermion to the Z boson by

vf → (
√

2GµM
2
Zρ)

1/2 v̂f , af → (
√

2GµM
2
Zρ)

1/2 âf (1.131)

(iii) replace everywhere s2
W , in particular in the vector couplings v̂f = 2If

3 −4Qfs
2
W , by the

effective electroweak mixing angle for leptons

s2
W → s2

W ≡ sin2 θlept
eff =

1

2

[
1 −

√
1 − 4πα(0)√

2M2
ZGµ

1

ρ(1 − ∆α)

]
(1.132)

(iv) and for b quark final states, perform in addition the substitution of eq. (1.114) to

include the large top quark mass corrections in the Zbb̄ vertex.

The remaining non–universal electroweak corrections are small and can be safely ne-

glected in most cases, but obviously not when probing the small Higgs boson effects. Of

course, this IBA needs to be supplemented by the important QCD corrections to hadronic

processes and QED corrections, in particular ISR corrections, whenever needed.

Model independent analyses and the STU and ǫ approaches

In a more general context than the SM, it is often convenient to parametrize the radia-

tive corrections to electroweak observables in such a way that the contributions due to

many kinds of New Physics beyond the SM are easily implemented and confronted with

the experimental data. If one assumes that the symmetry group of New Physics is still the

SU(3)C × SU(2)L × U(1)Y and, thus, there are no extra gauge bosons, and that it couples

only weakly to light fermions so that one can neglect all the “direct” vertex and box cor-

rections, one needs to consider only the oblique corrections, that is, the ones affecting the

γ, Z,W two-point functions and the Zγ mixing. If in addition, the scale of the New Physics

is much higher than MZ , one can expand the complicated functions of the momentum trans-

fer Q2 around zero, and keep only the constant and the linear Q2/M2
NP terms of the series,

which have very simple expressions in general. The New Physics contributions can be then

expressed in terms of six functions: Π′
γγ(0),Π′

Zγ(0),Π
(′)
ZZ and Π

(′)
WW (Πγγ(0) = ΠZγ(0) = 0

because of the QED Ward Identity). Three of these functions will be absorbed in the renor-

malization of the three input parameters α,Gµ and MZ . This leaves three variables which

one can choose as being ultraviolet finite and more or less related to physical observables.

A popular choice of the three independent variables is the STU linear combinations of

self–energies introduced by Peskin and Takeuchi [92]

αS = 4s2
W c

2
W

[
ΠZZ(0) − (c2W − s2

W )/(sW cW ) · Π′
Zγ(0) − Π′

γγ(0)
]

αT = ΠWW (0)/M2
W − ΠZZ(0)/M2

Z

αU = 4s2
W

[
Π′

WW (0) − c2WΠ′
ZZ(0) − 2sW cW Π′

Zγ(0) − s2
W Π′

γγ(0)
]

(1.133)
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These variables measure deviations with respect to the SM predictions and for instance, S

and T are zero when the New Physics does not break the custodial isospin symmetry; the

variable αT is simply the shift of the ρ parameter due to the New Physics, αT = 1−ρ−∆ρ|SM.

Another parametrization of the radiative corrections, the ǫ approach of Altarelli and

Barbieri [93], is closer to the IBA approximation discussed previously and thus, more directly

related to the precision electroweak observables. The three variables which parametrize the

oblique corrections are defined in such a way that they are zero in the approximation where

only SM effects at the tree–level, as well as the pure QED and QCD corrections, are taken

into account. Contrary to the STU approach, they are independent of the values of mt and

MH , the contributions of which are included. In addition, a fourth variable is introduced to

account for the quadratic top quark mass contribution to the Zbb̄ vertex.

In terms the two quantities ∆rW and ∆k related to, respectively, the gauge boson masses

and sin2 θlep
eff as measured from leptonic observables assuming universality,

M2
W/M

2
Z

(
1 −M2

W/M
2
Z

)
= s2

0c
2
0(1 − ∆rW ) , ve/ae = 1 − 4 sin2 θlep

eff = 1 − 4(1 + ∆k)s2
0

with s2
0c

2
0 = πα(MZ)/(

√
2GµM

2
Z), the four variables ǫ1,2,3,4 are defined as

ǫ1 = ∆ρ , ǫ2 = c20∆ρ+
s2
0

c20 − s2
0

∆rW − 2s2
0∆k , ǫ3 = c20∆ρ+ (c20 − s2

0)∆k , ǫ4 = ∆b (1.134)

The variables ǫ2 and ǫ3 are only logarithmic in mt, and the m2
t terms appear only in ǫ1

and ǫb; the leading terms involving the Higgs boson mass are contained in ǫ1 and ǫ3. The

relations between the ǫ’s and the electroweak observables, lead to very simple formulae.

Interpolation of the radiative corrections

Once the full set of radiative corrections has been made available, one can attempt to derive

simple interpolation formulae to summarize the full result, which is analytically complicated

and numerically involved to handle. This is possible since the only unknown parameter in

the SM is the Higgs boson mass. However, one has to include the experimental errors on

some important SM input parameters. For the values of MW and of the EW mixing angle as

measured from lepton asymmetries sin2 θlep
eff which do not involve final state QCD corrections,

the interpolating formulae are indeed rather simple. Using Gµ and MZ as inputs, and taking

into account the possible variations of the measurements of ∆αhad(MZ), αs(MZ) and mt from

their central values, one obtains for a given observable X [67]

X = X0 + aX
1 ah + aX

2 ae + aX
3 at + aX

4 as + aX
5 a

2
h (1.135)

with X0 = (s2
W )0 and M0

W being the [scheme dependent] theoretical results at the reference

point MH = 100 GeV, mt = 175 GeV and the other parameters set at their experimentally
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measured central values, and the reduced quantities

ah = log

(
MH

100 GeV

)
, ae =

∆αhad

0.028
− 1, at =

( mt

175 GeV

)2

− 1, as =
αs(MZ)

0.118
− 1 (1.136)

In the on–shell scheme, the central values X0 and the coefficients aX
i are displayed in Table

1.2 for the two observables sin2 θlep
eff and MW . For a Higgs boson with a mass in the range 75

GeV <∼ MH <∼ 375 GeV, and for the SM input parameters varying within their 1σ allowed

range, the previous formula reproduces the complete result with errors ∆ sin2 θlep
eff

<∼ 1×10−5

and ∆MW <∼ 1 MeV, which are well below the experimental accuracies on these observables

as will be seen later.

Quantity X0 102aX
1 10aX

2 10aX
3 102aX

4 10aX
5

sin2 θlep
eff 0.231527 0.0519 0.986 – 0.277 0.045 0

MW 80.3809 –5.73 –5.18 5.41 –8.5 –0.80

Table 1.2: The central values and the deviation coefficients ai for sin2 θlep
eff and MW .

1.2.5 The electroweak precision data

Besides α(MZ), Gµ and MZ which are used as the basic input parameters, there is an im-

pressive list of electroweak observables which have been measured with a very good accuracy

and which can be predicted in the SM with an equally good precision. These are:

• Observables from the Z line shape at LEP1: the Z boson total width ΓZ , the peak

hadronic cross section σ0
had, the partial decay widths of the Z boson into leptons and c, b

quarks normalized to the hadronic Z decay width, Rℓ,c,b, the forward–backward asymmetries

Af
FB for leptons and heavy c, b quarks, as well as the τ polarization asymmetry Aτ

pol; the

asymmetries provide a determination of sin2 θW as measured from leptons and hadrons.

• The longitudinal polarization asymmetry Af
LR which has been measured at the SLC

and which gives the best individual measurement of sin2 θW , as well as the left–right forward

backward asymmetries for the heavy b, c quarks, Ab,c
LR,FB.

• The mass of the W boson MW which is precisely measured at LEP2 and at the Tevatron

as well as the total decay width ΓW , eqs. (1.90–1.91).

• In addition there are high–precision measurements at low energies: (i) the νµ– and

ν̄µ–nucleon deep–inelastic scattering cross sections, the ratios of which measure the left– and

right–handed couplings of fermions to the Z boson which can be turned into a determination

of s2
W , and (ii) the parity violation in the Cesium and Thallium atoms which provide the

weak charge QW that quantifies the coupling of the nucleus to the Z boson and which can

also be turned into a determination of the electroweak mixing angle via s2
W = 1−M2

W/M
2
Z .
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Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02761 ± 0.00036 0.02769

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4966

σhad [nb]σ0 41.540 ± 0.037 41.481

RlRl 20.767 ± 0.025 20.739

AfbA0,l 0.01714 ± 0.00095 0.01650

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1483

RbRb 0.21630 ± 0.00066 0.21562

RcRc 0.1723 ± 0.0031 0.1723

AfbA0,b 0.0998 ± 0.0017 0.1040

AfbA0,c 0.0706 ± 0.0035 0.0744

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.026 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1483

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.425 ± 0.034 80.394

ΓW [GeV]ΓW [GeV] 2.133 ± 0.069 2.093

mt [GeV]mt [GeV] 178.0 ± 4.3 178.2

Summer 2004

Table 1.3: Summary of electroweak precision measurements at LEP1, LEP2, SLC and the
Tevatron; from Ref. [8]. The SM fit results, which have been derived including all radiative
corrections, and the standard deviations are also shown.

One has in addition to include as inputs, the measurement of the top quark mass at

the Tevatron, the strong coupling constant at LEP and elsewhere, as well as the value of

∆αhad(M2
Z) as measured in e+e− collisions at low energies and in τ–lepton decays at LEP1.

The experimental values of some of the electroweak observables mentioned above [as they

were in summer 2004] are displayed in Table 1.3 together with the associated errors. Also

shown are the theoretical predictions of the SM [for the best fit of MH to be discussed later]

that have been obtained by including all known radiative corrections with the central values

of ∆αhad(M2
Z), mt, αs, etc..

As can be seen from Tab. 1.3, the theoretical predictions are in remarkable agreement

with the experimental data, the pulls being smaller than 2 standard deviations in all cases,

except for Ab
FB where the deviation is at the 2.5 σ level. A few remarks are in order here:

i) From the Z line shape and partial width measurements, one obtains a determination

of the number of light neutrino flavors contributing to the invisible Z decay width

Nν = 2.9841 ± 0.0083 (1.137)
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which agrees with the SM expectation Nν = 3 at the 2σ level.

ii) Using all these results, one derives the world average value for the effective weak

mixing angle as measured from leptons asymmetries and partial widths and from hadronic

asymmetries. The status for the latter parameter, again as it was in summer 2004, is as

follows [8]

sin2 θlep
eff = 0.23150 ± 0.00016 (1.138)

iii) The values of sin2 θlep
eff as measured from the leptonic FB and τ polarization asymme-

tries at LEP1 and from the longitudinal asymmetries at SLC are in a very good agreement.

From these measurements, and from the measurement of the leptonic partial widths, the

lepton universality of the neutral weak current has been established with a high accuracy.

iv) The FB asymmetry for b quark Ab
FB measured at LEP1 provides, together with the

longitudinal asymmetry Af
LR measured at the SLC, the most precise individual measurement

of sin2 θlep
eff , but the result is 2.5 standard deviations away from the predicted value and the

two individual values differ by almost three standard deviations. This has led to speculations

about a signal of New Physics in the Zbb̄ vertex. However, it turns out that this discrepancy

cannot be easily explained without affecting the Z → bb̄ partial width Rb which is precisely

measured and is compatible with the SM expectation, and the hadronic asymmetries mea-

sured at the SLC, although their errors are larger. It is likely that this anomaly is a result

of a large statistical fluctuation or some experimental problem.

v) While the value of weak charge as measured in the parity violation in Cs atoms,

QW (Cs) = −72.74 ± 0.46 [94], is in accord with the SM prediction Q = −72.93, the mea-

surement of sin2 θW from neutrino and antineutrino deep inelastic scattering by the NuTeV

experiment gives sin2 θW (νN) = 0.2277 ± 0.0016 [95], which is 3 standard deviations away

from the predicted value in the SM sin2 θW = 0.2227. It becomes now apparent that the

theoretical uncertainties in the higher–order analyses needed to extract the NuTeV value of

sin2 θW have been underestimated by the collaboration [96, 97].

In addition, the cross sections for the pair production of gauge bosons have been rather

accurately measured at LEP2 [and, to a lesser extent, at the Tevatron]. In the case of the

e+e− →W+W− process, the cross section which depends on the triple self–coupling among

the W and the V = γ, Z bosons, eq. (1.68), and on the Weν–coupling given in eq. (1.64), is

shown in the left–hand side of Fig. 1.6 and it agrees perfectly with the predicted value in the

SM, with the s channel exchange of γ, Z and the t–channel neutrino exchange contributions.

This agreement can be turned into a strong constraint on the anomalous couplings of the

effective Lagrangian of eq. (1.126) which are measured to be [51]

κγ = 0.943 ± 0.055 , λγ = −0.020 ± 0.024 , gZ
1 = 0.998 ± 0.025 (1.139)
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providing a stringent test of the SU(2)L × U(1)Y gauge structure of the theory. The contours

of the two parameter fits of the three C and P conserving W boson couplings are shown in

the right–hand side of Fig. 1.6.
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Figure 1.6: Left: the measured value of the e+e− → W+W− cross section at LEP2 and the
prediction in the SM (full line) and when the s–channel Z boson or both γ and Z boson
exchange diagrams are not contributing. Right: the 68% and 95% confidence level contours
of the three two parameter fits to the W boson C and P conserving trilinear couplings, gZ

1 –
λγ, g

Z
1 –κγ and λγ–κγ, as measured at LEP2 with a c.m. energy up to

√
s = 209 GeV and

including systematical uncertainties; the fitted values are indicated with a cross and the SM
value for each fit is in the center of the grid. From Ref. [51].

In summary, the electroweak precision data have provided a decisive test of the SM. These

tests have been performed at the per mille level and have probed the quantum corrections

of the SU(2)L × U(1)Y theory. The couplings of quarks and leptons to the electroweak

gauge bosons have been measured precisely and found to be those predicted by the gauge

symmetry. The trilinear couplings among electroweak gauge bosons have been also measured

and found to be those dictated by the gauge symmetry. If, in addition, one recalls that the

SU(3)C gauge symmetry description of the strong interactions has been thoroughly tested

at LEP1 and elsewhere, one concludes that the SM based on the SU(3)C × SU(2)L × U(1)Y

gauge symmetry has been firmly established as the theory of the strong and electroweak

interactions at present energies. The only missing ingredient of the model is the Higgs

particle, which has not yet been observed directly. However, indirect constraints on this

particle can be obtained from the high precision data as we will discuss now.
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1.3 Experimental constraints on the Higgs boson mass

Since the Higgs particle contributes to the radiative corrections to the high–precision elec-

troweak observables discussed previously, there are several constraints on its mass which, as

discussed in §1.1, is the only yet unknown free parameter in the SM. There are also con-

straints from direct searches of the Higgs boson at colliders and in particular at LEP. These

indirect and direct constraints on MH will be summarized in this section.

1.3.1 Constraints from high precision data

The electroweak precision measurements allow rather stringent constraints on the Higgs

boson mass in the SM. Using for instance the LEP2 values of the W boson mass and the

effective weak mixing angle as measured in forward–backward and polarization asymmetries,

and the combined fit to the measurements giving these parameters where the complete set of

radiative corrections has been included, one obtains the range where the Higgs boson mass

should lie at the 1σ level that is shown in Fig. 1.7.
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Figure 1.7: The measurement [vertical band] and the theoretical prediction [the hatched bands]
for sin2θlept

eff and MW as a function of the Higgs boson mass; from Ref. [8].
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The vertical bands are due to the measurements and their errors, while the colored bands

are for the theoretical prediction with the uncertainties due to the SM input parameters,

namely, ∆hadα(MZ) = 0.02761 ± 0.00036, αs(MZ) = 0.118 ± 0.002 and mt = 178.0 ± 4.3

GeV. The total width of the band is the linear sum of all these effects. As can be seen, the

values of sin2 θlept
eff and MW agree with the SM prediction only if the Higgs particle is rather

light, a value of about MH ∼ 100 GeV being preferred by the experimental data.

Taking into account all the precision electroweak data of Table 1.3 in a combined fit, one

can determine the constraint summarized in Fig. 1.8 which shows the ∆χ2 of the fit to all

measurements as a function of MH , with the uncertainties on ∆had, α(MZ), αs(MZ), mt as

well as on MZ included [8]. One then obtains the value of the SM Higgs boson mass

MH = 114+69
−45 GeV (1.140)

leading to a 95% Confidence Level (CL) upper limit in the SM

MH < 260 GeV (1.141)
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Figure 1.8: The ∆χ2 of the fit to electroweak precision data as a function of MH . The solid
line results when all data are included and the blue/shaded band is the estimated theoretical
error from unknown higher–order corrections. The effect of including the low Q2 data and
the use of a different value for ∆αhad are also shown; from Ref. [8].
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These values are relatively stable when the controversial NuTeV result is included in the

fit, or when a slightly different value for ∆α5
had is used. The area to the left to the vertical

band which is very close to the minimum of the fit, shows the exclusion limit MH > 114.4

GeV from direct searches at LEP2 to which we will turn our attention shortly.

It thus appears that the high–precision data are in excellent agreement with the predic-

tions of the SM when the radiative corrections have been incorporated. The data strongly

disfavor a heavy Higgs boson with a mass MH >∼ 700 GeV for which perturbation theory

breaks down anyway, as will be seen in the next section. They clearly favor a light Higgs

boson, MH <∼ 260 GeV, with a central value that is very close to the present lower bound

from direct searches, MH ≥ 114.4 GeV. This is very encouraging for the next generation of

high–energy experiments.

However, there are two caveats to this statement, a theoretical and an experimental one

that we will discuss first. The most constraining observables, besides the W boson mass,

are the LEP and SLC measurements of the leptonic asymmetries, led by the longitudinal

asymmetry ALR, on the one hand, and of the hadronic asymmetries, led by the forward–

backward asymmetry for b–quarks Ab
FB, on the other hand. As can be seen from Fig. 1.7,

while the former set favors a light Higgs boson, as is also the case for the measurement of

MW , the hadronic asymmetries favor a heavier Higgs particle. Because of the 3σ difference

of the value of sin2 θW as measured in the two sets of observables, it is only if one averages

all the measurements that one obtains the central value MH ≃ 114 GeV.

Because of the 2.5 standard deviation of Ab
FB from the theoretical prediction and the

smaller deviation of ALR but in the other direction, the SM fit is in fact rather poor [98]: the

weighted average leading to the value sin2 θlept
eff given in eq. (1.138), corresponds only to a 6%

probability. The fit can be improved if one assumes New Physics effects which appear only

in the Zbb̄ vertex. However, as already mentioned, it is very difficult to induce new effects in

Ab
FB without spoiling the agreement of Rb and Ab

LR,FB with the data13. On the other hand,

if one assumes that the discrepancy in Ab
FB is due to some systematical errors which have

been underestimated by the experiments and remove this quantity from the global fit, one

obtains a central value of MH which is lower than the mass bound obtained from the direct

Higgs boson searches at LEP214.

13Indeed, since Ab
FB ∝ AeAb and since Ae ∼ v̂e is small, one needs to alter significantly the Zbb̄ couplings

to account for the discrepancy of the asymmetry with the data: a 30% change of the right–handed Zbb̄
coupling, gbR ∼ âb − v̂b, is required, an effect that is too large not to disturb the precise measurement of
Rb ∼ g2

bR + g2
bL or Ab

LR,FB ∼ g2
bL − g2

bR. This 30% change is anyway too large for a loop effect.
14In the past, when the top quark mass was measured to be mt ≃ 175 ± 5 GeV, the situation was even

worse since the exclusion of Ab
FB from the fit led to a rather low MH value, MH ∼ 45 GeV, with only a

5% probability that MH ≥ 114 GeV. This has led to some justified speculations about the validity of the
SM [98]. The tension between the central value of the fit and the direct bound, has been relaxed with the
recent value of mt ≃ 178 ± 4.3 GeV, which increased MH by several tens of GeV.
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The bound on the Higgs mass, eq. (1.141), is quite strong and there have been many

speculations on how it can be relaxed or evaded. To do so, one has to introduce New Physics

contributions which are of the same order as the one due to heavy a Higgs boson, and which

conspire with the latter as to mimic the effect of a light SM Higgs particle. This has to be

done without spoiling the rest of the agreement of the SM with the high–precision data.

A way to look at these new contributions is to parametrize the Higgs sector by an effective

Lagrangian in which higher dimensional operators are added [99, 100]. These operators

should respect the SU(2)L × U(1)Y gauge symmetry, as well as some other constraints. In

this approach, one or a few higher dimensional operators which are damped by powers of the

new scale Λ, produce corrections that counteract the one of a heavy Higgs boson, in such

way that the net result is compatible with the SM for MH ∼ 100 GeV. To produce such a

conspiracy, the scale Λ should range between 2 to 10 TeV, depending on the nature of the

operator or the combination of operators which generate the effect [101].

However, this approach does not tell anything about the New Physics which is behind the

effective Lagrangian, and it is not actually clear whether it is possible to produce such a set

of conspiring operators in a well motivated and consistent theoretical model. One therefore

prefers to consider specific, and preferably well motivated, models.

In general, because of decoupling, models which contain an elementary Higgs particle

generate only small radiative corrections even if they involve a large number of new particles.

This is typically the case of supersymmetric extensions of the SM. In contrast, models where

the Higgs boson is composite or strongly interacting can generate large effects. However,

in most cases the new contributions add to the effect of a heavy Higgs boson, leading to a

stronger disagreement with the precision data. This is, for instance, the case of early versions

of Technicolor models which have been ruled out in the early nineties [92].

Nevertheless, there are still models of New Physics that are weakly interacting and which

induce corrections that are large enough, and with the adequate sign, to accommodate a

heavy Higgs boson. In Ref. [102], a large class of models have been considered and their

effects on the radiative corrections have been analyzed. The conclusion of the study is that

indeed, models with a heavy Higgs boson exist, but they always need some conspiracy to

produce the required effect and more importantly, in most cases they predict new degrees of

freedom which should be sufficiently light to be observed at the next generation of colliders15.

15An example of such models are gauge extensions of the SM [for instance based on the SO(10) group or
on the Superstrings–inspired E6 symmetry] in which a heavy vector boson Z ′ is added. This particle will
mix with the SU(2)L × U(1)Y Z boson to produce the observed Z particle; the mixing angle is inversely
proportional to the Z ′ mass, θmix ∝ M2

Z/M2
Z′ . It has been shown in Ref. [102] that such a Z ′ can indeed

generate any contribution to the S and T Peskin–Takeuchi parameters discussed in §1.2.4. However, to
mimic the effect of a heavy Higgs boson, the Z ′ boson should have a rather low mass, MZ′ <∼ 1.5 TeV,
making this particle accessible at future colliders; see e.g. [103].
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1.3.2 Constraints from direct searches

Searches at LEP1

The Higgs boson has been searched for at the LEP experiment, first at energies near the

Z boson resonance,
√
s ≃ MZ . In this case, two channels allow to probe the Higgs boson

[104]. The dominant production mode is the Bjorken process [105], where the Z boson

decays into a real Higgs boson and an off–shell Z boson which goes into two light fermions,

Z → HZ∗ → Hff̄ ; the Feynman diagram is shown in Fig. 1.9.

•
• f

f̄Z

H

Z∗

Figure 1.9: The main production mechanism for Higgs bosons in Z decays at LEP1.

The partial decay width Γ(Z → Hff̄), when normalized to the Z → f f̄ decay width

where the fermion f 6= t is considered as massless, is given by [106]

BR(Z → Hff̄) =
Γ(Z → Hf̄f)

Γ(Z → f f̄)
=
GµM

2
Z

2
√

2π2

∫ 1+a2

2a

dxΓ0(x) (1.142)

with the variable appearing in the integration bounds being a = MH/MZ and x is the

reduced energy of the Higgs boson x = 2EH/MZ . The function in the integrand reads

Γ0(x) =

√
x2 − 4a2

(x− a2)2 + γ2

(
1 − x+

x2

12
+

2a2

3

)
(1.143)

where γ = ΓZ/MZ is the reduced total decay width of the Z boson. Neglecting the Z width

in Γ0, the integration over the variable x leads to a relatively simple analytical result [13]

BR(Z → Hff̄) =
GµM

2
Z

2
√

2π2

[
3a(a4 − 8a2 + 20)√

4 − a2
arcos

(
1

2
a(3 − a2)

)

−3(a4 − 6a2 + 4) ln a− 1

2
(1 − a2)(2a4 − 13a2 + 47)

]
(1.144)

To obtain the branching ratio for a given fermionic final state, for instance with a Z boson

decaying into muon or neutrino pairs, one has to multiply by the branching ratios Γℓ/ΓZ ≃
3% for muons and Γν/ΓZ ≃ 18% when summing over the three neutrino species.

The Higgs boson can also be produced in the decay Z → Hγ [107, 108] which occurs

through triangular loops built–up by heavy fermions and the W boson; Fig. 1.10. The

partial decay width, including only the dominant top quark and W contributions, reads

Γ(Z → Hγ) =
αG2

µM
2
W

48π4
M3

Z

(
1 − M2

H

M2
Z

)3

|At + AW |2 (1.145)

54



•

•

•

Z

W

H

γ

•

•

•

F
Z H

γ

+

Figure 1.10: Feynman diagrams for the one–loop induced decay mode Z → Hγ in the SM.

The complete expressions of the form factors At and AW will be given later, when the

reverse decay H → Zγ will be discussed in detail. In the case of interest, i.e. for MH <∼MW ,

one can approximate the top quark form factors by its value in the vanishing MH limit,

At = NcQtv̂t/(3cW ) ∼ 0.3, but for the W form factor, a good approximation in the Higgs

boson mass range of interest at LEP1, is given by [108]

AW ≃ −4.6 + 0.3M2
H/M

2
W (1.146)

The two contributions interfere destructively, but the W contribution is largely dominating.

We show in Table 1.4, the number of Higgs particles produced per 107 Z bosons, in both

the loop induced process Z → Hγ and in the Bjorken process Z → Hµ+µ− [to obtain the

rates for any final state f one has to multiply by a factor ΓZ/Γµ ∼ 33]. As can be seen,

the number of produced H bosons is much larger in the Bjorken process for small Higgs

masses but the loop decay process becomes more important for masses around MH ∼ 60

GeV. However, in this case, only a handful of events can be observed.

MH (GeV) 10 20 30 40 50 60 70

Z → Hµ+µ− 750 290 120 46 15.6 3.7 0.6

Z → Hγ 20.4 18.4 15.3 11.6 7.8 4.4 1.8

Table 1.4: The number of events for Higgs production at LEP1 per 107 Z bosons.

As will be discussed in great detail in the next chapter, the Higgs boson in the mass range

relevant at LEP1 (and also LEP2), decays dominantly into hadrons [mostly bb̄ final states

for MH >∼ 10 GeV], and less than ∼ 8% of the time into τ–lepton pairs. Thus, not to be

swamped by the large e+e− → hadron background, the Higgs boson has been searched for at

LEP1 in the two topologies Z → (H → hadrons)(Z∗ → νν) leading to a final state consisting

of two acoplanar jets and missing energy and Z → (H → hadrons)(Z∗ → e+e−, µ+µ−) with

two energetic leptons isolated from the hadronic system. The absence of any Higgs boson

signal by the four collaborations at LEP1 [109], allowed to set the 95% Confidence Level

limit of MH >∼ 65.2 GeV on the SM Higgs boson mass [110].
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Before the advent of LEP1, the low Higgs mass range, MH <∼ 5 GeV, was very difficult

to explore. Indeed, the main probes were, for Higgs masses below 20 MeV, Nuclear Physics

experiments which are very sensitive to the theoretically uncertain Higgs–nucleon couplings

and for larger masses, rare meson (from pions to heavy B mesons) decays which were plagued

by various theoretical and experimental uncertainties16. On the Z resonance, this low mass

range can be easily probed by considering the clean final state Z → Z∗H → µ+µ−H :

since the invariant mass of the system recoiling against the lepton pair is simply the Higgs

boson mass, the precise knowledge of the c.m. energy and the accurate measurement of the

invariant mass and energies of the leptons allows an excellent resolution on MH . This process

therefore definitely rules out any Higgs boson with a mass below ∼ 60 GeV, independently

of its decay modes, provided that its coupling to the Z boson is as predicted in the SM.

Searches at LEP2

The search for Higgs bosons has been extended at LEP2 with c.m. energies up to
√
s = 209

GeV. In this energy regime, the dominant production process is Higgs–strahlung [32, 106,

111–113] where the e+e− pair goes into an off–shell Z boson which then splits into a Higgs

particle and a real Z boson, e+e− → Z∗ → HZ; see the digram of Fig. 1.11. [The cross

section for the WW fusion process, to be discussed later, is very small at these energies [114].]

• •

e−

e+

Z∗

H

Z

Figure 1.11: The production mechanism for SM Higgs bosons in e+e− collisions at LEP2.

The production cross section for this Higgs–strahlung process [which will be discussed in

more details later] is given by

σ(e+e− → ZH) =
G2

µM
4
Z

96πs
[1 + (1 − 4s2

W )2]λ1/2 λ+ 12M2
Z/s

(1 −M2
Z/s)

2
(1.147)

It scales like 1/s [and therefore is larger at low energies for light Higgs bosons] and is

suppressed by the usual two–particle phase space function λ1/2 = [(1 −M2
H/s −M2

Z/s)
2 −

4M2
HM

2
Z/s

2]1/2. At LEP2 and for the maximal c.m. energy that has been reached,
√
smax ∼

209 GeV, it is shown in Fig. 1.12 as a function ofMH . At MH ∼ 115 GeV, the cross section is

of the order of 100 fb which, for the integrated luminosity that has been collected,
∫
L ∼ 0.1

fb−1, correspond to ten produced events. For a mass Mmax
H ∼ √

s −MZ ∼ 117 GeV, the

2 → 2 cross section vanishes, being suppressed by the phase–space factor λ1/2.

16For a very detailed discussion of the SM Higgs boson searches in this low mass range, see Chapter 3.1
of “the Higgs Hunter’s Guide” [13], pages 91-130.
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Figure 1.12: Production cross section for the SM Higgs boson at LEP2 [in femtobarns] for
a center of mass energy

√
s = 209 GeV as a function of the Higgs boson mass.

The searches by the LEP collaborations have been made in several topologies [recall that

the Higgs boson decays mainly into bb̄ final states and the branching ratio for the decays into

τ–lepton is a few percent]: e+e− → (H → bb̄)(Z∗ → νν) and e+e− → (H → bb̄)(Z∗ → ℓ+ℓ−)

as at LEP1, as well as e+e− → (H → τ+τ−)(Z∗ → bb̄) and e+e− → (H → bb̄)(Z∗ →
τ+τ−). Combining the results of the four LEP collaborations, no significant excess above

the expected SM background has been seen, and the exclusion limit [10]

MH > 114.4 GeV (1.148)

has been established at the 95% CL from the non–observation of a signal, as shown in

Fig. 1.13. This upper limit, in the absence of additional events with respect to SM predic-

tions, was expected to be MH > 115.3 GeV. The reason for the discrepancy is that there is

a 1.7σ excess [compared to the value 2.9σ reported at the end of 2000] of events for a Higgs

boson mass in the vicinity of MH = 116 GeV [10]. But this excess is not significant enough,

since we need a 5σ signal to be sure that we have indeed discovered the Higgs boson.

Higgs bosons with SM couplings to the Z boson have been searched for in various decay

modes, such as invisible decays [115] and flavor blind hadronic decays [116] by considering

the recoil of the Z boson in the process e+e− → H(Z∗ → ℓ+ℓ−) for instance; Higgs boson

masses close to the MH ∼ 114 GeV bound have been ruled out. The bound MH >∼ 114.4

GeV can be evaded only if the Higgs boson has non standard couplings to the Z boson.

Indeed a smaller value of the gHZZ coupling compared to the SM prediction would suppress

the e+e− → HZ cross section which is directly proportional to g2
HZZ . The 95% CL bound on

the Higgs boson mass as a function of its coupling relative to the SM value, ζ = gHZZ/g
SM
HZZ

is shown in Fig. 1.14. For masses below MH <∼ 80 GeV, Higgs bosons with couplings to the

Z boson an order of magnitude smaller than in the SM have thus also been ruled out [10].
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1.4 Theoretical constraints on the Higgs boson mass

In addition to the experimental constraints on the Higgs boson mass discussed previously,

there are interesting theoretical constraints which can be derived from assumptions on the

energy range in which the SM is valid before perturbation theory breaks down and new

phenomena should emerge. These include constraints from unitarity in scattering ampli-

tudes, perturbativity of the Higgs self–coupling, stability of the electroweak vacuum and

fine–tuning. These constraints are summarized in this subsection.

1.4.1 Constraints from perturbativity and unitarity

Perturbative unitarity

One of the main arguments to abandon the old Fermi theory for the weak interaction was

that it violates unitarity at energies close to the Fermi scale. Indeed, taking for instance

the reaction νµe → νeµ, which proceeds through the t–channel exchange of a W boson and

which has only the J=1 partial wave, the cross section at a high energy
√
s behaves like

σ ∼ G
−1/2
µ s. However, unitarity requires that the cross section for this partial wave should

be bounded by s−1 and for energies above
√
s ∼ G

−1/2
µ ∼ 300 GeV, the cross section will

violate unitarity. This particular problem was cured in the intermediate massive vector

boson theory [i.e. including simply by hand the W boson mass and, hence, its longitudinal

degree of freedom in the Lagrangian] but in other processes, such as νν̄ → W+W− through

t–channel e exchange, the amplitude had also a bad high energy behavior which called for

the introduction of the neutral Z boson to be exchanged in the s–channel to cancel it. In

fact, if one demands that there is no such process which violates unitarity, one would end

up with just the renormalizable Lagrangian of the SM discussed in §1.1; see Ref. [7].

However, there is still a potential problem in the SM, but at much higher energies than

the Fermi scale. As discussed in §1.1.3, the interactions of the longitudinal components of

the massive gauge bosons grow with their momenta. In processes involving the WL and ZL

bosons, this would eventually lead to cross sections which increase with the energy which

would then violate unitarity at some stage. We will briefly discuss this aspect in the following,

taking as an example the scattering process W+W− →W+W− at high energies [31,70,117];

for a detailed discussion, see Ref. [118] for instance. Some contributing Feynman diagrams

to this process are displayed in Fig. 1.15; there are also additional diagrams involving the s–

and t–channel exchanges of γ and Z bosons.

The amplitude for the scattering of charged W bosons, in the high–energy limit s≫M2
W

and for heavy Higgs bosons, is given by

A(W+
L W

−
L →W+

L W
−
L )

s≫M2
W−→ 1

v2

[
s+ t− s2

s−M2
H

− t2

t−M2
H

]
(1.149)
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where s, t are the Mandelstam variables [the c.m. energy s is the square of the sum of

the momenta of the initial or final states, while t is the square of the difference between

the momenta of one initial and one final state]. In fact, this contribution is coming from

longitudinal W bosons which, at high energy, are equivalent to the would–be Goldstone

bosons as discussed in §1.1.3. One can then use the potential of eq. (1.58) which gives the

interactions of the Goldstone bosons and write in a very simple way the three individual

amplitudes for the scattering of longitudinal W bosons

A(w+w− → w+w−) = −
[
2
M2

H

v2
+

(
M2

H

v

)2
1

s−M2
H

+

(
M2

H

v

)2
1

t−M2
H

]
(1.150)

which after some manipulations, can be cast into the result of eq. (1.149) given previously.
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Figure 1.15: Some Feynman diagrams for the scattering of W bosons at high energy.

These amplitudes will lead to cross sections σ(W+W− →W+W−) ≃ σ(w+w− → w+w−)

which could violate their unitarity bounds. To see this explicitly, we first decompose the

scattering amplitude A into partial waves aℓ of orbital angular momentum ℓ

A = 16π

∞∑

ℓ=0

(2ℓ+ 1)Pℓ(cos θ) aℓ (1.151)

where Pℓ are the Legendre polynomials and θ the scattering angle. Since for a 2 → 2 process,

the cross section is given by dσ/dΩ = |A|2/(64π2s) with dΩ = 2πdcos θ, one obtains

σ =
8π

s

∞∑

ℓ=0

∞∑

ℓ′=0

(2ℓ+ 1)(2ℓ′ + 1)aℓaℓ′

∫ 1

−1

d cos θPℓ(cos θ)Pℓ′(cos θ)

=
16π

s

∞∑

ℓ=0

(2ℓ+ 1)|aℓ|2 (1.152)

where the orthogonality property of the Legendre polynomials,
∫

d cos θPℓPℓ′ = δℓℓ′ , has

been used. The optical theorem tells us also that the cross section is proportional to the

imaginary part of the amplitude in the forward direction, and one has the identity

σ =
1

s
Im [A(θ = 0) ] =

16π

s

∞∑

ℓ=0

(2ℓ+ 1)|aℓ|2 (1.153)
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This leads to the unitary conditions [119]

|aℓ|2 = Im(aℓ) ⇒ [Re(aℓ)]
2 + [Im(aℓ)]

2 = Im(aℓ)

⇒ [Re(aℓ)]
2 + [Im(aℓ) −

1

2
]2 =

1

4
(1.154)

This is nothing else than the equation of a circle of radius 1
2

and center (0, 1
2
) in the plane

[Re(aℓ), Im(aℓ)]. The real part lies between −1
2

and 1
2
,

|Re(aℓ)| <
1

2
(1.155)

If one takes the J = 0 partial wave for the amplitude A(w+w− → w+w−)

a0 =
1

16πs

∫ 0

s

dt|A| = − M2
H

16πv2

[
2 +

M2
H

s−M2
H

− M2
H

s
log

(
1 +

s

M2
H

)]
(1.156)

and assumes the Higgs boson mass to be much smaller than
√
s, which leads to

a0

s≫M2
H−→ −M2

H

8πv2
(1.157)

From the requirement of the unitarity condition, eq. (1.155), one obtains the upper bound [32]

MH <∼ 870 GeV (1.158)

In fact the scattering channel W+
L W

−
L considered above can be coupled with other channels:

ZLZL, HH and ZLH [for a recent discussion, see Ref. [120] e.g.]. In addition to the four

neutral particle initial states, one can also consider the two charged channels W+
L H and

W+
L ZL which, because of charge conservation, are not coupled to the neutral ones. The

scattering amplitude is then given by a 6 × 6 matrix which is diagonal by block: a 4 × 4

block for the neutral channels and a 2× 2 block for the charged channels. At high energies,

the matrix elements are dominated by the quartic couplings and the full matrix in the basis

(
W+

L W
−
L ,

1√
2
ZLZL ,

1√
2
HH , ZLH , W+

L H , W+
L ZL

)
(1.159)

with the factors 1√
2

accounting for identical particle statistics, takes the form

a0 ∝
M2

H

v2




1
√

2
4

√
2

4
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2
4

3
4

1
4

0 0 0√
2

4
1
4

3
4

0 0 0
0 0 0 1

2
0 0

0 0 0 0 1
2

0
0 0 0 0 0 1

2




(1.160)
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The requirement that the largest eigenvalues of a0, respects the unitarity constraint yields [121]

MH <∼ 710 GeV (1.161)

Thus, in the SM, if the Higgs boson mass exceeds values of O(700 GeV), unitarity will

be violated unless new phenomena appear and restore it. There is, however, a caveat to

this conclusion. The analysis above has been performed only at the tree–level and since the

Higgs boson self–coupling becomes strong for large masses, λ = M2
H/(2v

2), the radiative

corrections can be very large and, eventually, render the theory non perturbative; this tree–

level result would be then lost. Thus, to apply the previous argument to set a bound on the

Higgs boson mass, one has to assume that the SM remains perturbative and that higher–

order corrections are not large. The unitarity argument should therefore more properly be

called, the tree–level unitarity or perturbative unitarity argument.

In fact, one can use the unitarity argument in a different limit [31]: if one assumes that

the Higgs boson mass is much larger than
√
s [which in turn, is much larger than MW ], the

unitarity constraint writes, if one takes into account only the W+
L W

−
L →W+

L W
−
L channel,

a0

s≪M2
H−→ − s

32πv2
(1.162)

and with the condition |Re(a0)| < 1
2
, one obtains

√
s <∼ 1.7 TeV (1.163)

Again, a more stringent bound is obtained by considering all the coupled channels above

√
s <∼ 1.2 TeV (1.164)

This means that if the Higgs boson is too heavy [or, equivalently, not existing at all], some

New Physics beyond the SM should manifest itself at energies in the TeV range to restore

unitary in the scattering amplitudes of longitudinal gauge bosons.

Therefore, from the requirement that the tree–level contributions to the partial waves

of scattering processes involving gauge and Higgs bosons should not exceed the unitarity

bound, one concludes that either: (i) some New Physics, which plays a role similar to that

of the Higgs particle should appear in the TeV range to cancel this breakdown, or (ii) the

unitarity breakdown is canceled by high–order terms which signal the failure of perturbation

theory and the loss of the predictive power of the SM.

Perturbativity in processes involving the Higgs boson

In fact, it is known from a different context that for large values of the Higgs boson mass,

perturbation theory is jeopardized in the SM. This occurs for instance in the decays of the

62



Higgs boson into massive gauge bosons, which will be discussed later in detail. Using the

equivalence theorem and the Lagrangian eq. (1.58), one can write immediately the partial

decay width of the Higgs boson into two longitudinal Z bosons [or W bosons]

Γ(H → ZZ) ∼ Γ(H → w0w0) =

(
1

2MH

) (
2!M2

H

2v

)2
1

2

(
1

8π

)
→ M3

H

32πv2
(1.165)

where the first parenthesis is for the flux factor, the second for the amplitude squared, the

factor 1
2

is for the two identical final particles, and the last parenthesis is for the phase

space factor. For the decay H →WW , one simply needs to remove the statistical factor to,

account for both W± states

Γ(H →W+W−) ≃ 2Γ(H → ZZ) (1.166)

The behavior, ΓH ∝ M3
H , compared to ΓH ∝ MH for decays into fermions for instance, is

due to the longitudinal components that grow with energy [which is MH in this context].

H

V

V

• •
•

+ + + · · ·

Figure 1.16: Generic diagrams for the one– and two–loop corrections to Higgs boson decays.

Let us have a brief look at these decays when higher–order radiative corrections, involving

the Higgs boson and therefore the quartic coupling λ, are taken into account. Including the

one–loop and two–loop radiative corrections, with some generic Feynman diagrams shown

in Fig. 1.16, the partial Higgs decay width into gauge bosons is given by [121,122]

Γtot ≃ ΓBorn

[
1 + 3λ̂+ 62λ̂2 + O(λ̂3)

]
(1.167)

with λ̂ = λ/(16π2). If the Higgs boson mass is very large, MH ∼ O(10 TeV), the one loop

term becomes close to the Born term, 3λ̂ ∼ 1, and the perturbative series is therefore not

convergent. Even worse, already for a Higgs boson mass in the TeV range, MH ∼ O(1 TeV),

the two–loop contribution becomes as important as the one–loop contribution, 3λ̂ ∼ 62λ̂2.

Hence, for perturbation theory to hold, MH should be smaller than about 1 TeV.

In addition, the partial decay widths become extremely large for a very heavy Higgs

particle. Indeed, taking into account only W and Z decay modes, the total width is

Γ(H →WW + ZZ) ∼ 500 GeV (MH/1 TeV)3 (1.168)
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and for a mass MH ∼ 1.3 TeV, the total decay width becomes comparable to the mass: the

Higgs boson is then “obese” and cannot be considered as a “true” resonance anymore.

The same exercise can be made in the case of the Higgs decays into fermions. Including

the one– and two–loop corrections involving the quartic interaction, one obtains [70, 123]

Γtot ≃ ΓBorn

[
1 + 2λ̂− 32λ̂2 + O(λ̂3)

]
(1.169)

Qualitatively, the situation is the same as for the decays into gauge bosons, although the

breakdown of perturbation theory is delayed because of the smaller coefficients of the one–

and two–loop corrections. These features will be discussed in the chapter on Higgs decays.

The jeopardy of perturbation theory at large Higgs masses can also be seen in the scat-

tering of longitudinal gauge bosons from which we have previously derived the upper bound

on MH from perturbative unitarity. In the case of the W+
L W

−
L →W+

L W
−
L scattering, the ra-

diative corrections have been calculated at one and two loops in Refs. [124,125] where it has

been found that at high energy, the amplitude depends on the considered energy, contrary

to what was occurring in the tree–level case discussed previously. However, applying Renor-

malization Group methods, one can absorb the logarithmic energy dependence by defining

a running self–coupling λ at the energy scale
√
s [see next subsection]. At two–loop order,

one then finds for the W+
L W

−
L → W+

L W
−
L scattering cross section at very high energies [125]

σ(W+
L W

−
L → W+

L W
−
L ) ∼ 1

s
λ̂(s)

(
1 − 48.64λ̂+ 333.21λ̂2

)
(1.170)

Here, the coefficients of the corrections are much larger than in Higgs decays and in fact,

the one–loop correction become of order unity already for λ(s) values close to 3.

Using various criteria, such as the scheme and scale dependence of the amplitudes, to

estimate at which stage the breakdown of perturbation theory occurs [126] and a comparison

with non–perturbative calculations on the lattice [119], one arrives at the conclusion that

perturbation theory is lost for Higgs boson masses above MH ∼ 700 GeV. This result is re-

markably close to what has been obtained by simply using the [somewhat naive] perturbative

unitarity argument.

1.4.2 Triviality and stability bounds

As seen in previous discussions, because of quantum corrections, the couplings as well as

the masses which appear in the SM Lagrangian, depend on the considered energy. This is

also the case for the quartic Higgs coupling which will be monotonically increasing with the

energy scale |Q|. This leads to non–trivial constraints on this coupling, and hence on the

Higgs boson mass, that we summarize in this subsection.
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The triviality bound

Let us have a look at the one–loop radiative corrections to the Higgs boson quartic coupling,

taking into account for the present moment only the contributions of the Higgs boson itself.

The Feynman diagrams for the tree–level and the one–loop corrections to the Higgs boson

self–coupling are depicted in Fig. 1.17.

•
•
•

H

H

H

H

• • • •+ + +

Figure 1.17: Typical Feynman diagrams for the tree–level and one–loop Higgs self–coupling.

The variation of the quartic Higgs coupling with the energy scale Q is described by the

Renormalization Group Equation (RGE) [127]

d

dQ2
λ(Q2) =

3

4π2
λ2(Q2) + higher orders (1.171)

The solution of this equation, choosing the natural reference energy point to be the elec-

troweak symmetry breaking scale, Q0 = v, reads at one–loop

λ(Q2) = λ(v2)

[
1 − 3

4π2
λ(v2) log

Q2

v2

]−1

(1.172)

The quartic couplings varies logarithmically with the squared energy Q2. If the energy is

much smaller than the electroweak breaking scale, Q2 ≪ v2, the quartic coupling becomes

extremely small and eventually vanishes, λ(Q2) ∼ λ(v2)/log(∞) → 0+. It is said that the

theory is trivial, i.e. non interacting since the coupling is zero [128].

In the opposite limit, when the energy is much higher that weak scale, Q2 ≫ v2, the

quartic coupling grows and eventually becomes infinite, λ(Q2) ∼ λ(v2)/(1 − 1) ≫ 1. The

point, called Landau pole, where the coupling becomes infinite is at the energy

ΛC = v exp

(
4π2

3λ

)
= v exp

(
4π2v2

M2
H

)
(1.173)

The general triviality argument [119, 129] states that the scalar sector of the SM is a φ4–

theory, and for these theories to remain perturbative at all scales one needs to have a coupling

λ = 0 [which in the SM, means that the Higgs boson is massless], thus rendering the theory

trivial, i.e. non–interacting. However, one can view this argument in a different way: one

can use the RGE for the quartic Higgs self–coupling to establish the energy domain in which
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the SM is valid, i.e. the energy cut–off ΛC below which the self-coupling λ remains finite.

In this case, and as can be seen from the previous equation, if ΛC is large, the Higgs mass

should be small to avoid the Landau pole; for instance for the value ΛC ∼ 1016 GeV, one

needs a rather light Higgs boson, MH <∼ 200 GeV. In turn, if the cut–off ΛC is small, the

Higgs boson mass can be rather large and for ΛC ∼ 103 GeV for instance, the Higgs mass is

allowed to be of the order of 1 TeV.

In particular, if the cut–off is set at the Higgs boson mass itself, ΛC = MH , the require-

ment that the quartic coupling remains finite implies that MH <∼ 700 GeV. But again, there

is a caveat in this argument: when λ is too large, one cannot use perturbation theory any-

more and this constraint is lost. However, from simulations of gauge theories on the lattice,

where the non–perturbative effects are properly taken into account, it turns out that one

obtains the rigorous bound MH < 640 GeV [130], which is in a remarkable agreement with

the bound obtained by naively using perturbation theory.

The stability bound

In the preceding discussion, only the contribution of the Higgs boson itself has been included

in the running of the quartic coupling λ. This is justified in the regime where λ is rather

large. However, to be complete, one needs to also include the contributions from fermions

and gauge bosons in the running. Since the Higgs boson couplings are proportional to the

particle masses, only the contribution of top quarks and massive gauge bosons need to be

considered. Some generic Feynman diagrams for these additional contributions are depicted

in Fig. 1.18.

The one–loop RGE for the quartic coupling, including the fermion and gauge boson

contributions, becomes [127]

dλ

dlogQ2
≃ 1

16π2

[
12λ2 + 6λλ2

t − 3λ4
t −

3

2
λ(3g2

2 + g2
1) +

3

16

(
2g4

2 + (g2
2 + g2

1)
2
)]

(1.174)

where the top quark Yukawa coupling is given by λt =
√

2mt/v. The first effect of this

extension is that for not too large λ values, the additional contributions will slightly alter

the triviality bounds. In particular, the scale at which the New Physics should appear will

depend on the precise value of the top quark mass.

•

• •

•
H

H H

H
F

•

• •

•
V

Figure 1.18: Diagrams for the one–loop contributions of fermions and gauge bosons to λ.
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However, it is for small values of the quartic couplings that the additional contributions

can have a large impact and give some new information. Indeed, for λ≪ λt, g1, g2, the RGE

can be approximated by

dλ

dlogQ2
≃ 1

16π2

[
12λ2 − 12

m4
t

v4
+

3

16

(
2g4

2 + (g2
2 + g2

1)
2
)]

(1.175)

and its solution, taking again the weak scale as the reference point, is

λ(Q2) = λ(v2) +
1

16π2

[
−12

m4
t

v4
+

3

16

(
2g4

2 + (g2
2 + g2

1)
2
)]

log
Q2

v2
(1.176)

If the coupling λ is too small, the top quark contribution can be dominant and could drive

it to a negative value λ(Q2) < 0, leading to a scalar potential V (Q2) < V (v). The vacuum

is not stable anymore since it has no minimum. The stability argument [131–133] tells us

therefore, that to have a scalar potential which is bounded from below and therefore, to keep

λ(Q2) > 0, the Higgs boson mass should be larger than the value

M2
H >

v2

8π2

[
−12

m4
t

v4
+

3

16

(
2g4

2 + (g2
2 + g2

1)
2
)]

log
Q2

v2
(1.177)

This puts a strong constraint on the Higgs boson mass, which depends on the value of the

cut–off ΛC . For relatively low and very high values for this cut–off, one obtains

ΛC ∼ 103 GeV ⇒ MH >∼ 70 GeV

ΛC ∼ 1016 GeV ⇒ MH >∼ 130 GeV (1.178)

Note, however, that the stability bound on the New Physics scale can be relaxed if the

vacuum is metastable as discussed in Ref. [134]. Indeed, the SM effective potential can have

a minimum which is deeper than the standard electroweak minimum, if the decay of the

latter into the former, via thermal fluctuations in the hot universe or quantum fluctuations

at zero temperature, is suppressed. In this case, a lower bound on the Higgs mass follows

from the requirement that no transition between the two vacua occurs and we always remain

in the electroweak minimum. The obtained bound on MH is in general much weaker than in

the case of absolute stability of the vacuum and even disappears if the cut–off of the theory

is at the TeV scale17.

17Note that the first argument, i.e. thermal fluctuations, relies on several cosmological assumptions such
as that the universe went through a phase of very high temperature, which has been indirectly tested so far
only for temperatures of the order of a few MeV. The second argument, quantum tunneling, where the only
cosmological input is the knowledge of the age of the universe which should be larger than the lifetime of
the instability of the vacuum, gives less severe bounds; see Ref. [133] for instance.
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Higher order effects and combined triviality and stability bounds

Thus, the positivity and the finiteness of the self–coupling λ impose, respectively, a lower

bound MH >∼ 70 GeV and an upper bound MH <∼ 1 TeV, on the SM Higgs boson mass.

These bounds are only approximative and to have more precise one, some refinements must,

however, be included [132,135,136].

Since the β functions of all SM couplings have been calculated up to two loops, they can

be included in the analysis. For the scalar sector for instance, one has at this order

dλ

dlogQ2
≡ βλ = 24

λ2

(16π2)
− 312

λ3

(16π2)2
(1.179)

While at one–loop, the λ(µ) coupling monotonically increases with the scale µ until it be-

comes infinite when reaching the Landau pole at the scale ΛC , at the two–loop–level, it

approaches an ultraviolet fixed–point corresponding to βλ = 0. From the previous equation

at two–loop, the resulting fixed–point value is λFP = 16π2 × 24/312 ≃ 12.1 [however, top

contributions cannot be neglected and they modify the behavior of this fixed-point.]

To obtain the upper bound on MH , we need to choose the cut–off value for λ. Since

λFP is large and perturbation theory is lost even before reaching this value, one can choose

a value smaller than λFP as being this cut–off. An estimate of the stability of the bound,

can be made by varying the cut–off value for instance between λFP/4 and λFP/2, which lead

to two–loop corrections which are about, respectively, 25% and 50%, of the one–loop result.

Therefore, one can consider the first value as leading to a well behaved perturbative series

while for the second value one is at the limit where perturbation theory is valid.

For the stability bound, one simply requires that the coupling λ remains positive at the

cut–off scale, λ(Λ) > 0. For an accurate determination of the bound, this requirement has

to be made at the two–loop level, including matching conditions, i.e. the precise relation

between the physical masses of the gauge bosons and top quark and their corresponding

couplings. The most important inputs are the Higgs and top quark masses

λ(µ) = M2
H/(2v

2) × [1 + δH(µ)] , λt(µ) = mt/v × [1 + δt(µ)] (1.180)

Including the theoretical uncertainties by a variation of the cut–off ΛC from λFP/2 to λFP/4

and the use of the matching conditions for the top quark and Higgs boson, as well as the

experimental errors mainly on αs = 0.118 ± 0.002 and mt = 175 ± 6 GeV, one obtains [136]

the modern version of the Roman plot shown in Fig. 1.19 for the stability [lower band] and

triviality [upper band] constraints, which give the allowed value of MH as a function of the

scale of New Physics Λ [between the bands]. The width of the bands correspond to the

various experimental and theoretical errors. As can be seen, if the New Physics scale ΛC is
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at the TeV scale, the Higgs boson mass is allowed to be in the range

50 GeV <∼ MH <∼ 800 GeV (1.181)

while, requiring the SM to be valid up to the Grand Unification scale, ΛGUT ∼ 1016 GeV,

the Higgs boson mass should lie in the range

130 GeV <∼ MH <∼ 180 GeV (1.182)

Figure 1.19: The triviality (upper) bound and the vacuum stability (lower) bound on the
Higgs boson mass as a function of the New Physics or cut–off scale Λ for a top quark mass
mt = 175 ± 6 GeV and αs(MZ) = 0.118 ± 0.002; the allowed region lies between the bands
and the colored bands illustrate the impact of various uncertainties. From Ref. [136].

1.4.3 The fine–tuning constraint

Finally, a last theoretical constraint comes from the fine–tuning problem originating from

the radiative corrections to the Higgs boson mass. The Feynman diagrams contributing to

the one–loop radiative corrections are depicted in Fig. 1.20 and involve Higgs boson, massive

gauge boson and fermion loops.
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Figure 1.20: Feynman diagrams for the one–loop corrections to the SM Higgs boson mass.

Cutting off the loop integral momenta at a scale Λ, and keeping only the dominant

contribution in this scale, one obtains

M2
H = (M0

H)2 +
3Λ2

8π2v2

[
M2

H + 2M2
W +M2

Z − 4m2
t

]
(1.183)

where M0
H is the bare mass contained in the unrenormalized Lagrangian, and where we

retained only the contribution of the top heavy quark for the fermion loops. This is a

completely new situation in the SM: we have a quadratic divergence rather than the usual

logarithmic ones. If the cut–off Λ is very large, for instance of the order of the Grand

Unification scale ∼ 1016 GeV, one needs a very fine arrangement of 16 digits between the

bare Higgs mass and the radiative corrections to have a physical Higgs boson mass in the

range of the electroweak symmetry breaking scale, MH ∼ 100 GeV to 1 TeV, as is required

for the consistency of the SM. This is the naturalness of fine–tuning problem18.

However, following Veltman [137], one can note that by choosing the Higgs mass to be

M2
H = 4m2

t − 2M2
W −M2

Z ∼ (320 GeV)2 (1.184)

the quadratic divergences can be canceled and this would be even a prediction for the Higgs

boson mass. But the condition above was given only at the one–loop level and at higher

orders, the general form of the correction to the Higgs boson mass reads [138, 139]

Λ2
∞∑

n=0

cn(λi) logn(Λ/Q) (1.185)

where (16π2)c0 = (3/2v2)(M2
H + 2M2

W + M2
Z − 4m2

t )
2 and the remaining coefficients cn

can be calculated recursively from the requirement that M2
H should not depend on the

renormalization scale Q. For instance, for the two–loop coefficient, one finds [138]

(16π2)2c1 = λ(114λ− 54g2
2 − 18g2

1 + 72λt)
2 + λ2

t (27g2
2 + 17g2

1 + 96g2
s − 90λ2

t )

−15

2
g4
2 +

25

2
g4
1 +

9

2
g2
1g

2
2 (1.186)

18Note, however that the SM is a renormalizable theory and this cancellation can occur in a mathematically
consistent way by choosing a similarly divergent counterterm. Nevertheless, one would like to give a physical
meaning to this scale Λ and view it as the scale up to which the SM is valid.
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The higher–order coefficients have more powers of 1/(16π2) and should therefore be more

and more suppressed. The Veltman condition requires that the fine cancellation occurs to

all perturbative orders, i.e. for any value of n. Given the fact that the various cn terms of

the perturbative series are independent, there is obviously no solution for MH .

A priori, one can then conclude that the Veltman condition is not useful and cannot

solve the fine–tuning problem. However, as it has been discussed in Ref. [140, 141], this is

only true if the scale of New Physics is extremely large. For scales not much larger that the

electroweak scale, one does not need very large cancellations. For instance, at the one–loop

level, the fine–tuning problem appears only if Λ >∼ 4πv ∼ 2 TeV. If the Veltman solution is

by chance satisfied, then the scale Λ can be pushed at the two loop level to a much higher

value, Λ2 log Λ >∼ (16π2)2v2, that is, for Λ ∼ 15 TeV. If again, the Veltman conjecture is

satisfied, then the three–loop quadratic divergences start to be problematic only a scales

Λ >∼ 50 TeV. One can thus have almost no, or only a small amount of fine–tuning, up to

rather high scales.

For such a scale, one simply needs to manage such that
∑1

n=0 cn(λi) logn(Λ/MH) = 0 at

two–loop. It appears that first, such a solution exists and second, that the predicted MH

value becomes cut–off dependent. As mentioned previously, this prediction assumes exact

cancellation and this is not required for rather low scales Λ; a more adequate condition would

be

1∑

n=0

cn(λi) logn(Λ/MH) <∼ v2/Λ2 (1.187)

and if it is satisfied, the fine–tuning might be acceptable. But as is well known there is a

problem with the definition of the amount of fine–tuning, that is largely a subjective matter.

Following again Ref. [140], one can define it as the sensitivity of the electroweak scale to the

cut–off Λ, ∆M2
W (Λ)/M2

W . This leads then to the measure

∆FT =

∣∣∣∣
∆M2

W

M2
W

∣∣∣∣ =

∣∣∣∣
∆M2

H

M2
H

∣∣∣∣ =
2Λ2

M2
H

∣∣∣∣∣
∑

n

cn logn(Λ/MH)

∣∣∣∣∣ (1.188)

For a given value of ∆FT, the weak scale is fine–tuned to one part in ∆FT: the larger

than unity is the value of ∆FT, the more fine–tuning we have and there is no fine–tuning

if ∆FT ≤ 1. One can see from the previous equation that the fine–tuning is large not only

when Λ increases but also when the Higgs boson is light.

The Higgs boson mass is shown in Fig. 1.21 as a function of the maximal value of the cut–

off scale Λ. Also are shown, the regions not allowed by the triviality and stability bounds on

MH , as well as the (“electroweak”) area ruled out be high–precision measurements19. The

19More details on how these constraints have been obtained can be found in Ref. [140].
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regions of fine–tuning less than 10 and 100 are given, respectively, by the light and dark

hatched regions. The white region corresponds to the one where all constraints are fulfilled

and where the Veltman condition is approximately satisfied.

For low values of the scale, Λ <∼ 1 TeV, there is no fine–tuning problem for any reasonable

Higgs boson mass value. But as Λ increases, the range of Higgs masses where the fine–

tuning is smaller than 10% or 1% becomes narrow. For instance, with Λ ∼ 3 TeV, the

Higgs boson mass must be above ∼ 150 GeV while with Λ ∼ 10 TeV, only a narrow range

around MH ∼ 200 GeV for ∆FT = 10, sometimes called the Veltman throat, is allowed.

For even higher scales, only the line with MH ∼ 200 GeV, where the Veltman condition is

approximately satisfied, survives.

100

200

300

400

500

600

1 10 10
2

H
ig

gs
 m

as
s 

(G
eV

)

Λ (TeV)

Vacuum Stability

Triviality

Electroweak

10%

1%

Figure 1.21: The contours for the fine–tuning parameter ∆FT in the plane (MH ,Λ). The
dark (light) hatched region marked “1%” (“10%”) represents fine–tunings of greater than 1
part in 100 (10). The constraints from triviality, stability and electroweak precision data are
also shown. The empty region is consistent with all constraints and has ∆FT less than 10%.
From Ref. [140].

Thus, one can obtain a very useful information by considering the fine–tuning problem

in the SM at scales of a few tens of TeV. In the vicinity of these scales, a Higgs boson with

a mass MH ∼ 200 GeV can still allow for an acceptable amount of fine–tuning.
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2 Decays of the SM Higgs boson

In the Standard Model, once the Higgs mass is fixed, the profile of the Higgs particle is

uniquely determined. The Higgs couplings to gauge bosons and fermions are directly pro-

portional to the masses of the particles and the Higgs boson will have the tendency to decay

into the heaviest ones allowed by phase space. Since the pole masses of the gauge bosons

and fermions are known [the electron and light quark masses are too small to be relevant]

MZ = 91.187 GeV , MW = 80.425 GeV , mτ = 1.777 GeV , mµ = 0.106 GeV ,

mt = 178 ± 4.3 GeV , mb = 4.88 ± 0.07 GeV , mc = 1.64 ± 0.07 GeV (2.1)

all the partial widths for the Higgs decays into these particles can be predicted.

The decay widths into massive gauge bosons V = W,Z are directly proportional to the

HV V couplings, which in the SM are given in terms of the fields or the field strengths by

L(HV V ) =
(√

2Gµ

)1/2

M2
VHV

µVµ (2.2)

These are S–wave couplings and even under parity and charge conjugation, corresponding

to the JPC = 0++ assignment of the Higgs spin and parity quantum numbers. The decay

widths into fermions are proportional to the Hff̄ couplings which are of the scalar type

gHf̄f ∝ mf

v
= (

√
2Gµ)

1/2mf (2.3)

In this section, we will discuss all the decay modes of the SM Higgs boson: decays into

quarks and leptons, into real or virtual gauge bosons and loop induced decays into photons

[including Zγ final states] and gluons, and summarize the important QCD and electroweak

radiative corrections to these processes.

The JPC = 0++ quantum numbers of the SM Higgs particle lead also to unique predictions

for the angular and energy distributions of the partial decay widths. Whenever possible, we

will confront these properties with those of an hypothetical CP–odd Higgs particle20, that

we will denote by A, and which is predicted in many extensions of the SM. In this case, the

Higgs coupling to vector gauge bosons is a P–wave coupling corresponding to the JPC = 0+−

assignment, and if CP symmetry is conserved does not occur at the tree–level and is only

induced by higher loop effects. With η being a dimensionless factor, the effective point–like

coupling can be written as

L(AV V ) =
1

2
η
(√

2Gµ

)1/2

M2
VAV

µνṼµν , Ṽ µν =
1

2
ǫµνρσVρσ (2.4)

In the presence of fermions, the couplings of the A boson are of the pseudoscalar type

gAf̄f ∝ mf

v
γ5 = (

√
2Gµ)1/2mfγ5 (2.5)

20The decays of the Higgs bosons [142–144] in the general case of anomalous Higgs couplings [99,100] will
be discussed in another part of this review.
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2.1 Decays to quarks and leptons

2.1.1 The Born approximation

In the Born approximation, the partial width of the Higgs boson decay into fermion pairs,

Fig. 2.1, is given by [111,145]

ΓBorn(H → f f̄) =
GµNc

4
√

2π
MH m

2
f β

3
f (2.6)

with β = (1 − 4m2
f/M

2
H)1/2 being the velocity of the fermions in the final state and Nc the

color factor Nc = 3 (1) for quarks (leptons). In the lepton case, only decays into τ+τ− pairs,

and to a much lesser extent, decays into muon pairs are relevant.

•H
f

f̄

Figure 2.1: Feynman diagram for the Higgs boson decays into fermions.

The partial decay widths exhibit a strong suppression near threshold, Γ(H → f f̄) ∼
β3

f → 0 for MH ≃ 2mf . This is typical for the decay of a Higgs particle with a scalar

coupling eq. (2.3). If the Higgs boson were a pseudoscalar A boson with couplings given in

eq. (2.5), the partial decay width would have been suppressed only by a factor β [146]

ΓBorn(A→ f f̄) =
GµNc

4
√

2π
MH m

2
f βf (2.7)

More generally, and to anticipate the discussions that we will have on the Higgs CP–

properties, for a Φ boson with mixed CP–even and CP–odd couplings gΦf̄f ∝ a + ibγ5,

the differential rate for the fermionic decay Φ(p+) → f(p, s)f̄(p̄, s̄) where s and s̄ denote the

polarization vectors of the fermions and the four–momenta are such that p± = p± p̄, is given

by [see Ref. [147] for instance]

dΓ

dΩ
(s, s̄) =

βf

64π2MΦ

[
(|a|2 + |b|2)

(1

2
M2

Φ −m2
f +m2

fs·s̄
)

+(|a|2 − |b|2)
(
p+ ·s p+·s̄−

1

2
M2

Φs·s̄+m2
fs·s̄−m2

f

)

−Re(ab∗)ǫµνρσp
µ
+p

ν
−s

ρs̄σ − 2Im(ab∗)mfp+ ·(s+ s̄)
]

(2.8)

The terms proportional to Re(ab∗) and Im(ab∗) represent the CP–violating part of the cou-

plings. Averaging over the polarizations of the two fermions, these two terms disappear and

we are left with the two contributions ∝ 1
2
|a|2(M2

Φ−2m2
f−2m2

f ) and ∝ 1
2
|b|2(M2

Φ−2m2
f +2m2

f)

which reproduce the β3
f and βf threshold behaviors of the pure CP–even (b = 0) and CP–odd

(a = 0) states noted above.
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2.1.2 Decays into light quarks and QCD corrections

In the case of the hadronic decays of the Higgs boson, the QCD corrections turn out to be

quite large and therefore must be included. At the one–loop level, the Feynman diagrams for

the corrections are shown in Fig. 2.2: one has to include gluon–exchange [which multiplies

the Born term] and the emission of a gluon in the final state [which has to be squared

and added to the former]. In the limit where MH is much larger than the quark masses,

MH ≫ 2mf one obtains for the next–to–leading order (NLO) decay width [the quark mass

is kept only in the Yukawa coupling and in the leading logarithmic term] [148, 149]

ΓNLO(H → qq̄) ≃ 3Gµ

4
√

2π
MH m

2
q

[
1 +

4

3

αs

π

(
9

4
+

3

2
log

m2
q

M2
H

)]
(2.9)

As can be seen, there is a large logarithmic log(mq/MH) contribution which, for very light

quarks, might render the partial decay width very small and even drive it to negative values

[a definitely not physical situation]. However, these large logarithms can be absorbed in the

redefinition of the quark masses: by using the running quark masses in the MS scheme at

the scale of the Higgs mass, as discussed in §1.1.4, these logarithms are summed to all orders

in the strong interaction coupling constant [148].

•H

q

q̄

g
• g •

g

+ + + · · ·

Figure 2.2: Generic diagrams for the one–loop QCD corrections to Higgs decays into quarks.

Including the O(α2
s) [49] and O(α3

s) [150] QCD radiative corrections, the partial Higgs

decay widths into light quarks can be then written as

Γ(H → qq̄) =
3Gµ

4
√

2π
MH m

2
q(MH)

[
1 + ∆qq + ∆2

H

]
(2.10)

with the running quark mass mq(M
2
H) and the strong coupling constant ᾱs ≡ αs(M

2
H) both

defined at the scale MH . In the MS renormalization scheme, with Nf the number of light

quark flavors, one has for the QCD correction factor ∆qq

∆qq = 5.67
ᾱs

π
+ (35.94 − 1.36Nf)

ᾱ2
s

π2
+ (164.14 − 25.77Nf + 0.26N2

f )
ᾱ3

s

π3
(2.11)

Since the values of the running b and c quark masses at the scale µ ∼ MH = 100 GeV are

typically, respectively, a factor ∼ 1.5 and a factor of ∼ 2 smaller than the pole masses, the

partial decay widths are suppressed by large factors compared to the case where the pole

75



masses are used. This is shown in Fig 2.3 where Γ(H → bb̄) and Γ(H → cc̄) are displayed as

functions of the Higgs mass MH in the Born approximation, using only the running quark

masses and with the full set of QCD corrections implemented. Note that the latter increase

the partial widths by approximately 20%.

There is also an additional correction at O(α2
s) which still involves logarithms of the

masses of the light quarks and the heavy top quark and which is given by [151]

∆2
H =

ᾱ2
s

π2

(
1.57 − 2

3
log

M2
H

m2
t

+
1

9
log2 m

2
q

M2
H

)
(2.12)

[Note that because of chiral symmetry, all this discussion holds true if the Higgs particle

were a pseudoscalar boson; the only exception is that the correction ∆2
H would be different,

since it involves the quark masses which break the symmetry.]

with full QCDwith pole mass
with run. mass

�(H ! b�b) [MeV℄

MH [GeV℄ 160150140130120110100

10

1
with full QCD
with pole mass
with run. mass

�(H ! �) [MeV℄

MH [GeV℄ 160150140130120110100

1

0.1
Figure 2.3: The partial widths for the decays H → bb̄ (left) and H → cc̄ (right) as a function
of MH . They are shown in the Born approximation (dotted lines), including only the running
quark masses (dashed lines) and with the full set of QCD corrections (solid lines). The input
pole masses are mb = 4.88 GeV and mc = 1.64 GeV and the running strong coupling constant
is taken at the scale of the Higgs mass and is normalized to αs(MZ) = 0.1172.

2.1.3 The case of the top quark

For Higgs bosons decaying into top quarks, the QCD corrections do not lead to large loga-

rithms since mt is comparable toMH . However, these corrections can be sizable, in particular

near the threshold MH ∼ 2mt. At next–to–leading–order, they are given by

Γ(H → tt̄ ) =
3Gµ

4
√

2π
MH m

2
t β

3
t

[
1 +

4

3

αs

π
∆t

H(βt)

]
(2.13)
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Using the Spence function defined by Li2(x) = −
∫ x

0
dyy−1 log(1 − y), the QCD correction

factor in the massive case reads [148, 149,152]

∆t
H(β) =

1

β
A(β) +

1

16β3
(3 + 34β2 − 13β4) log

1 + β

1 − β
+

3

8β2
(7β2 − 1) (2.14)

with

A(β) = (1 + β2)

[
4Li2

(
1 − β

1 + β

)
+ 2Li2

(
−1 − β

1 + β

)
− 3 log

1 + β

1 − β
log

2

1 + β

−2 log
1 + β

1 − β
log β

]
− 3β log

4

1 − β2
− 4β log β (2.15)

Part of the full massive two–loop corrections, i.e. corrections of O(Nfα
2
s) which are expected

to provide the largest contribution, have been also computed [153] and the full two–loop

corrections have been recently derived [154].

The left–hand side of Fig. 2.4 shows the partial H → tt̄ decay width in the Born ap-

proximation, with the running top quark mass and including the full set of one–loop QCD

corrections. As can be seen, and contrary to the bb̄ and cc̄ cases, the corrections are rather

moderate in this case.

with pole masswith run. masswith full QCD

�(H ! t�t) [GeV℄

MH [GeV℄ 700650600550500450400350

10
1

2{body3{body
BR(H ! t�t)

MH [GeV℄ 700650600550500450400350300

0.1
0.01
0.001

Figure 2.4: The partial width for the decay H → tt̄ as a function of MH . In the left figure, it
is shown in the Born approximation (dotted line), with the running top mass (dashed lines)
and with the full set of QCD corrections (solid lines). In the right figure the partial width is
shown with (solid line) and without (dashed line) the inclusion of the three–body decay. The
inputs are mt = 178 GeV and αs(MZ) = 0.1172.
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Another special feature in the case of top quarks is that the three–body decays H →
tt̄∗ → tb̄W− into on–shell and off–shell top states are possible [155–157], see Fig. 2.5. These

three–body decays reach the percent level slightly below the 2mt threshold, when compared

to the two–body decay as shown in the right–hand side of Fig. 2.4. A smooth transition

from below to above threshold occurs when the top quark width is taken into account.

a)

•H t

t̄

b

W
•

b)

H W

W

t

b̄

Figure 2.5: Diagrams for the three–body decays of the Higgs boson into tbW final states.

Taking into account only the diagram of Fig. 2.5a where the top quark is off–shell and

which provides the dominant contribution [the virtuality of theW boson in the other diagram

is too large, thus strongly suppressing the contribution], the differential partial width or

Dalitz density for this decay can be written as

dΓ

dx1dx2
(H → tt̄∗ → tb̄W−) =

3G2
µ

32π3
M3

H m
2
t

Γt
H

y2
1 + γtκt

(2.16)

with the reduced energies x1,2 = 2Et,b/MH , the scaling variables y1,2 = 1−x1,2, κi = M2
i /M

2
H

and the reduced decay width of the virtual top quark γt = Γ2
t/M

2
H . The squared amplitude

is given by [156]

Γt
H = y2

1(1 − y1 − y2 + κW − 5κt) + 2κW (y1y2 − κW − 2κty1 + 4κtκW )

−κty1y2 + κt(1 − 4κt)(2y1 + κW + κt) (2.17)

The differential decay width has to be integrated over the allowed range of the x1, x2 variables.

The boundary condition is

∣∣∣∣∣
2(1 − x1 − x2 + κt + κb − κW ) + x1x2√

x2
1 − 4κt

√
x2

2 − 4κb

∣∣∣∣∣ ≤ 1 (2.18)

The additional diagram leading to the same final state, with the Higgs boson decaying into

two W bosons with one of them being off–shell and decays into tb̄ final states, H →WW ∗ →
tb̄W , gives very small contributions and can be safely neglected.
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2.1.4 Distinction between scalar and pseudoscalar Higgs bosons

The distinction between a scalar and a pseudoscalar Higgs particle can be made by investi-

gating the angular correlations in the decays into heavy fermions [158–163]. In the processes

H/A → tt̄ → (W+b)(W−b̄), denoting the spin vector of the t and t̄ states in their respec-

tive rest frames by s and s̄, and orienting the z axis along the t flight direction, the spin

dependence is different in the two cases; from eq. (2.8) one obtains [159]

Γ(H/A→ tt̄) ∝ 1 − sz s̄z ± s⊥s̄⊥ (2.19)

Denoting by θ∗± the polar angle between the W± bosons and the t–quark in the W± rest

frames and by φ∗ the relative azimuthal angle between the decay planes of the two W bosons,

Fig. 2.6, and using the abbreviations cθ∗
+

= cos θ∗+ etc, the angular distributions of the W±

bosons in the decays of scalar and pseudoscalar Higgs particles are given by [160,164]

dΓ(H/A→W+W−bb̄)

ΓH/Adcθ∗+dcθ∗
−
dφ∗ =

1

8π

[
1 +

(
m2

t − 2M2
W

m2
t + 2M2

W

)2 (
cθ∗

+
cθ∗

−
∓ sθ∗

+
sθ∗

−
cφ∗

)]
(2.20)

•
H tt̄

W+

b

W−

b̄

θ∗+θ∗−

φ∗

Figure 2.6: The definition of the polar angles θ∗± and the azimuthal angle φ∗ for the sequential
decay H → tt̄ → (bW+)(b̄W−). The polar angles are defined in the t, t̄ rest frames, with
respect to the t flight direction. The angle φ∗ stays the same after boost along the tt̄ directions.

[The QCD corrections to the angular distributions can be found in Ref. [165] for instance].

If the Higgs boson mass is precisely known, the Higgs rest frame can be reconstructed. Be-

cause the boost of the Higgs boson to quarks is not too large and the mass ratio between

daughter–to–parent parent particles in the decay is significant, the kinematical reconstruc-

tion of the full event should not be very difficult.

If the integral over the polar angles is performed, one obtains a simple asymmetry in the

azimuthal angle which projects out the parity of the Higgs boson [159,160]

1

ΓH/A

dΓ(H/A→W+W−bb̄)

dφ∗ =
1

2π

[
1 ∓ π2

16

(
m2

t − 2M2
W

m2
t + 2M2

W

)2

cφ∗

]
(2.21)
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allowing to determine the azimuthal angle up to a two–fold ambiguity. The distribution of

the decays H/A→ tt̄→ bb̄W+W− as a function of the azimuthal angle is shown in Fig. 2.7.

One sees that the separation between the scalar and pseudoscalar cases can clearly be made.

with full QCD

H
A
d�(H=A!WWb�b)=�

�� [rad℄ 32.521.510.50

0.20.190.180.170.160.150.140.130.12
Figure 2.7: Distribution of the decays H/A→ tt̄→ bb̄W+W− in the azimuthal angle φ∗.

One can perform the same study when integrating over the b–quark directions and con-

sider the W bosons decaying into leptons W± → ℓ±νe. The angular distribution is still

given by eq. (2.20) but with θ∗± denoting this time the polar angles between the charged

leptons and the top quarks in the rest frame of the latter, and with the mass factor

(m2
t − 2M2

W )2/(m2
t + 2M2

W )2 omitted.

CP quantum number studies of the Higgs particles can also be performed for smaller

Higgs masses, in the decays into light fermions. In the case of bb̄ final state decays [which

are dominant for relatively light Higgs bosons], it is unfortunately very difficult, because of

depolarization effects, to extract the spin information of the bottom quark. A much cleaner

channel is provided by the Higgs decays into τ+τ− pairs [160, 166, 167], although the rates

are suppressed by an order of magnitude compared to the bb̄ case. A possible channel would

be the decays H/A→ τ+τ− → π+ν̄π−ν.

Defining again the polar angles θ∗± as those giving the π± and τ− directions and the

azimuthal angle φ∗ as the angle between the decays planes of τ±, the angular distribution

will be as in the case of H/A→ tt̄→ WWbb̄ with W± → ℓ±νe [160]

1

ΓH/A

dΓ(H/A→ π+ν̄τπ
−ντ )

dcθ∗
+
dcθ∗

−
dφ∗ =

1

8π

[
1 + cθ∗

+
cθ∗

−
∓ sθ∗

+
sθ∗

−
cφ∗

]
(2.22)

leading, once the polar angles are integrated out, to an asymmetry in the azimuthal angle

dΓH/A

ΓH/Adφ∗ =
1

2π

[
1 ∓ π2

16
cφ∗

]
(2.23)
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The asymmetry is shown in Fig. 2.8 and the distinction between the scalar and pseudoscalar

cases is even easier than in the case of top quarks in Fig. 2.7, since the suppression factor

(m2
t − 2M2

W )2/(m2
t + 2M2

W )2 is absent.

H
A
d�(H=A! �+�����)=�

�� [rad℄ 32.521.510.50

0.350.30.250.20.150.10.050
Figure 2.8: Distribution of the decays H/A→ τ+τ− → π+ν̄τπ

−ντ in the azimuthal angle φ∗.

An observable which is sensitive to the Higgs parity is the angle δ between the pions in

the rest frame of the Higgs boson [160,164,166,167]

16~π+ · ~π− = M2
H

[
(1 + βτβπcθ∗

−
)2 − 16

m2
π

M2
H

] 1

2
[
(1 − βτβπcθ∗

+
)2 − 16

m2
π

M2
H

] 1

2

cos δ (2.24)

where βτ = (1 − 4m2
τ/M

2
H)1/2 and βπ = (m2

τ −m2
π)/(m2

τ +m2
π) are the rest frame boosts of,

respectively, the Higgs to the τ–lepton and the τ–lepton to the pions. The azimuthal angle

φ∗ can be then written in terms of the angles θ∗± and δ and, integrating over the polar angles,

one obtains for the distributions a rather complicated function of δ. However, for δ = π, the

distributions are rather simple and very different for 0++ and 0+− states. For a scalar Higgs

boson decay, it reaches its maximum for δ = π

1

ΓH

dΓ(H)

d cos δ
≃ 2

15

5 + β2
τ

1 − β2
τ

(2.25)

while for a pseudoscalar Higgs boson, it peaks at a small value of π − δ for mπ ∼ 0

1

ΓA

dΓ(A)

d cos δ
≃ (1 + cos δ)

1

20

5 + 10β2
τ + β4

τ

(1 − β2
τ )

2
(2.26)

The analysis for Higgs decays into multi–pion final states, such as H/A→ τ+τ− → ρ+ν̄τρ
−ντ

→ π+π0ν̄τπ
−π0ντ follows the same line if the hadron system is treated as a single particle;

see Refs. [160, 167] for more details.
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2.2 Decays into electroweak gauge bosons

2.2.1 Two body decays

Above the WW and ZZ kinematical thresholds, the Higgs boson will decay mainly into pairs

of massive gauge bosons; Fig. 2.9a. The decay widths are directly proportional to the HV V

couplings given in eq. (2.2) which, as discussed in the beginning of this section, correspond

to the JPC = 0++ assignment of the SM Higgs boson spin and parity quantum numbers.

These are S–wave couplings, ∼ ~ǫ1 · ~ǫ2 in the laboratory frame, and linear in sin θ, with θ

being the angle between the Higgs and one of the vector bosons.

a)

•H V

V

•

b)

H
V

f

f̄
•

c)

H

f3

f̄4

f1

f̄2

Figure 2.9: Diagrams for the Higgs boson decays into real and/or virtual gauge bosons.

The partial width for a Higgs boson decaying into two real gauge bosons, H → V V with

V = W or Z, are given by [32, 145]

Γ(H → V V ) =
GµM

3
H

16
√

2π
δV

√
1 − 4x (1 − 4x+ 12x2) , x =

M2
V

M2
H

(2.27)

with δW = 2 and δZ = 1. For large enough Higgs boson masses, when the phase space factors

can be ignored, the decay width into WW bosons is two times larger than the decay width

into ZZ bosons and the branching ratios for the decays would be, respectively, 2/3 and 1/3

if no other decay channel is kinematically open.

For large Higgs masses, the vector bosons are longitudinally polarized [159]

ΓL

ΓL + ΓT
=

1 − 4x+ 4x2

1 − 4x+ 12x2

MH≫MV−→ 1 (2.28)

while the L, T polarization states are democratically populated near the threshold, at x =

1/4. Since the longitudinal wave functions are linear in the energy, the width grows as the

third power of the Higgs mass, Γ(H → V V ) ∝ M3
H . As discussed in §1.4.1, a heavy Higgs

boson would be obese since its total decay width becomes comparable to its mass

Γ(H → WW + ZZ) ∼ 0.5 TeV [MH/1 TeV]3 (2.29)

and behaves hardly as a resonance.

82



2.2.2 Three body decays

Below the WW/ZZ kinematical thresholds, the Higgs boson decay modes into gauge bosons,

with one of them being off–shell, Fig. 2.9b, are also important. For instance, from MH >∼ 130

GeV, the Higgs boson decay into WW pairs with one off–shell W boson, starts to dominate

over the H → bb̄ mode. This is due to the fact that in these three–body decays, although

suppressed by an additional power of the electroweak coupling squared compared to the

dominant H → bb̄ case and by the virtuality of the intermediate vector boson state, there

is a compensation since the Higgs couplings to W bosons are much larger than the Higgs

Yukawa coupling to b quarks.

The partial width for the decay H → V V ∗ → V ff̄ , the charges of the vector bosons V

summed over and assuming massless fermions, is given by [168]

Γ(H → V V ∗) =
3G2

µM
4
V

16π3
MHδ

′
VRT (x) (2.30)

with δ′W = 1, δ′Z = 7
12

− 10
9

sin2 θW + 40
9

sin4 θW and

RT (x) =
3(1 − 8x+ 20x2)

(4x− 1)1/2
arccos

(
3x− 1

2x3/2

)
− 1 − x

2x
(2 − 13x+ 47x2)

−3

2
(1 − 6x+ 4x2) log x (2.31)

The invariant mass (M∗) spectrum of the off–shell vector boson peaks close to the kine-

matical maximum corresponding to zero–momentum of the on–shell and off–shell final state

bosons

dΓ(H → V V ∗)

dM2
∗

=
3G2

µM
4
V

16π3MH
δ′V

βV (M4
Hβ

2
V + 12M2

VM
2
∗ )

(M2
∗ −M2

V )2 +M2
V Γ2

V

(2.32)

with β2
V = [1− (MV +M∗)

2/M2
H ][1− (MV −M∗)

2/M2
H ]. Since both V and V ∗ preferentially

have small momenta, the transverse and longitudinal polarization states are populated with

almost equal probabilities. Neglecting the widths of the vector bosons, ΓV , one finds after

summing over all M∗ values

ΓL

ΓL + ΓT
=
RL(M2

V /M
2
H)

RT (M2
V /M

2
H)

(2.33)

where RT is given in eq. (2.31) and RL reads [159]

RL(x) =
3 − 16x+ 20x2

(4x− 1)1/2
arccos

(
3x− 1

2x3/2

)
− 1 − x

2x
(2 − 13x+ 15x2)

−1

2
(3 − 10x+ 4x2) log x (2.34)

[Note that for heavy Higgs bosons, the three–body modes H → W+W−Z and H → tt̄Z

have been considered [155,169]; they lead to marginal branching ratios.]
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2.2.3 Four body decays

In fact, even Higgs decays into two off–shell gauge bosons, Fig. 2.9c, can be relevant [170,171];

see also Ref. [144]. The branching ratios for the latter reach the percent level for Higgs masses

above about 100 (110) GeV for both W (Z) boson pairs off–shell. For higher masses, it is

sufficient to allow for one off–shell gauge boson only. The decay width can be cast into the

compact form [170]

Γ(H → V ∗V ∗) =
1

π2

∫ M2
H

0

dq2
1MV ΓV

(q2
1 −M2

V )2 +M2
V Γ2

V

∫ (MH−q1)2

0

dq2
2MV ΓV

(q2
2 −M2

V )2 +M2
V Γ2

V

Γ0 (2.35)

with q2
1, q

2
2 being the squared invariant masses of the virtual gauge bosons, MV and ΓV their

masses and total decay widths, and in terms of λ(x, y; z) = (1 − x/z − y/z)2 − 4xy/z2 with

δV = 2(1) for V = W (Z), the matrix element squared Γ0 is

Γ0 =
GµM

3
H

16
√

2π
δV

√
λ(q2

1, q
2
2;M

2
H)

[
λ(q2

1, q
2
2;M

2
H) +

12q2
1q

2
2

M4
H

]
(2.36)

Taking into account the total decay width of the vector bosons in the denominators of

eq. (2.35), this expression for the four–body decay mode can be in fact used to reproduce

the partial widths of the two–body and three–body decay modes, once the thresholds are

crossed. Fig. 2.10 shows the branching ratios for the decays H →WW and H → ZZ in the

three cases of two–body, three–body and four–body modes.

2{body3{body4{body
BR(H !WW )

MH [GeV℄ 180160140120100

1
0.1

0.01
0.001

2{body3{body4{body
BR(H ! ZZ)

MH [GeV℄ 200180160140120100

0.1
0.01

0.001
Figure 2.10: The branching ratios for the decays H → W+W− (left) and ZZ (right) as a
function of MH at the two– (dotted), three– (dashed) and four–body (solid) levels.
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2.2.4 CP properties and comparison with the CP–odd case

Let us now confront the angular distributions of the final state fermions in the decay processes

H/A → V V ∗ → (f1f̄2)(f3f̄4), which are different for a CP–even and a CP–odd Higgs

particle [159,172–174]. Denoting the polar and azimuthal angles of the fermions f1, f3 in the

rest frames of the vector bosons by (θ1, 0) and (θ3, φ3) [see Fig. 2.11 for the conventions and

definitions], the angular distribution is given by [159]

dΓ(H → V V )

dcθ1
dcθ3

dφ3
∼ s2

θ1
s2

θ3
+

1

2γ1γ3(1 + β1β3)
s2θ1

s2θ3
cφ3

(2.37)

+
1

2γ2
1γ

2
3(1 + β1β3)2

[(
1 + c2θ1

) (
1 + c2θ3

)
+ s2

θ1
s2

θ3
c2φ3

]

− 4Af1
Af3

γ1γ3(1 + β1β3)

[
sθ1
sθ3
cφ3

+
1

γ1γ3(1 + β1β3)
cθ1
cθ3

]

•
H VV

f1

f̄2

f3

f̄4

θ1θ3

φ3

Figure 2.11: The definition of the polar angles θ1,3 and the azimuthal angle φ3 for the se-
quential decay H → V V → (f1f̄2)(f3f̄4) in the rest frame of the Higgs particle.

where the combination of V ff̄ couplings is Af = 2v̂f âf/(v̂
2
f + â2

f); for V = W , the weak

charges are as usual v̂f = âf =
√

2 while for V = Z, v̂f = 2I3
f − 4Qf sin2 θW and âf = 2I3

f .

βi, γi = (1 − β2
i )

−1/2 are the velocities and γ factors of the [on/off–shell] vector bosons and

sθ ≡ sin θ, etc. The dependence on the azimuthal angle between the decay planes disappears

for large Higgs masses, ∼ 1/γ, a consequence of the asymptotic longitudinal V polarization.

After integrating out the polar angles, we are left with [159]

dΓ(H → V V )

dφ3

∼ 1 + a1cφ3
+ a2c2φ3

a1 = −9π2

32

γ1γ3(1 + β1β3)

γ2
1γ

2
3(1 + β1β3)2 + 2

Af1
Af3

, a2 =
1

2

1

γ2
1γ

2
3(1 + β1β3)2 + 2

(2.38)

where the coefficient a1 measures the P–odd amplitude.
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These are unique predictions for the SM Higgs boson with JPC = 0++ quantum numbers.

One can again confront these predictions with what is expected in the case of a JPC = 0+−

CP–odd Higgs boson21. The AV V coupling has been defined in eq. (2.4), and reduces to

(~ǫ1 ×~ǫ2) · (~p1 − ~p2) in the laboratory frame. The CP–odd angular distributions in the decays

A→ V V → (f1f̄2) (f3f̄4) are given by [159]

dΓ(A→ V V )

dcθ1
dcθ3

dφ3

∼ 1 + c2θ1
c2θ3

− 1

2
s2

θ1
s2

θ3
− 1

2
s2

θ1
s2

θ3
c2φ3

− 2Af1
Af3

cθ1
cθ3

(2.39)

and simply reduces, after integrating over the polar angles, to

dΓ(A→ V V )

dφ3

∼ 1 − 1

4
c2φ3

(2.40)

The normalization follows from the total and differential decay widths. Since the A boson

does not decay into longitudinal gauge bosons, the partial width for the two–body decay is

Γ(A→ V V ) =
GµM

3
H

16π3MA

δV η
2 (8x2)

√
1 − 4x (2.41)

while for the three–body decay, one has

Γ(A→ V V ∗) =
3G2

µM
6
V

8π3MA

δ′V η
2RA

(
M2

V

M2
A

)
(2.42)

with

RA(x) = (1 − 7x)(4x− 1)1/2 arccos

(
3x− 1

2x3/2

)
− 1 − x

6
(17 − 64x− x2)

+
1

2
(1 − 9x+ 6x2) log x (2.43)

The invariant mass spectrum of the off–shell vector bosons reads

dΓ(A→ V V ∗)

dM2
∗

=
3G2

µM
6
V

8π3MA

δ′V η
2 M2

∗β
3
V

(M2
∗ −M2

V )2 +M2
V Γ2

V

(2.44)

The fraction of the decay of the Higgs bosons into longitudinal vector bosons [which is

zero in the CP–odd Higgs case] and the distributions with respect to the invariant mass of

the off–shell gauge boson in the decays H/A → Z∗Z for MH/A = 150 GeV are shown in

Fig. 2.12. The mass and momentum distributions of the decay width are determined by

the P–wave decay characteristics and the transverse polarization of the gauge bosons. The

dependence on the azimuthal angle, shown in Fig. 2.13 for the decays H/A→ ZZ → 4µ and

H/A→WW → 4f with MH/A = 300 GeV. Again, the difference between the CP–even and

CP–odd cases is noticeable. In the case of H → ZZ decays, the variation with the azimuthal

angle is small since the factor in front of cosφ3 is tiny, a1 ∝ v2
e ≪ 1 [while vf =

√
2 for W

bosons]; the coefficient of cos 2φ3 drops like 1/γ4 in the scalar case.
21The more general case where both CP–even and CP–odd couplings are present can be found in Ref. [175].
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�L=(�L + �T )H ! V V

MH=2MV1

10.80.60.40.20
H ! ZZ�
A! ZZ�(1=�)d�/dM� [GeV�2℄MH =MA = 150 GeV

M� [GeV℄ 605550454035302520

0.001

0.0001
Figure 2.12: The decay width of the Higgs boson into longitudinal gauge bosons as a function
of the ratio MH/2MV (left) and the distribution with respect to the invariant mass of the
off–shell gauge boson in the decays H/A→ ZZ∗ for MH = MA = 150 GeV (right).

A! ZZ ! 4�H ! ZZ ! 4�

(1=�)d�/d�MH =MA = 300 GeV

� [rad℄ 6543210

1.41.210.80.6 A! WW ! 4fH ! WW ! 4f

(1=�)d�/d�MH =MA = 300 GeV

� [rad℄ 6543210

1.61.41.210.80.6
Figure 2.13: The azimuthal dependence in the decays H/A→ ZZ → 4µ± (left) and H/A→
WW → 4f for CP–even and CP–odd Higgs boson with masses MH = MA = 300 GeV.
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2.3 Loop induced decays into γγ, γZ and gg

Since gluons and photons are massless particles, they do not couple to the Higgs boson

directly. Nevertheless, the Hgg and Hγγ vertices, as well as the HZγ coupling, can be

generated at the quantum level with loops involving massive [and colored or charged] particles

which couple to the Higgs boson. TheHγγ andHZγ couplings are mediated byW boson and

charged fermions loops, while the Hgg coupling is mediated only by quark loops; Fig. 2.14.

For fermions, only the heavy top quark [and to a lesser extent the bottom quark] contribute

substantially for Higgs boson masses MH >∼ 100 GeV.

a)

•H
W

γ(Z)

γ

• F
H

γ(Z)

γ

+

•H
Q

g

g

b)

Figure 2.14: Loop induced Higgs boson decays into a) two photons (Zγ) and b) two gluons.

For masses much larger than the Higgs boson mass, these virtual particles do not decouple

since their couplings to the Higgs boson grow with the masses, thus compensating the loop

mass suppression. These decays are thus extremely interesting since their strength is sensitive

to scales far beyond the Higgs boson mass and can be used as a possible probe for new charged

and/or colored particles whose masses are generated by the Higgs mechanism and which are

too heavy to be produced directly.

Unfortunately, because of the suppression by the additional electroweak or strong cou-

pling constants, these loop decays are important only for Higgs masses below ∼ 130 GeV

when the total Higgs decay width is rather small. However, these partial widths will be

very important when we will discuss the Higgs production at hadron and photon colliders,

where the cross sections will be directly proportional to, respectively, the gluonic and pho-

tonic partial decay widths. Since the entire Higgs boson mass range can be probed in these

production processes, we will also discuss the amplitudes for heavy Higgs bosons.

We will first analyze the decays widths both at leading order (LO) and including the next–

to–leading order (NLO) QCD corrections. The discussion of the LO electroweak corrections

and the higher–order QCD corrections will be postponed to the next subsection.
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2.3.1 Decays into two photons

The partial width at leading order

The decay of the SM Higgs boson two into photons is mediated by W boson and heavy

charged fermion loops. The partial decay width can be cast into the form [111,176–178]

Γ (H → γγ) =
Gµ α

2M3
H

128
√

2 π3

∣∣∣∣∣
∑

f

NcQ
2
fA

H
1/2(τf ) + AH

1 (τW )

∣∣∣∣∣

2

(2.45)

with the form factors for spin–1
2

and spin–1 particles

AH
1/2(τ) = 2[τ + (τ − 1)f(τ)] τ−2

AH
1 (τ) = −[2τ 2 + 3τ + 3(2τ − 1)f(τ)] τ−2 (2.46)

and the function f(τ) defined as

f(τ) =





arcsin2
√
τ τ ≤ 1

−1

4

[
log

1 +
√

1 − τ−1

1 −
√

1 − τ−1
− iπ

]2

τ > 1
(2.47)

The parameters τi = M2
H/4M

2
i with i = f,W are defined by the corresponding masses of

the heavy loop particles. The electromagnetic constant in the coupling should be taken at

the scale q2 = 0 since the final state photons are real.

Since the Hff̄ coupling is proportional to mf , the contribution of light fermions is

negligible so that in the SM with three families, only the top quark and the W boson

effectively contribute to the γγ width. If the Higgs boson mass is smaller than the WW

and f f̄ pair thresholds, the amplitudes are real and above the thresholds they are complex;

Fig. 2.15. Below thresholds, the W amplitude is always dominant, falling from AH
1 = −7 for

very small Higgs masses to AH
1 = −5 − 3π2/4 at the WW threshold; for large Higgs masses

the W amplitude approaches AH
1 → −2. Fermion contributions increase from AH

1/2 = 4/3

for small τf values to AH
1/2 ∼ 2 at the 2mf threshold; far above the fermion threshold, the

amplitude vanishes linearly in τf modulo logarithmic coefficients,

M2
H ≫ 4m2

f : AH
1/2(τf) → −[log(4τf) − iπ]2/(2τf)

M2
H ≪ 4m2

f : AH
1/2(τf) → 4/3 (2.48)

In Fig. 2.16, we display the partial decay width Γ(H → γγ). The width varies rapidly

from a few KeV for MH ∼ 100 GeV to ∼ 100 KeV for MH ∼ 300 GeV as a consequence

of the growth ∝ M3
H . The contribution of the W boson loop interferes destructively with

the quark loop and for Higgs masses of about 650 GeV, the two contributions nearly cancel

each other. The contribution of the b–loop is negligible, while the t quark contribution with

mt → ∞ is a good approximation for Higgs masses below the 2mt threshold.
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Im(AH1 ) Re(AH1 )
AH1 (�W )

�W 1010.1

0-2-4-6-8-10-12 Im(AH1=2)
Re(AH1=2)
AH1=2(�Q)

�Q 1010.1

32.521.510.50
Figure 2.15: Real and imaginary parts of the W boson (left) and heavy fermion (right)
amplitudes in the decay H → γγ as a function of the mass ratios τi = M2

H/4M
2
i .

with mt !1with t=W -loopsfull amplitude
�(H ! ) [KeV℄

MH [GeV℄ 1000100

100
10
1

Figure 2.16: The partial width for the decay H → γγ as a function of MH with the W
and all third generation fermion contributions (solid) and with W and only the top quark
contribution (dashed) and with the W and t quark contributions for mt → ∞ (dotted lines).

The NLO QCD corrections

The QCD corrections to the quark amplitude in the decay H → γγ consists only of two–loop

virtual corrections and the corresponding counterterms; some generic diagrams are shown in

Fig. 2.17. There are no real corrections since the decay H → γγ + g does not occur due to

color conservation. The calculation can be done in the on–shell scheme, in which the quark
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mass mQ is defined as the pole of the propagator and the quark wave function is renormalized

with a renormalization constant Z
1/2
2 such that the residue at the pole is equal to unity. The

photon–quark vertex is renormalized at zero–momentum transfer and the standard QED

Ward identity renders the corresponding renormalization factor equal to the one of the wave

function. Since in the SM the fermion masses are generated by the interaction with the

Higgs field, the renormalization factor ZHQQ associated with the Higgs–quark vertex is fixed

unambiguously by the renormalization factors Zm for the mass and Z2 for the wave function.

From the bare Lagrangian [the subscript 0 stands for bare quantities]

L0 = −m0Q̄0Q0
H

v
= −mQQ̄Q

H

v
+ ZHQQmQQ̄Q

H

v
(2.49)

one finds ZHQQ = 1 − Z2Zm [148, 149]. In contrast to the photon–fermion vertex, the

scalar HQQ vertex is renormalized at zero momentum transfer by a finite amount γm after

subtracting ZHQQ due to the lack of a corresponding Ward identity.

•H

γ

γ

g • •

Figure 2.17: QCD corrections to the quark amplitude for the H → γγ decay.

The two–loop amplitudes for the H → γγ decay have been calculated in Refs. [179–181].

In the general massive case, the five–dimensional Feynman parameter integrals have been

reduced analytically down to one–dimensional integrals over polylogarithms which were eval-

uated numerically [180]. [Very recently [181], these integrals have been derived analytically].

The QCD corrections of the quark contribution to the two–photon Higgs decay amplitude

can be parameterized as

AH
1/2(τQ) = AH

1/2(τQ)|LO

[
1 +

αs

π
CH(τQ)

]
(2.50)

In principle, the scale in αs is arbitrary to this order although, in practice, it should be

chosen to be, typically, of order MH . However, the renormalization scale should be defined

at µQ = 1
2
MH for two reasons: (i) the QQ decay threshold is defined at the correct position

2mQ(mQ) = 2mQ and (ii) it turns out a posteriori that all relevant large logarithms are

effectively absorbed into the running mass for the entire range of the variable τ . Note that

near the threshold [182], within a margin of a few GeV, the perturbative analysis is not

valid since the formation of a P–wave 0++ resonance, interrupted by the rapid quark decay

modifies the amplitude in this range. Since QQ pairs cannot form 0++ states at the threshold,

ImCH vanishes there and ReCH develops a maximum very close to this threshold.
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The real and imaginary parts of the correction factor CH are shown in Fig. 2.18 as a

function of τQ with the scale set to µQ = 1
2
MH (left) and µQ = mQ (right). In the limit

mQ → ∞, the correction factor can be evaluated analytically and one finds [179]

M2
H/4m

2
Q → 0 : 1 + CH

αs

π
→ 1 − αs

π
(2.51)

In the opposite limit mQ(µ2
Q) → 0 the leading and subleading logarithms of the correction

factor can also be evaluated analytically

mQ(µ2
Q) → 0 :

{
ReCH → − 1

18
[log2(4τ) − π2] − 2

3
log(4τ) + 2 log

µ2
Q

m2
Q

ImCH → π
3

[
1
3
log(4τ) + 2

] (2.52)

Figure 2.18: The QCD correction factor to the real and imaginary parts of the quark am-
plitude AH

1/2 in the H → γγ decay as a function of τQ = M2
H/4m

2
Q. The scale at which the

correction is evaluated is µQ = 1
2
MH (left) and µQ = mQ (right).

The QCD correction factor to the partial decay width relative to the lowest order result,

Γ = ΓLO(1 + δ) is shown in Fig. 2.19 as a function of the Higgs boson mass. The correction

is large only in the area MH ∼ 650 GeV where the destructive W– and t–loop interference

makes the decay amplitude nearly vanish.

2.3.2 Decays into a photon and a Z boson

Similarly to the γγ case, the H → Zγ coupling is built up by the heavy top quark and W

boson loops. The partial decay width is given by [107,108]

Γ(H → Zγ) =
G2

µM
2
W αM3

H

64 π4

(
1 − M2

Z

M2
H

)3
∣∣∣∣∣
∑

f

Nf
Qf v̂f

cW
AH

1/2(τf , λf) + AH
1 (τW , λW )

∣∣∣∣∣

2

(2.53)
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Figure 2.19: The QCD correction factor for the partial width Γ(H → γγ) as a function of
MH . The pole quarks masses are mt = 174 GeV and mb = 5 GeV and the QCD couplings
is normalized at αs(MZ) = 0.118. The renormalization scale is set to µQ = 1

2
MH .

with now τi = 4M2
i /M

2
H , λi = 4M2

i /M
2
Z and the form factors

AH
1/2(τ, λ) = [I1(τ, λ) − I2(τ, λ)] (2.54)

AH
1 (τ, λ) = cW

{
4

(
3 − s2

W

c2W

)
I2(τ, λ) +

[(
1 +

2

τ

)
s2

W

c2W
−
(

5 +
2

τ

)]
I1(τ, λ)

}

with v̂f = 2I3
f − 4Qfs

2
W as usual. The functions I1 and I2 are given by

I1(τ, λ) =
τλ

2(τ − λ)
+

τ 2λ2

2(τ − λ)2

[
f(τ−1) − f(λ−1)

]
+

τ 2λ

(τ − λ)2

[
g(τ−1) − g(λ−1)

]

I2(τ, λ) = − τλ

2(τ − λ)

[
f(τ−1) − f(λ−1)

]
(2.55)

where the function f(τ) is defined in eq. (2.47) while the function g(τ) can be expressed as

g(τ) =





√
τ−1 − 1 arcsin

√
τ τ ≥ 1√

1 − τ−1

2

[
log

1 +
√

1 − τ−1

1 −
√

1 − τ−1
− iπ

]
τ < 1

(2.56)

Due to charge conjugation invariance, only the vectorial Z coupling contributes to the

fermion loop so that in the limit MH ≫ MZ , the HZγ amplitude reduces to the Hγγ

amplitude modulo the different Z and γ couplings to fermions and W bosons.

The partial width for this decay is shown in Fig. 2.20 as a function of MH . As mentioned

in §1.3.2 where the reverse decay Z → Hγ was discussed, the W loop contribution is by far

dominating. Below theWW threshold, where this decay might have a visible branching ratio,
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it can be approximated AH
1 ≃ −4.6 + 0.3M2

H/M
2
W . The top quark contribution interferes

destructively with the W loop but is very small; for low Higgs boson masses it can be

approximated by AH
1/2 = NcQtv̂t/(3cW ) ∼ 0.3. The partial decay width, varies from a few

KeV for MH ∼ 120 GeV to ∼ 100 KeV for MH ∼ 2MW .

only W loopfull amplitude
�(H ! Z) [KeV℄

MH [GeV℄ 1000100

1000
100
10
1

Figure 2.20: The partial width for the decay H → Zγ as a function of MH with the full W
boson and top quark contributions (solid line) and with the W and top quark contribution
but with mt → ∞ (dashed line).

The QCD corrections to the quark loop, calculated in Ref. [183], are rather small in the

interesting mass range, MH <∼ 2MW . In the heavy top quark limit, which can be used here,

the correction factor for the top quark amplitude is exactly as in the H → γγ case

AH
1/2(τt, λt) → AH

1/2(τt, λt) ×
[
1 − αs

π

]
for M2

H ≪ 4m2
t (2.57)

2.3.3 Decays into gluons

The partial width at leading order

The decay of the Higgs boson into two gluons is mediated by loops involving heavy quarks,

with the main contribution coming from top quarks and a small contribution from bottom

quarks. At the one–loop (leading) order, the partial decay width reads [184, 185]

Γ (H → gg) =
Gµ α

2
s M

3
H

36
√

2π3

∣∣∣∣∣
3

4

∑

Q

AH
1/2(τQ)

∣∣∣∣∣

2

(2.58)

The parameter τQ = M2
H/4m

2
Q is defined by the pole mass mQ of the heavy quark. The form

factor AH
1/2(τQ), similarly to the H → γγ case, is given in eq. (2.46) and is again normalized
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such that for mQ ≫ MH , it reaches 4
3
, while it approaches zero in the chiral limit mQ → 0.

When crossing the quark threshold, MH = 2mQ, the amplitude develops an imaginary part.

The gluonic decay width is shown as a function of the Higgs mass in Fig. 2.21 in the

exact case where top and bottom quark loops, with mt = 178 GeV and mb = 5 GeV, are

included (solid line), when only the top quark contribution is included (dashed line) and

when the top quark mass is sent to infinity (dotted line). As can be seen, keeping only the

top quark contribution is a good approximation, better than 10% even for MH ∼ 100 GeV,

and below the MH = 2mt threshold, the heavy top–quark approximation is quite reliable.

only mt !1without b-loopfull amplitude
�(H ! gg) [MeV℄

MH [GeV℄ 1000100

10
1

0.1
Figure 2.21: The partial width for the decay H → gg as a function of the Higgs boson mass
with the top and bottom quark contributions included (solid line), with only the top quark
contribution included (dashed line) and in the limit of infinite top quark mass (dotted line).

The QCD corrections at NLO

To incorporate the QCD corrections to the gluonic Higgs boson decay width, one needs to

consider virtual corrections where the gluons are attached to the quark lines, as in the case

of the H → γγ decay at NLO, but also corrections involving the triple and quartic gluon ver-

tices; Fig. 2.22a. These corrections are finite in the ultraviolet [since the complementary vir-

tual corrections involved in the H → γγ amplitude are also finite] once the proper countert-

erms associated with the renormalization of the QCD coupling [Zg−1 = (Z1−1)− 3
2
(Z3−1)]

have been added; αs can be defined in the MS scheme with five active quark flavors and

the heavy top quark decoupled. However, there are left–over infrared and collinear singu-

larities which are canceled only if the real corrections with three gluon and a gluon plus a

quark–antiquark pair final states H → gg+ g and g+ qq̄ are added, Fig. 2.22b. The qq̄ final
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states will be assumed to be massless and, as a consequence of chiral symmetry, there is no

interference of the amplitude for H → g+qq̄ and the one H → qq̄∗ → qq̄g in which the Higgs

boson couples directly to quarks [this interference will be discussed in more detail later].

b)

a)

•H

g

g

g • •

•H

g

g

g • •
q

q̄

Figure 2.22: Typical Feynman diagrams for the QCD corrections to the process H → gg at

NLO: a) virtual corrections not present in the decay H → γγ and b) real corrections.

The calculation of the NLO QCD correction in the full massive case has been performed

in Ref. [180] where the expressions can be found. The total correction can be cast into the

form

Γ(H → gg(g), gqq̄) = ΓLO(H → gg)
[
1 + EH(τQ)

αs

π

]
(2.59)

and one obtains for the correction factor

EH(τQ) =
95

4
− 7

6
Nf +

33 − 2Nf

6
log

µ2

M2
H

+ ∆EH(τQ) (2.60)

where µ is the renormalization point and defines the scale of αs. The first three terms survive

in the limit of large loop masses while ∆EH vanishes in this limit [186–189].

The QCD radiative corrections turn out to be quite important, nearly doubling the

gluonic partial decay width; Fig. 2.23. In the mass range MH <∼ 2MW , assuming Nf = 5

light quarks and a scale µ = MH , the leading order term is corrected by a factor

K = 1 +
215

12

α
Nf=5
s (MH)

π
(2.61)

leading to an increase of the partial width by ∼ 70%. Near the tt̄ threshold, when the Hgg

form factor develops an imaginary part, the correction is also at the level of 70%. It decreases

slowly with the Higgs mass to reach 40% at MH ∼ 1 TeV. Also is shown in Fig. 2.23, the

QCD correction in the heavy top quark limit, but where the LO amplitude includes the full

Mt dependence. As can be seen, this procedure approximates quite well the full result in

the mass range MH <∼ 300 GeV, the difference being less than a few percent.
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Figure 2.23: The QCD correction factor for the partial width Γ(H → gg) as a function of
the Higgs boson mass in the full massive case with mt = 178 GeV (dotted line) and in the
heavy top quark limit (solid line). The strong coupling constant is normalized at αs = 0.118.

Since b quarks, and eventually c quarks, can in principle be tagged experimentally, it is

physically meaningful to include gluon splitting g∗ → bb (cc) in H → gg∗ → gbb (cc) decays

to the inclusive decay probabilities Γ(H → bb̄ + . . .) etc. [180, 190]. The contribution of the

b, c quark final states in H → g + qq̄ reads

− 7

3
+

1

3

[
log

M2
H

m2
b

+ log
M2

H

m2
c

]
(2.62)

Separating this contribution generates large logarithms, which can be effectively absorbed

by redefining the number of active flavors in the gluonic decay mode, i.e. by evaluating αs

with Nf = 3 when both the charm and bottom quark contributions are subtracted. The

contributions of the subtracted flavors have then to be added to the corresponding heavy

quark decay modes discussed in §2.1 [some details will be given in the next subsection].

2.4 The electroweak corrections and QCD improvements

In this section, we discuss the electroweak radiative corrections and the higher–order QCD

corrections to the Higgs decay modes. Some of these corrections have been reviewed in

Refs. [19] and [21, 22] for, respectively, the electroweak and higher–order QCD parts.

The electroweak radiative corrections to the decays of Higgs bosons into fermions and

gauge bosons can be classified in three categories:

97



(i) The fermionic corrections, which can be separated into the loop contributions of the

light fermions and those due to the heavy top quark. Most of the former corrections

are involved in the running of α and can be readily taken into account by using the

improved Born approximation discussed in §1.2.4. For the top quark correction, a

universal part is due to the renormalization of the Higgs wave function and vev and

appears for all fermion species and for gauge bosons; these corrections are in general

the dominant electroweak corrections for a SM Higgs boson with a mass MH <∼ 2mt.

(ii) Corrections due to the Higgs boson itself that are proportional to the Higgs self–

coupling λ. These corrections are important only when MH ≫ MW , when the coupling

λ becomes sizable; we have seen in §1.4.1 that for MH ∼ O(1 TeV), they can be so

large that perturbation theory breaks down.

(iii) The electromagnetic and the remaining weak corrections which do not depend on λ

and which are not quadratic in the top–quark mass. These corrections are process

dependent and in general, they lead to only small contributions, except in very special

cases such as the H → tt̄ decay where the heavy top quark limit cannot be applied.

Collecting all these electroweak contributions, the correction factor for a given Higgs

decay channel H → XX [also including the decay H → Zγ], can be then written as

KEW
H→XX = 1 + δt

HXX + δλ
HXX + δe

HXX + δw
HXX (2.63)

The present knowledge of the electroweak radiative corrections to the SM Higgs de-

cays is as follows. The complete one–loop calculation of the Hff̄ and HV V coupling has

been carried out in the massive cases in Refs. [191, 192] and [191, 193], respectively. The

knowledge of the partial widths for these decays has been improved by considering higher–

order corrections either in αs or in the dominant electroweak coupling Gµm
2
t . The two–loop

O(αsGµm
2
t ) heavy–top corrections to the light–fermion and bottom Yukawa couplings have

been calculated in Refs. [194, 195] and [196], respectively, and those to the HV V couplings

in Ref. [197]. The three-loop O(α2
sGµm

2
t ) corrections may be found in Ref. [198] for the

Hℓ+ℓ− and HV V couplings and in Ref. [199] for the Hqq̄ couplings, including the bb̄ case.

The two–loop O(G2
µm

4
t ) pure electroweak corrections for the Hf̄f and HV V couplings have

been derived in Ref. [200]. The radiative corrections due to the Higgs self–couplings have

been calculated at one and two loops in Refs. [121,122] for decays into massive gauge bosons

and in Refs. [121, 123] for decays into fermions.

As for the loop induced Higgs boson vertices, the leading two–loop electroweak cor-

rections, which are of O(Gµm
2
t ) relative to the one–loop result, have been calculated in

Refs. [201] for the Hgg coupling and in Refs. [200, 202] for the Hγγ and HZγ couplings.
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Recently, the two–loop electroweak corrections induced by light fermion loops have been

calculated for the H → γγ and H → gg decays [203, 204]. Furthermore, still in the heavy

top quark limit, the NNLO QCD corrections to the decays H → γγ [205] and H → gg [206]

have been evaluated. Other corrections [207–209] are also available and will be discussed.

The dominant heavy top–quark corrections, including the two–loop order in Gµm
2
t and

in αs, as well as the NNLO QCD corrections to the loop induced decays, can be derived

using a low energy theorem in which the top quark has been integrated out by sending its

mass to infinity. The results can nevertheless be extrapolated to Higgs boson masses up to

the MH ∼ 2mt threshold. In the following, we will first discuss this low energy theorem and

its applications for SM Higgs boson decays.

2.4.1 The low energy theorem

In the case of the top quark loop contributions to the interactions of a light Higgs boson with

MH ≪ 2mt, a rather simple and efficient way of deriving the corrections is to construct an

effective Lagrangian where the top quark is integrated out. This can be done by considering

the limit of a massless Higgs boson, or equivalently a very heavy top quark, and use a low

energy theorem proposed in Refs. [111,176,210] and extended to higher orders in Refs. [180,

211], which relates the amplitudes of two processes which differ only by the emission of a

Higgs boson with vanishing momentum. Indeed, if one recalls the discussion in §1.1.3, the

coupling of a Higgs boson to a fermion with a mass mi is generated by simply performing

the substitution

m0
i → m0

i (1 +H0/v0) (2.64)

in the bare Lagrangian [the index 0 stands for bare quantities], where the Higgs boson is

a constant field. This implies the following relation between two matrix elements with and

without the attachment of a Higgs field with zero–momentum pH

lim
pH→0

M(X → Y +H) =
1

v0
m0

i

∂

∂m0
i

M(X → Y ) (2.65)

However, in higher orders, there is a subtlety in the use of this relation: when renor-

malizing the Hff̄ interaction, the counterterm for the Higgs–fermion Yukawa coupling is

not the Hff̄ vertex with a subtraction at zero momentum transfer, ΓHff̄ (q
2 = 0) [which is

implicitly used in the low–energy theorem] but, rather, is determined by the counterterms

for the fermion mass Zm and wave–function Z2 as discussed previously. This has to be cor-

rected for and, in fact, this can be done by replacing the differentiation with respect to the

bare mass with a differentiation with respect to the renormalized mass, which gives rise to

a finite contribution which is simply the anomalous mass dimension of the fermion

m0
∂

∂m0
=

m

1 + γm

∂

∂m
(2.66)
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which relates the bare mass m0 and the renormalized mass m, d logm0 = (1 + γm)d logm.

It is well known that this low energy theorem can be exploited to derive the Hγγ coupling

in lowest order [176, 210], but the theorem is also valid if radiative QCD corrections are

included [180, 211]. The contribution of a heavy quark to the vacuum polarization of the

photon at zero momentum transfer is given in dimensional regularization, with n = 4 − ǫ

being the number of space dimensions, by

Π = −Q2
Q

α

π
Γ(ǫ)

(
4πµ2

m2
Q

)ǫ [
1 +

αs

2π
Γ(1 + ǫ)

(
4πµ2

m2
Q

)ǫ

+ O(ǫ)

]
(2.67)

so that mQ(∂Π/∂mQ) = 2Q2
Q

α
π

(
1 + αs

π

)
. From the anomalous quark mass dimension to

lowest order, γm = 2αs/π, one immediately obtains the correction CH of the Hγγ coupling

in agreement with what has been discussed in the previous subsection

M2
H/4m

2
Q → 0 : 1 + CH

αs

π
→ 1 + αs/π

1 + 2αs/π
= 1 − αs

π
(2.68)

The same result can also be derived by exploiting well–known results on the anomaly in

the trace of the energy–momentum tensor [212]

Θµµ = (1 + γm)m0Q0Q0 +
1

4

βα

α
FµνFµν (2.69)

with βα denoting the mixed QED/QCD β function defined by ∂α(µ2)/∂ log µ=βα. Since the

matrix element 〈γγ|Θµµ|0〉 vanishes at zero–momentum transfer, the coupling of the two–

photon state to the Higgs source (m0/v)Q0Q0 is simply given by the effective Lagrangian

L(Hγγ) =
H

v
F µνFµν

1

4

βQ
α

α

1

1 + γm

(2.70)

including only the heavy quark contribution to the QED/QCD β function. With βQ
α =

2Q2
Qα

2/π(1 + αs/π) and γm = 2αs/π, one recovers again the previous result for the QCD

correction to the Hγγ coupling.

2.4.2 EW corrections to decays into fermions and massive gauge bosons

Heavy top quark corrections

If one only wishes to extract the leading correction to the Higgs couplings due to a heavy

top quark, one may work in the framework of a Yukawa Lagrangian where it couples only to

the Higgs boson and to the longitudinal components of the gauge bosons, a situation which

corresponds to the gaugeless limit of the SM; of course, the interactions due to light quarks

and gluons have to be kept when considering the QCD corrections.
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The bare Lagrangian describing the interactions of the Higgs with fermions and vector

bosons

L =
H0

v0

(
−
∑

f

mf0f̄0f0 + 2M2
W0W

†
0µW

µ
0 +M2

Z0Z
†
0µZ

µ
0

)
(2.71)

contains the overall factor H0/v0, which undergoes a finite renormalization. Working in the

on–shell scheme, where Gµ and the physicalW boson mass are used as inputs, and performing

the renormalization of all the fields and couplings which are involved, one obtains a universal

electroweak correction which appears in the Higgs boson couplings to all particles

H0

v0
→ (

√
2Gµ)1/2H

(
1 − ∆M2

W

M2
W

)−1/2

[1 + ReΠ′
HH(M2

H)]−1/2

→ (
√

2Gµ)1/2H (1 + δu) (2.72)

In the heavy top quark limit, one sets the momentum transfer to zero in the boson propa-

gators, since mt ≫ MW and MH , and extracts the leading components which grow as m2
t .

Including the QCD corrections up to O(α2
s) and electroweak corrections to O(Gµm

2
t ) to this

terms, one obtains results similar to what has been obtained for ∆ρ at this order, eq. (1.106),

with the Higgs boson mass set to zero in the corrections (∆ρ)EW. Using the abbreviations,

xt = Gµm
2
t/(8

√
2π2) and as = α

Nf=6
s (mt)/π, the end result for the contribution δu will be

then [194,195]

δu = xt

[
7

2
+ 3

(
149

8
− π2

)
xt −

(
3 +

π2

3

)
as − 56.7a2

s

]
(2.73)

For the Higgs boson couplings to leptons, this is in fact the only heavy top quark correc-

tion which is involved, unless one moves to higher orders in the electroweak coupling. For

the couplings to light quarks q 6= b, t the same correction δu appears, except from the small

O(xta
2
s) term which is different. However, in the case of the bottom quarks as well as for the

massive gauge bosons, there are extra contributions due to the exchange of the top quark in

the vertices. As previously mentioned, to derive these additional terms, one can use again

the low–energy theorem with the additional information provided by the knowledge of the

particle self–energies. In the case of b quarks, one obtains the non–universal correction from

the Lagrangian

L(Hbb̄) = −mb b̄b
H0

v0

(
1 + δnon−univ

Hbb

)
= −mbb̄b

H0

v0

(
1 − mt0∂Σbb

∂mt0

)
(2.74)

where Σb is the two–point function of the b quark, which receives contributions from the top

quark when exchanged together with a W boson in the propagator loop. The non universal

corrections in this case is obtained to be [196]

δnon−univ
Hbb = −3xt

(
1 − 1

3
as − 11.2a2

s

)
(2.75)
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Combined to the universal corrections, δu ∼ 7
2
xt, this leads to a large cancellation which

gives a rather small total correction, δb = 1
2
xt, at the one loop level.

In the case of the massive gauge bosons, besides the correction δu, one has also to include

a non–universal vertex correction, which is different for W and Z bosons at high orders.

Again, using the knowledge on the W and Z boson two–point functions and setting their

momentum transfer to zero, the non–universal correction is obtained from the differentiation

with respect to the top mass of the bare M2
V VµV

µ interaction

δHV V = (1 + δu)

(
1 − m2

t∂

∂m2
t

)
ΠV V (0)

M2
V

(2.76)

One then obtains for the total heavy top quark correction at the same order as for the

correction δu [197]

δw = xt

[
−5

2
+

(
39

8
− 3π2

)
xt +

(
9 − π2

3

)
as + 27.0a2

s

]

δz = xt

[
−5

2
+

(
177

8
+ 3π2

)
xt +

(
15 − π2

3

)
as + 17.1a2

s

]
(2.77)

Adding up all the previous results, one finds for the heavy top correction factor δt
HXX in

eq. (2.63), for the fermionic and bosonic decay widths of the Higgs boson [in which the HXX

coupling appears squared]

δt
HXX = (1 + δx)

2 − 1 (2.78)

The remaining electroweak corrections

In the case of light fermions, the electromagnetic corrections are simply given by [192]

δe
Hff =

3

2

α

π
Q2

f

(
3

2
− log

M2
H

m2
f

)
(2.79)

For quark final states, the large logarithms logM2
H/m

2
q can be absorbed in the running quark

masses analogously to the QCD corrections. In this case, the electromagnetic correction,

supplemented by the NLO QCD correction, reads [207]

δe
Hqq = 4.2Q2

q

α(MH)

π

[
1 + 5.2

αs

π

]
(2.80)

The remaining weak corrections can be approximated by [the reduced vector and axial

couplings v̂f and âf have been defined previously] [19]

δw
Hff =

GµM
2
Z

8
√

2π2

[
c2W

(
−5 +

3

s2
W

log c2W

)
−

6v̂2
f − â2

f

2

]
(2.81)
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In the case of Higgs decays into massive gauge bosons, the electromagnetic corrections for

H → ZZ are absent, while the vertex corrections and the photon real emission in the decay

H →W+W− do not form a gauge invariant and meaningful set, and must be combined with

the photonic contributions to the self–energies [193]. The remaining electroweak corrections

[except for the ones involving the self–coupling λ] are in general small.

For Higgs boson decay into top quarks, since mt cannot be set to zero or infinity anymore,

the situation is more complicated. The electromagnetic corrections with virtual photon

exchange and real photon emission [the running of α is again taken care of by using the

IBA with Gµ as input] are the same as the QCD corrections discussed in §2.1.3 if the strong

coupling αs is replaced by the proper electromagnetic factor

δe
Htt =

3

4
Q2

t

α

π
∆t

H(βt) (2.82)

Because of the Coulomb singularity, these corrections are large near threshold, MH ∼ 2mt,

but are small far above threshold leading to a correction less than 1%.

For the electroweak corrections, which are interesting since they involve the Higgs contri-

butions [and if MH ∼ 2mt, mixing between the Higgs boson and the spin zero tt̄ bound state

would occur], the expression is rather complicated since mt 6= 0 [192]. However a simple

interpolating formula can be obtained, which approximates the full result to the level of 1%

even in the threshold region. In terms of ht = M2
H/4m

2
t and ℓt = logMH/mt, one has [19]

δw
Htt =

Gµm
2
t

2
√

2π2

(
1 +

5

2ht

)
ℓt (ℓt − 2) + 1.059ht + 3.477 +

0.272

ht

− 1.296

h2
t

− 0.182

h3
t

(2.83)

Numerically, this correction is extremely small near the threshold and increases monotoni-

cally to reach the level of ∼ 15% for MH ∼ 1 TeV.

Higgs self–coupling corrections

Finally, one has to include the corrections due to the triple and quartic Higgs boson couplings.

In the regime where the Higgs boson mass is large, one obtains at two–loop order in the on–

shell scheme [122,123]

δλ
Hff = (13 − 2

√
3π)

(
λ

16π2

)
− 32.66

(
λ

16π2

)2

δλ
HV V =

(
19 − 6

√
3π − 5π2

3

)(
λ

16π2

)
+ 62.0

(
λ

16π2

)2

(2.84)

Numerically, the result as a function of the Higgs boson mass, is

δλ
Hff = 0.11 (MH/1 TeV)2 − 0.09 (MH/1 TeV)2

δλ
HV V = 0.15 (MH/1 TeV)2 + 0.17 (MH/1 TeV)2 (2.85)
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As discussed in §1.4.1, if the Higgs boson mass is very large, MH ∼ O(10 TeV), the one loop

terms of these expansions become close to the Born terms, and the perturbative series does

not converge. In fact, already for a Higgs boson mass close to MH ∼ 1 TeV, the two–loop

contributions become as important as the one–loop contributions. Hence, for perturbation

theory to hold, MH should be smaller than about one TeV. In this mass regime, however,

the total correction δλ
HV V is moderate, being at the level of δλ

HV V ∼ 20% for MH ∼ 1 TeV.

In the case of fermionic decays, the total correction is even smaller, δλ
Hff ≃ 2% for MH ≃ 1

TeV, because of the accidental cancellation of the one–loop and two–loop contributions.

2.4.3 NNLO QCD and EW corrections to the loop induced decays

The NNLO QCD corrections

One can use the low energy theorem discussed in §2.4.1 to derive the higher–order QCD

corrections to the Hγγ and Hgg couplings in the heavy top quark limit. In the case of the

Hγγ operator, the QED/QCD β function and the anomalous mass dimension γm are known

to four loops. The contribution of the top quark to the Hγγ coupling at O(α2
s) with Nf = 6

flavors and a renormalization scale µ, is found to be [205]

Leff(Hγγ) =
Q2

tα

2π

(√
2GF

)1/2
[
1 − αs

π
−
(

31

4
+

7

4
log

µ2

m2
t

)(αs

π

)2
]
FµνFµν H (2.86)

In the case of the Hgg operator in the heavy top quark limit

Leff(Hgg) =
H

v
Ga

µνG
aµµ Cg (2.87)

the QCD correction can be again expressed in terms of the heavy quark contribution βQ(αs)

to the QCD β function and to the anomalous quark mass dimension γm as

Leff(Hgg) = −αs

4

H

v
Ga

µνG
aµν βQ(αs)

α2
s

1

1 + γm(αs)
(2.88)

which is valid at two loops [at three loops, some subtelties appear and are discussed in

Ref. [21] for instance]. At O(α2
s), the anomalous quark mass dimension is given by [213]

γm(αs) = 2
αs

π
+

(
101

12
− 5

18
(Nf + 1)

)(αs

π

)2

(2.89)

while the QCD β function at NNLO in the MS scheme is given by [43]

βQ(αs) =
α2

s

3π

[
1 +

19

4

αs

π
+

7387 − 325Nf

288

(αs

π

)2
]

(2.90)

From these expressions and taking care of the fact that the MS strong coupling αs of the

effective theory should include only the Nf = 5 light flavors [see again Ref. [21] for details],
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one arrives using a consistent αs expansion at the final result for the coefficient function Cg

at NNLO with a scale taken to be µ = mt [199]

Cg = − αs

12π

[
1 +

11

4

αs

π
+

2777 − 201Nf

288

(αs

π

)2

+ · · ·
]

(2.91)

However, contrary to the two–photon case, Leff(Hgg) does not describe the Hgg interaction

in total: it accounts only for the interactions mediated by the heavy quarks directly, but it

does not include the interactions of the light fields. It must be added to the light–quark and

gluon part of the basic QCD Lagrangian, i.e. the effective coupling has to be inserted into

the blobs of the effective diagrams shown in Fig. 2.24 for the interaction of the Higgs boson

with gluons and massless quarks.

H

g

g

H

g

g

H

g

g

g

Figure 2.24: Effective diagrams contributing to the Hgg interaction in the limit where the top
quark is heavy and has been integrated out. The blob represents the effective Hgg coupling.

For instance, for the Higgs decay into gluons at NLO, one adds to the contribution in the

effective Hgg coupling squared (1 + 11
4

αs

π
)2, the gluon and light quarks contributions from

the pure gluonic virtual corrections and the real correction from H → ggg and H → gqq̄

with Nf light quarks,
(

73
4
− 7Nf

6

)
, leading to the total contribution for µ2 = M2

H

11

2

αs

π
+

(
73

4
− 7Nf

6

)
αs

π
=

(
95

4
− 7Nf

6

)
αs

π
(2.92)

which was given in eq. (2.60) for the gluonic Higgs partial width at NLO.

At NNLO, the calculation has also been done for the interaction of the Higgs boson with

the light fields, and this will be discussed later when we will address the question of Higgs

production in the gg → H fusion mechanism. Here, we will simply give the final result for

the correction factor for the partial H → gg decay width at NNLO, for a number of light

flavors Nf = 5 and with a scale µ = MH , and which reads [206]

KQCD
H→gg = 1 +

215

12

αs(MH)

π
+
α2

s(MH)

π2

(
156.8 − 5.7 log

m2
t

M2
H

)
(2.93)

The three–loop correction amounts to ∼ 20% of the (one–loop) Born term and ∼ 30% of the

two–loop term, therefore showing a good convergence behavior of the perturbative series.
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Electroweak and self–coupling corrections

We now turn to the dominant electroweak corrections to the Higgs boson loop induced

decays, those which are proportional to Gµm
2
t . Again, one can use the variant of the low

energy theorem discussed previously to calculate the two–loop O(Gµm
2
t ) correction to the

Hgg coupling [176, 210]. The obtained effective Hgg coupling at this order is given by

L(Hgg) = (
√

2Gµ)1/2 αs

12π
HGµνG

µν (1 + δ1 + δ2 + δ3) (2.94)

Here, δ1 is the contribution of the top quark to the QCD β function at O(αsGµm
2
t ), which

can be evaluated by considering the two–loop diagrams where Higgs and Goldstone bosons

are exchanged in the heavy quark loop

β(αs)

gs

=
αs

6π
(1 + δ1) ⇒ δ1 = −12

Gµm
2
t

8
√

2π2
(2.95)

The term δ2 is simply the contribution of the anomalous quark mass dimension

δ2 = (ZQ
2 − 1) − δmQ

mQ

+ ΓHQQ̄(q2 = 0) = 6
Gµm

2
t

8
√

2π2
(2.96)

Finally, δ3 represents the renormalization of the Higgs wave function and vev

δ3 = −1

2

[
ΠWW (0)

M2
W

+
∂ΠHH(M2

H = 0)

∂M2
H

]
= 7

Gµm
2
t

8
√

2π2
(2.97)

Due to the large cancellation between the three components, δ1 = −12, δ2 = +6 and δ3 = 7

in units of 1
2
xt = Gµm

2
t/(16

√
2π2), the total correction factor at this order is rather small.

The O(Gµm
2
t ) correction to the NLO QCD term has also been also calculated [208] and the

total correction factor for the gluonic decay width is then

δt
Hgg = xt

(
1 + 30.3

αs

π

)
(2.98)

For mt ∼ 180 GeV, the total factor is very small being at the level of 0.5%. Recently, these

top quark corrections to the H → gg decays have been calculated exactly in the mass range

MH <∼ 2MW [204]. The result turned out to be quite different from the one obtained in the

infinite top mass limit, even for a low mass Higgs boson. However, the correction factor is

still rather small.

The electromagnetic corrections to the Hgg amplitude can be straightforwardly adapted

from those of the NLO QCD corrections to the Hγγ coupling. Indeed, the only contributions

which are involved are those in which a photon is exchanged in the internal quark lines. One

then obtains, after the appropriate change of the QCD and electric charge factors

δe
Hgg = −3

4
Q2

t

α

π
= −1

3

α

π
(2.99)
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a correction which is extremely small, being at the per mille level.

In the case of the Hγγ coupling, while the correction to the fermionic loop can be

carried out along the same lines as in the case of the Hgg coupling, for the W boson loop

several subtleties arise. First, the application of the low–energy theorem is restricted to the

mass range MH <∼ 160 GeV in this case. A second complication is due to the fact that

when considering the leading mt correction, owing to QED–like Ward identities, there is no

O(G2
µm

4
t ) correction [as one notices from the Hgg case] and the largest correction scales only

quadratically with the top mass. In the calculation of this O(G2
µm

2
t ) correction, one cannot

simply use the gaugeless limit of the SM since one cannot neglect the contributions involving

virtual W bosons. In fact, after integrating out the heavy fermion contribution, one has two

dimension four operators which produce O(G2
µm

2
t ) corrections to the Hγγ amplitude

L(Hγγ) = (
√

2Gµ)
1/2H

(
c1FµνF

µν + c2M
2
WW

†
µW

µ + · · ·
)

(2.100)

with the dots standing for the contribution of higher–order operators. While the coefficient

c2 has been previously derived, one needs to perform an explicit two–loop calculation to de-

rive the coefficient c1. This can be done again, by considering only diagrams involving along

with top quarks, virtual Goldstone bosons minimally coupled to photons. Once the relevant

contribution to the photon self–energy has been calculated, one can use the low–energy the-

orem to relate it to the Hγγ amplitude in the kinematical regime where MH <∼ 2MW <∼ 2mt.

The calculation has been performed in Ref. [202] and the obtained correction factor can be

attributed to the W amplitude and written as

AH
1 (τW ) → AH

1 (τW ) (1 − 2.9xt) (2.101)

The total correction decreases the H → γγ decay width by approximately 2.5% and, thus,

fully cancels the positive O(αs/π) QCD correction.

In the loop induced decays, there are also corrections due to the light fermions, f 6= t. At

the one–loop level, these contributions are suppressed by their couplings to the Higgs boson

and are thus negligible. However, at the two–loop level, one can avoid this suppression by

coupling them to the W and Z bosons which are then directly attached to the Higgs boson.

These corrections have been calculated only recently [203].

In the case of the H → gg decay, the light quark contributions generate a correction to

the partial decay width that is positive and increase from ∼ 4.5% at MH ∼ 115 GeV to

∼ 9% at MH ∼ 2MW [the correction varies from 4.5% to 7.5% in this mass range, if the

the heavy top contribution is included]. Above this value, the correction decreases sharply,

and stays below −2% for MH >∼ 2mt. In the case of the H → γγ decay, below the 2MW

threshold, the light fermion contribution leads to a correction of the same size as the QCD
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correction, i.e. ∼ 1%, but with opposite sign; above the 2MW threshold, the corrections are

larger and lead to the suppression of the decay width by a few percent.

Finally, one has to include the Higgs self–coupling corrections which appear only in the

bosonic contribution to the Hγγ amplitude at two loops. The calculation can be done using

the equivalence theorem where the W boson is replaced by its corresponding Goldstone

boson which can be taken as massless [but only at the end of the calculation, since it serves

as an infrared cut–off in intermediate steps]. In this limit one obtains [209]

δλ
Hγγ = −12.1

λ2

16π2
(2.102)

The correction is small forMH <∼ 500 GeV, but is significant for values MH ∼ 650 GeV where

the amplitude almost vanishes because of the t and W negative interference. For MH ∼ 1

TeV, the correction becomes large and decreases the partial width by approximately −30%.

2.4.4 Summary of the corrections to hadronic Higgs decays

Let us finally reconsider the QCD corrections to the hadronic Higgs boson decays in the light

of all the corrections that have been discussed previously. As already mentioned, at higher

orders, the Higgs decays into gluons and light quarks are mixed and already at the next–to–

leading order, the two decays H → gg∗ → gq̄q andH → q̄∗q → gq̄q lead the same final states.

The two decays cannot therefore be considered separately at higher orders. The present

knowledge of the higher–order QCD corrections [and the leading electroweak corrections] to

the full decay H → hadrons has been discussed in detail in Ref. [22]. In this section, we will

simply give the full result for the hadronic Higgs decay width that one obtains forMH <∼ 2MW

by including all the corrections which are known up to O(α3
s),O(ααs),O(Gµm

2
tα

2
s) and

O(λ2).

Writing the interaction Lagrangian of the Higgs boson with quarks and gluons as

Lhad =
√

2GµH
[
mq q̄qCq +Ga

µνG
µν
a Cg

]
(2.103)

the decay width of the Higgs boson, summing the gluonic and light–quark decays and working

in the approximation of an infinitely heavy top quark, can be written as [22]

Γ(H → hadrons) =
∑

q

Aqq̄K
EW
H→qq

[
(1 + ∆qq) (Cq)

2 + ∆qgCgCq + δme
q

]

+AggK
EW
H→gg

[
∆gg(Cg)

2 + δme
g

]
(2.104)

where the tree–level qq̄ and gg squared amplitudes are given by

Aqq =
3GµMH

4
√

2π
m2

q(M
2
H) , Agg =

4GµM
3
H√

2π
(2.105)
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and the coefficients of the operators appearing in the Lagrangian, by

Cg = − 1

12

αs

π

[
1 +

(
11

4
− 1

6
ℓt

)
αs

π
+
(
9.35 − 0.7Nf + (0.33Nf − 0.52ℓt) + 0.028ℓ2t

)(αs

π

)2
]

Cq = 1 +

(
5

18
− 1

3
ℓt

)(αs

π

)2

+
(
1.35 + 0.25Nf − 2.9ℓt + (0.056Nf − 0.8)ℓ2t

)(αs

π

)3

(2.106)

with αs ≡ α5
s(M

2
H) defined at the scale MH with Nf = 5 light quarks and ℓt = log(M2

H/m
2
t ).

The various terms appearing in equation eq. (2.104), are as follows:

• ∆qq is the pure QCD corrections to the decays into quarks eq. (2.11) up to O(α3
s),

supplemented by the contributions of order α and the mixed QCD/QED contribution at

O(ααs) eq. (2.80)

∆qq =
αs

π

[17

3
+ (35.94 − 1.36Nf)

αs

π
+ (164.14 − 25.77Nf + 0.26N2

f )
(αs

π

)2 ]

+
α(MH)

π
Q2

q

[
4.25 + 11.71

αs

π

]
(2.107)

• ∆gg is the QCD correction to the gluonic decay mode due to the light quark and gluon

fields

∆gg = 1 + (18.25 − 1.17Nf)
αs

π
+ (243 − 39.4Nf + 0.9N2

f )
(αs

π

)2

(2.108)

• ∆gq is the mixed contribution in quark and gluon Higgs decays

∆qg = −αs

π

[
30.67 + (524.85 − 20.65Nf)

αs

π

]
(2.109)

If one considers final states involving quarks only, one has to subtract from the previous

equation the gluonic contribution as discussed previously; at O(αs), one has for instance

∆′
gg =

αs

π

[
13.56 − 4

3
log2(m2

q/M
2
H) + O

(
α2

s

π2

)]
(2.110)

• KEW
H→qq and KEW

H→gg are the sum of the electroweak corrections for the quark and gluonic

decays discussed previously [but without the electromagnetic corrections for the former decay

since they are included in ∆qq]. Note that in this case, αs is defined at the scale mt.

• Finally, δme
q and δme

g are the remaining contributions that contain the light quark masses

and non–leading terms in mt in fermionic and gluonic Higgs decays; since higher–order terms

O(M4
H/m

4
t ) and O(m̄4

b/M
4
H) are very small for MZ <∼ MH <∼ 2MW , one can simply retain

the first terms in the M2
H/m

2
t and m̄2

q/M
2
H expansions

δme
q =

(αs

π

)2 M2
H

m2
t

[
0.241 − 0.07 log

M2
H

m2
t

]
− 6

m̄2
q

M2
H

[
1 + 6.67

αs

π

]

δme
g = 0.1167

M2
H

m2
t

(αs

π

)2
[
1 +

(
17.85 − 2 log

M2
H

m2
t

)
αs

π

]
(2.111)

This completes the discussion of the main QCD and electroweak radiative corrections to the

hadronic decays of an intermediate mass Higgs boson.
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2.5 The total decay width and the Higgs branching ratios

The decay branching ratios and the total width of the SM Higgs boson are shown in Figs. 2.25

and 2.26, respectively, as a function of the Higgs mass. They have been obtained using the

FORTRAN code HDECAY [214] with the fermion and gauge boson mass inputs of eq. (2.1) and

with the strong coupling constant normalized at αs(MZ) = 0.1172. Included are all decay

channels that are kinematically allowed and that have branching ratios larger than 10−4, y

compris the loop mediated, the three body t̄t∗ and V V ∗ decay modes and the double off–shell

decays of the Higgs boson into massive gauge bosons which then decay into four massless

fermions. In addition, all relevant two–loop QCD corrections to the decays into quark pairs

and to the quark loop mediated decays into gluons [and photons] are incorporated; the

smaller leading electroweak radiative corrections are also included. To be as complete as

possible, we also present in Table 2.1 the numerical values of the branching ratios and total

decay width for selected values of MH , as it might be useful to have a normalization as close

as possible to the state of the art, to be used in other theoretical or experimental studies.

To discuss the Higgs decays, it is useful to consider three distinct mass ranges:

• the “low mass” range 110 GeV <∼ MH <∼ 130 GeV,

• the “intermediate mass” range 130 GeV <∼ MH <∼ 180 GeV,

• the “high mass” range 180 GeV <∼ MH <∼ 1 TeV.

The main features of the branching ratios and total width can be summarized as follows.

In the “low mass” range, 100 GeV <∼MH <∼ 130 GeV, the main decay mode of the Higgs

boson is by far H → bb̄ with a branching ratio of ∼ 75–50% for MH = 115–130 GeV, followed

by the decays into τ+τ− and cc̄ pairs with branching ratios of the order of ∼ 7–5% and ∼
3–2%, respectively. Also of significance is the H → gg decay with a branching fraction of

∼ 7% for MH ∼ 120 GeV. The γγ and Zγ decays are rare, with branching ratios at the

level of a few per mille, while the decays into pairs of muons and strange quarks [where

m̄s(1 GeV) = 0.2 GeV is used as input] are at the level of a few times 10−4. The H →WW ∗

decays, which are below the 1% level for MH ∼ 100 GeV, dramatically increase with MH to

reach ∼ 30% at MH ∼ 130 GeV; for this mass value, H → ZZ∗ occurs at the percent level.

In the “intermediate mass” range, the Higgs boson decays mainly into WW and ZZ

pairs, with one virtual gauge boson below the 2MV kinematical thresholds. The only other

decay mode which survives is the bb̄ decay which has a branching ratio that drops from

50% at MH ∼ 130 GeV to the level of a few percent for MH ∼ 2MW . The WW decay

starts to dominate at MH ∼ 130 GeV and becomes gradually overwhelming, in particular

for 2MW <∼ MH <∼ 2MZ where the W boson is real [and thus the decay H → WW occurs

at the two–body level] while the Z boson is still virtual, strongly suppressing the H → ZZ∗

mode and leading to a WW branching ratio of almost 100%.
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MH (GeV) BR(bb̄) BR(ττ) BR(µµ) BR(ss̄) BR(cc̄) BR(tt̄)

115 0.736 7.21 ·10−2 2.51 ·10−4 6.23 ·10−4 3.39 ·10−2 –

120 0.683 6.78 ·10−2 2.35 ·10−4 5.79 ·10−4 3.15 ·10−2 –

130 0.533 5.36 ·10−2 1.86 ·10−4 4.51 ·10−4 2.45 ·10−2 –

140 0.349 3.56 ·10−2 1.23 ·10−4 2.95 ·10−4 1.60 ·10−2 –

150 0.179 1.85 ·10−2 – 1.51 ·10−4 8.23 ·10−3 –

160 4.11 ·10−2 4.30 ·10−3 – – 1.89 ·10−3 –

170 8.64 ·10−3 9.13 ·10−4 – – 3.97 ·10−4 –

180 5.53 ·10−3 5.90 ·10−4 – – 2.54 ·10−4 –

200 2.65 ·10−3 2.89 ·10−4 – – 1.22 ·10−4 –

300 6.21 ·10−4 – – – – –

400 2.35 ·10−4 – – – – 0.131

500 1.20 ·10−4 – – – – 0.197

600 – – – – – 0.176

700 – – – – – 0.144

1000 – – – – – 0.070

MH (GeV) BR(gg) BR (γγ) BR(Zγ) BR(WW ) BR(ZZ) ΓH (GeV)

115 6.74 ·10−2 2.04 ·10−3 6.75 ·10−4 7.48 ·10−2 8.04 ·10−3 3.27 ·10−3

120 6.84 ·10−2 2.16 ·10−3 1.06 ·10−3 0.130 1.49 ·10−2 3.65 ·10−3

130 6.30 ·10−2 2.21 ·10−3 1.91 ·10−3 0.283 3.80 ·10−2 5.00 ·10−3

140 4.82 ·10−2 1.93 ·10−3 2.47 ·10−3 0.480 6.71 ·10−2 8.11 ·10−3

150 2.87 ·10−2 1.39 ·10−3 2.39 ·10−3 0.679 8.27 ·10−2 1.67 ·10−2

160 7.57 ·10−3 5.54 ·10−4 1.23 ·10−3 0.900 4.36 ·10−1 0.77 ·10−1

170 1.82 ·10−3 1.50 ·10−4 3.97 ·10−4 0.965 2.25 ·10−2 0.383

180 1.32 ·10−3 1.02 ·10−4 2.98 ·10−4 0.934 5.75 ·10−1 0.628

200 8.06 ·10−4 – 1.77 ·10−4 0.735 0.261 1.425

300 5.47 ·10−4 – – 0.691 0.307 8.50

400 7.37 ·10−4 – – 0.592 0.276 28.65

500 5.48 ·10−4 – – 0.542 0.260 67.81

600 3.84 ·10−4 – – 0.554 0.269 123.3

700 2.70 ·10−4 – – 0.575 0.281 201.3

1000 – – – 0.622 0.308 667.2

Table 2.1: The Higgs decay branching ratios and total widths in the SM.
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Figure 2.25: The SM Higgs boson decay branching ratios as a function of MH .
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Figure 2.26: The SM Higgs boson total decay width as a function of MH .
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In the “high mass” range, MH >∼ 2MZ , the Higgs boson decays exclusively into the

massive gauge boson channels with a branching ratio of ∼ 2/3 for WW and ∼ 1/3 for ZZ

final states, slightly above the ZZ threshold. The opening of the tt̄ channel for MH ∼ 350

GeV does not alter significantly this pattern, in particular for high Higgs masses: the H → tt̄

branching ratio is at the level of 20% slightly above the 2mt threshold and starts decreasing

for MH ∼ 500 GeV to reach a level where it is below 10% at MH ∼ 800 GeV. The reason

is that, while the H → tt̄ partial decay width grows as MH , the partial decay width into

(longitudinal) gauge bosons increases as M3
H .

Finally, for the total decay width, the Higgs boson is very narrow in the low mass range,

ΓH < 10 MeV, but the width becomes rapidly wider for masses larger than 130 GeV,

reaching ∼ 1 GeV slightly above the ZZ threshold. For larger Higgs masses, MH >∼ 500

GeV, the Higgs boson becomes obese: its decay width is comparable to its mass because of

the longitudinal gauge boson contributions in the decays H →WW,ZZ. For MH ∼ 1 TeV,

one has a total decay width of ΓH ∼ 700 GeV, resulting in a very broad resonant structure.

However, as previously discussed, for this mass value, perturbation theory is jeopardized

anyway.

A final word must be devoted to the uncertainties on these Higgs decay branching ratios.

As discussed at length in this section, the strong coupling constant αs and the quark masses

play a prominent role in Higgs physics. However these parameters are affected by relatively

large experimental errors which then translate into sizable uncertainties in the Higgs boson

decay branching ratios and in the total decay width22. Following Ref. [190], and using the

updated values of the quark masses given in eq. (2.1) and of αs(MZ) = 0.1172 ± 0.002, we

show in Fig. 2.27 the effect of varying the input parameters [but only one at a time] by one

standard deviation from their central values.

In the low to intermediate mass range where the Higgs decays into light quarks and

gluons are significant, these errors are rather large. In particular, the branching ratios for

the charm and gluonic decays have uncertainties at the level of 20% and 10%, respectively.

The main reason for these errors is the ∼ 2% uncertainty in αs, which translates into a

4% (6%) error in Γ(H → gg) ∝ α2
s (α3

s) at the one (two) loop level and in a very strong

variation of the charm quark mass, mc(µ) ∼ [αs(µ)]12/13, at the high scales. The error on

mt does not affect substantially the H → gg branching ratio since, as already noticed, the

heavy top quark limit is a good approximation for these Higgs mass values. The uncertainty

on the dominant H → bb̄ branching ratio is small since the experimental error on the b–

quark mass is relatively smaller and its running is less important than in the case of charm

quarks; in addition for low Higgs masses, Γ(H → bb̄) controls the total width and most of

22Thus, contrary to what is sometimes claimed in the literature, these as not “theoretical errors” but
mostly a reflection of the poor knowledge of the quark masses and QCD coupling constant.
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the uncertainty cancels in the branching ratio. The error on the H → τ+τ− branching ratio

is simply due to that of Γ(H → bb̄) in the total Higgs decay width.

[Note that, in the high mass range above the tt̄ threshold, the errors on the top quark

mass and the strong coupling constant do not affect significantly the branching fraction of

the H → tt̄ decay, the error being at the percent level for MH >∼ 500 GeV, and a fortiori

the branching ratios for H →WW,ZZ which dominate in this Higgs boson mass range.]

Thus, although the expected hierarchy of the Higgs decay modes is still visible from

Fig. 2.27, a more precise measurement of αs and the quark masses will be necessary to check

completely the predictions of the SM for the Higgs decay branching ratios which, as will be

discussed in the next sections, can be measured at the level of a few percent. In turn, if

we are confident enough that the observed Higgs is the SM Higgs particle, one can turn the

experimental measurement of the branching ratios into a determination of the light quark

masses and αs at the scale of the Higgs boson mass, in much the same way as the running

b–quark mass has been determined in Z decays at LEP1 [47].

ggZZ
WW

�
��
b�b BR(H)

MH [GeV℄ 160150140130120110100

1
0.1

0.01
Figure 2.27: The SM Higgs boson decay branching ratios in the low and intermediate Higgs
mass range including the uncertainties from the quark masses mt = 178 ± 4.3 GeV, mb =
4.88 ± 0.07 GeV and mc = 1.64 ± 0.07 GeV as well as from αs(MZ) = 0.1172 ± 0.002.
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3 Higgs production at hadron colliders

3.1 Higgs bosons at hadron machines

3.1.1 Generalities about hadron colliders

The pp̄ collider23 Tevatron at Fermilab is the highest energy accelerator available today. In

the previous Run I, the collider was operating at an energy of
√
s = 1.8 TeV in the pp̄ center

of mass, and the CDF and DØ experiments each have collected data corresponding to about∫
Ldt ∼ 100 pb−1 of integrated luminosity24. The upgrade with the Main Injector allows

the machine to possibly deliver an order of magnitude more instantaneous luminosity. In

Run II, it is expected that 5 fb−1 of data will be collected, with the possibility of increasing

the sample to 10 fb−1 if the machine runs efficiently until the end of the decade [215]; see

Ref. [216] for the luminosity delivered by the machine. In Run II, the energy of the machine

has been raised from
√
s = 1.8 TeV to

√
s = 1.96 TeV which, typically, increased the cross

sections for some physics processes by about 30%. The CDF and DØ detectors have also

been upgraded, allowing them to make more sensitive searches than previously [217, 218].

The CERN Large Hadron Collider (LHC) under construction is a pp collider designed to

run at an energy
√
s = 14 TeV in the pp center of mass and a luminosity of L = 1034 cm−2 s−1

(high luminosity regime). The first collisions are expected in June 2007 but only with an

instantaneous luminosity of L = 1033 cm−2 s−1 (low luminosity regime); see [219, 220]. At

the end of the decade, the accumulated integrated luminosity is expected to be L = 30

fb−1, to be increased to 100 fb−1 per year when the machine runs at the design luminosity.

The hope is to collect at least 300 fb−1 of data per experiment during the entire LHC

operation [219]. There are plans, the so-called SLHC, to operate the LHC at still the same

energy
√
s ∼ 14 TeV, i.e. retaining the present magnets and dipoles, but at the luminosity

of L = 1035 cm−2 s−1 leading to 1 ab−1 integrated luminosity per year [221–223]. With new

magnets with field strengths of approximately 16 Tesla (which do not currently exist), the

energy of the collider could be raised to
√
s = 28 TeV. Designs for a very large hadron

collider (VLHC), with a c.m. of mass energy of the order of 40 TeV to 200 TeV [a revival of

the ancient Eloisatron idea, see Ref. [224] for instance], are currently studied [225,226]. The

SLHC and VLHC options will only be briefly discussed in this report.

The two general purpose experiments under construction, ATLAS [227, 228] and CMS

[229,230], have been optimized to cover a large spectrum of possible signatures in the LHC

environment [231]. However, the Higgs search, together with Supersymmetry, has been the

major guide to define the detector requirements and performances for the experiments, and

most of the simulation studies have been performed for these two physics cases.

23For simplicity, we will use sometimes the notation pp for both pp and pp̄ collisions in this review.
24Also for simplicity, we will denote by L both the instantaneous and integrated luminosities.
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The total cross section at hadron colliders is extremely large. It is about 100 mb at the

LHC, resulting in an interaction rate of ≈ 109 Hz at the design luminosity. In this hostile

environment, the detection of processes with signal to total hadronic cross section ratios of

about 10−10, as is the case for the production a SM Higgs boson in most channels, will be

a difficult experimental challenge [232–240]. The huge QCD–jet backgrounds prevents from

detecting the produced Higgs boson [and any particle in general] in fully hadronic modes.

Recalling that when ignoring the light quark and gluon modes, the Higgs decays mostly into

bb̄, ττ,WW,ZZ and γγ, Zγ final states in the mass range below MH <∼ 160 GeV and into

WW,ZZ and tt̄ final states above this mass value, the following general requirements have

to be met in order to extract a signal in the entire Higgs mass range:

– In the decay H → WW,ZZ, at least one of the W/Z bosons has to be observed in its

leptonic decays which have small branching ratios, BR(W → ℓν) ≃ 20% with ℓ = µ, e and

BR(Z → ℓ+ℓ−) ≃ 6%; in the latter case the invisible neutrino decays, BR(Z → νν) ≃ 18%,

can also be sometimes used to increase the statistics. A very good detection of isolated

high transverse momentum muons and electrons, and an accurate calorimetry with hermetic

coverage to measure the transverse energy of the missing neutrinos is thus required.

– A very high resolution on the photons is necessary to isolate the narrow γγ signal peak

in the decay H → γγ from the large continuum γγ background. Since the Higgs boson width

is small, a few MeV for MH ≃120–140 GeV, the measured mass peak is entirely dominated

by the experimental resolution. Furthermore, the very large number of high transverse

momentum π0 decaying into two photons, should be rejected efficiently.

- In the dominant Higgs decay mode in the low mass range, H → bb̄, excellent micro–

vertex detectors are needed to identify the b–quark jets with a high efficiency and a high

purity. τ–lepton identification is also important to detect the decays H → τ+τ− and the

invariant mass of the final state should be reconstructed with a good resolution.

Together with good granularity and hermeticity coverage for jet resolution and missing

transverse energy, these requirements are apparently met by the CDF and DØ detectors at

Tevatron [218] and are expected to be met by the ATLAS and CMS detectors at LHC.

The most unambiguous signal for a Higgs boson [and for any new particle] is a peak in the

invariant mass distribution of its decay products. The narrow mass peak can be discovered

without any Monte–Carlo simulation for the backgrounds, since the latter can be precisely

measured from the side bands. In addition, the discovery can be made even if the signal is

rather low and the background large, since the significance is ∝ S/
√
S +B. This however

is not true when it comes to study some properties of the Higgs boson, such as its couplings

and its spin–parity quantum numbers. In this case, Monte–Carlo simulations are needed to

determine the cross sections and the various characteristics distributions of the signal and

backgrounds. The most precise theoretical predictions are therefore required.
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3.1.2 Higgs production at hadron machines

In the Standard Model, the main production mechanisms for Higgs particles at hadron

colliders make use of the fact that the Higgs boson couples preferentially to the heavy

particles, that is the massive W and Z vector bosons, the top quark and, to a lesser extent,

the bottom quark. The four main production processes, the Feynman diagrams of which are

displayed in Fig. 3.1, are thus: the associated production with W/Z bosons [241, 242], the

weak vector boson fusion processes [112, 243–246], the gluon–gluon fusion mechanism [185]

and the associated Higgs production with heavy top [247,248] or bottom [249,250] quarks:

associated production with W/Z : qq̄ −→ V +H (3.1)

vector boson fusion : qq −→ V ∗V ∗ −→ qq +H (3.2)

gluon − gluon fusion : gg −→ H (3.3)

associated production with heavy quarks : gg, qq̄ −→ QQ̄+H (3.4)

q
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V ∗

•
H

V

•
q

q
V ∗

V ∗

H

q

q

•
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g

H
Q •

g

g

H

Q

Q̄

Figure 3.1: The dominant SM Higgs boson production mechanisms in hadronic collisions.

There are also several mechanisms for the pair production of the Higgs particles

Higgs pair production : pp −→ HH +X (3.5)

and the relevant sub–processes are the gg → HH mechanism, which proceeds through heavy

top and bottom quark loops [251,252], the associated double production with massive gauge

bosons [253, 254], qq̄ → HHV , and the vector boson fusion mechanisms qq → V ∗V ∗ →
HHqq [255, 256]; see also Re. [254]. However, because of the suppression by the additional

electroweak couplings, they have much smaller production cross sections than the single

Higgs production mechanisms above.
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Also suppressed are processes where the Higgs is produced in association with one [258,

259], two [260, 261] or three [262] hard jets in gluon–gluon fusion, the associated Higgs

production with gauge boson pairs [263, 264], the production with a vector boson and two

jets [264–266]. Other production processes exist which have even smaller production cross

sections [155, 267–272]. Finally, Higgs bosons can also be produced in diffractive processes

[273–277]. For the interesting exclusive central diffractive processes [275–277], the mechanism

is mediated by color singlet exchanges leading to the diffraction of the incoming hadrons and

a centrally produced Higgs boson. A mixture of perturbative and non perturbative aspects

of QCD is needed to evaluate the cross sections, leading to uncertainties in the predictions.

We will discuss all these processes in detail, analyzing not only the total production

cross sections but also the differential distributions and, in particular, the Higgs boson

transverse momentum and rapidity distributions. In addition, we will pay a special attention

to three very important points: the QCD radiative corrections or the K–factors, the residual

cross sections dependence on the renormalization and factorization scales, and the choice of

different sets of parton distributions functions (PDFs) with which one has to convolute the

partonic cross sections to obtain the total hadronic cross sections.

3.1.3 The higher–order corrections and the K–factors

It is well known that for processes involving strongly interacting particles, as is the case for

the ones that we will consider here, the lowest order (LO) cross sections are affected by large

uncertainties arising from higher–order (HO) corrections. If at least the next–to–leading

order (NLO) QCD corrections to these processes are included, the total cross sections can

be defined properly and in a reliable way in most cases: the renormalization scale µR at

which one defines the strong coupling constant and the factorization scale µF at which one

performs the matching between the perturbative calculation of the matrix elements and the

non perturbative part which resides in the parton distribution functions, are fixed and the

generally non–negligible radiative corrections are taken into account.

The impact of higher–order QCD corrections is usually quantified by calculating the K–

factor, which is defined as the ratio of the cross section for the process [or its distribution]

at HO with the value of αs and the PDFs evaluated also at HO, over the cross section [or

distribution] at LO with αs [for those processes which are QCD processes at LO] and the

PDFs consistently also evaluated at LO25

K =
σHO(pp→ H +X)

σLO(pp→ H +X)
(3.6)

25Note that if the K–factor is defined as the ratio of NLO to LO cross sections both evaluated with αs

and PDFs at NLO, it would be in many cases larger since the value of the strong coupling constant, which
appears in both the matrix element squared of the hard process and in the parton distribution functions, is
smaller at NLO, αNLO

s (MZ) ∼ 0.12, than at LO, αLO
s (MZ) ∼ 0.13, thereby decreasing the LO cross section.
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All the dominant Higgs production processes which are addressed here will be discussed at

least at NLO [278]. At this order, the QCD corrections are known since more than a decade

for the associated production with W/Z bosons [279–281], the vector boson fusion processes

[281–284] and the gluon–gluon mechanism [180,187,285,286], while the NLO corrections to

the associated production with heavy quarks have been calculated only recently [287–291].

To improve further the theoretical predictions for the cross sections, one can also resum the

soft and collinear gluon radiation parts which in general lead to large logarithms and include

the dominant electroweak radiative corrections which however, are much smaller than the

QCD corrections, in particular when the IB approximation of §1.2.4 is used.

The QCD corrections to the transverse momentum and rapidity distributions are also

available in the case of vector boson fusion [283, 284] and gluon–gluon fusion [292–298]. In

the latter case, the resummation of the large logarithms for the PT distribution has been

performed at next–to–next–to–leading–logarithm (NNLL) accuracy. The QCD corrections

to the various distributions in the associated Higgs production with tt̄ are discussed in [287].

In two cases, the associated HV production [299] and the gg → H fusion mechanism in

the approximation where the top quark is very heavy [300–303], the calculation of the pro-

duction cross sections at NNLO has been performed recently and will be discussed. However,

these calculations are not sufficient to obtain a full NNLO prediction: the cross sections must

be folded with the NNLO evolved PDFs, which are also necessary. The latter require the

calculation of the Altarelli–Parisi splitting functions [304] up to three loops and until very

recently the latter were not completely known at this order. Nevertheless, a large number

of moments of these functions were available [305] which, when combined with additional

information on the behavior at small x, allowed to obtain an approximation of the splitting

functions at the required order. The NNLO MRST [306] parton distributions followed this

approach and have been therefore adopted for NNLO calculations26.

3.1.4 The scale dependence

The evaluation of the residual theoretical uncertainties in the production cross sections or

distributions, due to the not yet calculated higher–order corrections, is generally based on

the exploration of the cross section dependence on the renormalization scale µR and on the

factorization scale µF . Starting from a median scale µ0 which, with an educated guess,

is considered as the “natural scale” of the process and is expected to absorb the large

logarithmic corrections, the by now standard convention is to vary the two scales, either

26The calculation of the Nf part of the non–singlet structure function in DIS, from which one can extract
the corresponding splitting function, is available since some time and has been compared to the approximate
result of Ref. [305] and full agreement has been obtained, giving a great confidence that the approximate
NNLO PDFs are rather accurate. Recently, the full calculation of the NNLO splitting function has been
completed [307] and they alter the NNLO MRST PDFs only by a small amount [308].
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collectively or independently [i.e. keeping one scale fixed at the reference value], within

µ0/a ≤ µF , µR ≤ aµ0 (3.7)

The value of the constant a is in general chosen to be 2 or 3, the latter case being more

conservative and will be adopted in most cases. In some situations in which widely different

scales are involved in the processes, it is more prudent to use larger values for a, as will be

seen in the case of Higgs production in bottom quark fusion for instance.

Note that the scale dependence at leading order can be studied by defining a kind of

K–factor for the LO cross section, KLO, by evaluating the latter at given factorization and

renormalization scales µF and µR, and normalizing to the LO cross sections evaluated at the

median scale µ0

KLO = σLO(µF , µR)/σLO(µF = µR = µ0) (3.8)

By varying the scales µR and µF , one then obtains an uncertainty band: the narrower

the band is, the smaller the higher–order corrections are expected to be. Note that the scale

uncertainty should be in principle reduced when higher–order corrections are included, that

is, the scale variation should be smaller at NNLO, than at NLO, than at LO. However, this

is not the case all the time, and a counter–example will be discussed later.

One should nevertheless caution that the variation of the cross section with respect to the

scale choice is unphysical: it is just a reflexion of the truncation of the perturbative series; if

the cross sections are known to all orders, they will not exhibit this dependence. The scale

variation is thus, by no means a rigorous way to estimate the theoretical uncertainty. At

best, it might only give an indication of the “full” uncertainty. This can be seen in many

cases, where for instance the NLO and LO uncertainty bands for some production cross

sections do not overlap at all, as will be shown later.

3.1.5 The parton distribution functions

Parton distribution functions (PDFs), which describe the momentum distribution of a parton

in the proton, play a central role at hadron colliders. A precise knowledge of the PDFs over a

wide range of the proton momentum fraction x carried by the parton and the squared center

of mass energy Q2 at which the process takes place, is mandatory to precisely predict the

production cross sections of the various signal and background processes. However, they are

plagued by uncertainties, which arise either from the starting distributions obtained from

a global fit to the available data from deep–inelastic scattering, Drell–Yan and hadronic

data, or from the DGLAP evolution [304, 309] to the higher Q2 relevant to the scattering

processes. Together with the effects of unknown perturbative higher–order corrections, these

uncertainties dominate the theoretical error on the predictions of the cross sections.
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The CTEQ [310] and MRST [311] collaborations, as well as Alekhin [312] and others [313],

recently introduced new schemes, which provide the possibility of estimating the intrinsic

and spread uncertainties on the prediction of physical observables at hadron colliders. The

CTEQ and MRST scheme is based on the Hessian matrix method which enables a charac-

terization of a parton parametrization in the neighborhood of the global χ2 minimum fit and

gives an access to the uncertainty estimation through a set of PDFs that describes this neigh-

borhood. The corresponding PDFs are constructed as follows: (i) a global fit of the data is

performed using the free parameters NPDF = 20 for CTEQ and NPDF = 15 for MRST; this

provides the nominal PDF (reference set) denoted by S0 and corresponding to CTEQ6M and

MRST2001C, respectively; (ii) the global χ2 of the fit is increased by ∆χ2 =100 for CTEQ

and ∆χ2 =50 for MRST, to obtain the error matrix; (iii) the error matrix is diagonalized to

obtain NPDF eigenvectors corresponding to NPDF independent directions in the parameter

space; (iv) for each eigenvector, up and down excursions are performed in the tolerance gap,

leading to 2NPDF sets of new parameters, corresponding to 40 new sets of PDFs for CTEQ

and 30 sets for MRST. They are denoted by Si, with i = 1, 2NPDF.

To build the Alekhin PDFs [312], only light–target deep–inelastic scattering data are

used. This PDF set involves 14 parameters, which are fitted simultaneously with αs and

the structure functions, leading to 2NPDF = 30 sets of PDFs for the uncertainty estimation.

Note that the three PDF sets use different values for αs: at NLO, the central sets CTEQ6M,

MRST2001C and A02 use, respectively, αNLO
s (MZ) = 0.118, 0.119 and 0.117.

The three sets of PDFs discussed above can be used to calculate the uncertainty on a

cross section σ in the following way [314]: one first evaluates the cross section with the

nominal PDF S0 to obtain the central value σ0. One then calculates the cross section

with the Si PDFs, giving 2NPDF values σi, and defines, for each σi value, the deviations

σ±
i =| σi − σ0 | when σi

>
<σ0. The uncertainties are summed quadratically to calculate

∆σ± =
√∑

i σ
±2
i . The cross section, including the error, is then given by σ0|+∆σ+

−∆σ− . This

procedure will be applied to estimate the uncertainties in the cross sections for SM Higgs

production in the four main mechanisms. The spread in the cross section prediction will

depend on the considered partons and their x regime that we will briefly summarize below.

The differences between the PDFs originate from three main sources: (i) the choice of

the data used in the global fit, (ii) the theoretical assumptions made for the fit and (iii) the

choice of the tolerance used to define the error in the PDFs. Thus, for example, the MRST

and CTEQ differences arise from points (ii) and (iii) only, with point (iii) dominating in

most cases. The differences between the two approaches [310,311] are explained in detail in

Ref. [311], and for instance the CTEQ6 high-x gluon is larger than the MRST2001 one. The

differences with the Alekhin analysis, which does not use the Tevatron data, are larger.

To be more qualitative, we present in Fig. 3.2, the MRST and Alekhin densities for the
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gluon and for the up and down quarks and antiquarks, normalized to the CTEQ6 ones, for

a wide range of x values and for a fixed c.m. energy Q2 = (100 GeV)2. One notices the

following main features: (i) the MRST gluon PDF is smaller than the CTEQ one, except

for values x ∼ 0.1; in contrast, the Alekhin gluon PDF is larger than the CTEQ one for all

x values, except for x ∼ 0.01 and for very high x. (ii) The MRST (anti)quark PDFs are

practically equal in magnitude and are smaller than the CTEQ ones for low x, while they are

in general slightly larger for higher x, except for values near unity; in the Alekhin case, all

(anti)quark PDFs are larger than the CTEQ ones, except for the ū density above x ∼ 0.05.

For values, x >∼ 10−4, the differences between the Alekhin and the CTEQ6 PDFs are more

pronounced than the differences between the MRST and the CTEQ ones.

d̄
ū
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Figure 3.2: MRST and Alekhin densities for the gluon, up quark/down quark and antiquarks,
normalized to the CTEQ6 ones, as a function of x and for Q2 = (100 GeV)2; from Ref. [314].

As for the CTEQ and MRST parameterizations, three different behaviors of the uncer-

tainty bands according to three x ranges can be distinguished: decreasing uncertainties at

low x, constant or slightly oscillating ones at intermediate x, and increasing ones at high

x. The magnitude of these uncertainties depends on the considered parton and on the c.m.

energy Q2. In the case of quarks, the three behaviors are observed: the low-x behavior

extends up to x ∼ few 10−3, and the high-x one starts in the neighborhood of x = 0.7. At

high Q2, the uncertainties at high and low-x values exceed a few tens of a percent and in

the intermediate regime, they are less than a few percent. In the gluon case and at high Q2,

the low-x and the intermediate-x bands are not as well separated as in the case of quarks;

the uncertainty band reaches also the few percent level. The high-x regime starts in the

neighborhood of x ∼ 0.3, i.e earlier than in the case of quarks.
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3.2 The associated production with W/Z bosons

3.2.1 The differential and total cross sections at LO

It is useful to consider the cross section for the associated production of the Higgs particle

with massive gauge bosons, which then decay into two massless fermions, in a completely

differential form so that various distributions can be presented and cuts can be imposed on

the final decay products. For the Higgs boson, since it is a scalar particle, the incorporation of

its decays into a given final state, H → X, is simply done by multiplying the matrix element

squared by the branching ratio BR(H → X) and generating the final state X isotropically

in the rest frame of the H boson.

The general form of the matrix element squared for the process

q1(p1)q̄2(p2) → V ∗(k = p1 + p2) → V (k1 = p3 + p4)H(k2) → f3(p3)f̄4(p4)H(k2) (3.9)

where the momenta of the particles are explicitly written, with ŝ = k2 = (p1 + p2)
2 being

the c.m. energy of the partonic subprocess, can be expressed as

|M|2 = 2
√

2Nf
c G

3
µM

8
V

1

(k2 −M2
V )2 + Γ2

VM
2
V

1

(k2
1 −M2

V )2 + Γ2
VM

2
V

[
(3.10)

+
(
(v̂q1

+ âq1
)2(v̂f3

+ âf3
)2 + (v̂q1

− âq1
)2(v̂f3

− âf3
)2
)
(p1 · p4)(p2 · p3)

+
(
(v̂q1

+ âq1
)2(v̂f3

− âf3
)2 + (v̂q1

− âq1
)2(v̂f3

+ âf3
)2
)
(p1 · p3)(p2 · p4)

]

where the reduced fermion couplings to gauge bosons are as usual: âf = 2I3
f , v̂f = 2I3

f −
4Qfs

2
W for V = Z and v̂f = âf =

√
2 for V = W . Averaging over the quark spins and colors,

dividing by the flux factor, and integrating over the three–particle phase–space, one obtains

the total cross section of the subprocess. In the case where the decay products of the final

vector boson are ignored, one would have a simple 2 → 2 subprocess, with an integrated

cross section at lowest order given by [241,242]

σ̂LO(qq̄ → V H) =
G2

µM
4
V

288πŝ
(v̂2

q + â2
q)λ

1/2(M2
V ,M

2
H ; ŝ)

λ(M2
V ,M

2
H ; ŝ) + 12M2

V /ŝ

(1 −M2
V /ŝ)

2
(3.11)

with λ being the usual two–body phase space function λ(x, y; z) =(1−x/z−y/z)2−4xy/z2.

Note that the Higgs and the vector boson have opposite transverse momenta and the

differential partonic distribution with respect to the pT is given by

dσ̂LO

dp2
T

=
G2

µM
4
V

24π

v2
q + a2

q

(ŝ−M2
Z)2

2M2
Z + p2

T

2(M2
Z +M2

H) − ŝ
√
λ− 4p2

T/ŝ
(3.12)

The partonic cross section can be recovered by integrating pT in the range 0 ≤ pT ≤
√

ŝλ
2

.
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In fact, this process can be viewed simply as the Drell–Yan production of a virtual vector

boson with k2 6= M2
V , which then splits into a real vector boson and a Higgs particle. The

energy distribution of the full subprocess can be written at leading order as

σ̂(qq̄ → HV ) = σ̂(qq̄ → V ∗) × dΓ

dk2
(V ∗ → HV ) (3.13)

where, in terms of 0 ≤ k2 ≤ Q2 = ŝ and the two-body phase-space function λ, one has

dΓ

dk2
(V ∗ → HV ) =

GµM
4
V

2
√

2π2

λ1/2(M2
V ,M

2
H ; k2)

(k2 −M2
V )2

(
1 +

λ(M2
V ,M

2
H ; k2)

12M2
V /k

2

)
. (3.14)

The total production cross section is then obtained by convoluting with the parton densities

and summing over the contributing partons

σLO(pp→ V H) =

∫ 1

τ0

dτ
∑

q,q̄

dLqq̄

dτ
σ̂LO(ŝ = τs) (3.15)

where τ0 = (MV +MH)2/s, s being the total hadronic c.m. energy and the parton luminosity

is defined in terms of the parton densities qi(xi, µ
2
F ) defined at a factorization scale µF , by

∑

q,q̄

dLqq̄

dτ
=
∑

q1,q̄2

∫ 1

τ

dx

x

[
q1(x, µ

2
F ) q̄2(τ/x, µ

2
F )
]

(3.16)
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Figure 3.3: Total production cross sections of Higgs bosons in the strahlung qq̄ → H +W/Z
processes at leading order at the LHC (left) and at the Tevatron (right). For qq̄ → HW , the
final states with both W+ and W− have been added. The MRST set of PDFs has been used.
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The total production cross sections are shown as a function of the Higgs boson mass for

the Tevatron and the LHC in both the HW± and HZ channels in Fig. 3.3; the MRST parton

densities are used. The cross sections for W± final states are approximately two times larger

than the ones for the HZ final state at both colliders. If, in addition, one requires the gauge

bosons to decay into charged leptons ℓ = µ+e, the charged channel is much more interesting

since BR(W± → ℓ±ν) ∼ 20% while BR(Z → ℓ+ℓ−) ≃ 6%. The various detection channels

at the LHC [315–319] and at the Tevatron [320–323] and [319] will be discussed in §3.7.

3.2.2 The QCD radiative corrections

The NLO corrections

The factorization of the pp→ HV cross section eq. (3.13) holds in principle at any order of

perturbation theory in the strong interaction and one can thus write

dσ̂

dk2
(pp→ HV +X) = σ(pp→ V ∗ +X) × dΓ

dk2
(V ∗ → HV ) , (3.17)

where dΓ/dk2 is given by eq. (3.14). Therefore, the QCD corrections to the Higgs–strahlung

process, derived at NLO in Refs. [279–281], are simply the corrections to the Drell–Yan pro-

cess [84, 85], as pointed out in Ref. [316, 324].

V ∗

q

q̄

g
V ∗

q

q̄

g

V ∗

q

q̄

g

Figure 3.4: NLO QCD corrections to the vector boson–quark–antiquark vertex.

At NLO, the QCD corrections to the Drell–Yan process consist of virtual corrections

with gluon exchange in the qq̄ vertex and quark self-energy corrections, which have to be

multiplied by the tree-level term, and the emission of an additional gluon, the sum of which

has to be squared and added to the corrected tree-level term; see Fig. 3.4.

Including these contributions, and taking into account the virtuality of the vector boson,

the LO cross section is modified in the following way

σNLO = σLO + ∆σqq̄ + ∆σqg (3.18)

with
∆σqq̄ =

αs(µR)

π

∫ 1

τ0

dτ
∑

q

dLqq̄

dτ

∫ 1

τ0/τ

dz σ̂LO(τzs) ωqq̄(z)

∆σqg =
αs(µR)

π

∫ 1

τ0

dτ
∑

q,q̄

dLqg

dτ

∫ 1

τ0/τ

dz σ̂LO(τzs) ωqg(z) (3.19)
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with the coefficient functions [84]

ωqq̄(z) = −Pqq(z) log
µ2

F

τs
+

4

3

[(
π2

3
− 4

)
δ(1 − z) + 2(1 + z2)

(
log(1 − z)

1 − z

)

+

]

ωqg(z) = −1

2
Pqg(z) log

(
µ2

F

(1 − z)2τs

)
+

1

8

[
1 + 6z − 7z2

]
(3.20)

where µR denotes the renormalization scale and Pqq, Pqg are the well-known Altarelli–Parisi

splitting functions, which are given by [304,325]

Pqq(z) =
4

3

[
1 + z2

(1 − z)+

+
3

2
δ(1 − z)

]

Pqg(z) =
1

2

[
z2 + (1 − z)2

]
(3.21)

The index + denotes the usual distribution F+(z) = F(z)− δ(1− z)
∫ 1

0
dz′F(z′). Note that

the cross section depends explicitly on log(µ2
F/Q

2); the scale choice µ2
F = Q2 therefore avoids

the occurrence of these potentially large logarithms. The renormalization scale dependence

enters in the argument of αs and is rather weak. In most of our discussion, we will set the

two scales at the invariant mass of the HV system µF = µR = MHV . For this choice, the

NLO corrections increase the LO cross section by approximately 30%.

The NNLO corrections

The NNLO corrections, i.e. the contributions at O(α2
s), to the Drell–Yan process pp →

V ∗ consist of the following set of corrections besides the one–loop squared terms [see also

Fig. 3.5a–c]: a) two-loop corrections to qq̄ → V ∗, which have to be multiplied by the Born

term; b) one-loop corrections to the processes qg → qV ∗ and qq̄ → gV ∗, which have to be

multiplied by the tree-level gq and qq̄ terms initiated by the diagrams shown in Fig. 3.4; c)

tree-level contributions from qq̄, qq, qg, gg → V ∗+ 2 partons in all possible ways, with the

sums of these diagrams for a given initial and final state to be squared and added.

V ∗

q

q̄

a)

q

q̄

b)

q

q̄

c)

Figure 3.5: Diagrams for the NNLO QCD corrections to the process qq̄ → W ∗.

These corrections have been calculated a decade ago in Ref. [85] and recently updated

[300]. However, these calculations are not sufficient to obtain a full NNLO prediction: in the
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case of pp → HZ production, because the final state is electrically neutral, two additional

sets of corrections need to be considered at O(α2
s) [299].

Indeed, contrary to charged W bosons, the neutral Z bosons can be produced via an

effective Z–gluon–gluon coupling induced by quark loops. This can occur at the two–loop

level in a box+triangle diagram in qq̄ → Z∗ [to be multiplied by the Born term], or at the

one–loop level where vertex diagrams appear for the qq̄ → gZ∗ and qg → qZ∗ processes [to

be multiplied by the respective O(αs) tree–level terms]. Because gluons have only vector

couplings to quarks and the effective Zgg coupling must be a color singlet, only the axial–

vector part aq = 2I3
Q of the Zqq̄ coupling will contribute as a consequence of Furry’s theorem

[326]. Since aq differs only by a sign for isospin up– and down–type quarks, their contribution

vanishes in the case of quarks that are degenerate in mass. Thus, in the SM, only the top and

bottom quarks will contribute to these topologies. These corrections have been evaluated in

Refs. [327, 328] and have been shown to be extremely small and can be safely neglected.

Another set of diagrams that contribute at O(α2
s) to ZH and not to WH production

[again because of charge conservation] is the gluon–gluon-initiated mechanism gg → HZ

[329,330]. It is mediated by quark loops [see Fig. 3.6] which enter in two ways. There is first

a triangular diagram with gg → Z∗ → HZ, in which only the top and bottom quark contri-

butions are present, since the Z boson couples only axially to the internal quarks, because of

C–invariance, the contribution of a mass degenerate quark weak–isodoublet vanishes. There

are also box diagrams where both the H and Z bosons are emitted from the internal quark

lines and where only the contribution involving heavy quarks which couple strongly to the

Higgs boson [the top quark and, to a lesser extent, the bottom quark] are important. It

turns out that the two contributing triangle and box amplitudes interfere destructively.

Z∗

Q

g

g

H

Z

H

Q

g

g Z

Figure 3.6: Diagrams for the gg → HZ process, which contributes to O(α2
s).

At the LHC, the contribution of this gluon–gluon fusion mechanism to the pp→ HZ total

production cross section can be substantial. This is due to the fact that the suppression of

the cross section by a power (αs/π)2 is partly compensated by the increased gluon luminosity

at high energies. In addition, the tree–level cross section for qq̄ → HZ drops for increasing

c.m. energy and/or MH values, since it is mediated by s–channel gauge boson exchange.

Note that the cross section for this process is negligible at the Tevatron, because of the low

gluon luminosity and the reduced phase space.
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Numerical results

The K–factors, defined as the ratios of the cross sections at higher order with αs and the

PDFs evaluated also at higher order, relative to the LO order cross sections with αs and the

PDFs consistently evaluated also at LO, are shown at NLO and NNLO in Figs. 3.7 in solid

black lines for the LHC (left–hand side) and the Tevatron (right–hand side) as a function of

the Higgs mass for the process pp → HW . The scales have been fixed to µF = µR = MHV ,

where MHV is the invariant mass of the HV system, and the MRST sets of PDFs for each

perturbative order are used in a consistent manner.

The NLO K–factor is practically constant at the LHC, increasing only from KNLO = 1.27

for MH = 110 GeV to KNLO = 1.29 for MH = 300 GeV. The NNLO contributions increase

the K–factor by a mere 1% for the low MH value and by 3.5% for the high value. At the

Tevatron, the NLO K–factor is somewhat higher than at the LHC, enhancing the cross

section between KNLO = 1.35 for MH = 110 GeV and KNLO = 1.3 for MH = 300 GeV with a

monotonic decrease. The NNLO corrections increase the K–factor uniformly by about 10%.

Thus, these NNLO corrections are more important at the Tevatron than at the LHC.

Because of the slightly different phase space and scale, the K–factor for pp→ ZH is not

identical to the K–factor for pp → WH . However, since (M2
Z −M2

W )/ŝ is small and the

dependence of dΓ in eq. (3.13) on k2 is not very strong in the range that we are considering,

the K–factors for the two processes are very similar when the contribution of the gg → HZ

component to be discussed later is not included.

The bands around the K–factors in Fig. 3.7 represent the variation of the cross sections

when they are evaluated at renormalization and factorization scale values that are indepen-

dently varied from 1
3
MHV ≤ µF (µR) ≤ 3MHV , while the other is fixed to µR (µF ) = MHV ;

the normalization is provided by the production cross section evaluated at scales µF = µR =

MHV . A K–factor for the LO cross section, KLO, has also been defined by evaluating the

latter at given factorization and renormalization scales and normalizing to the LO cross

sections evaluated at the central scale, which, in our case, is given by µF = µR = MHV .

As can be seen, except from the accidental cancellation of the scale dependence of the LO

cross section at the LHC, the decrease of the scale variation is strong when going from LO

to NLO and then to NNLO. For MH = 120 GeV, the uncertainty from the scale choice at

the LHC drops from 10% at LO, to 5% at NLO, and to 2% at NNLO. At the Tevatron and

for the same Higgs boson mass, the scale uncertainty drops from 20% at LO, to 7% at NLO,

and to 3% at NNLO.

If this variation of the cross section with the two scales is taken as an indication of the

uncertainties due to the not yet calculated higher–order corrections, one concludes that once

the NNLO contributions are included in the prediction, the cross section for the pp → HV

process is known at the rather accurate level of a few percent.
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Figure 3.7: The K–factors for pp → HW at the LHC (left) and the Tevatron (right) as a
function of MH at LO, NLO and NNLO (solid black lines). The bands represent the spread
of the cross section when the renormalization and factorization scales are varied in the range
1
3
MHV ≤ µR (µF ) ≤ 3MHV , the other scale being fixed at µF (µR) = MHV ; from Ref. [299].

3.2.3 The electroweak radiative corrections

The associated W/Z + H process is the only Higgs production mechanism for which the

complete calculation of the O(α) electroweak corrections has been performed [331]. There

are a few hundred Feynman diagrams contributing at the one–loop level, and some generic

ones are shown in Fig. 3.8. The radiative corrections can be cast into three categories.

•
q

q̄

γ, Z,W
f

V

H •
•

γ

Figure 3.8: Generic diagrams for the O(α) corrections to the pp→ HV production process.

There are first QED corrections in which photons are exchanged in the initial quark–

antiquark states and in order to obtain infrared finite corrections, real–photon bremsstrahlung

has to be added. Having done this, O(α) corrections due to collinear photon emission and in-

volving logarithms of the initial state quark masses are still present. These mass singularities

are absorbed into the PDFs in exactly the same way as in QCD by MS factorization. This,

however, also requires the inclusion of the corresponding O(α) corrections into the DGLAP

evolution of these distributions and into their fit to experimental data, which has not been

performed yet. Nevertheless, an approximate inclusion of these corrections to the DGLAP

evolution shows [332] that the impact of these corrections on the quark distributions is well

below 1%, at least in the x range that is relevant at the Tevatron and the LHC. This is also

supported by a recent analysis of the MRST collaboration [333] which took into account

these effects into the DGLAP equations.
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The bulk of the electroweak corrections can be in principle incorporated by using the im-

proved Born approximation discussed in §1.2.4. Using the Fermi coupling constant Gµ, rather

than α(0), as input in the tree–level cross section, πα →
√

2GµM
2
W (1−M2

W/M
2
Z) takes into

account the contribution ∆r ≃ ∆α(M2
Z)− 3∆ρ. In this case, the large universal corrections

originating from the light fermion contributions to the running of α [2 × ∆α(MZ) ∼ 12%,

since the cross section is proportional to α2] and those which are quadratic in the top quark

[2 × 3∆ρ ∼ 6%] are automatically included. One has also to include the contributions that

are quadratic in the top mass and which are contained in the HV V vertex as it was discussed

in §2.4.2, i.e. δHV V ∼ −5xt with xt = G2
µm

2
t/(8

√
2π2) at this order.

Finally, one has to include the bosonic one–loop corrections which involve many self-

energy, vertex, and box correction diagrams and which have to be calculated by brute force

using standard techniques. The calculation of Ref. [331] has been performed in the on–shell

renormalization scheme. It turns out that the non–universal bosonic contributions are rather

large and negative, and in fact dominate over the fermionic corrections and even over the

photonic initial state corrections.
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Figure 3.9: K–factors for WH and ZH production at the LHC (left figure) and the Tevatron
(right figure) after inclusion of the NNLO QCD and the electroweak O(α) corrections [334].

The fermionic contributions being positive and the bosonic ones negative, there is a

partial cancellation of the two contributions, and since the bosonic corrections are more

important, the net effect is that the total electroweak corrections decrease the qq̄ → HV

production cross section at both the Tevatron and the LHC by approximately 5 to 10% for

Higgs masses in the range 100–200 GeV where the production rates are large enough. This is

shown in Fig. 3.9 where we display the K–factors for pp→ HW at the Tevatron and LHC as

functions of MH , when only NLO+NNLO QCD corrections are included (upper bands) and

when the electroweak corrections are also taken into account (lower bands). The thickness of
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the bands is due to the scale variation as discussed previously. The unphysical singularities

in the electroweak corrections at the MH = 2MW and 2MZ thresholds can be removed by

including the finite width of the particles. Note that at the LHC, the electroweak correction

is almost the same for pp→ HW and pp→ HZ, the difference being less than 2%.

3.2.4 The total cross section and the PDF uncertainties

In Fig. 3.10, we present the total production cross sections for the processes qq̄ → HW and

HZ at both the Tevatron and the LHC as a function of MH , when both the NNLO QCD

and the electroweak corrections are added. In the case of the HZ process, the contribution

of the gg → ZH subprocess to the total cross section is not included, but it is displayed

separately in the LHC case. For Higgs masses in the range 100 GeV <∼ MH <∼ 250 GeV,

where σ(qq̄ → HZ) is significant, σ(gg → HZ) is at the level of 0.1 to 0.01 pb and represents

about 10% of the total cross section for low MH values. The gg → HZ cross section is thus

much larger than the contribution of the NNLO correction, and therefore generates a scale

uncertainty that is larger than in the HW production case.
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Figure 3.10: The total production cross sections for pp → HW and HZ at the LHC (left)
and the Tevatron (right) as a function of MH when the NNLO QCD and the electroweak
corrections are included. The MRST parton densities have been used. The contribution of
the gg → HZ process is shown separately in the case of the LHC; from Ref. [334].

Finally, let us discuss the PDF uncertainties in the pp→ HV cross sections, following the

lines introduced in §3.1.5. In Fig. 3.11, we show as a function of MH and for the LHC and

the Tevatron, the central values and the uncertainty band limits of the NLO QCD qq̄ → HW

cross section for the CTEQ, MRST and Alekhin parameterizations. In the insets to these
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figures, we show the spread uncertainties in the predictions for the cross sections, when they

are normalized to the prediction of the reference CTEQ6M set.

At the LHC, the uncertainty band is almost constant and for CTEQ, is of the order of

4% over a Higgs masse range between 100 and 200 GeV. At the Tevatron, the uncertainty

band increases with the Higgs mass and exceeds 6% at MH ∼ 200 GeV. The uncertainty

in the MRST parameterization is twice smaller. To produce a vector plus a Higgs boson in

this mass range, the incoming quarks originate from the intermediate-x regime at the LHC,

at Tevatron energies, however, some of the participating quarks originate from the high-

x regime, which explains the increasing behavior of the uncertainty bands observed in this

case. The different magnitude of the cross sections, ∼ 12% (∼ 8%) larger in the Alekhin case

than for CTEQ at the LHC (Tevatron), is due to the larger quark and antiquark densities

of the former parameterization. For this particular PDF set, the difference in the shifts of

the central values in the LHC and Tevatron cases, is due to the different initial states, pp

[where q̄ comes from the sea] versus pp̄ [where it is valence+sea q̄]; see Fig. 3.2.
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Figure 3.11: The CTEQ, MRST and Alekhin PDF uncertainty bands for the NLO cross
sections for the production of the Higgs boson at the LHC (left) and at the Tevatron (right)
in the qq̄ → HW process. The insets show the spread in the predictions; from Ref. [314].

Note that an additional systematic error of about 5% arises from the pp luminosity. If

one uses the Drell–Yan processes to measure directly the q and q̄ luminosities at hadron

colliders, the errors on the cross sections for associated HV production when normalized to

this rate would lead to a total systematical uncertainty of less than 1% [335]. In this case,

the dominant part the of the K–factor will also drop out in the ratio.
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3.3 The vector boson fusion processes

3.3.1 The differential and total cross sections at LO

The matrix element squared for the massive vector boson fusion process [243–246], in terms

of the momenta of the involved particles

q1(p1) q2(p2) → V ∗(q1 = p3 − p1)V
∗(q2 = p4 − p2) q3(p3) q4(p4) → q3(p3) q4(p4)H(k) (3.22)

with V = W,Z, is given by

|M|2 = 4
√

2Nf
c G

3
µM

8
V

C+(p1 · p2)(p3 · p4) + C−(p1 · p4)(p2 · p3)

(q2
1 −M2

V )2(q2
2 −M2

V )2
(3.23)

where, in terms of the usual vector and axial-vector couplings of the gauge bosons to fermions

âf = 2I3
f , v̂f = 2I3

f − 4Qfs
2
W for V = Z and v̂f = âf =

√
2 for V = W , C± read

C± = (v2
q1

+ a2
q1

)(v2
q3

+ a2
q3

) ± 4vq1
aq1
vq3
aq3

(3.24)

giving rise to the differential distribution

dσ̂LO =
1

4

1

9

1

2ŝ
× |M|2 × 1

(2π)5

d3k

2dEH

d3p3

2dE3

d3p4

2dE4

δ4(p1 + p2 − p3 − p4 − k) (3.25)

The integration over the variables p3 and p4 are conveniently performed in the rest frame of

the two quarks ~p3 + ~p4 = 0, and one finds [245, 246]

dσ̂LO

dEHd cos θ
=

G3
µM

8
V

9
√

2π3ŝ

pH

32s1s2r

[
C+H+ + C−H−

]
(3.26)

with

H+ = (h1 + 1)(h2 + 1)

[
2

h2
1 − 1

+
2

h2
2 − 1

−
6s2

χ

r
+

(
3t1t2
r

− cχ

)
ℓ√
r

]

−
[

2t1
h2 − 1

+
2t2

h1 − 1
+
(
t1 + t2 + s2

χ

) ℓ√
r

]

H− = 2(1 − cχ)

[
2

h2
1 − 1

+
2

h2
2 − 1

−
6s2

χ

r
+

(
3t1t2
r

− cχ

)
ℓ√
r

]
(3.27)

In these equations, pH =
√
E2

H −M2
H is the Higgs boson momentum, θ is the scattering

angle, while ǫν =
√
ŝ − EH and sν = ǫ2ν − p2

H are the energy and the invariant mass of the

final state quark pair. The other abbreviations are

s1,2 =
√
ŝ(ǫν ± pH cos θ) , h1,2 = 1 + 2M2

V /s1,2 , t1,2 = h1,2 + cχh2,1 (3.28)

cχ = 1 − 2ŝsν

s1s2
= 1 − s2

χ, r = h2
1 + h2

2 + 2cχh1h2 − s2
χ , ℓ = log

h1h2 + cχ +
√
r

h1h2 + cχ −√
r
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To derive the partonic total cross section, σ̂LO(qq → qqH), the differential cross section must

be integrated over the region

− 1 < cos θ < 1 and MH < EH <

√
ŝ

2

(
1 +

M2
H

ŝ

)
(3.29)

Summing over the contributing partons, including both the WW and ZZ fusion channels

and folding with the parton luminosities, one obtains the total hadronic cross section σ(pp→
V ∗V ∗ → qqH) at LO. The cross sections, using the CTEQ set of parton densities, are shown

in Fig. 3.12 as a function of MH for pp̄ at the Tevatron and for pp at the LHC. In the latter

case, the separate WW and ZZ contributions, as well as their total sum, are displayed; the

interference between the WW and ZZ contributions is less than 1% and can be neglected.

While they are rather large at the LHC, in particular for Higgs bosons in the mass

range 100 GeV <∼ MH <∼ 200 GeV where they reach the level of a few picobarns, the

total cross sections are very small at the Tevatron and they barely reach the level of 0.1

pb even for MH = 100 GeV. This is due to the fact that the main contribution originates

from longitudinal gauge bosons [which as, discussed previously, have interactions which grow

with energy], and the partonic cross sections rise logarithmically with the c.m. energy of

the subprocess, σ̂ ∝ log ŝ/M2
V , giving much larger rates at high energies. In our subsequent

discussion, we will therefore consider this process only in the case of the LHC.

Note also that the main contribution to the cross section is due to the WW fusion

channel, σ(WW → H) ∼ 3σ(ZZ → H) at the LHC, a consequence of the fact that the W

boson couplings to fermions are larger than those of the Z boson.

ZZWWWW+ZZps = 14 TeV�(qq ! Hqq) [pb℄

MH [GeV℄ 1000100

10
1

0.1

ps = 1:96 TeV�(qq ! Hqq) [pb℄

MH [GeV℄ 200180160140120100

0.1

0.01
Figure 3.12: Individual and total cross sections in the vector fusion qq → V ∗V ∗ → Hqq
processes at leading order at the LHC (left) and total cross section at the Tevatron (right).
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3.3.2 The cross section at NLO

The QCD corrections to the vector boson fusion process, qq → qqV ∗V ∗ → qqH consist of

the virtual quark self energy and vertex corrections and the additional gluon emission from

the initial and final states, qq → Hqq + g; the gluon initiated subprocess gq → Hqq + q has

also to be taken into account. Some generic Feynman diagrams are shown in Fig. 3.13.

V ∗

q

q̄

g
V ∗

q

q̄

g

V ∗

q

q̄

g

Figure 3.13: Feynman diagrams for NLO QCD corrections to the V ∗qq vertex.

Since at the lowest order the incoming/outgoing quarks are in color singlets, at NLO

no gluons will be exchanged between the first and the second incoming (outgoing) quark

line [this will be no longer true at O(α2
s)] and, hence, the QCD corrections only consist of

the well–known corrections to the structure functions Fi(x,M
2). The NLO corrections can

therefore be more conveniently calculated in the structure function approach. In this case,

the differential LO partonic cross section can be cast into the form [21,281,282]

dσLO =
1

4

√
2G3

µM
8
V q

2
1q

2
2

[q2
1 −M2

V ]2[q2
2 −M2

V ]2

{
F1(x1, µ

2
F )F1(x2, µ

2
F )

[
2 +

(q1q2)
2

q2
1q

2
2

]

+
F1(x1, µ

2
F )F2(x2, µ

2
F )

P2q2

[
(P2q2)

2

q2
2

−m2
P +

1

q2
1

(
P2q1 −

P2q2
q2
2

q1q2

)2
]

+
F2(x1, µ

2
F )F1(x2, µ

2
F )

P1q1

[
(P1q1)

2

q2
1

−m2
P +

1

q2
2

(
P1q2 −

P1q1
q2
1

q1q2

)2
]

+
F2(x1, µ

2
F )F2(x2, µ

2
F )

(P1q1)(P2q2)

[
P1P2−

(P1q1)(P2q1)

q2
1

− (P2q2)(P1q2)

q2
2

+
(P1q1)(P2q2)(q1q2)

q2
1q

2
2

]2

+
F3(x1, µ

2
F )F3(x2, µ

2
F )

2(P1q1)(P2q2)
[(P1P2)(q1q2) − (P1q2)(P2q1)]

}
dx1dx2

dPS3

ŝ
(3.30)

where dPS3 denotes the three–particle phase space, mP the proton mass, P1,2 the proton

momenta and q1,2 the momenta of the virtual vector bosons V ∗. The functions Fi(x, µ
2
F ),

with i = 1, 2, 3, are the usual structure functions from deep–inelastic scattering processes at

the factorization scale µF and read

F1(x, µ
2
F ) =

∑

q

(v̂2
q + â2

q)[q(x, µ
2
F ) + q̄(x, µ2

F )]
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F2(x, µ
2
F ) = 2x

∑

q

(v̂2
q + â2

q)[q(x, µ
2
F ) + q̄(x, µ2

F )]

F3(x, µ
2
F ) = 4

∑

q

v̂qâq[−q(x, µ2
F ) + q̄(x, µ2

F )] (3.31)

The QCD corrections only consist of the well–known corrections to the structure functions

Fi(x,M
2) and the final result for the corrected cross section at O(αs) can be simply obtained

from the replacements [21, 281, 282]

Fi(x, µ
2
F ) → Fi(x, µ

2
F ) + ∆Fi(x, µ

2
F , Q

2) (3.32)

∆F1(x, µ
2
F , Q

2) =
αs(µR)

π

∑

q

(v̂2
q + â2

q)

∫ 1

x

dy

y

{
2

3
[q(y, µ2

F ) + q̄(y, µ2
F )]

[
−3

4
Pqq(z) log

µ2
Fz

Q2
+ (1 + z2)D1(z) −

3

2
D0(z) + 3 −

(
9

2
+
π2

3

)
δ(1 − z)

]

+
1

4
g(y, µ2

F)

[
−2Pqg(z) log

µ2
Fz

Q2(1 − z)
+ 4z(1 − z) − 1

]}
(3.33)

∆F2(x, µ
2
F , Q

2) = 2x
αs(µR)

π

∑

q

(v̂2
q + â2

q)

∫ 1

x

dy

y

{
2

3
[q(y, µ2

F ) + q̄(y, µ2
F )]

[
−3

4
Pqq(z) log

µ2
Fz

Q2
+ (1 + z2)D1(z) −

3

2
D0(z) + 3 + 2z −

(
9

2
+
π2

3

)
δ(1 − z)

]

+
1

4
g(y, µ2

F)

[
−2Pqg(z) log

µ2
Fz

Q2(1 − z)
+ 8z(1 − z) − 1

]}
(3.34)

∆F3(x, µ
2
F , Q

2) =
αs(µR)

π

∑

q

4v̂qâq

∫ 1

x

dy

y

{
2

3
[−q(y, µ2

F ) + q̄(y, µ2
F )] (3.35)

[
−3

4
Pqq(z) log

µ2
Fz

Q2
+ (1 + z2)D1(z) −

3

2
D0(z) +2 + z −

(
9

2
+
π2

3

)
δ(1 − z)

]}

where z = x/y and the Altarelli–Parisi splitting functions Pqq, Pqg are as given before in

eq. (3.21), and the notation Di(z) =
[
logi(1 − z)/(1 − z)

]
+

with i = 0, 1 is introduced. µR

is the renormalization scale at which αs is evaluated and the physical scale Q is given by

Q2 = −q2
i for x = xi with i = 1, 2. These expressions have to be inserted in the LO differential

cross section eq. (3.30) and the full result expanded up to NLO. The typical renormalization

and factorization scales are fixed by the corresponding vector–boson momentum transfer at

each leg, µ2
R = µ2

F = −q2
i for x = xi.

The correcting K–factor, again defined as K = σNLO/σLO with αs and the PDFs consis-

tently taken at the respective order, where the renormalization and factorization scales are

set to µR = µF = Q, is practically constant at the LHC in the entire Higgs mass range 100
<∼ MH <∼ 1 TeV, and increases the LO cross section by about 5 to 10%. More details on the

K–factor and the scale dependence at LO and NLO will be given later, after the discussion

of the specific kinematics of the vector boson fusion process to which we turn now.
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3.3.3 Kinematics of the process

Because weak vector boson fusion is a three–body production process, and it is mediated

by t–channel gauge boson exchange, its kinematics is rather complicated. However, its

characteristics distributions play an extremely important role once it comes to discriminate

the signal from the many large QCD backgrounds. In particular, forward jet–tagging [336–

338] and central jet–vetoing [338,339] will play an essential role. We will therefore discuss the

main features of the various distributions; for more details, see the reviews of Ref. [340,341].

To study the kinematics of the pp → Hqq process, it is more convenient to write the

differential partonic cross section, eq. (3.26), in terms of the transverse momentum and

rapidity of the Higgs boson. The latter, in terms of pH , EH and cos θ, are given by

EH =
√
M2

H + p2
T ch(y) , pH cos θ =

√
M2

H + p2
T sh(y) (3.36)

The total partonic cross section is obtained by integrating the double differential distribution

[which is given in eq. (3.26) and where the above changes have been performed]

σ̂LO(qq → Hqq) =

∫ y+

y−

dy

∫ pmax
T

0

dpT (2πpT )
d2σ̂LO

dydpT

(3.37)

The integration bounds on the rapidity and the transverse momentum are

y± = ± log

√
ŝ

MH
, pmax

T =

[(
ŝ+M2

H

2
√
ŝ ch(y)

)2

−M2
H

]1/2

(3.38)

Similarly to the emission of a Weizsäcker–Williams photon from an energetic electron or

positron beam, the intermediate vector bosons in the fusion process tend to carry only a

small fraction of the initial parton energies. At the same time, they must have an energy

of O(1
2
MH) to produce the Higgs boson. Thus, the two quarks in the final state have very

large energies, of order 1 TeV at the LHC. In contrast, they have small transverse momenta,

pT ∼MV , which are set by the vector boson propagators in the amplitude squared eq. (3.23),

1/(q2
1,2 −M2

V ) <∼ 1/(p2
T3,4 + M2

V ), and which suppress the cross section for pT values larger

thanMV . The relatively small transverse momenta and high energies of the final state quarks

correspond to rather small scattering angles θ3,4. In terms of the pseudo–rapidity

η =
1

2
log

1 + cos θ

1 − cos θ
(3.39)

one obtains typically, 1 <∼ η <∼ 5. This is exemplified in Fig. 3.14 where the transverse

momenta and rapidity distributions of the two scattered quarks are shown at the LHC for

a Higgs boson mass MH = 120 GeV. One can see that the rapidity distributions tend to be

central, in particular in the case of one the jets. One also sees that the average transverse
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Figure 3.14: The transverse momentum (left) and pseudo–rapidity (right) distributions of
the two scattered jets in the fusion process qq → Hqq at the LHC with MH = 120 GeV.
Shown are the pT distributions for the lowest (solid) and highest (dashed) jets and the |η|
distribution for the most central (solid) and most forward (dashed) jets; from Ref. [340]

momentum of one of the quarks is substantially smaller, a factor of two less, than for the

other quark and that small values, pT ∼ 35 GeV, are possible.

Therefore, requiring that the two scattered jets have a large invariant mass, a sizable pT

and with rapidity distributions which are central will substantially reduce the backgrounds

Cut 1 : mq3 q4
>∼ 1 TeV , pTq3,q4

>∼ 20 GeV , |ηq3,q4
| <∼ 5 (3.40)

Because of the scalar nature of the Higgs boson, its decay H → X1X2 is isotropic and

can be treated separately from the production. One can then discuss the kinematics of Higgs

production in the vector boson fusion channel, independently of the detection channel. Nev-

ertheless, the Higgs decay products should be observable, i.e. they must have a substantial

pT and they must be well separated from the jets. The decay products tend to be very central

as is exemplified in Fig. 3.15 in the case of the H → γγ decay [342], where the normalized

pseudo–rapidity of the most forward photon is shown for MH = 120 GeV. In contrast, the

photons in the irreducible QCD background pp → jjγγ are more forward. Thus, a second

cut will reduce the background without affecting too much the signal

Cut 2 : pTX1,X2
>∼ 20 GeV , |ηX1,X2

| <∼ 2.5 , ∆RqX >∼ 0.7 (3.41)

where ∆RqX =
√

(ηX − ηq)2 + (φX − φq)2 is the separation between one of the jets and one

of the Higgs decay products in the rapidity–azimuthal angle.
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Figure 3.15: The normalized pseudo–rapidity distributions of the most forward photon (left),
of both photons with respect to the center of the tagging jets (center), and of the two jet
rapidity gap (right) in jjγγ events at the LHC; the solid lines are for the H → γγ signal
with MH = 120 GeV and the dotted lines are for the QCD background; from Ref. [341].

In fact, Higgs production takes place in the central region, and its decay products will

also tend to be central. This is again in contrast to the QCD background which gives a

higher rapidity for the X final states. To visualize more clearly this feature, one can define

a shifted rapidity η∗X , which is the rapidity of X with respect to the center of the two jets,

η∗X = ηX − 1
2
(ηq3

+ ηq4
). As shown in the central plot of Fig. 3.15, where the example of

H → γγ with MH = 120 GeV is again used, this pseudo–rapidity is more central in the signal

than in the QCD background. One can thus make the additional requirement that the decay

products X1,2 fall between the two tagged jets in rapidity, with a minimum separation in η;

typically one can demand that

Cut 3 : ηq, min + 0.7 <∼ ηX1,2
<∼ ηq, max − 0.7 , ηq3

· ηq4
< 0 (3.42)

where we have also required that the two jets are produced in opposite hemispheres, and

thus the product of their pseudo–rapidities is negative.

In addition, the two forward tagging jets tend to be very well separated in pseudo–

rapidity. This is shown in the right–hand side of Fig. 3.15 in the case of the jjγγ events for

both the H → γγ signal with again MH = 120 GeV and the QCD background. Requiring a

rapidity gap between the two forward jets, the QCD backgrounds are significantly suppressed

Cut 4 : ∆ηqq = |ηq3
− ηq4

| >∼ 4.4 (3.43)

The cuts 1–4 form the basic ingredients to isolate the vector boson fusion signal at the

LHC from the various QCD backgrounds. For Higgs masses in the range 100–200 GeV,
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approximately 30% of the Higgs signal events from the initial sample are left over after

these cuts have been imposed; for a detailed discussion see Ref. [341]. Additional, and more

specialized cuts can be applied for specific Higgs decays, in particular for the H → τ+τ−

[343], H →W+W− → ℓℓνν [344, 345], and even H → µ+µ− [346] or bb̄ [347] final states.

Finally, another important discriminant between the Higgs signal and the backgrounds is

the amount of hadronic activity in the central region. Indeed, and as mentioned when study-

ing the QCD corrections, the vector boson fusion process proceeds without color exchange

between the scattered quarks, and gluons will be preferentially emitted at rather small angles

in the forward and backward directions and not in the central region. This is opposite to

the case of the QCD background which proceeds via color exchange of the incident partons

and where the gluons are very often in the central region. Therefore vetoing any jet activity

in the central region will substantially reduce the backgrounds.

The forward jet–tagging and the central jet vetoing techniques have been discussed in nu-

merous papers and have been shown to efficiently allow to isolate a Higgs boson production

signal in the vector boson fusion process [there are, however, still some experimental issues

such as the central jet veto efficiencies and to a lesser extent, the forward jet reconstruction,

which need further detailed studies]. Combined with the possibility of having large produc-

tion rates at the LHC for a Higgs boson in the 100 to 200 GeV mass range, this process

offers therefore a very promising channel not only for the production of the SM Higgs boson

at the LHC but also for the study of its properties.

3.3.4 Dependence on the scale and on the PDFs at NLO

Since rather stringent cuts have to be applied to the vector boson fusion process in order to

suppress the various backgrounds, one may wonder if the NLO corrections and their residual

scale dependence are the same as in the case of the inclusive cross section, i.e. without

applying the cuts. This question has been addressed recently [283,284] by implementing the

full one–loop QCD corrections to the qq → Hqq process into a parton–level Monte–Carlo

program [348]. With cuts similar to those discussed in the previous subsection [see the

original reference for the details], the output for the production cross section is shown in

Fig. 3.16 for a Higgs boson in the mass range between 100 and 200 GeV.

In the left–hand side of the figure, the cross section is displayed at LO (dotted line) and

at NLO for two methods of tagging the forward jets: one chooses the tagging jets as being

either the two highest PT jets (PT method, solid line) or the two highest energy jets (E

method, dashed line). One first notices that with the cuts of Ref. [283], the acceptance is

less than ∼ 25% of the initial cross section, c.f. Fig. 3.12. The corrections are modest and

in the chosen Higgs mass range, they are of the order of 3% to 5% in the PT method and

6% to 9% in the E method, the largest variation being for low Higgs boson masses.
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To illustrate the impact of the choice of the factorization and renormalization scales on

the qq → Hqq production cross section at the LHC, we show in the right–hand side of

Fig. 3.16 the LO and NLO K–factors as functions of the Higgs mass when the central value

of the scales µF = µR = QV are divided or multiplied by a factor of two, µF = µR = 1
2
QV

and 2QV [note that the variation with the renormalization scale µR is small since αs enters

only at NLO and the contribution of this order to the total production cross section is tiny].

Again, the K–factor at leading order is defined as KLO = σLO(µF , µR)/σLO(µF = µR = QV ).

As can be seen, the uncertainty on the total cross section that is generated by the scale

variation is relatively large at LO, the spread being of the order of ∆σ/σ±3% for low Higgs

masses and reaching the level of 5% at high Higgs masses. At NLO, the cross section varies

only slightly, with a spread smaller than ∼ 2% for the displayed Higgs mass range. This

implies that the vector boson fusion cross section at NLO is well under control and that the

higher–order QCD corrections are presumably very small27.

Figure 3.16: Left: the pp → Hqq cross section at the LHC after cuts as a function of MH

at LO (dotted line) and NLO with the tagging jets defined in the PT (solid line) and E
(dashed line) methods. Right: The scale variation of the LO and NLO cross sections for
Higgs production in the qq → qqH fusion process as a function of MH at the LHC [283].

Note that the NLO QCD corrections for the pT and η distributions in pp → Hqq have

also been calculated in this reference. In general, they are of the same size as the corrections

to the total cross section, ∼ 10%, but they can reach larger values depending on the phase–

space regions; see Ref. [283] for details.
27The electroweak corrections to this process have not been calculated yet. However, if one uses the IBA

discussed in §1.2.4, the bulk of these corrections is incorporated and the remaining piece should be rather
small. See the discussion in the next section, when this process will be considered in e+e− collisions.
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Turning to the PDF uncertainties in the prediction of the qq → Hqq cross section at

NLO, we will follow again the procedure outlined in §3.1.5. The central values and the

uncertainty band limits of the NLO cross section are shown for the CTEQ, MRST and

Alekhin parameterizations in Fig. 3.17 as a function of MH at LHC energies. We also show

in the inserts to these figures, the spread uncertainties in the predictions when the cross

sections are normalized to the values obtained using the reference CTEQ6M set.

In the entire Higgs boson mass range from 100 GeV to 1 TeV, the incoming quarks

involved in this process originate from the intermediate-x regime and the uncertainty band

is almost constant, ranging between 3% and 4% in the CTEQ parameterization; as usual,

the uncertainty is twice smaller in the MRST case. When using the Alekhin set of PDFs,

the behavior is different, because the quark PDF behavior is different, as discussed in the

case of the qq̄ → HV production channel. The decrease in the central value with higher

Higgs boson mass [which is absent in the qq̄ → HV case, since we stopped the MH variation

at 200 GeV] is due to the fact that we reach here the high-x regime, where the Alekhin ū

PDF drops steeply; see Fig 3.2. Thus, as in the case of the qq̄ → HV process, the PDF

uncertainties are below the 5% level if the Alekhin parametrisation is ignored and, therefore,

rather small. In view of the small QCD corrections and scale dependence, weak boson fusion

can thus also be considered as a rather clean Higgs production process.

AlekhinCTEQMRSTps = 14 TeV�(qq ! Hqq) [pb℄

MH [GeV℄ 1000100
1

0.1 1000100
1.21.151.11.0510.950.9

Figure 3.17: The CTEQ, MRST and Alekhin PDF uncertainty bands for the NLO cross
section of the vector boson fusion process pp→ Hqq at the LHC. In the insert is shown the
spread uncertainty, when the cross sections are normalized to the default CTEQ PDF set;
from Ref. [314].
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3.3.5 The effective longitudinal vector boson approximation

Before closing this section, let us reconsider the totalHqq production cross section in the light

of the previous discussion. Following Ref. [245] and recalling that the transverse momenta

of the scattered quarks are small, one may write the parton four–momenta as

p3/4 =
(
x3/4E + p2

T3/4/(2x3/4E), ~pT3/4,±x3/4E
)
, p1/2 = (E,~0,±E) (3.44)

with E being half of the parton c.m. energy, and neglect terms of the order of p2
T3,4/E

2 ≪ 1

in the amplitude squared. On then immediately obtains for the invariants of eq. (3.23)

(p1 · p2)(p3 · p4) ≃ (p1 · p4)(p2 · p3) ≃ 4E4x3x4 (3.45)

leading to an amplitude squared for the process that is simply given by

|M|2 =
√

2Nf
c G

3
µM

8
V

(C+ + C−)(x3x4)
3ŝ2

(p2
T3 + x3M

2
V )2(p2

T4 + x4M
2
V )2

(3.46)

The three–body phase space also simplifies to

dPS3 ≃
1

8(2π)5

dx3

x3

dx4

x4
d2~pT3d

2~pT4
2

ŝ
δ

(
(1 − x3)(1 − x4) −

M2
H

ŝ

)
(3.47)

The integrations on the transverse momenta can therefore be easily done, leading to
∫

d2~pT i

(p2
T i + xiM2

V )2
≃ π

∫ ∞

0

dp2

(p2 + xiM2
V )2

=
π

xiM2
V

(3.48)

and, with the help of the delta function, the integrations on x3,4 are straightforward. One

finally obtains for the total partonic cross section

σ̂LO(qq → qqH) ≃
G3

µM
4
VNc

128
√

2π3
(C+ + C−)

[(
1 +

M2
H

ŝ

)
log

ŝ

M2
H

− 2 + 2
M2

H

ŝ

]
(3.49)

This is nothing else than the cross section for Higgs boson production in the effective lon-

gitudinal vector boson approximation [31], where one calculates the cross section for the

subprocess where the Higgs boson is produced in the fusion of VLVL [which according to the

equivalence theorem can be replaced by their corresponding Goldstone bosons], and then

folds the result with the VL spectra [243, 256, 349]. Since we will use this approximation in

the course of our discussion, we will briefly summarize its salient features.

Just as in the Weizsäcker–Williams approximation in the processes e+e− → e±X, where

the final state X particle is produced at small angles through the exchange of a photon, and

where the bulk of the production rate is described by the cross section σ̂ for the subprocess

γe± → X folded by the probability of the the initial e+e− state to radiate a photon [350]

σ(e+e− → e±X) =

∫
dzPγ/e±(z)σ̂(ŝ = zs) , Pγ/e±(z) =

α

2π

1 + (1 − z)2

z
log

s

m2
e

(3.50)
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where
√
s is the total c.m. energy and me the electron mass, the process qq → qqV ∗V ∗ →

qqH at very high energies can be viewed as originating from the subprocess V V → H

with the real vector bosons being radiated from the initial quarks. The only difference

with the Weizsäcker–Williams approximation is that the W/Z bosons are massive and thus

have a longitudinal degree of polarization. The distribution functions for the transverse and

longitudinal polarizations in this case are given by

PV±/q(z) =
α

4π

1

z

[
(vq ∓ aq)

2 + (vq ± aq)
2(1 − z)2

]
log

ŝ

M2
V

PVL/q(z) =
α

π

1 − z

z
(v2

q + a2
q) (3.51)

One recovers the photon case in eq. (3.50) by appropriately replacing the quark weak charge

by the electron electric charge, vq → 1, aq → 0. The V V luminosity in the process V V → X

dL
dτ

∣∣∣∣
V V/qq

=

∫ 1

τ

PV/q(z)PV/q(τ/z)
dz

z
(3.52)

with τ = M2
X/ŝ where ŝ is the qq c.m. energy, is then given by

dL
dτ

∣∣∣∣
VT VT /qq

=
α

8π3
(v2

q + a2
q)

2 1

τ
log

ŝ

M2
V

[
(2 + τ)2 log(1/τ) − 2(1 − τ)(3 + τ)

]

dL
dτ

∣∣∣∣
VLVL/qq

=
α

4π3
(v2

q + a2
q)

2 1

τ

[
(1 + τ) log(1/τ) − 2(1 − τ)

]
(3.53)

In principle, at high energies, the luminosity for transverse gauge bosons is much larger than

for longitudinal ones because of the log2(M2
V /ŝ) term. However, for large masses, the Higgs

boson is produced in the subprocess V V → H mainly through the longitudinal components

which give rates ∝M3
H . The effective cross section in this case is simply given by

σeff =
16π2

M3
H

Γ(H → VLVL)
dL
dτ

∣∣∣∣
VLVL/qq

(3.54)

which, when the expression of the luminosity is inserted reproduces the result of eq. (3.49).

In the case of the partonic process [at the hadronic level, a difference is generated by

the parton densities], the contribution of the WW fusion channel is one order of magnitude

larger than the one of the ZZ channel because of the larger charged current couplings.

However, in practice, the effective longitudinal approximation approaches the exact result

only by a factor 2 to 5, depending on the considered c.m. energy and the Higgs mass. For

light Higgs bosons, it can be improved by including the transverse vector boson components,

see Ref. [351]. This approximation should therefore be used only as an indication of the

order of magnitude of the cross sections.
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3.4 The gluon–gluon fusion mechanism

3.4.1 The production cross section at LO

Higgs production in the gluon–gluon fusion mechanism is mediated by triangular loops of

heavy quarks. In the SM, only the top quark and, to a lesser extent, the bottom quark

will contribute to the amplitude. The decreasing Hgg form factor with rising loop mass

is counterbalanced by the linear growth of the Higgs coupling with the quark mass. In

this section we discuss the analytical features of the process; the relevant phenomenological

aspects at the LHC [242,315,352–357] and the Tevatron [358–360] will be presented in §3.7.

To lowest order, the partonic cross section can be expressed by the gluonic width of the

Higgs boson discussed in §2.3.3,

σ̂LO(gg → H) = σH
0 M2

H δ(ŝ−M2
H) =

π2

8MH
ΓLO(H → gg) δ(ŝ−M2

H) (3.55)

where ŝ is the gg invariant energy squared. Substituting in this LO approximation the

Breit–Wigner form of the Higgs boson width, in place of the zero–width δ distribution

δ(ŝ−M2
H) → 1

π

ŝΓH/MH

(ŝ−M2
H)2 + (ŝΓH/MH)2

(3.56)

recalling the lowest–order two–gluon decay width of the Higgs boson, one finds for the cross

section [185]

σH
0 =

Gµα
2
s(µ

2
R)

288
√

2π

∣∣∣∣∣
3

4

∑

q

AH
1/2(τQ)

∣∣∣∣∣

2

(3.57)

The form factor AH
1/2(τQ) with τQ = M2

H/4m
2
Q is given in eq. (2.46) and is normalized such

that for mQ ≫ MH , it reaches 4
3

while it approaches zero in the chiral limit mQ → 0.

The proton–proton cross section at LO in the narrow–width approximation reads

σLO(pp→ H) = σH
0 τH

dLgg

dτH
with

dLgg

dτ
=

∫ 1

τ

dx

x
g(x, µ2

F )g(τ/x, µ2
F ) (3.58)

where the Drell–Yan variable is defined as usual, by τH = M2
H/s with s being the invari-

ant collider energy squared. The expression of the luminosity τHdLgg/dτH is only mildly

divergent for τH → 0.

The total hadronic cross sections at LO are shown in Fig. 3.18 as a function of the

Higgs boson mass for the LHC and the Tevatron energies. We have chosen mt = 178 GeV,

mb = 4.88 GeV and αs(MZ) = 0.13 as inputs and used the CTEQ parametrization for the

parton densities. For the Tevatron, the cross section is monotonically decreasing with the

Higgs boson mass, starting slightly below 1 pb for MH ∼ 100 GeV and reaching σ ∼ 0.01 pb

for MH ∼ 300 GeV. At the LHC, the cross section is two orders of magnitude larger, being
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at the level of ∼ 30 pb for MH ∼ 100 GeV and is still sizable, σ ∼ 1 pb, for MH ∼ 700

GeV. There is a kink at MH ∼ 350 GeV, i.e. near the tt̄ threshold where the Hgg amplitude

develops an imaginary part.

mt = 178 GeVCTEQ6
ps = 1:96 TeV
ps = 14 TeV

�(gg ! H) [pb℄

MH [GeV℄ 1000100

100
10
1

0.1
0.01

Figure 3.18: The hadronic production cross section for the gg fusion process at LO as a
function of MH at the LHC and the Tevatron. The inputs are mt = 178 GeV, mb = 4.88
GeV, the CTEQ set of PDFs has been used and the scales are fixed to µR = µF = MH .

As discussed in §2.3.3, the cross section in the case where the internal quark is assumed

to have an infinite mass, mq → ∞, i.e. when the form factor 3
4
AH

1/2 is equal to unity, is a

rather good approximation for Higgs boson masses below the tt̄ threshold, and it reproduces

the exact result at the level of 10%. For low Higgs boson masses, the difference is in fact due

to the contribution of the bottom quark loop: although the b–quark mass is small, the form

factor AH
1/2(τb) exhibits a dependence on m2

b/M
2
H × log2(m2

b/M
2
H) which is at the level of ten

percent. Together with the π2 terms and the imaginary part, the b–quark loop generates a

non–negligible contribution which interferes destructively with the contribution of the top–

quark loop. Above the tt̄ threshold, MH >∼ 350 GeV, the approximation of an infinite loop

quark mass fails since it cannot reproduce the imaginary part of the form factor.

3.4.2 The cross section at NLO

To incorporate the QCD corrections to σ(pp→ H +X), one has to consider the processes

gg → H(g) and gq → Hq, qq → Hg (3.59)
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Characteristic diagrams of the QCD radiative corrections are shown in Fig. 3.19. They

involve the virtual corrections for the gg → H subprocess, which modify the LO fusion cross

section by a coefficient linear in αs, and the radiation of gluons in the final state. In addition,

Higgs bosons can be produced in gluon–quark collisions and quark–antiquark annihilation

which contribute to the cross section at the same order of αs.

• H
Q

g

g

g • •

• H

Q

g

g
g

•

q

g •

q

q̄

Figure 3.19: Typical diagrams for the virtual and real QCD corrections to gg → H.

The cross sections for the subprocesses ij → H +X, i, j = g, q, q, can be written as

σ̂ij = σ0

{
δigδjg

[
1 + CH(τQ)

αs

π

]
δ(1 − τ̂) +DH

ij (τ̂ , τQ)
αs

π
Θ(1 − τ̂)

}
(3.60)

where the new scaling variable τ̂ , supplementing τH = M2
H/s and τQ = M2

H/4m
2
Q introduced

earlier, is defined at the parton level, τ̂ = M2
H/ŝ; Θ is the step function.

The coefficients CH(τQ) and DH
ij (τ̂ , τQ) have been determined in Ref. [180, 286] for arbi-

trary Higgs boson and quark masses and the lengthy analytical expressions have been given

there [see also §2.3.3 for some details on the calculation and on the renormalization scheme].

If all the corrections eq. (3.60) are added up, ultraviolet and infrared divergences cancel.

However collinear singularities are left over and are absorbed into the renormalization of the

parton densities [84, 325] where the MS factorization scheme can be adopted.

The final result for the hadronic cross section at NLO can be cast into the form

σ(pp→ H +X) = σH
0

[
1 + CH αs

π

]
τH
dLgg

dτH
+ △σH

gg + △σH
gq + △σH

qq (3.61)

The coefficient CH denotes the contributions from the virtual two–loop quark corrections

regularized by the infrared singular part of the cross section for real gluon emission. It splits

into the infrared term π2, a term depending on the renormalization scale µR of the coupling
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constant, and a piece cH which depends on the mass ratio τQ.

CH = π2 + cH +
33 − 2Nf

6
log

µ2
R

M2
H

(3.62)

with
cH = Re

∑

Q

AH
1/2(τQ) cHQ (τQ)/

∑

Q

AH
1/2(τQ) (3.63)

The (non–singular) contributions from gluon radiation in gg scattering, from gq scattering

and qq annihilation, depend on the renormalization scale µR and the factorization scale µF

of the parton densities

△σH
gg =

∫ 1

τH

dτ
dLgg

dτ

αs(µR)

π
σH

0

{
−zPgg(z) log

µ2
F

τs
+ dH

gg(z, τQ)

+12

[(
log(1 − z)

1 − z

)

+

− z [2 − z(1 − z)] log(1 − z)

]}

△σH
gq =

∫ 1

τH

dτ
∑

q,q

dLgq

dτ

αs(µR)

π
σH

0

{[
−1

2
log

µ2
F

τs
+ log(1 − z)

]
zPgq(z) + dH

gq(z, τQ)

}

△σH
qq =

∫ 1

τH

dτ
∑

q

dLqq

dτ

αs(µR)

π
σH

0 d
H
qq(z, τQ) (3.64)

with z = τH/τ and the standard Altarelli–Parisi splitting functions given by

Pgg(z) = 6

[(
1

1 − z

)

+

+
1

z
− 2 + z(1 − z)

]
+

33 − 2Nf

6
δ(1 − z)

Pgq(z) =
4

3

1 + (1 − z)2

z
(3.65)

where F+ denotes the usual + distribution such that F (τ̂ )+ = F (τ̂) − δ(1 − τ̂)
∫ 1

0
dτ̂ ′F (τ̂ ′).

The coefficients dH
gg, d

H
gq and dH

qq̄, as well as cH , have been evaluated for arbitrary quark

masses [180, 188, 286]. In the limit where the Higgs mass is very large compared with the

quark mass, τQ = M2
H/4mQ ≫ 1, as is the case of the bottom quark contribution, a compact

analytic result can be derived, which is valid to leading and subleading logarithmic accuracy

cH(τQ) → 5

36

[
log2(4τQ) − π2

]
− 4

3
log(4τQ)

dH
gg(τ̂ , τQ) → −2

5
log(4τQ)

[
7 − 7τ̂ + 5τ̂ 2

]
− 6 log(1 − τ̂ )

[
1 − τ̂ + τ̂ 2

]

+2
log τ̂

1 − τ̂

[
3 − 6τ̂ − 2τ̂ 2 + 5τ̂ 3 − 6τ̂ 4

]

dH
gq(τ̂ , τQ) → 2

3

[
τ̂ 2 −

(
1 + (1 − τ̂ )2

)( 7

15
log(4τQ) + log

(
1 − τ̂

τ̂

))]

dH
qq̄(τ̂ , τQ) → 0 (3.66)
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In the limit of large quark masses, τQ = M2
H/4m

2
Q ≪ 1, as is the case for the top quark when

the Higgs mass is small, one also obtains very simple expressions for the coefficients

cH(τQ) → 11

2
, dH

gg → −11

2
(1 − z)3 , dH

gq → −1 + 2z − 1

3
z2 , dH

qq →
32

27
(1 − z)3 (3.67)

In this heavy loop quark case, the corrections of O(M2
H/m

2
Q) in a systematic Taylor expansion

have been shown to be very small [189]. In fact, the leading term provides an excellent

approximation up to the quark threshold MH ∼ 2mQ.

The results for the K–factors, defined as the ratios Ktot = σNLO/σLO, with the cross

section σNLO normalized to the LO cross section σLO, evaluated consistently for parton

densities and an αs value at LO, are displayed in Fig. 3.20 as a function of MH for the

LHC (left) and the Tevatron (right). Again the CTEQ6 parametrization for the structure

functions defined in the MS scheme is used and the top and bottom quark pole masses are

fixed to mt = 178 GeV and mb = 4.88 GeV. Both the renormalization and the factorization

scale have been set to the Higgs boson mass µR = µF = MH .

The K–factors have been decomposed into their various components: Kvirt accounts for

the virtual corrections after regularization [corresponding to the coefficient CH ], while Kij

with i, j = g, q, q̄ stand for the real corrections in the three channels given in eq. (3.64).

One sees that Kvirt and Kgg are rather large, being both of the order of 50%, while Kqq̄

and Kgq are tiny, the latter being negative. The total K–factor is large, increasing the total

production cross section by about 60% and 90% for the low and high range of the Higgs

boson mass at the LHC and by a factor 2.2 to 2.8 for MH = 100–300 GeV at the Tevatron.

Apart for the small kink in the MH ∼ 2mt threshold region, Ktot is only mildly depending

on the Higgs boson mass. In fact, if one compares the exact numerical results for the

cross section at NLO with the approximation of a very heavy top quark, it turns out that

multiplying the LO cross section, which includes the full mt and mb dependence, with the

K–factor taken in the asymptotic limit mt → ∞ and where the b–quark contribution has

been neglected, provides a good approximation

σNLO ≃ Ktot|mt→∞ × σLO(τt, τb) (3.68)

The difference between this approximation and the exact result is less than 10% even for

Higgs boson masses beyond the MH = 2mt threshold and up to MH ∼ 700 GeV [361].

Finally, note that the two–loop electroweak corrections to the gg → H production cross

section are the same as the ones discussed previously in §2.4.3 for the decay H → gg. While

the top quark correction is rather small, being less than one percent [201], the light fermion

electroweak contributions [203, 204] are much larger in the MH <∼ 2MW range where they

reach the level of 5–9%; for MH >∼ 2MW these corrections become very small.
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Figure 3.20: The total K factor and its various components, Kvirt, Kgg and Kqq̄, for Higgs
boson production in the gg fusion process as a function of MH at the LHC (left) and the
Tevatron (right). The CTEQ6 parton densities have been adopted and the renormalization
and factorization scales are fixed to µR =µF =MH ; mt =178 GeV and mb =4.88 GeV.

Dependence on the PDFs

The central values and the uncertainty band limits of the NLO cross sections are shown for

the CTEQ, MRST and Alekhin parameterizations in Fig. 3.21 for the gg → H process. As

usual, in the inserts to these figures, we show the spread uncertainties in the predictions for

the cross sections, when normalized to the prediction of the reference CTEQ6M set.

At the LHC, the uncertainty band for the CTEQ set of PDFs decreases from the level of

about 5% at MH ∼ 100 GeV, down to the 3% level at MH ∼ 300 GeV. This is because Higgs

bosons with relatively small masses are mainly produced by asymmetric low-x–high-x gluons

with a low effective c.m. energy; to produce heavier Higgs bosons, a symmetric process in

which the participation of intermediate-x gluons with high density is needed, resulting in a

smaller uncertainty band. At higher masses, MH >∼ 300 GeV, the participation of high-x

gluons becomes more important, and the uncertainty band increases, to reach the 10% level

at Higgs masses of about 1 TeV. At the Tevatron, because of the smaller c.m. energy, the

high-x gluon regime is already reached for low Higgs masses and the uncertainties increase

from 5% to 15% for MH varying between 100 GeV and 200 GeV. As discussed above and

shown in Fig. 3.2, the MRST gluon PDF is smaller than the CTEQ one for low x and larger

for relatively high x (∼ 0.1): this explains the increasing cross section obtained with MRST

compared to the one obtained with CTEQ, for increasing Higgs boson mass at the LHC. At

the Tevatron the gluons are already in the high-x regime.
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Figure 3.21: The CTEQ, MRST and Alekhin PDF uncertainty bands for the NLO gg → H
cross sections at the LHC (left) and Tevatron (right). The inserts show the spread in the
predictions, when the NLO cross sections are normalized to the CTEQ6 reference set [314].

The variation of the cross section with the renormalization and factorization scales will

be discussed later after inclusion of the NNLO corrections to which we turn now.

3.4.3 The cross section beyond NLO in the heavy top quark limit

The calculation at NNLO

Recently, the very complicated three–loop NNLO QCD corrections to the gg → H fusion

process have been calculated by three different groups [300–302] in the limit of a very heavy

top quark. In this limit, the Feynman diagrams contributing to the process factorize into

two pieces: a massive component where the heavy quark has been integrated out and which

represents an effective coupling constant which multiplies the Hgg vertex, and a massless

component involving only gluons and light quarks, which describes the short distance effects

and where the finite momenta of the particles have to be taken into account. The calculation

effectively reduces then into a two–loop calculation with massless particles.

However, many Feynman diagrams, some of which are displayed in Fig. 3.22, have to be

evaluated at this order and they can be cast into three categories [which lead to more than one

thousand square and interference terms] besides the one–loop squared contribution: a) two

loop virtual corrections for the process gg → H which have to be multiplied by the effective

Born amplitude; b) one loop single real emission diagrams for the gg → Hg, gq → Hq

and qq̄ → Hg processes, which have to be multiplied by the Born amplitude for the same

processes; c) tree–level double real emission diagrams for the processes gg → Hgg, gg →
Hqq̄, gq → Hgq, qq → Hqq and qq̄ → Hqq̄, which have to be squared.
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Figure 3.22: Typical diagrams for the QCD corrections to gg → H at NNLO in the heavy
quark limit. • denotes the effective Hgg vertex where the quark has been integrated out.

This tour de force has been made possible thanks to two simplifying features: the pos-

sibility of using the low energy theorem discussed in §2.4.1, which allows to calculate the

corrections to the effective Hgg vertex, and the development of new techniques [362] to eval-

uate massless three–point functions at the two–loop level in complete analogy to massless

three–loop propagator diagrams which are standard and can be done fully automatically.

As already discussed in §2.4.3, the NNLO QCD corrected Hgg effective operator in

the heavy quark limit, Leff(Hgg), can be obtained [21,206,361] by means of the low–energy

theorem, eq. (2.91). This operator does not describe the Hgg interaction in total: it accounts

only for the interactions mediated by the heavy quarks directly, but it does not include the

interactions of the light fields. It must be added to the light–quark and gluon part of the basic

QCD Lagrangian, i.e. the effective coupling has to be inserted into the blobs of the effective

two–loop diagrams shown in Fig. 3.22. The NNLO corrections to inclusive Higgs production

in gg → H can be cast then into the three categories which have been already encountered

when we discussed the NLO case. In terms of the variable τ̂ defined as τ̂ = M2
H/ŝ, one has

δ function terms ∝ δ(1 − τ̂), large logarithms of the form logn(1 − τ̂)/(1 − τ̂), and hard

scattering terms that have at most a logarithmic singularity in the limit τ̂ → 1

σ̂
(2)
ij = a(2)δ(1 − τ̂ ) +

3∑

k=0

b
(2)
k Dk(τ̂ ) +

∞∑

l=0

3∑

k=0

c
(2)
lk (1 − τ̂)lℓk (3.69)

where ℓk = logk(1 − τ̂) and Dk(τ̂), with now i = 1, 2, 3, are the usual + distributions

defined earlier. The virtual corrections [363], [which are of course UV finite when all contribu-

tions are added up, and in particular the coefficient function Cg of the Hgg effective operator

contribute only to the coefficient a(2) in front of the delta function; see also Ref. [364]. The

soft corrections to the gg → H cross section, i.e. when the momenta of the final state gluons

or quarks tend to zero, contribute to both the a(2) and b(2) terms; they have been evaluated
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in Ref. [365,366] and, when added to the virtual corrections, the infrared divergences cancel

out after mass factorization. The combination of the virtual+soft with the collinear terms

∝ ℓ3 gives the “soft+subleading” [365] or “soft+virtual+collinear corrections” [366] approx-

imations which include also the contributions to the coefficient c
(2)
03 which has been evaluated

in Ref. [361] using resummation techniques.

The remaining pieces which have to be evaluated at NNLO [300] are then the coefficients

c
(2)
lk with k = 0, · · · 3 and l ≥ 0 which receive contributions from all sub–processes. One

can perform this calculation by making a systematic expansion of the partonic cross section

around the soft limit τ̂ ∼ 1, leading to a series in (1 − τ̂ )n whose coefficients depend on

ℓn ≡ logn(1− τ̂ ) with n = 0, 1, 2, 3 at NNLO. However, because the bulk of the cross section

is at the threshold τ̂ → 1, the series converges very rapidly and it is sufficient to keep only

the contributions of the terms up to order (1− τ̂)1. The convergence can be improved [367]

by pulling out a factor τ̂ before expanding in (1 − τ̂). In practice, the expansion to order

(1− τ̂)1 reproduces the exact result, with all terms up to order (1− τ̂)16 or equivalently with

the exact calculation as performed in Ref. [301, 302], with an accuracy of order 1%.

This approach leads to a rather simple analytical result. Summing the soft and hard

contributions, one obtains the following partonic cross sections up to NNLO [we display the

LO and NLO contributions for completeness] in the various production channels, normalized

to σH
0 = Gµα

2
s/(288

√
2π) introduced before and using ℓH = log(M2

H/m
2
t ) [300]

σ̂(2)
gg = δ(1 − τ̂) +

αs

π

[
15.37 δ(1 − τ̂ ) + 6 − 24ℓ− 9(1 + 4ℓ)(1 − τ̂) + 12D1(τ̂)

]

+
(αs

π

)2 [
87.76 δ(1 − τ̂) + 5.71ℓH − 531.134 + 39.92ℓ+ 185.5ℓ2 + 144ℓ3

+(632.06 + 632.87ℓ− 559.58ℓ2 + 216ℓ3)(1 − τ̂ )

+222.91D0(τ̂) − 31.71D1(τ̂) − 23D2(τ̂) + 72D3(τ̂)
]

σ̂(2)
qg =

2

3

αs

π

[
1 + 2ℓ− (1 − τ̂)

]

+
(αs

π

)2 [
29.93 + 6.47ℓ+ 2.63ℓ2 + 6.79ℓ3(−40.19 + 50.33ℓ− 16.5ℓ2)(1 − τ̂)

]

σ̂(2)
qq =

(αs

π

)2 [
− 0.70 − 1.78ℓ+ 1.78ℓ2

]
(3.70)

where the scale dependence has been explicitly suppressed by setting the factorization and

renormalization scales to µR = µF = MH [the dependence can be reconstructed by requiring

the total cross section to be scale invariant] and the number of light quarks has been set

to Nf = 5. The component σ̂
(2)
qq denotes the flavor singlet and non–singlet contributions in

both the channels qq and qq̄ → H +X, the contributions of which are equal at order (1− τ̂ )

σ̂
(2)
qq,S = σ̂

(2)
qq,NS = σ̂

(2)
qq̄,S = σ̂

(2)
qq̄,NS (3.71)
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The K–factors and the scale dependence up to NNLO

The cross sections σ(pp → H + X) at the three orders LO, NLO and NNLO, are shown in

Fig. 3.23 at the LHC and the Tevatron as a function of the Higgs mass, using the MRST

parton distributions which include the approximated NNLO PDFs. The factorization and

renormalization scales are set to µR = µF = 1
2
MH (upper curves) and µR = µF = 2MH

(lower curves). To improve the heavy quark approximation, the LO cross section contains

the full top mass dependence where mt = 175 GeV has been used. Considering first the

relative magnitude of the cross sections at the different orders of perturbation theory, one

can see that while from LO to NLO, the cross section increases at the LHC by 70% for

moderate Higgs boson masses, the increase from NLO to NNLO about 30%, is more modest.

This explicitly shows a nice convergence behavior of the perturbative series. The K–factors

are larger at the Tevatron, since they increase the cross section by a factor of about three at

NNLO, the bulk of which is provided by the NLO correction.
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Figure 3.23: The cross sections for Higgs production in the gg → H +X fusion mechanism
at the LHC (left) and Tevatron (right) at LO (dotted), NLO (dashed) and NNLO (solid)
for two factorization and renormalization scales: µR = µF = 1

2
MH (upper curves) and

µR = µF = 2MH (lower curves). The MRST PDFs are used; from Ref. [368].

When considering the effect of the variation of the renormalization and factorization

scales on the cross section, by multiplying and dividing by a factor of two the median scale

µF = µR = MH , one first sees that globally, the scale dependence is reduced when going

from LO, to NLO and then to NNLO. The residual scale dependence at NNLO is 25% at the

LHC and 15% at the Tevatron, a factor two and a factor of four smaller than the dependence

on the scale choice, at respectively, NLO and LO.

It has been noticed in Ref. [303, 368] that at the LHC the dependence on the renormal-

ization and factorization scales have different signs: the cross section increases (decreases)
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with increasing µF (µR) values when the other scale is fixed, to µR (µF ) = MH for instance

[at the Tevatron the dependence on µR and µF go the same direction]; the decrease with

µR is much stronger. It is thus more appropriate to choose smaller values for the scale than

the standard choice µR = µR = MH . This is shown in Fig. 3.24 where the scales are varied

within a factor 1
4

and 4 with respect to the default scale µF = µR = MH = 115 GeV, first

collectively and then by varying µF (µR) while the other scale is fixed at the default value.

With the choice µR = µF = 1
2
MH e.g., the NLO correction increases while the NNLO

correction decreases, with a total cross section which increases compared to the choice µR =

µF = MH . Therefore, since the difference between the NLO and NNLO contributions is

small, the convergence of the perturbative series is improved for µR = µF = 1
2
MH . This

choice is supported by the fact that these fixed order results are in a better agreement with

recent estimates of the cross section with a resummation of the dominant corrections which

are due the contribution near the threshold τ̂ → 1 to which we turn now.
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Figure 3.24: The scale dependence of σ(gg → H) at LHC for MH = 115 GeV: variation of
µ ≡ µR = µF (left), µF with µR = MH (center) and µR with µF = MH (right); from [368].

The soft–gluon resummation up to NNLL

As mentioned when we were discussing the necessary ingredients to perform the gg → H

calculation at NNLO, the corrections to the cross section, eq. (3.60), fall into three categories:

virtual and soft corrections which generate the δ(1 − τ̂ ) terms and the Dk distributions,

collinear logarithmic contributions that are controlled by the regular part of the Altarelli–

Parisi splitting kernels and the hard scattering terms. The soft gluon corrections contribute

to the most singular terms above and they involve only the gg initial state which, as already

seen at NLO, is the channel where the most important part of the correction originates from.
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The soft gluon contributions in the gg → H process can be resummed up to the next–to–

next–to–leading logarithm (NNLL) order in the heavy top quark limit [303], that is, all large

logarithmic terms αn
s logm(1− τ̂ ) in the + distributions with 1 ≤ m ≤ 2n in the limit τ̂ → 1

can be exponentiated. The resummation relies on the basic factorization theorem for partonic

cross sections into soft, collinear and hard parts near the phase–space boundary [369], and

can be performed in the Mellin or N–moment space [370] for instance. The formalism and

the calculation’s technique have been presented in detail in Ref. [303, 361].

The resummation of the logarithms in the soft gluon contributions is formally justified

only near the thresholds τ̂ → 1. However, it can be used away from the threshold and the

expectation is that the soft+virtual corrections, eventually supplemented by the collinear

parton radiation (SVC), is a good approximation of the exact result for the cross section.

Indeed, owing to the suppression of the gluon densities at large x, the partonic c.m. energy√
ŝ is much smaller than the c.m. energy of the hadron collider, s = x1x2ŝ, and the dominant

value of τ̂ which appears in the hard scattering terms of the partonic cross section can be

close to unity also when
√
s is not close to MH [366,367]. This has been verified both at NLO

and NNLO: SVC approximates the exact result quite well, in particular at LHC energies.

The results for the resummed cross sections, in terms of the K–factors, are shown in

Fig. 3.25 for the LHC as a function ofMH , for the LL, NLL and NNLL approximations (right)

and are compared with the fixed order results at LO, NLO and NNLO (left). The bands

result from a scale variation 0.5MH ≤ µF,R ≤ 2MH . One can note that the scale dependence

after resummation is smaller than at fixed order and that, at NNLO, the resummation

increases the central value of the cross section by ∼ 5% in the low Higgs mass range.

Figure 3.25: Fixed order (left) and resummed (right) K–factors for gg → H+X at the LHC
as a function of MH . The MRST2001 parton distributions have been used; from Ref. [303].

156



3.4.4 The distributions and Higgs + n jet production

The transverse momentum and rapidity distributions

At leading order, the Higgs boson produced in the fusion process gg → H has no transverse

momentum. The pT of the Higgs boson is generated at higher orders, when additional

partons are radiated and balance the Higgs pT [258, 259, 292–295]. The leading order for

the Higgs boson transverse momentum and rapidity is therefore part of the NLO for the

production cross section, when the processes responsible for them, gg → Hg, gq → Hq and

qq̄ → Hg, take place. The pT and yH distributions have been calculated in the full massive

case at LO [258,259] and it was shown that the heavy top quark limit is a reasonably good

approximation, provided of course that MH <∼ 2mt, but more importantly in this case, that

pT <∼ mt, which is typically the case as will be seen later. We will therefore restrict ourselves

to the heavy quark limit and summarize the salient features of these distributions.

Defining the momenta of the initial particles involved in the process ij → Hk, with

i, j, k = g, q, q̄, as pi,j = xi,j p1,2 with p1,2 the incoming hadron momenta, and as pk the

momentum of the final parton, the differential parton cross section in terms of the Higgs

transverse momentum pT and rapidity yH can be written in the heavy quark limit as

d2σ̂(ij → kH)

dp2
T dyH

=
Gµα

3
s

576
√

2π2
Hij→kH(pT , yH)

Hgg→Hg = 3
ŝ4 + t̂4 + û4 +M8

H

ŝ2t̂û
, Hgq→Hq = −4

3

ŝ2 + û2

ŝt̂
, Hqq̄→Hg =

32

9

t̂2 + û2

ŝ2
(3.72)

with the Mandelstam variables ŝ, t̂, û given in terms of yH and the transverse mass m2
T =

M2
H + p2

T as ŝ = (pi + pj)
2 = (pk + pH)2 = sxixj and t̂/û = (pi/j − pk)

2 = (pj/i − pH)2 =

M2
H−√

sxjmT e
±yH , with s being the total hadronic c.m. energy. The expressions are singular

for t̂, û→ 0 and, in particular, Hgg→Hg is singular in both t̂ and û. They can be regularized

by moving to n = 4 − 2ǫ space–time dimensions.

To include the NLO corrections to the differential distribution, and similarly to part

of the NNLO corrections for the total cross section, one has to calculate: (i) the virtual

corrections to Higgs production with a parton, which has to be multiplied by the Born term

of the same process, and (ii) the real corrections due to the production of the Higgs boson

with two partons, the sum of which has to be squared. In addition, one has to add the

corrections to the Altarelli–Parisi splitting functions from the parton densities at NLO.

These corrections have been calculated by several groups [293–298], using different meth-

ods and different schemes. In all cases, the heavy top quark limit has been used. We will

summarize below the main results at NLO, concentrating on the case of the LHC where

the transverse momentum and rapidity distributions of the Higgs boson are very important

ingredients. Unless otherwise stated, the Higgs mass is set to MH = 120 GeV and the heavy
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top limit is assumed; the renormalization and factorization scales are set equal and fixed to

the transverse Higgs mass, µR = µF = mT =
√
M2

H + p2
T .

The left–hand side of Fig. 3.26 shows the pT distribution of the Higgs boson at NLO for

several fixed rapidity values. One first notices that the differential distribution decreases with

increasing rapidity and with increasing pT , and that at small values of the latter, pT → 0, it

diverges to −∞ [while at LO it diverges to +∞]. In the low pT regime, pT <∼ 30 GeV, the

spectrum is unstable due to occurrence of large logarithms; the perturbative treatment is

therefore not reliable and resummation techniques, to be discussed later, are required. Note

that at small and moderate pT , the cross section is dominated by the gluonic gg → H +X

contribution, while for pT values beyond 200 GeV the contribution of the gq → HX process

becomes comparable; the (anti)quark initiated processes give very small contributions.

The NLO corrections increase the pT distribution except for small pT . While the increase

is very strong for pT values below 30 GeV [recall that the distribution at LO was diverging

in the opposite direction], it becomes moderate for pT values in the range of applicability of

perturbation theory. The K–factor, defined as K = dσNLO/dσLO, rises slowly from K ∼ 1.6

at pT = 30 GeV to K ∼ 1.8 for pT = 200 GeV when the total rate becomes too small.

Figure 3.26: The Higgs transverse momentum dependence at NLO for three values of the
rapidity yH = 0, 1, 2 (left) and the rapidity dependence for two different transverse momenta
pT = 50 and 100 GeV at both LO and NLO (right). The CTEQ5 set of PDFs has been used
while MH = 120 GeV and the scales are set to µR = µF = mT ; from Ref. [294].

The right–hand side of Fig. 3.26 shows the rapidity dependence of the cross section for

fixed values of the transverse momentum, pT = 50 and 100 GeV, at both LO and NLO. As

usual, the differential cross section is smaller for higher pT values. It is maximal at yH = 0

and falls off steeply for large rapidity values due to the restriction of the available phase,

reaching zero for |yH | >∼ 4. The NLO corrections increase the distribution: the K–factor

for reasonable pT values is at the level ∼ 1.6 and is almost independent on the value of the

rapidity, except at the boundary of the phase space where it drops slightly.

158



Thus, the NLO corrections acquire a size of about 60% to 80% over the entire perturbative

range of pT and yH values. The variation with the renormalization and factorization scale

has also been discussed and found to follow the same trend as in the production cross section

at NLO: a variation from the central value µF = µR = mT by a factor of two generates an

uncertainty of about 20%. There is also an uncertainty originating from the choice of the

PDFs, which is similar to what has been observed for the total cross section and which is

thus smaller than the scale uncertainty.

Let us make a final comment on the low pT case. As already mentioned, the distribution

diverges to +∞ at LO and to −∞ at NLO for pT → 0. This is because in the region

pT ≪MH , where the cross section is in fact the largest, the expansion parameter is not αs/π

but rather, (αs/π) log2(M2
H/p

2
T ) which is close to unity and invalidates perturbation theory.

However, the large logarithms, as singular as (1/p2
T )αn

s logm(M2
H/p

2
T ), with 1 <m< 2n − 1,

can be systematically resummed to all orders [371] as in the case of the total cross section,

resulting in a well behaved spectrum for pT → 0; see for instance Refs. [294,295] for details.

In the case of the gg → H process, the resummation has been performed at the NNLL

level of accuracy. This resummation for the low pT region, and the fixed order calculation

at NLO for the high pT region, have been consistently matched at intermediate pT values

to provide a smooth transition. The result for the pT distribution is shown in Fig. 3.27 at

the LHC for a Higgs mass of MH = 125 GeV. In the left figure, the NLO and NLO+NNLL

approximations are displayed and, as can be seen, the divergent behavior of this distribution

is removed by the resummation, the effects of which are relevant up to values pT ∼ 100 GeV.

The scale variation is shown in the right figure in the NLO+NNLL case: the spread is at

the level of 10% near the peak and increases to 20% for lower pT values, pT ∼ 100 GeV.

Figure 3.27: The pT distribution in gg → H at the LHC for MH = 125 GeV, at NLO
and NLO+NNLL for scales µR = µF = MH (left) and at NLO+NNLL when the scales are
collectively varied by a factor of two; from Ref. [295].
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Higgs boson plus n jet production

It has been suggested that Higgs production with one high pT jet might have a much smaller

background at the LHC, in particular in the decay channel H → γγ [372], than the gg → H

channel alone. At LO, the process is just the gg → Hg, qg → Hq and qq̄ → Hg processes that

we have discussed previously and for which we have displayed the partonic differential cross

sections in the heavy top limit, eq. (3.60). In this limit, the NLO corrections to pp→ H + j

are those which appear in the O(α2
s) real corrections to the NNLO gg → H cross section.

The Higgs plus 2 jet production process is generated by qq̄ scattering mediated by tri-

angles involving top quarks, gq scattering mediated by boxes and triangles and gg fusion

mediated by triangles up to pentagon diagrams, and is known exactly at LO [261]. This

mechanism has been discussed in connection with the vector boson fusion process, since it

leads to the same final states, the gluons and the light quarks being indistinguishable, and

may act as a background in the study of the former process. Characteristics which dis-

criminate between the processes have been worked out and summarized in Fig. 3.28. The

main points have been already discussed in §3.3.3: with basic (inclusive) cuts pTj >∼ 20 GeV,

|ηj | < 5 and Rjj > 0.6, gluon fusion dominates, while the specific additional cuts mjj > 0.6

TeV, |ηj1 − ηj2| > 4.2 and ηj1 · ηj2 < 0, select the vector boson fusion (WBF) process [373].

Figure 3.28: Higgs production with 2 jets at the LHC as a function of MH , in gluon fusion
with mt = 175 GeV (solid line) and mt → ∞ (dotted line) and in vector boson fusion
(dashed). The left (right) part shows the cross section with the inclusive (WBF) cuts [373].

Recently, associated Higgs production with 3 jets has been calculated in the mt → ∞
limit [262]. This is part of the NLO corrections to the Higgs+2 jet process, which exhibits a

strong dependence on the renormalization scale µR since it is an LO process but of O(α4
s).

The very complicated virtual corrections need to be derived which, when combined with the

Higgs+3 jet real corrections, will hopefully stabilize the scale dependence of the H+2j rate.
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3.5 Associated Higgs production with heavy quarks

3.5.1 The cross sections at the tree level

The process where the Higgs boson is produced in association with heavy quark pairs, pp→
QQ̄H [247,248], with the final state quarks being either the top quark or the bottom quark

[in this case, see also Ref. [249, 250]], is the most involved of all SM Higgs production

mechanisms. At the tree–level, it originates from qq̄ annihilation into heavy quarks with

the Higgs boson emitted from the quarks lines; this is the main source at the Tevatron. At

higher energies, when the gluon luminosity becomes important, the process proceeds also

through gluon fusion, where the Higgs boson is emitted from both the external and internal

quark lines. A generic set of Feynman diagrams is shown in Fig. 3.29; those which are not

shown differ only in the way the Higgs line is attached to the final state quark line and the

gluon symmetrization in the last diagram.

q̄

q g

Q

Q̄

H

• gg

g •
•

Figure 3.29: Generic Feynman diagrams for the associated Higgs production with heavy

quarks in hadronic collisions, pp→ qq̄, gg → QQ̄H, at LO.

Added to the complication that one has to calculate the amplitude of 10 Feynman di-

agrams and square them, one has to deal with the rather involved phase space with three

massive particles in the final state. This is the reason why the complete analytical expression

of the cross section is not available in the literature. If only qq̄ annihilation is considered,

which is a good approximation in the case of the Tevatron, the matrix element squared in

terms of the momenta q(q̄), p(p̄) and k of respectively, the initial light and final heavy quark

(antiquark) and the Higgs particle, with Q2 = (q + q̄)2 = (p+ p̄+ k)2 = ŝ, is given by [248]

|Mqq̄|2 =
32

(2k.p̄+M2
H)(2k.p+M2

H)

{
Q2(Q.k)2

[
1 +

Q2(4m2
Q −M2

H)

(2k.p̄+M2
H)(2k.p+M2

H)

]

+

(
1

2
Q2m2

Q − 2(p.q)(p.q̄)

)[
Q2 − 4m2

Q +M2
H +

2k.Q(4m2
Q −M2

H)

2k.p̄+M2
H

]

+

(
1

2
Q2m2

Q − 2(p̄.q)(p̄.q̄)

)[
Q2 − 4m2

Q +M2
H +

2k.Q(4m2
Q −M2

H)

2k.p+M2
H

]

− (Q2 +M2
H − 4m2

Q)
[
2(p.q)(p̄.q̄) + 2(p.q̄)(p̄.q) −Q2(p.p̄)

]}
(3.73)

where the coupling factors, g4
s(
√

2m2
QGµ), with g2

s = 4παs, have been removed.
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For the gluon fusion diagrams, denoting by ǫ1 and ǫ2 the polarization four–vectors of

the gluons and by g1 and g2, their four–momenta, the various amplitudes are given by [the

generators T a and the SU(3) structure constants fabc are discussed in §1.1.1] [248]

Ma
gg = −T a

ikT
b
kj ū

j(p)
/k + /p+mQ

2p.k +M2
H

/ǫ2
−/̄p+ /g1 +mQ

−2g1.p̄
/ǫ1 v

i(p̄) +




g1 ↔ g2, ǫ1 ↔ ǫ2
g1 ↔ g2, ǫ1 ↔ ǫ2, p↔ p̄

p↔ p̄




Mb
gg = −T a

ikT
b
kj ū

j(p) /ǫ2
/p− /g2 +mQ

−p.g2

−/̄p+ /g1 +mQ

−g1.p̄
/ǫ1 v

i(p̄) + [g1 ↔ g2, ǫ1 ↔ ǫ2] (3.74)

Mc
gg = ifabcT c

ij ū
j(p)

/ǫ1/ǫ2Q
λ

ŝ

[
2gν

1g
λµ
2 +(g2−g1)

λgµν−2gµ
2 g

νλ
] /̄p+ /k −mQ

2k.p̄+M2
H

vi(p̄) + [p↔ p̄]

where again, the product of couplings g2
s(
√

2m2
QGµ)

1/2 has been factorized out. The gluon

polarization vectors obey the transversality condition ǫi.gi = 0 and SU(3) gauge invariance

can be checked by making the substitutions ǫi → gi; one can also use the gauge condition

ǫ1.g2 = ǫ2.g1 to simplify the calculation. In the amplitude squared, summed over the final

quarks color and spin and averaged over the gluon color and polarizations

|Mgg|2 =
1

256

∑

spin, color

|Ma
gg + Mb

gg + Mc
gg|2 (3.75)

one has to perform the trace over the γ matrices and the sum over the indices of the QCD

Gell–Mann matrices and the fabc structures functions

(T a
ikT

b
kj)

2 = 24 , (fabcT c
ij)

2 = 12 , (T a
ikT

b
kj)(f

abcT c
ij)

2 = 0 (3.76)

The average over the gluon polarizations, since the gluons are massless, should be performed

in an axial gauge, and for instance one can use28

2∑

λi=1

ǫµi (gi, λi)ǫ
ν
i (gi, λi) = −gµν +

2

ŝ
(gµ

1 g
ν
2 + gν

1g
µ
2 ) (3.77)

The obtained expression for the amplitude squared is too long to be reproduced. One has

then to integrate over the phase space to obtain the cross section at the partonic level for

each subprocess ij → tt̄H [with ij = qq̄, gg]

σ̂ij
LO =

1

2ŝ

α2
sGµm

2
Q√

2π3

∫
d3p

2p0

d3p̄

2p̄0

d3k

2k0
δ4(Q− p− p̄− k)

[∑
|Mij|2

]
(3.78)

These partonic cross sections have then to be folded with the quark and gluon luminosities

to obtain the full cross section at the hadronic level

σLO =

∫ ∑

i,j

1

1 + δij

(
Fp

i (x1, µF )Fp
j (x2, µF )σ̂ij

LO(x1, x2, µF ) + [1 ↔ 2]
)
dx1dx2 (3.79)

28Alternatively, one can use the simpler Feynman gauge for the summation over polarization,
∑

ǫµ
i ǫν

i =
−gµν , but two additional diagrams with ghosts replacing the gluons in the initial state have to be added.
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where Fp
i are the distributions of the parton i in the proton, defined at the factorization

scale µF . The factor 1/(1 + δij) accounts for the identical gluons in the initial state.

The cross section for the associated tt̄H and bb̄H production are shown for the Tevatron

and LHC energies in Fig. 3.30. The MRST set of parton densities has been used and the

renormalization and factorization scales have been identified with µR = µF = mQ + 1
2
MH

and 1
4
MH for the tt̄H and bb̄H cases, respectively; the pole masses of the top and bottom

quarks have been fixed to mt = 178 GeV and mb = 4.88 GeV. As can be seen, the pp̄→ tt̄H

cross section at the Tevatron is of the order of 5 fb for small Higgs masses, MH ∼ 120

GeV, dropping to a level below 1 fb for MH >∼ 180 GeV, when the phase space becomes too

narrow. At the LHC, the cross section is two orders of magnitude larger as a consequence of

the higher energy, higher gluon luminosity and larger phase space. It varies however strongly

with MH , dropping by more than one order of magnitude when MH varies from 120 to 250

GeV. The detection aspects at LHC [374–380] and Tevatron [381] will be discussed in §3.7.

Surprisingly, the pp̄→ bb̄H cross sections are slightly larger than the corresponding cross

sections for pp̄ → tt̄H at both the Tevatron and the LHC, for small enough Higgs boson

masses. This is mere consequence of the larger available phase space at the Tevatron and

the participation of the low x gluons in the case of the LHC. The cross sections become

comparable at moderate Higgs masses, and eventually the pp̄ → tt̄H process dominates at

higher Higgs masses, but the production rates become then too small.

Ht�tHb�b
ps = 14 TeV�(pp! HQ �Q) [pb℄

MH [GeV℄ 300250200150100

1
0.1

0.01
Hb�bHt�t
ps = 1:96 TeV�(p�p! HQ �Q) [pb℄

MH [GeV℄ 200180160140120100

0.01
0.001

Figure 3.30: The tt̄H and bb̄H production cross sections at the LHC (left) and the Tevatron
(right). The pole quark masses in the Yukawa couplings are set to mt = 178 GeV and
mb = 4.88 GeV and the MRST PDFs are used. The renormalization and factorization scales
have been set to µR,F = mt + 1

2
MH for pp→ Htt̄ and µR,F = 1

2
mb + 1

4
MH for pp→ Hbb̄.
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3.5.2 The ttH cross section at NLO

The calculation at NLO

As we have seen just before, it was already rather difficult to calculate the pp → QQ̄H

cross section at LO. At NLO, the task becomes formidable. The computation of these NLO

corrections, which was another tour de force, has been been completed only very recently,

by two independent groups [287, 288]. The Feynman diagrams which contribute to the

NLO QCD corrections can be divided into four gauge invariant subsets, some representative

examples of which are presented in Fig. 3.31: a) virtual gluonic corrections to the qq̄g and

ggg vertices as well as to the initial and final quark and gluon self–energies, b) vertex and box

virtual corrections where the Higgs boson is emitted from the internal lines and where a final

state gluon is emitted and splits into QQ̄ pairs, c) pentagonal qq̄ and gg initiated diagrams

where the Higgs boson is emitted from the heavy quark internal lines, and finally d) real

corrections where an additional gluon is emitted in the final state in all possible ways, and

which involve additional qg and q̄g scattering diagrams which do not occur at the tree–level.
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Figure 3.31: Representative Feynman diagrams for the NLO QCD corrections to pp→ QQ̄H.

Technically speaking, there are two main difficulties which arise when attempting to

perform such a calculation. The first one is that the pentagonal one–loop 5–point functions

[382] are rather difficult to evaluate in n dimensions since, not to mention the complicated

tensorial structure which has to be reduced to known scalar integrals, they involve massive

164



particles and have ultraviolet, soft and collinear singularities which have to be calculated in

the dimensional regularization scheme. The second major difficulty is the extraction of the

soft and collinear singularities in the real part of the corrections, which involve 4 particles in

the final state, with three of them being massive. This leads to severe numerical instabilities

which have to be handled with great care [383]. Added to this, a large number of Feynman

diagrams and the associated counterterms have to be evaluated.

Several methods have been devised to overcome these problems, and a detailed account

can be found in the original papers of Refs. [287,288]. In both calculations, the renormaliza-

tion has been performed in a mixed scheme, where the heavy quark mass is defined on–shell

and the running of the MS strong coupling constant includes only the light quarks and gluons

with the heavy quarks decoupled. The factorization has been performed in the MS scheme,

where the heavy quark is decoupled from the evolution of the parton densities. The two

calculations have been compared against each other, and although the methods which have

been used are different, a perfect agreement has been found. In the following, we will simply

summarize the numerical results which have been obtained for pp→ tt̄H .

Numerical results for pp→ tt̄H

In Fig. 3.32, the LO and NLO cross sections for associated Higgs production with top quarks

are presented in the case of the Tevatron with a c.m. energy
√
s = 2 TeV. The CTEQ4M(L)

parton distribution functions at the NLO (LO) have been used and the top quark mass and

the strong coupling constants have been fixed to mt = 174 GeV and αNLO
s (MZ) = 0.116.

The left–hand side of the figure displays the LO and NLO cross sections as a function of the

Higgs mass, with the renormalization and factorization scales chosen to be µR = µF = mt

and 2mt, while the right–hand side displays the variation of the cross sections with the

renormalization and factorization scales for a Higgs boson with a mass MH = 120 GeV.

One can see that over the entire Higgs mass range accessible at the Tevatron, the NLO

corrections decrease the production rate. For µF = µR = mt, the K–factor defined as the

ratio of the NLO and LO cross sections consistently evaluated at their respective orders,

is K ∼ 0.8 and is nearly independent of the Higgs mass29. However, for a scale choice

µR = µF = 2mt, the NLO corrections are very small. This suggests a very strong dependence

of the cross section on the scale choice, and indeed, as is illustrated in the right–hand side

of Fig. 3.32 where the scales are varied from mt to ∼ 3mt, while the NLO cross section is

rather stable, the LO cross section changes by 60% in this range. Thus, the NLO corrections

are mandatory to stabilize the prediction for the production cross section.

29This is one of the few examples of K–factors below unity. As discussed in Refs. [287, 289], the reason
lies in the fact that at

√
s = 2 TeV, the tt̄H final state is produced in the threshold region, where gluon

exchange between the top quarks gives rise to Coulomb singularities ∝ αs/βt. Since the tt̄H final state is in
a color octet, these corrections are negative and decrease the Born cross section.
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Figure 3.32: The pp̄ → tt̄H + X production cross section at the Tevatron at both LO and
NLO, as a function of the Higgs mass with two scale choices (left) and as a function of the
scales µ = µR = µF for MH = 120 GeV (right); from Ref. [289].

In the subsequent figures, Fig. 3.33–3.34, we present the LO and NLO results for the

associated Higgs production with top quarks at the LHC, pp → tt̄H + X, as derived in

Ref. [287]. Besides the total hadronic cross sections, the differential distributions in trans-

verse momentum and rapidity of the Higgs boson have been discussed in this case. Here, the

MRST set of parton densities at LO and NLO has been adopted, and the renormalization

and factorization scales are set to µR = µF = µ0 = 1
2
(2mt +MH) when they are not varied;

the top–quark mass is also set to the old central value mt = 174 GeV.

σ(pp → tt
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Figure 3.33: Total cross section for pp→ tt̄H+X at the LHC in LO and NLO as a function
of MH (left) and the variation with the scales for MH = 120 GeV (right); from Ref. [287].

Because the cross section at the LHC is dominated by the gg fusion process, it receives

positive NLO corrections for the central renormalization and factorization scale, µ0 = mt +
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1
2
MH , as shown in the left–hand side of Fig. 3.33. For this scale value, a factor K ∼ 1.2 is

obtained, increasing to K ∼ 1.4 when the choice µF = µR = 2µ0 is made. As in the case of

the Tevatron, these values are nearly independent of the Higgs boson mass in the displayed

range. Again, and as is shown in the right–hand side of the figure, the NLO corrections

significantly reduce the renormalization and factorization scale dependence and stabilize the

theoretical prediction for the cross section at the LHC.

The scale dependence of the rapidity and transverse momentum distributions of the Higgs

boson is also significantly reduced at NLO and the shape of the distributions is practically

constant when the scales are varied in a reasonable range. The ratio of the normalized

NLO and LO distributions in transverse-momentum and rapidity, are shown in the inserts

of, respectively, the left–hand and right–hand parts of Fig. 3.34 for MH = 120 GeV. In the

former case, the default scale was set to the transverse mass, µ2 = p2
T,H + M2

H , which is a

more natural choice for large transverse momenta. In this case the NLO corrections are small

for low values of the Higgs transverse momentum, pT,H <∼ mt, but increase with increasing

pT,H values, reaching ∼ 30% at the boundary of phase space where the cross section is small.

In the case of the normalized rapidity distribution, the NLO corrections are also very small

in the central region but they become negative and of the order of 10% at the edge of phase

space. A conclusion that one can draw from these figures, is that one cannot simply use a

constant K–factor to describe these distributions.

Note that the transverse momentum and rapidity distributions of the top and antitop

quarks have been also studied; they are barely affected by the NLO corrections once the

scales have been properly chosen; see Ref. [287].
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Figure 3.34: Normalized transverse-momentum (left) and rapidity (right) distribution of the
Higgs boson in the process pp→ tt̄H +X at the LHC in LO and NLO with MH =120 GeV.
The inserts to the figures show the ratio of the NLO to LO distributions; from Ref. [287].
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The PDF uncertainties

Finally, let us discuss the PDF uncertainties in the prediction of the pp → Htt̄ cross sec-

tion, restricting ourselves to the case of the LHC. The central values and the uncertainty

band limits are shown for the CTEQ, MRST and Alekhin parameterizations in Fig. 3.35

as a function of MH , using the procedure outlined in §3.1.5. We also show in the inserts,

the spread uncertainties in the predictions when the cross sections are normalized to the

values obtained using the CTEQ6M set. Since the NLO corrections have been calculated

only recently and the presumably very complicated and slow programs are not yet publicly

available, we simply use the program HQQ of Ref. [278] for the LO cross section with scales

µF = µR = 2mt +MH that we fold with the NLO PDFs. Although the overall normalization

is different when including the NLO correction [one simply has to multiply by the K–factor

which is approximately 1.4 in this case], this procedure should describe the relative effects

of the different PDFs at NLO with a rather good approximation.

AlekhinCTEQMRST
ps = 14 TeV�(pp! Htt) [pb℄

MH [GeV℄ 200180160140120100

1

0.1
200150100

1.11.0510.950.9

Figure 3.35: The CTEQ, MRST and Alekhin PDF uncertainty bands for the NLO cross
section pp → tt̄H at the LHC; the scales have been fixed to µF = µR = 2mt + MH . The
inserts show the spread in the predictions compared to CTE6M; from Ref. [314].

As discussed above, the process is dominantly generated by gluon–gluon fusion at the

LHC and compared with the process gg → H discussed in §3.4, and for a fixed Higgs mass,

a larger Q2 is needed for this final state and the initial gluons should therefore have higher

x values. In addition, the quarks that are involved in the subprocess qq̄ → tt̄H , which is

also contributing, are still in the intermediate regime because of the higher value [x ∼ 0.7]

at which the quark high-x regime starts. This explains why the uncertainty band increases

smoothly from 5% to 7% when the MH value increases from 100 to 200 GeV.
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3.5.3 The case of the bbH process

As seen in §3.5.1, the production cross sections for the associated Higgs production with

bottom quarks are not that small, despite of the tiny Hbb̄ Yukawa couplings. However, the

dominant bb̄bb̄ signal final state for a low mass Higgs boson decaying into bb̄ pairs is rather

complicated to be isolated experimentally and suffers from the huge QCD jet background.

This channel is therefore not considered as a discovery channel for the SM Higgs boson

at the Tevatron and the LHC. Nevertheless, in extensions of the SM, such as in minimal

supersymmetric theories, the Higgs Yukawa coupling to bottom quarks can be strongly

enhanced, leading to large bb̄H production rates even for high mass Higgs bosons which can

exceed by far the cross sections in the pp→ tt̄H case. This channel will thus be discussed in

some detail in another part of this review [24]. Here, we will simply summarize the impact

of the NLO corrections, restricting ourselves to the inclusive total rate generated via light

quark annihilation and gg fusion, qq̄, gg → bb̄H .

The calculation of the NLO correction to bb̄H production follows the same lines as what

has been discussed previously for pp→ tt̄H and the results have been given in Refs. [290,291].

There is however, a major difference between the two cases [384]: because of the small b–

quark mass, the cross section σ(gg → bb̄H) develops large logarithms30, log(Q2/m2
b), with

the scale Q being typically of the order of the factorization scale Q ∼ MH ≫ mb. This leads

to large corrections, part of which can be absorbed by choosing a low value factorization and

renormalization scales, µR = µF ∼ 1
4
(MH + 2mb) [384, 385].
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Figure 3.36: Total inclusive cross sections for pp→ bb̄H +X at the Tevatron (left) and the
LHC (right) as a function of MH with the factorization and renormalization scales set to
µR = µF ∼ 1

4
(MH + 2mb). The b–quark running mass, with a starting pole value mb = 4.88

GeV, has been used in the Higgs coupling and the CTEQ6 PDFs are adopted; from [290].

30The issue of resumming these large logarithms and stabilizing the scale dependence of the cross section
using heavy quark distribution functions has been discussed in Ref. [385].
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The NLO cross sections are shown at Tevatron and LHC energies in Fig. 3.36 as a function

of the Higgs mass for this scale choice, and compared to the LO cross sections; in both cases,

the running b–quark mass at the scale of the Higgs mass, with the starting pole mass being

mb = 4.9 GeV, has been used for the Yukawa coupling. As can be seen, even with this

scale choice, the NLO corrections are large, with K–factors ranging from 1.6 to 2.6 at the

Tevatron and 1.1 to 1.8 at the LHC. The scale variation is also still strong even at NLO and

further work is needed to improve the theoretical prediction of the bb̄H production rate.

3.5.4 Associated Higgs production with a single top quark

Since the phase space for tt̄H production is too penalizing, in particular at the Tevatron, it

has been suggested to consider the process where the Higgs boson is produced in association

with a single top or antitop quark [386,387]

pp/pp̄→ tH +X (3.80)

The expectation is that the cross section can be comparable to that of the tt̄H process,

similarly to what occurs for top quark production in hadronic collisions where the rate for

single top quark is not much smaller than that for top quark pair production, the ratio of the

two being of the order of 1/3 [388]. There are three types of contributions to this production

channel, as shown in Fig. 3.37 where a few generic Feynman diagrams are presented:

a) qq̄′ annihilation with s–channel W boson exchange, which leads to the three–body final

state involving a Higgs boson and bt pair;

b) t-channel fusion of a light quark and a bottom parton from the proton sea which,

through W exchange, leads to the qtH final state;

c) the scattering of gluons with again bottom partons from the proton sea and which lead

to tWH final states.

In the language of gluon initiated production, the two last processes are in fact the

higher–order mechanisms gg → bH +X with four final state particles but with one b–quark

integrated out. Note that in all three channels the Higgs boson can be radiated not only

from the top quark lines but also from the W boson [as well as from the b–quark] lines.

q̄′

q W

t

b̄

H

•
W

b

q q′

t
H

• •
g

b W

t
H

Figure 3.37: Generic Feynman diagrams for the associated Higgs production with a single
top quark in hadronic collisions: a) qq̄′ → b̄tH, b) qb→ q′tH and c) gb→ W−tH.
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Figure 3.38: The cross sections for Higgs plus single top production at the Tevatron (left)
and at the LHC (right), in the t–channel, s–channel and W–associated processes; for com-
parison the cross section for tt̄H is also shown. The CTEQ5L set of PDFs is used, and the
renormalization and factorization scales are set to MH ; from Ref. [387].

These processes have been revisited in Ref. [387] and the production cross sections are

shown in Fig. 3.38 for the Tevatron (left) and LHC (right) as a function of the Higgs mass.

The rates for the three channels are shown separately and compared with the pp → tt̄H

cross section. The renormalization and factorization scales are set to the Higgs mass and

the CTEQ5 set of PDFs has been used. Unfortunately, and contrary to the tt̄ case, the rates

for associated Higgs production with a single top quark are in general much smaller than

those of tt̄H production. At the Tevatron, all channels lead to cross sections that are two

orders of magnitude smaller. At the LHC, this is also the case for the s–channel qq̄′ → b̄tH

and WtH associated production. However, for low Higgs masses, the t–channel qb → q′tH

cross section is suppressed only by a factor of 10 compared to tt̄H production and for larger

masses, MH ∼ 300 GeV, the two become comparable, but with rather low rates.

Focusing on the latter channel, where forMH <∼ 150 GeV approximately 104 events can be

collected at the LHC for L = 100 fb−1 before cuts and efficiency losses are applied, the signals

and the various backgrounds have been studied in Ref. [386] for a Higgs boson decaying into

two photons, and in Ref. [387] where the more copious H → bb̄ decay final states have been

considered. The observation of a Higgs boson in the first channel is certainly not possible

since the γγ branching ratio is of O(10−3). In the configuration where the Higgs decays into

bb̄ and the top quark into Wb→ ℓνb, the yield depends on the number of b–quarks that are

required to be tagged: for three b–tags, the background from tt̄j is overwhelming, while for

four b–tags, several backgrounds with rates that are comparable to the signal are present.

The conclusion of Ref. [387] is that a Higgs signal is unlikely to be observed in this channel,

except in extensions of the SM where the production cross section is enhanced.
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3.6 The higher–order processes

3.6.1 Higgs boson pair production

In hadronic collisions, Higgs particles can be pair produced in three main processes31:

a) the gluon–gluon fusion mechanism which is mediated by loops of third generation heavy

quarks that couple strongly to the Higgs boson [251,252]

gg → HH (3.81)

b) double Higgs–strahlung from either a W or a Z boson [253,254]

qq̄ → V ∗ → V HH (3.82)

c) the WW/ZZ fusion processes which lead to two Higgs particles and two jets [254–256]

qq → V ∗V ∗qq → HHqq (3.83)

The Feynman diagrams for these processes are shown in Fig. 3.39 and as can be seen, one of

them involves the trilinear Higgs boson coupling, λHHH = 3M2
H/v, which can be thus probed

in principle. The other diagrams involve the couplings of the Higgs boson to fermions and

gauge bosons and are probed in the processes discussed in the previous sections.
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Figure 3.39: Feynman diagrams for Higgs pair production in hadronic collisions.

We will briefly discuss these processes in this subsection, restricting ourselves to the case of

the LHC where the phase space is not too penalizing.
31Triple Higgs production, which probes the quadrilinear Higgs coupling, has a too small cross section [389].
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The gluon–gluon fusion mechanism

The large number of gluons in high–energy proton beams implies that the gluon–gluon fusion

mechanism is the dominant process for Higgs boson pair production. As for single Higgs

production in this mechanism, the coupling between gluons and Higgs bosons is mediated

by heavy quark loops. In the SM, the top quark loop is dominating while the bottom quark

loop gives a small but non–negligible contribution.

In terms of the trilinear Higgs coupling, λ′HHH = 3M2
H/M

2
Z [note the change in the

normalization], the partonic cross section at leading order is given by [252]

σ̂LO(gg → HH) =

∫ t̂+

t̂−

dt̂
G2

µα
2
s(µR)

256(2π)3

{∣∣∣∣
M2

Zλ
′
HHH

ŝ−M2
H

FT + FB

∣∣∣∣
2

+ |GB|2
}

(3.84)

with the Mandelstam variables for the parton process given by

ŝ = Q2 , t̂/û = −1

2

[
Q2 − 2M2

H ∓Q2βH cos θ
]

(3.85)

where θ is the scattering angle in the partonic c.m. system with invariant mass Q and,

as usual, β =
√

1 − 4M2
H/Q

2. µR is the renormalization scale which, together with the

factorization scale, will be identified to ŝ and the integration limits correspond to cos θ = ±1

and t̂± = −1
2
[Q2 − 2M2

H ∓Q2βH ]. The proton cross section is derived by folding the parton

cross section σ̂(gg → HH) with the gluon luminosity

σ(gg → HH) =

∫ 1

4M2
H

/s

dτ
dLgg

dτ
σ̂(gg → HH ; ŝ = τs) (3.86)

The dependence on the quark masses is contained in the triangle and box functions FT , FB

and GB. The expressions of these form factors with the exact dependence on the quark

masses can be found in Ref. [251, 252]. In the limit where the Higgs boson is much lighter

or much heavier than the internal quark Q, the coefficients take a very simple form [252]

MH ≪ 4mQ FT ≃ 2

3
, FB ≃ −2

3
, GB ≃ 0

MH ≫ 4mQ FT ≃ −
m2

Q

ŝ

[
log

m2
Q

ŝ
+ iπ

]
, FB ∼ GB ≃ 0 (3.87)

As one might have expected from single Higgs production, the QCD radiative corrections

are particularly important for this production channel and must be included. They have been

determined in the heavy quark limit M2
H ≪ 4m2

Q, where one can use the low energy theorem

to determine the effective Hgg and HHgg couplings in the triangle and box contributions,

when the top quark is integrated out. One can then use these effective couplings to calculate

the interaction of the light gluon and quark fields, as discussed previously. The K–factor was

found to be K ≈ 1.9 in the Higgs mass range between 100 and 200 GeV [390]. A K–factor

of similar size is generally expected for larger Higgs masses, and even beyond the top–quark

threshold, as it was the case for the gg → H process.
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The vector boson fusion and strahlung mechanisms

At high energies, on expects double Higgs boson production in the vector boson fusion

channel to have a substantial cross section since the longitudinal vector bosons have couplings

which grow with energy. The calculation of the full 2 → 4 process, qq → qqHH , is rather

complicated. However, one can use the equivalent longitudinal vector boson approximation

where one calculates the cross section for the 2 → 2 process

VLVL → HH (3.88)

Taking into account only the dominant longitudinal vector boson contribution, denoting by

βV,H the V,H boson velocities in the c.m. frame, the production amplitude is given by

MLL =
Gµŝ√

2

{
(1+ β2

V )

[
1+

M2
Zλ

′
HHH

(ŝ−M2
H)

]
(3.89)

+
1

βV βH

[
(1 − β4

V ) + (βV − βH cos θ)2

cos θ − xV
− (1 − β4

V ) + (βV + βH cos θ)2

cos θ + xV

]}

with the variable xV defined as xV = (1−2M2
H/ŝ)/(βV βH), θ the scattering angle in the V V

c.m. frame and ŝ1/2 the invariant energy of the V V pair.

Squaring the amplitude and integrating out the angular dependence, one obtains the

cross section for the VLVL → HH subprocess,

σ̂(VLVL → HH) =
G2

µM
4
V

8πŝ

βH

βV (1 − β2
V )2

∫ 1

−1

d cos θ |MLL|2 (3.90)

which has then to be folded with the longitudinal vector boson luminosity spectra eq. (3.53)

to obtain the qq → HHqq cross section, which again has to be convoluted with the parton

densities to obtain the full hadronic cross section

σ(pp→ HHqq) =

∫ 1

4M2
H

/s

dτ
dLqq

dτ
σ̂(qq̄ → HHV ; ŝ = τs) (3.91)

The result obtained in this way, is expected to approximate the exact result within about a

factor of two for low Higgs boson masses and very high energies [255, 256].

In the case of the double Higgs–strahlung mechanisms, qq̄ → HHV , the production

cross sections are expected to be rather small. This can be guessed by looking at the cross

section for single Higgs–strahlung: for MH ∼ 200 GeV [which in terms of phase space would

correspond to the production of two Higgs bosons with a mass of 100 GeV], it is of the order

of 30 fb, and there will be still an additional suppression by the electroweak coupling factor

in the case of double Higgs–strahlung. The analytical expressions will be given in the next

section when this process will be discussed at e+e− colliders, where it is more relevant.
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The cross sections at the LHC

The total cross sections for the pair production of Higgs bosons in the three processes are

shown in Fig. 3.40 as a function of the Higgs boson mass in the range MZ <∼ MH <∼ 2MZ .

In the gg case, the full dependence on the quark mass has been taken into account and the

K ∼ 1.9 factor has been included [note that the NLO QCD corrections to the double Higgs

production in association with a vector boson and in the vector boson fusion channels, are

the same as the respective processes for single Higgs production and will increase the cross

sections by, respectively, ∼ 30% and ∼ 10%; they have not been included].

As expected, the gluon fusion dominates over the other mechanisms and has a cross

section larger than 10 fb for this Higgs mass range. The WW/ZZ fusion mechanisms are the

next important channels, but with cross sections which are one order of magnitude smaller;

WW fusion dominates over ZZ fusion at a ratio WW/ZZ ≈ 2.3. The cross sections for

double Higgs-strahlung are relatively small. This follows from the scaling behavior of the

cross sections which drop ∼ 1/ŝ. The cross sections for Higgs-strahlung off W and Z bosons

are combined in the figure and their their relative size is close to W/Z ≈ 1.6.

The vertical arrows indicate the sensitivity of the production cross sections to the size of

the trilinear Higgs coupling; they correspond to a modification of the trilinear Higgs coupling

λHHH by the rescaling coefficient κ = 1
2
→ 3

2
.
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Figure 3.40: The cross sections for gluon fusion, gg → HH, the WW/ZZ fusion qq →
qqWW/ZZ → HH and the double Higgs–strahlung qq̄ → WHH + ZHH in the SM as a
function of MH . The vertical arrows correspond to a variation of the trilinear Higgs coupling
from 1

2
to 3

2
of the SM value, λHHH = 3M2

H/M
2
Z; from Ref. [254].
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3.6.2 Higgs production in association with gauge bosons

Higgs production in association with gauge boson pairs

In high–energy collisions, the pair production of massive vector bosons pp → V V ′, with

V, V ′ = W,Z(γ), has a very large cross section since it grows logarithmically with the center

of mass energy. In view of these rates, it is tempting to consider the possibility of emitting

an additional Higgs particle from one of the gauge boson lines [263, 264]

qq / qq̄ → W+W−H , ZZH , W±ZH and qq /qq̄ → γZH , γW±H (3.92)

The hope is that the suppression by the additional electroweak coupling factor might be com-

pensated by the initially large production rate for gauge bosons. Formally, these processes

are of the same order, O(G3
µ), as Higgs production in the WW/ZZ fusion mechanisms, and

the suppression by the phase space should not be too drastic at high enough energies.
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Figure 3.41: Diagrams for associated Higgs boson production with two gauge bosons.

As shown in Fig. 3.41, where some generic Feynman diagrams are displayed, the pro-

cesses proceed through s–channel gauge boson and/or t–channel quark exchanges. Strictly

speaking, the processes with additional final state photons which have enough large pT to be

observed, should be viewed as the ISR part of the electroweak corrections to the qq̄ → HV

processes as discussed in §3.2. However, they are interesting since, besides the fact that the

final state contains an additional photon which can be tagged, they can have larger rates

compared to the parent processes which drop like 1/ŝ at high energies. The processes not

involving photons, are genuine higher–order processes, though at high energies they can also

be viewed as a kind of “V bremsstrahlung” correction to the main mechanisms qq̄ → HV .

The cross sections for these processes have been evaluated in Ref. [263] and updated

recently [264] using MadGraph [391]. They are shown in Fig. 3.42 for the energy relevant at

the LHC as a function of MH . For the final states involving photons, the cuts pγ
T ≥ 10 GeV

and |ηγ| ≤ 2.5 have been applied. The CTEQ6 PDFs have been used and the scales were

set at µ2
R = µ2

F = ŝ. The largest cross section is obtained for the pp → HWW process, as

anticipated from the fact that the WW cross section is dominant at the LHC, being at the

level of σ(HWW ) ∼ 10 fb for low mass Higgs values and decreases slowly to reach ∼ 1 fb

for MH ≃ 300 GeV; thus it is larger than for double Higgs production in the strahlung and

fusion processes. The cross sections for the other processes are a factor of 3 to 5 smaller but

except for σ(HWZ), they are above the femtobarn level for MH <∼ 160 GeV.
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Figure 3.42: The total cross sections for the associated production of the Higgs boson with a
pair of gauge bosons at the LHC, pp→ HV V , as a function of MH ; from [264].

In view of the smallness of the signal cross sections, these processes cannot of course be

considered as Higgs discovery channels [in particular since the backgrounds from triple gauge

boson production might be large]. However, once Higgs particles have been detected in the

dominant detection channels, they could allow for additional tests and measurements, such

as the determination of the HWW coupling from pp→ HWW →WWWW .

Higgs production in association with a gauge boson and two jets

The associated Higgs production with a gauge boson and two quarks in hadronic collisions

qq → HWqq , HZqq , Hγqq (3.93)

originates from several sources, as shown Fig. 3.43 where some Feynman diagrams are dis-

played, with the starting point being the fusion of the vector bosons producing a gauge or a

Higgs boson. The production of Hγqq final states occurs only through the qq → WWqq →
Hqq process, with the photon emitted from the quark or the internal W lines, which is part

of the photonic corrections to the initial mechanism. Note that an additional source might

come from the pp → HV process, with the emission of two jets in the final state: this also

is part of the NNLO QCD corrections to Higgs–strahlung that we have already discussed.
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Figure 3.43: Feynman diagrams for the associated HV qq production in hadronic collisions.
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The cross sections for these processes have been calculated sometime ago [265] both

exactly and in the longitudinal W approximation [for the energy which was relevant for the

late SSC] and the output was that the latter approximation gives results which are only

about a factor of two different from the exact result. This is similar to Higgs pair production

in the vector boson fusion channels qq → V ∗V ∗ → qqHH , discussed previously; in fact for

pp → HZqq, the analogy between the two processes is complete since the Z boson can be

treated as a neutral Goldstone boson w0, which has exactly the same coupling as the Higgs

boson as can be seen from the effective potential eq. (1.125). The cross are not that small

for such higher–order mechanisms: in the case of pp → HWqq, they almost reach the level

of 100 fb for Higgs masses in the low range [which is only one order of magnitude smaller

than the Higgs–strahlung pp→ HW cross section] and decrease only slowly with MH .

Figure 3.44: The bb̄ invariant mass distribution of the WHjj signal for MH = 120 GeV and
the Wbb̄jj, tt̄jj backgrounds after cuts; the combined signal and backgrounds are also shown.
Vertical dotted lines denote the mass bin used for calculating the statistical significance of
the signal; from [266].

More recently, a detailed study of the signal for the pp → HWqq process has been

performed at the LHC [266], in the channel where the Higgs decays into bottom quarks

and the W boson leptonically. Applying cuts that are similar to those of the vector boson

fusion process discussed in §3.3.3 and assuming reasonable efficiency for tagging the b quarks

and resolution for the reconstruction of the bb̄ invariant mass, the various backgrounds [in

particular the pp → tt → bbWW and the QCD Wbbjj final states] can be reduced at a

comparable level to the signal as shown in Fig. 3.44. This would allow the extraction of the

Hbb̄ Yukawa coupling with a reasonable accuracy if a high luminosity is available.
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3.6.3 More on higher–order processes

There are several other higher–order processes for Higgs production at hadron colliders, but

they lead to extremely small cross sections at the LHC, and a fortiori at the Tevatron. We

will briefly discuss some of them for completeness.

Higgs production in association with a photon

Higgs boson and photon final states in hadronic collisions [267] may originate from two main

sources. An obvious possibility is the direct production from light quarks, qq → Hγ, where

the Higgs boson is emitted from the quark lines. Because the Yukawa couplings are very

tiny, the cross section are negligible. An exception might be the case of bottom quarks;

however, besides the fact that the Hbb̄ Yukawa coupling is still small, there is a suppression

from the b density in the hadron. In fact, the cross section is comparable to the one for

charm quark, the suppression of the Yukawa coupling mc/mb being partly compensated by

the larger parton density and by the electric charge. For low Higgs masses MH ∼ 100 GeV,

the cross sections are at the femtobarn level at the LHC and one to two orders of magnitude

smaller at the Tevatron. Since the dominant contribution is coming from bb̄ initial state, this

process is anyway equivalent to the processes bb̄ → H and gg → bb̄H with two undetected b

quarks, with the radiation of an ISR photon.

Another possibility to generate the Higgs plus photon final state is via loop diagrams in

quark–antiquark annihilation [the corresponding process with initial state gluons, gg → Hγ,

is forbidden by Furry’s theorem similarly to the H → γγg decay discussed in §2.3]. There

are triangular diagrams, when the qq̄ state annihilates into a virtual photon or Z boson in

the s–channel, and which involve virtual top quarks and W bosons and box diagrams with

W bosons and light quarks running in the loop. Since the process is of O(G4
µ) and because

of the suppression by the loop factor, the cross sections are extremely small: at the LHC

they are at the level of 0.1 fb and they are much lower at the Tevatron [267].

Loop induced Higgs pair production in qq̄ annihilation

Similarly to the gg fusion process, gg → HH , which provides the largest cross section for

Higgs boson pairs at the LHC, one can produce pairs of Higgs particles in qq̄ annihilation.

Because the Higgs couplings to the light quarks are small and since CP conservation forbids

a ZHH coupling at the tree–level, the entire contribution to this process originates from

loop diagrams. In fact, because of chiral symmetry, only box diagrams involving quarks and

massive gauge bosons, from which the Higgs particles are emitted, are present. The process

is thus not sensitive to the trilinear Higgs boson coupling.

This calculation has been performed in Ref. [268] and as one might have expected, because
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of the much lower luminosity for quarks than for gluons at high energies, the cross sections

are much smaller than those in the gg → HH production process. At LHC energies the

difference is at least one order of magnitude. At the Tevatron, the cross sections will be

anyway very small because of the reduced phase space. The annihilation of qq̄ states is not

an important process for double Higgs boson production.

Higgs pair production with heavy quarks

Similarly to the double Higgs boson production in the WW/ZZ fusion processes, one might

take advantage of the large Yukawa coupling to top quarks, to produce two Higgs bosons

emitted from the top quark lines in the process gg/qq̄ → tt̄. An interesting feature is that

there is a contributing diagram where a Higgs boson is emitted from the top quark lines and

then splits into two Higgs bosons. This process is therefore sensitive to the trilinear Higgs

boson coupling and despite of the suppression by the electroweak couplings, one might hope

for a compensating enhancement of the cross section due to the presence of the Higgs boson

exchange in the s–channel. The complete calculation for this four massive particle final state

is rather complicated32 and has been performed numerically in [270]. At the LHC, the cross

section is at the level of 1 fb for MH ∼ 120 GeV and thus, of the same order as V HH

production and much smaller than gg → HH production; the large backgrounds make it

impossible to extract any signal even with extremely high luminosities [270].

Rare decays of the top quark

The huge cross section of top quarks in the process gg/qq̄ → tt̄, allows to produce 107 to 108

top quark pairs per year at the LHC. These large number of events could be used to look for

very rare decays of this particle. If the Higgs boson is not too heavy, MH < mt, the decay

t→ cH can occur through loop diagrams. Starting from the flavor changing transition t→ c,

which is mediated by loops involving W bosons and down–type [mainly bottom] quarks, one

can attach a Higgs boson either to the external top quark line or to the internal W boson or b

quark lines. However, because the decay is suppressed by three powers of the Fermi constant

Gµ and by the GIM mechanism, the branching ratio is extremely small BR(t→ cH) <∼ 10−13

for MH >∼ 100 GeV [271]. In view of the experimental bound MH >∼ 115 GeV, the parent

decay process t→ bWH [155, 272] is now kinematically closed.

32One can estimate the order of magnitude of the cross section, by naively treating the heavy top quarks as
partons inside the hadron and considering at the partonic level the process of heavy top quark annihilation
into two Higgs bosons, tt̄ → HH . This calculation has been performed in Ref. [269] some time ago [at
the time where the top quark was believed to have a mass of the order of 50 GeV and where the SSC was
still expected to operate] and the output was that, even for hadronic c.m. energies of

√
s = 40 TeV, the

“partonic” cross sections folded with luminosities which may be overestimated by a factor of ten, lead to a
total rate which is at the level of the cross section for the longitudinal W boson fusion into two Higgs bosons.
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3.6.4 Diffractive Higgs boson production

Diffractive processes in (anti)proton collisions are those in which color singlet objects are

exchanged between the high energy initial protons, which allow them to be diffracted [273–

275]. This can occur for instance, when two gluons are exchanged in the t–channel by the

initial protons; this neutralizes the color and allow the two protons to remain intact and

continue their way. Higgs production occurs in the emission from the t–channel exchanged

particles; in the case of t–channel gluons, this occurs through the usual ggH vertex mediated

by heavy quark loops. The signature is then two protons which are produced at very large

rapidities and a centrally produced Higgs particle

p+ p→ p+H + p (3.94)

where the + sign means that there is a large rapidity gap between the particles. In addition,

if one tags the initial hadrons [using the so–called roman pot detectors], these diffractive

processes can be selected and result in a very clean signal [the backgrounds will be discussed

later]: a Higgs boson in the central region, and nothing else.

There are several models for hard diffractive production in the central region, which

are the most interesting ones in the context of Higgs physics. They all involve a mixture

of perturbative and non perturbative QCD physics which is not very well understood yet.

We briefly summarize the main features of some models, following Refs. [276, 277] where

a detailed account is given and to which we refer for earlier work, assuming a light Higgs

boson which mainly decays into bb̄ pairs. Figure 3.45, taken from Ref. [276], illustrates three

processes for double diffractive Higgs production in hadronic collisions that one can partly

discuss in the familiar terms of perturbative QCD. We use the terminology of this reference.

(a) exclusive

p

p

p

p

Qt

H

x2

x1x1′

x2′

(b) inclusive

p

p

X

Y

H

(c) central-inelastic

p

p

p

p

H

Figure 3.45: Examples of processes for double–diffractive Higgs production in pp collisions.

In the central exclusive double diffractive processes shown in Fig. 3.45a, the Higgs boson

is produced alone and is separated from the outgoing hadrons by large rapidity gaps. If

the latter are tagged, the Higgs mass can be determined either by measuring the missing

mass Minv of the system, or by reconstructing the H → bb̄ decays mass peak Mbb̄; one can
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then match the two measurements, Minv =Mbb̄ =MH , which provides a strong kinematical

constraint. Moreover, an interesting feature is that in the production vertex, the polarization

vectors of the gluons are correlated in a such way that with the resulting effective luminosity,

only spin–zero particles with positive parity, i.e. with JPC = 0++ quantum numbers, can

be primarily produced [the cross section for CP–odd states is strongly suppressed]. On the

other hand, the background from gg → bb̄ for instance is strongly suppressed, σ(gg → bb̄) ∝
α2

sm
2
b/ŝ. The Higgs spin and parity quantum numbers can therefore be checked in this

process [392] with only an ambiguity with 2++ states remaining. Unfortunately, the model

predicts rather low Higgs production cross sections: for a Higgs boson with a mass MH ∼ 120

GeV, they are of the order of 0.2 fb at the Tevatron and 3 fb at the LHC; see Table 3.1. The

uncertainty in the prediction is also large, a factor of 2 at the LHC for instance.

Model Exclusive (a) Inclusive (b) Central inel. (c)

Tevatron 0.2 1 0.03

LHC 3 40 50

Table 3.1: Higgs boson production cross sections in fb at the Tevatron and the LHC for
MH ∼ 120 GeV in the various diffractive models of Fig. 3.45; from Ref. [276].

In central inelastic production, Fig. 3.45c, there is an additional radiation accompanying

the Higgs boson in the central region, but the latter is still separated from the final hadrons

by large rapidity gaps33. This leads in general to a much larger Higgs production cross

section at the LHC; see Tab. 3.1 [at the Tevatron all processes have too small cross sections

to be useful]. However, the background from gg → bb̄ is also very large since there is

no more the selection rule for spin–zero particle production and the signal to background

ratio is then very low. In addition, one cannot use the missing mass technique to measure

the Higgs boson mass [it has been suggested recently [394] to trigger on the remnants to

improve the S/B ratio and to reconstruct the mass]. Nevertheless, besides the fact that

these processes are actually the ones which have been experimentally observed, since the

CDF dijet data indicate the presence of an additional soft hadronic radiation [395], they

need to be considered, first because they are potential backgrounds to the exclusive process,

and second because pseudoscalar Higgs bosons can be only produced in these mechanisms.

In inclusive production [according to the terminology of Ref. [276]], Fig. 3.45b, the pre-

vious discussion on the process of Fig. 3.45c also applies with the important exception that

both incoming protons are allowed to dissociate. This process has not received much at-

tention in the literature as it has not the advantages of central exclusive diffraction. The

production rates [276] are of the same order as in the previous case at the LHC; Tab. 3.1.

33In fact, in the terminology of Ref. [393] which is becoming the standard one, it is the process of Fig. 3.45c
which is called the inclusive diffractive process.
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There are many models for diffractive Higgs production in the literature, starting from

the Bialas–Landshoff exclusive model [273]; for an account see Ref [276]. As mentioned

previously, they involve a mixture of perturbative and non–perturbative aspects of QCD. The

rapidity gaps for instance may be associated with the exchange of an effective Pomeron, which

can be either a QCD Pomeron [which at lowest order, is a gg state] or a phenomenological

Pomeron fitted from the HERA data for instance. The non perturbative aspect in exclusive

diffraction for instance, arises when one attempts to calculate the survival probabilities of

the rapidity gaps, when secondary particles are produced in the soft rescattering of the

spectator partons and populate these gaps. This probability is not universal and depends on

the initial energy and the considered final state channel; a recent estimate gives S2 ∼ 0.02

while diffractive deep–inelastic processes at HERA and diffractive dijet production at the

Tevatron suggest, respectively, S2 ∼ 1 and ∼ 0.1. Note that another probability for the gaps

to be occupied, arises from hard gluon radiation in gg → H for instance; the latter can be,

however, calculated in perturbative QCD.

These non–perturbative aspects generate rather uncertain predictions of the various mod-

els, the spread in the predictions ranging over several orders of magnitude. A critical com-

parison of the various predictions has been performed in Ref. [276], where it has been at-

tempted to explain the origin of the large differences. The conclusion was that either different

diffractive processes have been considered or important effects, such as higher–order QCD

corrections, have been neglected. Many of the models, in particular those which predict

large Higgs production rates, are already ruled out by Tevatron data on diffractive dijet pro-

duction. Besides these theoretical issues, experimental problems such as the possibility of

triggering on the events and the integration of the roman pot detectors within the machine,

remain still to be solved; see Ref. [277].

Note that the expectation for the clean exclusive central Higgs production process can be

checked at the LHC itself, since the main ingredients which are needed for the calculation of

the Higgs signal cross section are involved in the calculation of dijet production with large

rapidity gaps, pp→ p+dijet + p. Since the latter can be measured from the side bands, one

can improve the prediction of the Higgs cross section. Other checks can be performed [275].

In summary, diffractive processes in hadronic collisions provide an additional means to

produce the Higgs boson at the LHC. The double exclusive production process allows a

good measurement of the Higgs mass and a check of the SM Higgs spin and parity quantum

numbers [besides the selection which favors 0++ states, one can also use, for instance, the

azimuthal asymmetry of the scattered protons], which are notoriously difficult to verify

at hadron colliders, as will be discussed shortly. The production rates are, however, still

uncertain and the experimental conditions not yet established. Many studies are being

performed, and the situation might become more clear in a near future.
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3.7 Detecting and studying the Higgs boson

3.7.1 Summary of the production cross sections

The cross sections for Higgs boson production in the main channels, eqs. (3.1–3.4), are

summarized in Fig. 3.46 at the Tevatron Run II with a c.m. energy
√
s = 1.96 TeV and in

Fig. 3.47 for the LHC with
√
s = 14 TeV as functions of the Higgs boson mass [an update of

Refs. [21,396,397]]. They include the full NLO QCD corrections which have been discussed

earlier. The MRST2001 set of parton densities [311] has been used for the cross sections. As

inputs, we use the central values for the fermion and gauge boson masses given in eq. (2.1),

in particular we use mt = 178 GeV, while the strong coupling constant is chosen to be

αs(MZ) = 0.119 to match the value that is incorporated in the PDFs at NLO. Here also, we

will denote sometimes by pp both pp and pp̄ reactions and by L both L and
∫
L.

The cross sections eqs. (3.1) to (3.4) have been calculated using, respectively, the NLO

Fortran codes V2HV, VV2H, HIGLU and the LO code HQQ of Ref. [278] which are publicly

available. A few remarks to explain how these cross sections have been obtained are in order:

– In the gg → H mechanism, we display the NLO cross sections which have been calcu-

lated for arbitrary quark masses, since the NNLO calculation is valid only in the heavy top

quark limit [although it is expected to be a good approximation for the entire range if the

Born amplitude contains the full mt dependence]. However, we will set the renormalization

and factorization scales at µR =µF = 1
2
MH . As discussed previously, in this way the NLO

(NNLO) correction increases (decreases) and the full result approaches the total cross section

at NNLO. We have verified that the values that we obtain are in a very good agreement

with the NNLO values given for MH ≤ 300 GeV in Ref. [303].

– In the case of the Higgs–strahlung processes, pp→ HW and pp→ HZ, we incorporate

the NLO and NNLO QCD corrections, including the gg → HZ component in the latter

production process, as well as the electroweak radiative corrections [where we removed the

kinks near the 2MV thresholds]. For the PDFs, we will use the approximate densities which

are included in the MRST2002 set and which approach very closely the exact result.

– For the pp→ tt̄H production process, the NLO corrections have become available only

recently and the Fortran codes for calculating the cross sections at this order are not yet

publicly available. We therefore use the LO program HQQ and we choose a scale for which the

LO cross sections approach the NLO ones, i.e. µR = µF ∼ 1
2
MH +mt. We then multiply the

cross sections by constant K–factors 1.2 and 0.8 for the LHC and the Tevatron, respectively,

to approach the exact result. We have verified that the obtained rates are in a very good

agreement with the NLO ones given in Ref. [287] for mt = 174 GeV.

– The cross section for the vector boson fusion process pp→ Hqq has been calculated at

NLO with the scales fixed to µR = µF = QV . No kinematical cut has been applied.
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Figure 3.46: The Higgs boson production cross sections at the Tevatron in the dominant
mechanisms as a function of MH . They are (almost) at NLO with mt = 178 GeV and the
MRST set of PDFs has been used. The scales are as described in the text.
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gg ! H mt = 178 GeVMRST/NLOps = 14 TeV�(pp! H +X) [pb℄
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Figure 3.47: The same as Fig. 3.46 but for the LHC.
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In Table 3.2, we display the numerical values of the cross sections for selected values of

the Higgs mass that are relevant at the Tevatron and the LHC, as they might serve as useful

inputs in other studies. The various SM input parameters are as discussed above.

MH [GeV] σ(HW ) σ(HZ) σ(Hqq) σ(gg → H) σ(Htt̄)

115 0.178 0.107 0.085 0.96 0.0053

120 0.153 0.093 0.078 0.85 0.0047

130 0.114 0.070 0.067 0.67 0.036

140 0.086 0.054 0.058 0.54 0.0028

150 0.065 0.042 0.050 0.43 0.0022

160 0.048 0.032 0.043 0.35 0.0017

170 0.039 0.026 0.037 0.29 0.0013

180 0.030 0.020 0.032 0.24 0.0010

200 0.019 0.013 0.024 0.17 –

MH [GeV] σ(HW ) σ(HZ) σ(Hqq) σ(gg → H) σ(Htt̄)

115 1.89 1.01 4.93 43.32 0.79

120 1.65 0.89 4.72 40.25 0.70

130 1.28 0.70 4.24 35.04 0.56

140 1.00 0.55 4.01 30.81 0.45

150 0.79 0.44 3.76 27.22 0.37

160 0.62 0.35 3.49 24.44 0.31

170 0.52 0.29 3.26 21.97 0.25

180 0.42 0.24 3.07 19.87 0.21

200 0.30 0.17 2.76 16.61 0.15

300 0.04 0.07 1.54 9.02 –

400 – – 0.94 9.05 –

500 – – 0.61 4.62 –

600 – – 0.41 2.12 –

700 – – 0.29 0.99 –

800 – – 0.21 0.49 –

900 – – 0.15 0.26 –

1000 – – 0.11 0.14 , –

Table 3.2: Numerical values for SM Higgs production cross sections at the Tevatron (upper
part) and the LHC (lower part) in picobarns for selected values of the Higgs mass. These
values have been obtained as in Figs. 3.46–3.47 and as explained in the text.
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As can be seen, in the interesting mass range favored by the electroweak precision data,

100 <∼ MH <∼ 250 GeV, the dominant production process of the SM Higgs boson at the

LHC is by far the gluon–gluon fusion mechanism, the cross section being of the order a few

tens of pb. In fact, this process dominates all the way up to Higgs masses of the order of

1 TeV, where the cross section is still sizable, σ(gg → H) ∼ 0.1 pb. It is followed by the

WW/ZZ fusion process which has a cross section of a few pb in the interesting Higgs mass

range above, and which reaches the level of the gg fusion cross section for very large MH

values. The cross sections for the associated production with W/Z bosons or tt̄ pairs are one

to three orders of magnitude smaller than the gg cross section, and these processes are only

relevant in the mass range MH <∼ 250 GeV. For the luminosities expected at the LHC, a

very large sample of Higgs particles can be thus collected, before selection cuts are applied.

At the Tevatron, the most relevant production mechanism is the associated production

withW/Z bosons [theWH : ZH cross section ratio is approximately 1.5 forMH <∼ 200 GeV],

where the cross section is slightly less than 250 femtobarn for MH ∼ 120 GeV when both

processes are summed, leading to 2.500 Higgs events for the maximal luminosity expected

at the Tevatron,
∫
L = 10 fb−1; the cross section drops to the level of less than 30 fb for

Higgs masses larger than 200 GeV. The WW/ZZ fusion cross sections are of the same order

in the mass range MH <∼ 100–200 GeV, while the cross sections for associated production

with tt̄ pairs are rather low, being less than 10 fb already for MH ∼ 115 GeV. The gg fusion

mechanism has the largest production cross section, reaching the picobarn level for low Higgs

masses, but suffers from a very large QCD two–jet background as will be discussed later.

A huge effort, which already started in the late seventies, has been devoted to the search

of suitable signals to detect the Higgs boson at hadron colliders and to suppress the various

corresponding backgrounds, which are in general very large. It is an impossible task to

present here a detailed account of the large number of theoretical and experimental studies

which have been performed in this context. In the next subsection, we will simply summarize

the Higgs detection channels which are established since already some time, mostly relying

on the report of the Higgs working group in the case of the Tevatron [218] [see [217] for earlier

work] and in the case of the LHC34, on the ATLAS Technical Design Report [228] and CMS

Technical Proposal [229] with some updates made in Refs. [234–236] as well as on the joint

theoretical and experimental studies which have been performed at the three Les Houches

[238–240] and at the 2001 Snowmass [223] Workshops [where some of the references to the

original work can be found]; see also Ref. [402]. Some of the important backgrounds will be

briefly mentioned and a detailed account can be found in various reviews [45, 82, 403, 404];

see also Ref. [405]. For earlier work, we refer the reader to the “Higgs Hunters Guide” where

the pioneering analyses and a complete set of earlier references can be found.
34The analyses at the LHC that will be discussed here will be mostly based on Monte–Carlo [398, 399]

simulations which take into account the parametrized [400,401] or full detector response [228,230].
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3.7.2 Higgs signals and backgrounds at the Tevatron and the LHC

The pp→ HW/HZ channel

It has been realized a long time ago [242,315] that the associated Higgs production with W/Z

bosons, with the latter decaying into leptons ℓ = e±, µ±, is a potential channel for detecting

the Higgs particle at high–energy hadron colliders [the LHC and the late SSC]. This has

been confirmed later for the LHC in parton–level analyses in the case of the photonic Higgs

boson decays [316,317]. Also more recently, it has been shown that this production channel

is the most promising detection mode at the Tevatron Run II for a relatively light Higgs

boson which decays dominantly into bb̄ pairs [320, 321].

In principle, the hadronic decays of the companion vector bosons cannot be used [unless

the Higgs boson itself does not decay into hadrons] as they are overwhelmed by the huge

irreducible QCD backgrounds. Since the branching fraction BR(W → ℓν) ∼ 20% is larger

than BR(Z → ℓℓ) ∼ 6%, and the cross section for qq̄′ → WH is a factor ∼ 1.5 larger than

for qq̄ → ZH , the process pp̄→ HW → Hℓν leads to five times more interesting events than

the corresponding pp̄ → HZ → Hℓℓ process. Both channels have to be summed, however,

to increase the statistics. In addition, the neutrino decays of the Z boson which have a

substantial rate, BR(Z → νν̄) ∼ 18%, can also be considered. The final signals depend on

the decay modes of the Higgs boson and, thus, on its mass and are summarized below.

• H → bb̄: is the dominant Higgs decay mode for MH <∼ 135 GeV, leads to the final

states ℓνbb̄, ℓℓbb̄ and νν̄bb̄ that exhibit distinctive signatures [isolated leptons and/or missing

energy] and which can be used at the Tevatron where the backgrounds are not too large.

The latter mainly originate from the production of vector bosons plus two–jets, pp̄ → V jj

and in particular Wbb̄ [406, 407], vector boson pairs, pp̄ → V V [407–409], top quark pairs,

pp̄ → tt̄ [410] and single top quarks pp̄ → t + X [388]. These processes are known at

least to NLO in QCD. b–tagging as well as the reconstruction of the bb̄ invariant mass peak

are crucial to reject them. Results based on the the SHW simulation [411] which gives

the average response of the upgraded CDF and DØ detectors in a simple way, show that

these processes and, in particular, pp̄ → WH → ℓνbb̄, are viable at the Tevatron [218]. In

the case of the νν̄bb̄ channel, a significant bb̄ background remains [which in Ref. [218] has

been assumed to be equal to the sum of the remaining backgrounds]. The separation of the

signal and backgrounds was optimized using neutral network techniques which lead to an

appreciable increase of the signal significance [412, 413]. The WH → ℓνbb̄ channel has been

also discussed for the LHC [315, 318] but due to the much larger QCD background, it is

not considered alone as a clear discovery channel [228,235,414–416]. The significance of the

signal is at the level of ∼ 3σ for MH = 120 GeV with L = 30 fb−1 [415] when the Wbb̄ and

tt̄ backgrounds have been sufficiently suppressed. This significance can be, however, added

to the one from pp→ tt̄H when it leads to the same final state as will be discussed later.
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• H →WW (∗): becomes the dominant Higgs decay mode for MH >∼ 135 GeV has also

been considered both at the Tevatron and the LHC [319]. It receives irreducible backgrounds

from triple vector boson production, pp → WW + W/Z [417], in addition to those from

vector boson and tt̄ pair production. Distinctive signatures are trilepton ℓℓℓ events, like

sign dileptons and two jets ℓ±ℓ±jj as well as a high–pT lepton pair plus missing ET . At

the Tevatron, the small production cross section, the low luminosity as well as the small

branching ratio WWW → 3ℓ ∼ 10−2, make that only a few trilepton events can be observed

even for a luminosity L = 30 fb−1; the ℓ±νℓ±νjj signal is only a factor of three larger. The

rates are thus too small for this channel to be useful. The channel is more promising at the

LHC, in particular for a Higgs boson in the mass range MH ∼ 160–180 GeV, where it decays

almost 100% of the time into WW final states, and where the production cross section is

still large. Detailed simulations have shown that a significance S/
√
B >∼ 5 can be obtained

in the channel pp→ HW → ℓ±νℓ±νjj or 3ℓ with a high luminosity L = 100 fb−1 [418].

• H → ZZ(∗): has a too small branching ratio for MH <∼ 180 GeV, when one of the Z

bosons is virtual. Above the ZZ threshold, the HV production cross section is very small at

the Tevatron. At the LHC, the cross section is still sizable and, once the leptonic branching

fractions of the Z and W boson in HW production have been taken into account, a rate of

∼ 2 fb can be obtained for MH ∼ 200 GeV before applying cuts. The few hundred ℓℓℓνjj

events which could be collected in the high luminosity regime might allow to detect the

signal. To our knowledge, no simulation has been performed for this channel alone.

• H → γγ: is a decay mode that is too rare to be useful at the Tevatron but it is the

main detection channel at the LHC in the low Higgs mass range for this production process.

In fact, it was the first channel in HV production which has been shown in parton–level

analyses to be viable [316, 317]. The backgrounds are similar to those which affect the

process gg → H → γγ(j) to be discussed later: the reducible ones are small [419] and the

irreducible γγℓ+6E and γγℓℓ backgrounds can be suppressed by requiring high–pT and well

isolated photons and lepton(s). Early analyses have shown that this signal is indeed viable

at the LHC for a Higgs boson in the low mass range [228, 229, 420] but the signal has a

small significance and should be combined with the one from pp → tt̄H → ℓγγ +X as will

be seen shortly. A recent CMS simulation [421] has shown that in a one year of LHC at

high–luminosity, a 5 (4) σ significance can be obtained for the signal if MH <∼ 135 (150) GeV.

•H → ττ : has a branching ratio of only a few percent forMH <∼ 135 GeV and one cannot

afford to let the associated gauge bosons to decay leptonically. The pp→ ZH/WH → jjττ

channel has been considered in a parton level analysis [322] for the Tevatron with the result

that a significant improvement of τ identification and a large luminosity might allow to

detect the signal for low mass Higgs bosons if one can trigger on these events. No discussion

of this channel has been made in the Tevatron study of Ref. [218] nor at the LHC, though.
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The gluon–gluon fusion channel

This process, having the largest production cross section, has been considered for a long

time as being the most efficient one in the search for the Higgs boson at the LHC. How-

ever, it appeared quite early that these searches cannot be made in the dominant hadronic

H → bb̄ and H → WW/ZZ → 4j decay channels because of the extremely large QCD jet

backgrounds. The H → τ+τ− signature in the low Higgs mass range is also very difficult

to extract at the LHC [and also at the Tevatron] because of these backgrounds. One has

then to rely on rare Higgs decays which provide clean signatures involving photons and/or

leptons for which the backgrounds are smaller but far from being negligible.

• H → γγ: has been proposed rather early [315,352] and is the “silver” detection channel

for a Higgs boson with a mass below 150 GeV [422]. The reducible QCD background from

jets faking photons is huge and a rejection factor of O(106) is needed to bring it down to

the level of the irreducible one from direct qq̄ → γγ + X production and the loop induced

channel gg → γγ + X which provides a 50% contribution. These have been studied in

great detail [423] and the state–of–the–art higher–order results are contained in the program

DIPHOX [424] which also includes the fragmentation effects. These backgrounds can, in

principle, be determined by measuring the two–photon invariant mass distribution dσ/dMγγ

on both sides of the resonance peak. However, they need to be precisely calculated for

the evaluation of the detection significance and when it comes to measurements of the Higgs

properties [405]. A reconstruction efficiency of about 75% can be achieved for a single photon

and for MH ∼ 130 GeV, the final signal to background ratio is of the order of 1/30 in a

window of Mγγ ∼ 2 GeV. However, since the decay is rare, a large amount of luminosity

needs to be collected. One could then use, in addition, the gg → Hg signal [372] as the

gg → γγj background with a hard jet has been found to be much smaller. In fact, at low

luminosities, the combination of all H → γγ channels is required: not only the pp → γγ

and pp→ γγj channels but also the channel pp→ γγ+ ℓ where the additional lepton comes

from the decay of a W boson in the associated HW production process discussed previously

or in tt̄H production with t→ bW → bℓν as will be seen later.

• H → ZZ(∗): in the high mass region, MH > 2MZ , the decay H → ZZ → 4ℓ is

the “gold–plated” mode [242, 315, 352, 353], allowing for Higgs detection up to masses of

O(1 TeV) [228,425,426]. The main background is due to continuum ZZ production which is

known rather precisely [408,409] but which can be also directly measured from the side bands

of the resonance peak and interpolated to the signal region. ForMH >∼ 600 GeV, high enough

luminosities are required to reach the MH ∼ 1 TeV limit since BR(H → ZZ → 4ℓ) ∼ 0.1%

is small and the total Higgs width becomes large. One can then use, in addition, the

H → ZZ → ℓℓνν decays to increase the statistics [354] in which the signal appears as a

Jacobian peak in the missing transverse energy spectrum. Additional backgrounds from Zj
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events [406], where the 6ET is due to neutrinos from semi–leptonic b decays for instance, need

to be considered [427]. Allowing one of the Z bosons to be virtual, the discovery reach can

be extended down to masses MH ∼ 120 GeV using H → ZZ∗ → 4ℓ decays [428], except in

the range MH ∼ 2MW–2MZ where BR(H → ZZ∗) is too small. In this case, a very sharp

peak can be observed in the 4ℓ invariant mass distribution. Here, additional backgrounds

from tt̄ [410] and Zbb̄ [406] production contribute besides ZZ∗, Zγ∗ events.

• H →WW (∗): leading to ℓℓνν final states turned out to be one of the most promising

detection modes of a light Higgs boson at the LHC, i.e. from MH ∼ 2MZ down to MH ∼ 120

GeV [429, 430], and it is even a potential discovery mode at the Tevatron [358]. Indeed,

BR(H → WW ) is appreciable if not largely dominating in this mass range and the clean

leptonic decays represent 4% of the initial WW sample. Since the Higgs mass cannot be

reconstructed in this process, the signal should be observed from a clear excess of events above

backgrounds which need, thus, to be known rather precisely. The most important source

is due to W boson [408] and top quark [410] pair production. The latter can be removed

with suitable cuts, while for the former one needs, in addition, to take advantage of the

characteristic spin correlations in the H → WW ∗ → ℓνℓν decays [429, 431]: the azimuthal

separation of the charged leptons, for instance, peaks at smaller values for the signal than

for the WW background. A clear signal has been established at the LHC for Higgs masses

down to MH ∼ 120 GeV if enough luminosity is collected [429,430]. At higher Higgs masses,

the additional channel H → WW → ℓνjj, eventually combined with H → ZZ → ℓℓjj and

with the H → ZZ → ℓℓνν̄ channel discussed previously, would extend the discovery reach

to masses up to 1 TeV at high luminosities, after reducing the enormous tt̄ and W+jets

backgrounds [432]. At the Tevatron, high PT lepton pairs plus missing energy ℓℓνν̄ and

like–sign dileptons plus jets ℓ±ℓ±jj in gg → H →WW ∗, when combined with similar events

in pp̄ → HW/HZ associated production, would allow to detect the Higgs boson at the 3σ

level for masses up to MH ∼ 180 GeV with 30 fb−1 data [358].

• H → τ+τ−: has been proposed long ago [258,355] in associated Hj production, gg →
Hg, where the additional jet provides a significant transverse momentum to the τ+τ− system.

To our knowledge, the process has not been considered for the LHC in a realistic experimental

simulation [at least not in positive terms]; see Ref. [433], however. The process has been

discussed for the Tevatron [360] but, again, it needs a better identification of the τ–leptons

and resolution on the missing ET [218].

• H → µ+µ−: the signal in this very rare decay channel, BR(H → µ+µ−) ∼ 10−4 for

MH ∼ 115–140 GeV, is rather clean but it needs a very large amount of luminosity: L = 300

fb−1 is required for a 3σ signal in the Higgs mass range MH ∼ 120–140 GeV [356] [for

lower masses one is still sensitive to the tail of the huge Drell–Yan pp → γ∗/Z → µ+µ−

background]. This process is, thus, more appropriate for the VLHC.
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• H → tt̄: suffers from the huge tt̄ continuum background which has to be evaluated in a

large mass window as the Higgs total width is large. It has been shown in Refs. [434,435] that

the surplus from Higgs events produces a dip–peak structure in the gg → tt̄ invariant mass

spectrum which could have been observable at the LHC if the Higgs total width were smaller

[as in extensions of the SM where the Higgs has reduced couplings to the vector bosons].

This is unfortunate as this process would allow to probe directly the Htt̄ couplings and to

check, for instance, the presence of anomalous interactions and/or CP violation [436,437].

The WW/ZZ fusion channel

This channel is not considered as being viable at the Tevatron. In the study of Ref. [218],

it has been shown that even with a good resolution on the bb̄ invariant mass, ∆mbb̄ = ±10

GeV, the signal to background ratio in the pp̄ → qqbb̄ channel is of O(10−3) within a 20

GeV mbb̄ bin. For cleaner decay modes of the Higgs boson, the pp̄ → Hqq production cross

section is too small to be useful: for L ∼ 10 fb−1 for instance, only two H → γγ events and

four dileptons events from H → τ+τ− are expected before acceptance cuts are applied.

At the LHC, the cross section is two orders of magnitude larger and the double forward

jet tagging as well as the central soft–jet vetoing [the latter still needs more studies to be

more firmly established] discussed previously help to drastically suppress the various large

backgrounds. Applying the specific vector boson fusion cuts discussed in §3.3.3, the signal

cross section is still large, a few picobarns for Higgs masses in the range MH = 100–200

GeV, while the signal to background ratio is of order one. In addition, these specific cuts

allow to distinguish between this mechanism and the gg → H + 2j process as discussed in

§3.4.4 [only ∼ 10% of the latter is left after cuts]. Adding the fact that it is theoretically

rather clean, since the K–factors, the renormalization and factorization scale dependence as

well as the PDF uncertainties are rather small, this process will thus play a key role when

it comes to extract the Higgs couplings to the SM particles at the LHC. For this purpose all

possible decay channels of the Higgs boson must be considered.

•H → τ+τ−: is a promising channel forMH ∼ 120–140 GeV if enough luminosity, L ∼ 30

fb−1, is available. This has been established first with parton level analyses [343] which were

later confirmed by detector simulations [234, 438, 439]. In particular, for MH ∼ 125 GeV, a

statistical significance of 2.3, 2.5 and ∼ 4.5σ can be achieved in the channels qqH → qqττ →
qqee/µµ+ 6E + X, qqeµ+ 6E + X and qqℓh+ 6E + X, respectively, for the luminosity quoted

above [438], leading to a combined significance of ∼ 6σ. The τ+τ− invariant mass can be

measured at the level of 10% which would allow to measure the backgrounds [the major ones

being QCD and electroweak Zjj production with Z → τ+τ−, in addition to the usual V V

and tt̄ processes] from the side bands. τ–polarization effects [440] are useful to discriminate

the decays H → τ+τ− from the Drell–Yan γ∗, Z∗ → τ+τ− background.
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• H → γγ: as shown in a parton level analysis [342], this is a rather clean channel with

backgrounds which can be measured directly from the data. However, since the decay is

rare, the channel needs a high luminosity and eventually has to be combined with other

production processes [such as the gg → H → γγ(j) and pp→WH → ℓγγ channel discussed

previously] to allow for a significance that is larger than 5σ for masses below MH <∼ 150 GeV.

For instance, in the CMS simulation performed in Ref. [441] and where only the irreducible

γγjj background has been included with an assumed two–photon invariant mass window of

±3 GeV, it has been found that a statistical significance of 3–5σ can be obtained in the mass

range MH = 115–140 GeV with L = 30 fb−1 data.

• H → WW (∗): although feasible and competitive [344], this channel might prove to be

rather difficult since one cannot reconstruct the Higgs mass peak and, thus, measure the

background from the side bands. The most important backgrounds, pp → tt̄+ jets and

WWjj production, need therefore to be known precisely; QCD+EW ττjj production [406]

can be removed with suitable cuts. Recently, this mode has also been studied experimentally

and the prospects are rather good [234,442,443]. In the ATLAS analysis of the qqH → qqℓνℓν

channel [234], the signal [with the usual specific vector boson fusion cuts, the contributions

of the pp→WH,ZH and tt̄H processes to this topology are small] and the tt̄ plus zero, one

and two–jet backgrounds [the other important background, pp→ γ∗/Z+X with Z → τ+τ−,

can be rejected by requiring a high ℓℓν transverse mass] have been studied. It has been shown

that a significance larger than 3σ can be obtained for a luminosity of L = 10 fb−1 in both

the eµ + X and ee/µµ + X channels in the Higgs mass range above MH ∼ 130 GeV, i.e.

when BR(H → WW ∗) is large enough. Combining these channels with the ℓνjj mode [and

with the standard γγ and ZZ∗ channels], one then obtains a ∼ 5σ significance for the MH

and L values above [402]. In fact, the pp → qqH → ℓνjj channel becomes very powerful

at higher Higgs masses [234,235,443,444]. With a slightly different optimization of the cuts

than at low Higgs masses, one can arrive at a signal significance that is larger that 5σ in the

entire mass range MH ∼ 200–800 GeV with a luminosity of L = 30 fb−1 [444].

• H → ZZ: this channel has also been considered in experimental simulations [444,445],

but it cannot be used below the MH = 2MZ threshold as the H → ZZ∗ branching ratio

is very small in view of the not so large production rate. In addition, since the rates in

the H → ZZ → 4ℓ channel are also very tiny, on has to consider the final states ℓℓνν and

ℓℓjj. These processes receive large backgrounds, in particular from the process Z+4j in the

second case where one has S/B ∼ 1/3 at MH ∼ 300 GeV, after all cuts have been imposed.

In the high Higgs mass range, these channels can be useful, but they need again very high

luminosities. For instance, it has been shown in Ref. [444] that a significance of more than

5σ can be achieved for the qqH → ℓ+ℓ−ννjj signal with a luminosity of L = 30 fb−1 in the

Higgs mass window MH ∼ 500–800 GeV.
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• H → µ+µ−: again, the signal in this channel is very clean but the branching ratio for

the decay is too small. A large amount of luminosity, L = 0.5–1 ab−1, is required for a 3σ

signal in the Higgs mass range below 140 GeV [346]. This signal should be combined with

the µ+µ− sample obtained from gluon–gluon fusion discussed previously.

• H → bb̄: this channel suffers from a huge 4j QCD background which can possibly

be measured using the side bands of the bb̄ invariant mass; in addition, it has a major

problem with overlapping events. A preliminary parton level analysis [347] shows that with

reasonable assumptions but with a very large luminosity, L = 600 fb−1, one can obtain a

signal to square–root background ratio of S/
√
B ∼ 3 for a mass MH ∼ 120 GeV. However,

it is not yet very clear if it possible to trigger efficiently on this channel [446].

The pp→ tt̄H channel

Finally, Higgs production in association with top quarks has a strongly decreasing cross

section with increasing MH which makes the process useful only in the low mass range,

MH <∼ 135 GeV, when the γγ and bb̄ Higgs decays are relatively important [see below,

however]. In addition, one needs to have at least one of the W bosons from t → bW which

decays leptonically, to trigger efficiently on the events and suppress the QCD backgrounds.

Since the rates are rather low, a large luminosity is required, in particular at the Tevatron.

• H → bb̄: associated Higgs production with tt̄ pairs [377] is the only channel in which

it has been firmly established that the Higgs decays into bb̄ pair can be extracted from the

backgrounds at the LHC [414]. A clear evidence of the 4b tagged jet and lepton signal above

the W+ jets and tt̄+jj backgrounds [b–tagging is of course crucial here] can be obtained for

MH <∼ 130 GeV if enough luminosity, L >∼ 100 fb−1, is collected [448]. A clear reconstruction

of the H → bb̄ mass peak is difficult because of the combinatorial background from the signal

itself and the reconstruction of the top quark decays might be needed. The fully hadronic

final state pp → tt̄H → qq̄qq̄bb̄bb̄ would double the number of pp → tt̄H signal events [449]

but one still needs a proper evaluation of the eight jet QCD background. At the Tevatron,

the channel is more challenging as the production rate is very small but a signal might be

visible if a very high enough luminosity is collected [218,381].

•H → γγ: the decay is too rare for the Tevatron, but it can be detected at the LHC when

an additional lepton from the t → bW decay is present [375]. The process, again, gives a

narrow mass peak which is visible forMH <∼ 140 GeV when the pp→ tt̄H production rate and

the H → γγ branching ratio are sizable enough [375]. With the additional charged lepton,

the backgrounds are manageable [376] after suitable cuts [it can also be measured from the

side bands], but the statistics have to be added to those obtained in the search of the γγ

peak in the three other Higgs production channels pp→ H → γγ, γγ+j, pp→ qqH → qqγγ

and pp→ HW → γγℓν to obtain a significant signal at moderate luminosities.
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• H →WW (∗): with ℓℓνν final states, has been suggested recently to extend the reach

of the tt̄H process to Higgs masses above ∼ 140 GeV [379]. This mode receives very large

tt̄Wjj and tt̄ℓℓ + jet backgrounds [and smaller ones from ttWW and tttt final states] which

need to be accurately determined as the invariant Higgs mass peak cannot be reconstructed

and one would have to rely on a counting of the signal versus the background events. It

has been recently shown that a signal can be observed [450] but further investigations are

needed to confirm that the backgrounds can be indeed reduced to a low level.

H → ZZ∗ has been discussed in Ref. [378] but it has too small rates for MH <∼ 2MZ if

leptonic Z decays are selected; to our knowledge, no simulation for this channel is available.

• H → ττ : this channel has also been discussed [380] in a parton–level analysis. It seems

extremely challenging and, again, no detailed experimental simulation has been performed.

3.7.3 Discovery expectations at the Tevatron and the LHC

The required luminosity to discover or exclude a SM Higgs boson, combining all channels in

the processes pp̄→ HV and gg → H discussed previously, and the results of both CDF and

DØ experiments, is shown in Fig. 3.48 as a function of MH [218]. With 10 fb−1 luminosity

per experiment, a 3σ evidence for a Higgs boson can be achieved for MH <∼ 125 GeV and, in

the absence of any signal, a 95% CL exclusion limit can be set up to Higgs masses of order

180 GeV. However, for discovery, only 30 fb−1 data per experiment will allow to observe a

5σ signal for MH <∼ 130 GeV, slightly above the LEP2 Higgs mass bound. Unfortunately,

these large luminosities are not expected to be reached at the Tevatron Run II.

Figure 3.48: The integrated luminosity required per experiment at the Tevatron, to either
exclude a SM Higgs boson at 95% CL or observe it at the 3σ or 5σ level; from Ref. [218].
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At the LHC, the significance of the signals in the various Higgs production and decay

channels are shown as a function of MH in Figs. 3.49 and 3.50. The ATLAS plot in the

left–hand side of Fig. 3.49 shows the significance for an integrated luminosity of L = 100

fb−1 in the “standard” search channels where the vector boson fusion processes are not yet

included. The detection in this case relies mostly on the gg → H production mechanism with

the decays H → γγ,WW (∗) and ZZ(∗) [where one of the vector boson is allowed to decay

hadronically in the high Higgs mass range], supplemented with the processes pp→ tt̄H with

H → γγ, bb̄ and pp → WH with H → γγ. As can be seen, the significance is above 10 in

the entire Higgs mass range when the various channels are combined. The significance is the

smallest in the low mass range, MH <∼ 130 GeV, when the H → V V ∗ decays are not yet

dominant. This is exemplified in the right–hand side of the figure where the significance is

shown in the mass range below MH = 200 GeV but with the luminosity L = 30 fb−1 which

is expected at an earlier stage. The updated analysis now includes the vector boson fusion

channels with the decays H → ττ and H → WW ∗ which lead to a substantial increase of

the total significance. Note that the K–factors, which would have significantly increased the

signal for the gg → H process, that is mostly used at high MH , have unfortunately not been

included [see the discussion below].
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Figure 3.49: Significance for the SM Higgs boson discovery in various channels in ATLAS
as a function of MH . Left: the significance for 100 fb−1 data and with no vector boson fusion
channel included and right: for 30 fb−1 data in the MH ≤ 200 GeV range with the qqH
channels included [234].

The CMS plot in Fig. 3.50 shows the integrated luminosity that is needed to achieve a

5σ discovery signal in the various detection channels. Here, the vector boson fusion process
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with all relevant Higgs decays, H → γγ, ττ,WW (∗), ZZ(∗), has been included [together with

the K–factors for the gg → H processes]. As can be seen, a minimal luminosity of 10 fb−1

is necessary to cover the low Higgs mass range down to MH ∼ 115 GeV and the high mass

range up to MH ∼ 800 GeV when all channels are combined. One can see also that the

vector boson fusion channels add value in the entire Higgs mass range. In particular, the

qq → Hqq processes with H →WW,ZZ are also very useful in the high Higgs mass range.
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Figure 3.50: The required integrated luminosity that is needed to achieve a 5σ discovery
signal in CMS using various detection channels as a function of MH [235].

Thus, the SM Higgs boson in its entire mass range will be found at the LHC provided that

a luminosity larger that
∫
L = 30 fb−1 is collected and the performances of the detectors are

as expected. For higher luminosities, this can be done in various and sometimes redundant

channels, therefore strengthening the signal and providing great confidence that it is indeed a

scalar Higgs boson which has been observed. However, at low luminosities, and in particular

in the low Higgs mass range MH <∼ 135 GeV, several channels must be combined in order

to establish a clear evidence for the Higgs particle. The interesting question which can be

asked is thus: at which stage this integrated luminosity will be collected.

Before closing this section, let us make a digression about the K–factors. The inclusion

of the higher–order radiative corrections to the Higgs production cross sections and distri-

butions, which is theoretically indispensable to stabilize the scale dependence and to allow

for precise predictions as it has been discussed at length in the previous sections, can be

also very important in the experimental analyses. Indeed, not only they increase [in general]

the size of the discovery signals and, thus, their significance, but they also can change the
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kinematical properties of the processes under study, leading to different selection efficiencies

and, thus, to a different number of collected events. This is particularly the case in the

gg → H process where large K–factors appear and where the Higgs transverse momentum

is generated at higher orders, when additional jets which balance this PT are produced.

Of course, the K–factors can be included for the signal only if they are also available for

the backgrounds and there are at least two situations in which this holds:

i) The signal appears as a narrow peak in an invariant mass distribution and, thus, the

corresponding backgrounds can be precisely measured from the side bands and safely

extrapolated to the signal region. This is the case of the important H → γγ and

H → ZZ(∗) → 4ℓ detection channels for instance.

ii) When estimates of signal significances are made before having the data or in the case

where the invariant Higgs mass peak cannot be reconstructed and one would have to

rely on a counting of the number of signal versus background events, the K factors

can be included if the backgrounds are also known at the same level of accuracy as the

signal. This is clearly the case for many background processes such as γγ,WW,ZZ

and tt production which are known at least to NLO accuracy.

Furthermore, the K–factors should not only be implemented in the total normalization

of the signal and backgrounds, but also in the various kinematical distributions when they

are strongly affected by the higher–order corrections35. Ideally, this has to be performed at

the level of Monte–Carlo event generators which are required in practice to obtain a realistic

final state with fragmented particles and underlying event. This is not a trivial task and

there are many ongoing discussions on this topic; see Ref. [404] as an example. Fortunately,

besides the fact that NLO parton level Monte–Carlo programs start to appear [284,297,348],

this can be performed in an effective way even in MC event generators [451,452]: differential

effective K factors can be defined for relevant kinematical variables and used to reweight

individual events with reconstructed jets coming from a LO Monte–Carlo event generator36.

Thus, all K–factors [which have been determined after a very hard theoretical work]

should ultimately be included in the experimental analyses as they allow a more accurate
35This is not always the case. In Ref. [451], the search sensitivity in the process gg → H → ZZ → 4ℓ

has been shown to depend mainly on the signal and background cross sections as well as on the detector
performance and the selection cuts and not, for instance, on additional jet activity. A simple scaling of the
signal and background rates with their respective K–factors leads, therefore, to reasonable results. It has
been shown that in this particular case, one needs 30–35% less integrated luminosity to achieve a given signal
significance when the K–factors are included.

36For instance, in Ref. [452], the channel gg → H → WW → ℓνℓν has been considered and the higher–
order QCD corrections have been taken into account by using this reweighting procedure, allowing to combine
event rates obtained with the PYTHIA event generator with the most up–to–date theoretical predictions for
the PT spectra of the Higgs signal and the corresponding WW background. An experimental effective K–
factor of ∼ 2 has been obtained in the range MH = 140–180 GeV, which is only about 15% smaller than the
theoretical inclusive K–factor. This led to a considerable increase of the statistical significance of the Higgs
discovery in this specific channel.
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prediction of the discovery potential and often lead to a better cut optimization. Apparently,

we are finally heading to this direction.

3.7.4 Determination of the Higgs properties at the LHC

Once a convincing signal for a Higgs boson has been established, the next step would be to

determine its properties in all possible details and to establish that the particle is indeed the

relic of the electroweak symmetry breaking mechanism and that it has the features that are

predicted in the SM, that is: it is a spin–zero particle with JPC = 0++ quantum numbers

and that it couples to fermions and gauge boson proportionally to their masses. Ultimately,

the scalar Higgs potential responsible for the symmetry breaking should be reconstructed

by precisely measuring the trilinear and quartic Higgs self–couplings. At the LHC, several

important measurements can be performed as will be briefly summarized below.

The Higgs mass and total decay width

The Higgs boson mass can be measured with a very good accuracy [453]. In the range below

MH <∼ 400 GeV, where the total width is not too large, a relative precision of ∆MH/MH ∼
0.1% can be achieved in the channel H → ZZ(∗) → 4ℓ± if 300 fb−1 luminosity is collected

by ATLAS and CMS. This is shown in Fig. 3.51 where the relative precision is displayed as

a function of MH and where the statistical and some systematical errors are included [454].

Figure 3.51: Expected errors on the measurement of the Higgs boson mass (left) and total
decay width (right) at the LHC as a function of MH , combining both ATLAS and CMS with
a luminosity of 300 fb−1 per experiment; from Ref. [454].
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In the low Higgs mass range, a slight improvement can be obtained by reconstructing

the sharp H → γγ peak. In the range MH >∼ 400 GeV, the precision starts to deteriorate

because of the smaller rates which increase the statistical error. However a precision of the

order of 1% can still be achieved for MH ∼ 700 GeV if theoretical errors, such as width

effects, are not taken into account.

Using the same process, H → ZZ → 4ℓ±, the total decay width of the Higgs boson

can be measured for masses above MH >∼ 200 GeV when it is large enough to be resolved

experimentally. While the precision is rather poor near this mass value, approximately 60%,

it improves to reach the level of ∼ 5% around MH ∼ 400 GeV and the precision stays

almost constant up to a value MH ∼ 700 GeV [453]. This is shown in the right–hand part of

Fig. 3.51 where the relative precision on ΓH is displayed as a function of MH with 300 fb−1

luminosity for the combined ATLAS and CMS experiments [454].

The Higgs spin and parity quantum numbers

As seen previously, if a high enough luminosity is collected at the LHC, a Higgs boson in the

low mass range, MH <∼ 135 GeV, will be detected through its H → γγ decay mode. This

observation will immediately rule out the spin possibility J = 1 by Yang–Landau’s theorem,

and will fix the charge conjugation to be positive C= + [455]. This argument cannot be

generalized to Higgs production in the gg fusion mechanism or to Higgs decays into gluons,

gg ↔ H , since gluons cannot be reasonably distinguished from light quark jets.

For higher Higgs masses when the γγ decay becomes too rare, the observation of the Higgs

boson in the decays H → WW ∗, ZZ∗ provides some information. Indeed, as discussed in

§2.2, these decays are sensitive to the spin–zero nature of the Higgs boson, if one of the gauge

bosons is virtual. The invariant mass (M∗) spectrum of the off–shell gauge boson in H →
V V ∗, see eq. (2.32), is proportional to the velocity dΓ/dM∗ ∼ β ∼

√
(MH −MV )2 −M2

∗ ,

and therefore decreases steeply with M∗ just below the kinematical threshold; see Fig. 2.12.

This is characteristic of a spin–zero particle decaying into two vector bosons, and rules out

all spin assignments except for two cases, JP = 1+ and 2−. This is shown in the left–hand

side of Fig. 3.52 where the threshold behavior of dΓ/dM∗ is displayed for the ∼ 200 signal

events which are expected for MH = 150 GeV and L = 300 fb−1 [histogram] and compared

with the prediction for the SM Higgs and for two examples of spin 1 and 2 cases [174].

The spin–correlations, which are useful to discriminate between the signal gg → H →
WW ∗ and pp → WW background [429], can be used to determine the Higgs boson spin at

the LHC. However, the complete final state must be reconstructed and one has to rely on the

decays H → ZZ∗ → 4ℓ which have rather low rates. The two remaining configurations J =

1+ and 2− which are not probed, as well as the CP–odd 0− case, can be discriminated against

the Higgs spin by looking at the angular distribution in the decays H → V V (∗) → 4f given

200



in eq. (2.38), and experimentally observing a sin2 θ1 sin2 θ3 correlation and not observing the

(1 + cos2 θ1,3) sin2 θ3,1 correlation [159,174].
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∫
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In fact, the angular correlations are also sensitive to the parity of the Higgs boson as seen

in §2.2.4 and can discriminate between the CP–even SM Higgs case and the pseudoscalar

Higgs case. In particular, the dependence on the azimuthal angle is very different, as it can

be seen from eq. (2.38) and in Fig. 2.13. The same simulations as previously [174,456] have

been performed for MH = 280 GeV and the distribution dΓ/dφ is shown in Fig. 3.52 as a

function of the azimuthal angle for the 900 expected events at the LHC for this Higgs mass.

A clear discrimination between the CP–even and CP–odd cases can be made in this case.

The Higgs CP properties and the structure of the HV V coupling can be also determined

in the vector boson fusion process, qq → qqH , by looking at the azimuthal dependence of

the two outgoing forward tagging jets [457]. The analysis is independent of the Higgs mass

and decay modes but might be difficult because of background problems [261,458].

However, there is a theoretical caveat in this type of analyses [459]: if a Higgs boson is

observed with substantial rates in channels where it couples to vector bosons, it is very likely

that it is CP–even since the V V couplings of a pure CP–odd state are generated only through

loop corrections. The decisive test of the CP properties should be therefore to verify that the

SM Higgs boson is pure CP–even and rule out the small loop–induced CP–odd component.

This becomes then a very high precision test which is very challenging at the LHC.

201



The couplings of the Higgs boson to fermions provide a more democratic probe of its

CP nature since in this case, the CP–even and CP–odd components can have the same

magnitude. One thus has to look at channels where the Higgs boson is produced and decays

through these couplings. Discarding the possibility of H → bb̄ and τ+τ− decays in the

gg → H production channel, which have very large backgrounds, one has to rely on Higgs

production in pp→ tt̄H with H → γγ and eventually bb̄. Techniques based on the different

final states distributions in the production of a scalar or a pseudoscalar Higgs boson have

been suggested in Refs. [460, 461] to discriminate between the two scenarios or a mixture.

However these channels are rather difficult as we have seen previously. With very large

luminosities L = 600 fb−1 and for a rather light Higgs boson, MH ∼ 100 GeV, an equal

mixture of CP–even and CP–odd couplings [with a total coupling squared equal to the SM

one] can be seen at a few σ level [461]. But again, this method does not allow to check

precisely the CP–even purity of the SM Higgs boson, at least in this particular channel.

Central exclusive diffractive Higgs production [392,462] might provide the solution; §3.6.4.

The measurement of the Higgs couplings at the LHC

The determination of the Higgs couplings to gauge bosons and fermions is possible at the

LHC through the measurement of the cross sections times branching ratios, σ×BR, given by

the event rate in the various search channels [222,463–466]; for earlier analyses see Ref. [227,

227,229]. However, the accuracy in this determination is rather limited because of the small

statistics that one obtains after applying the cuts that suppress the large backgrounds which

are often plagued with uncertainties, and the various systematical errors such as the common

uncertainty in the absolute luminosity. In addition, when one attempts to interpret the

measurements, theoretical uncertainties from the limited precision on the parton densities

and from the higher–order radiative corrections or scale dependence should be taken into

account. Furthermore, the couplings which can be measured will critically depend on the

Higgs boson mass. For instance, in the mass range above MH ∼ 2MW , only the couplings

to gauge bosons can be accessed directly and the Htt̄ coupling can be probed indirectly.

The cross sections times branching ratios which can be measured in various channels at

the LHC are shown in Fig. 3.53 for Higgs masses below 200 GeV [463]. The gg fusion (solid

lines), the expectations for weak boson fusion with a parton level analysis (dashed lines) and

the associated pp → tt̄H,H → bb̄ (dotted lines) channels are for a luminosity of 200 fb−1.

The channels pp → tt̄H → tt̄WW ∗ (red–dotted lines) assume a luminosity of 300 fb−1. In

this figure, as well as in the subsequent discussion, only the statistical errors are taken into

account. A precision of the order of 10 to 20% can be achieved in some channels, while the

vector boson fusion process, pp → Hqq → WWqq, leads to accuracies of the order of a few

percent.
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These σ × BR can be translated into Higgs partial widths in the various decay channels

ΓX ≡ Γ(H → XX) [464], which are proportional to the square of the Higgs couplings,

g2
HXX . However, in the case of the vector boson fusion mechanism, which has contributions

from ZZ → H and WW → H , the HZZ and HWW couplings cannot be disentangled.

One then has to assume that they are related by SU(2) symmetry as is the case in the

SM [an assumption which can be tested with a 20% accuracy in gg → H → ZZ∗ versus

gg → H → WW ∗ but for large enough MH ]. With this assumption, one can perform ratios

of partial widths ΓXi
/ΓXj

, in which some common theoretical and experimental errors will

cancel. This is shown in Fig. 3.54 (left) for a luminosity of 200 fb−1, where the relative

accuracy on the ratios of σ ×BR of the production and decay channels discussed above can

be formed. Again, measurements at the level of 10–20% can be made in some cases.

One can indirectly measure the total Higgs width Γ, and thus derive the absolute values of

the partial widths ΓX , by making additional assumptions, besides gHWW/gHZZ universality:

i) Γb/Γτ is SM–like [with an error of ∼ 10% corresponding to the uncertainty on the b–

quark mass] since both fermions have the same isospin and ii) the branching ratio for Higgs

decays into unexpected channels is small [in the SM, this error is less than about 3% and

corresponds to the missing BR(H → cc̄)] so that 1−ΓXi
/Γ = ǫ≪ 1. The Higgs boson total

width Γ can be then determined and the partial widths ΓX as well.

Figure 3.53: Expected relative errors on the determination of σ×BR for various Higgs boson
search channels at the LHC with 200–300 fb−1 data; from Ref. [463].
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Figure 3.54: Relative accuracy expected at the LHC with a luminosity of 200 fb−1 for various
ratios of Higgs boson partial widths (left) and the indirect determination of partial and total
widths Γ̃i and Γ with the assumptions discussed in the text (right); from Ref. [464].

The expected accuracies are shown in the right–hand side of Fig. 3.54. They are at the

level of 10 to 30% depending on the final states and on MH , and translate to an accuracy

on the couplings of the order of 5 to 15% [464]. Detailed experimental analyses accounting

for the backgrounds and for the detector efficiencies, as well as further theoretical studies

for the signal and backgrounds, have to be performed to confirm these values.

The Higgs self–couplings

The trilinear Higgs boson self–coupling λHHH is too difficult to be measured at the LHC

because of the smallness of the gg → HH [and a fortiori the V V → HH and qq → HHV ]

cross sections and the very large backgrounds [467–469]; see also Refs. [470] and [471] for an

earlier and more recent analysis, respectively. A parton level analysis [468] has been recently

performed in the channel gg → HH → (W+W−)(W+W−) → (jjℓν)(jjℓν) and (jjℓν)(ℓℓνν)

with same sign dileptons, including all the relevant backgrounds which, as one might have

expected, are significantly large. At the LHC, the statistical significance of the signals, once

most of the backgrounds are removed, is very small, even with an extremely high luminosity.

However, it was found that the distribution of the invariant mass of the visible final state

particles peaks at much higher values for the backgrounds than for the signal, independently

of the value of the trilinear coupling; see Fig. 3.55 (left).
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Figure 3.55: The visible mass distribution of the signal for pp → ℓ±ℓ± + 4j for MH =
180 GeV at the LHC for various λHHH values and for the combined backgrounds (left).
Limits achievable at 95% CL for ∆λHHH = (λ− λSM)/λSM in pp→ ℓ±ℓ′± + 4j at the LHC
for various integrated luminosities (right); from Ref. [468].

This observation can be used to set limits on the Higgs self–couplings. For a luminosity

of 300 fb−1 one can check a non–vanishing value of λHHH at a 95% CL if the Higgs boson

mass happens to lie in the range 150–200 GeV. Much more luminosity would be needed,

to perform a decent measurement; see the right–handed part of Fig. 3.55. For lower Higgs

masses, MH <∼ 140 GeV, one would have to rely on the dominant decays HH → 4b not to

lose too much statistics, but in view of the formidable backgrounds, this process seems to

be hopeless at the LHC, while the channel H → bb̄ττ is only slightly easier [469].

3.7.5 Higher luminosities and higher energies

Some of the detection signals as well the measurements discussed previously would greatly

benefit from an increase of the LHC luminosity. As mentioned in the beginning of this section,

there are plans to achieve an instantaneous luminosity of L = 1035 cm−2s−1 at
√
s ≃ 14 TeV,

while keeping the present dipole and magnets, which would allow to collect 6 ab−1 for both

the ATLAS and CMS experiments after three years of data tacking. This SLHC option will

allow to probe rare production and decay processes of the Higgs particle. A brief summary

of the interesting physics which can be performed at such a machine in the context of the

SM Higgs boson is as follows [221,222]:

– H → µ+µ−: we have seen that with the present LHC design luminosity, this rare decay

can be observed only at the 3σ level, even with 600 fb−1 of data. With 6 ab−1 data, the
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Figure 3.56: Expected uncertainties on the measured ratios of the Higgs boson widths to final
states involving gauge bosons (left) and gauge bosons and fermions (right) as a function of the
Higgs mass. The closed (open) symbols are for the two two experiments and 3000 (300) fb−1

data per experiment. Indirect measurements use the loop induced processes gg → H and
H → γγ; from Ref. [221].

process can be observed at the 5σ level for MH in the range 120 to 140 GeV, and would

allow the first measurement of the Higgs coupling to second generation fermions.

– H → Zγ: this decay has not been mentioned in the previous discussion because it is

too rare: if the Z boson decays leptonically, the branching fraction for this mode is about

2 × 10−4. With 6 ab−1 data, the gg → H → Zγ → ℓℓγ process can be observed at the

11σ level for a Higgs boson in the mass range MH = 120–150 GeV, and would provide

complementary information to the H → γγ decay channel.

– The measurement of the ratios of Higgs couplings discussed before is mostly statistics

limited. Provided that detector performances are not significantly reduced in the high lu-

minosity environment, these ratios of couplings can be probed at the level of 10% accuracy,

and even below in some cases, if the the sample of 6 ab−1 data is collected. This is shown

in Fig. 3.56 where the combined ATLAS+CMS accuracies in the direct [with tree–level pro-

cesses] and indirect measurements [that is, involving the loop induced processes gg → H and

H → γγ which are indirectly sensitive to the Higgs couplings to the top quark, and in the

case of Hγγ also to the coupling to the W boson] are shown for a luminosity of 3 ab−1 per

experiment, and compared to what can be achieved with only 300 fb−1 data per experiment.

– The most important window that a sample of 6 ab−1 data could open would be the

measurement of the Higgs self–coupling λHHH . As we have seen previously, this important
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coupling cannot be probed with the presently planed luminosity. The same parton–level sim-

ulation as previously [468] has shown that a signal for the process gg → HH →WWWW →
ℓ±ℓ±ννjjjj can be observed with a 5.5 (3.8) significance forMH = 170 (200) GeV with L = 6

ab−1, allowing to probe λHHH . As can be seen in Fig. 3.55, the trilinear coupling could be

measured with a statistical error of about 25% in the Higgs mass window between 160 and

180 GeV in the channel pp→ ℓ±ℓ±jj with 3 ab−1 data.

The precision on the various measurement discussed above can be improved by increasing

the luminosity of the collider, but also by raising the c.m. energy which leads to an increase

of the Higgs boson production rates in most processes. This is explicitly shown in Fig. 3.57,

where the cross sections for the various production processes for a single Higgs boson (upper

curves) and for Higgs pairs (lower curves) are displayed as a function of
√
s for a Higgs boson

mass of 120 GeV. As can be seen, the gg → H cross section for instance increases by up to

two orders of magnitude compared to the LHC when the energy of the collider is raised to√
s = 200 TeV. The cross sections for Higgs pair production also tremendously increase and

for the vector boson fusion processes, pp → HHqq, they reach the level of 0.1 pb at c.m.

energies of the order of
√
s = 200 TeV.
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Figure 3.57: Total cross sections for single and double Higgs boson production in various
processes as a function of

√
s for pp collisions and MH = 120 GeV; from Ref. [222].

One can then probe the rare decays of the Higgs boson and measure more precisely its

couplings to fermions and gauge bosons and its self–coupling, in much the same way as it

has been discussed for the SLHC. The accuracies in the determination of some couplings of

the SM Higgs boson will for instance start to approach the few percent level.
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In fact, with a luminosity of 100 fb−1, a VLHC running at
√
s = 50 TeV will be com-

parable and in some cases superior to the SLHC. The potential of the two options has been

discussed and compared in specific examples in Ref. [222] to which we refer for details.

Note, however, that these accuracies cannot compete with those that can be achieved at

high–energy e+e− linear colliders [which are expected to operate either before or at the same

time] and to which we turn our attention now.
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4 Higgs production at lepton colliders

4.1 Lepton colliders and the physics of the Higgs boson

4.1.1 Generalities about e+e− colliders

The e+e− collision is a very simple reaction [472], with a well defined initial state and rather

simple topologies in the final state. It has a favorable signal to background ratio, leading

to a very clean experimental environment which allows to easily search for new phenomena

and to perform very high–precision studies as has been shown at PEP/PETRA and more

recently at SLC and LEP. In particular, the high–precision studies of the properties of the Z

boson at LEP1 and SLC, and the determination of the properties of the W boson at LEP2,

have laid a very solid base for the Standard Model as was discussed in §1.

The physical processes in e+e− collisions are in general mediated by s–channel photon [for

charged particles] and Z boson exchanges with cross sections which scale as the inverse of the

center of mass energy, σ ∝ 1/s, and t–channel gauge boson or electron/neutrino exchange,

with cross sections which may rise like log(s). In these t–channel processes, only particles

which couple directly to the electron are involved at lowest order. The s–channel exchange

is the most interesting process when it takes place: it is democratic, in the sense that it gives

approximately the same rates for weakly and strongly interacting matter particles, and for

the production of known and new particles, when the energy is high enough.

However, in this channel, the rates are low at high energies and one needs to increase the

luminosity to compensate for the 1/s drop of the interesting cross sections. At
√
s ∼ 1 TeV,

a luminosity L ∼ 1034 cm−2 s−1 is required, which for a run time of 107s a year leads to an

integrated luminosity of
∫
L ∼ 100 fb−1 per year, to produce 104 muon pairs as at PEP and

PETRA. Such a luminosity is necessary to allow for thorough data analyses, including cuts

on the event samples and allowing for acceptance losses in the detectors. At higher energies,

the luminosity should be scaled as s to generate the same number of events.

Because of synchrotron radiation which rises as the fourth power of the c.m. energy

in circular machines, e+e− colliders beyond LEP2 must be linear machines [473], a type of

accelerator which has been pioneered by the SLC. Various reference designs of future high–

energy e+e− colliders in the TeV range are being studied in Europe (TESLA [474] at DESY

and CLIC [475] at CERN), the United States (NLC [476]) and in Japan (JLC [477]). Two

technologies have been proposed for the next linear collider with center of mass energies up

to
√
s = 1 TeV: one based on superconducting acceleration modules at moderate frequency,

and another based on warm acceleration structures operating at high radio frequencies. A

third and rather new approach is based on a two–beam scheme, where high current, low

energy beams create the acceleration field for the high–energy electron–positron beams. The

technology for this collider, which could reach c.m. energies in the multi–TeV range after
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presumably some halts at intermediate energies, is still to be proved.

To achieve the large luminosities which are targeted at these machines, many technologi-

cal challenges need to be overcome. For instance, the beams have to be focused to extremely

small dimensions near the interaction point and very high acceleration gradients are needed

to reach center of mass energies in the TeV range. In the case of the TESLA machine, for

which a Technical Design Report is already available, the main parameters of the beams

are summarized in Table 4.1. In the case of the JLC and NLC machines, the designs have

been worked out in detail and are documented in a zeroth order Technical Design Report.

The two–beam acceleration scheme is being followed at CERN and it is hoped that before

the end of this decade, the technical concept can be proved; this multi–TeV collider is thus

expected to be a next generation machine.

Parameter Label Units 500 GeV 800 GeV γγ/500 GeV

Luminosity L 1034cm−2s−1 3.4 5.8 0.6

Number of bunches nb 2820 4886 2820

Pulse train length TP µs 950 860 950

Repetition rate frep Hz 5 5

Acceleration gradient Eacc MV/m 23.4 35 23.4

Beamstrahlung δE % 3.2 4.3 −

Table 4.1: Main parameters of the TESLA Linear Collider for the energies
√
s = 500 and

800 GeV, and
√
s = 500 GeV for the γγ option of the machine.

For details on the future machines and on the issues related to the foreseen and planned

detectors, we refer the reader to Ref. [478, 479]. In the following, we will briefly list a few

important physics points about these future linear e+e− colliders [480–484]:

• One should have the possibility to adjust the c.m. energy of the colliders in order

to make detailed studies and, for instance, to maximize the cross section for Higgs boson

production in some particular channels or scan the threshold for W boson and top quark

pair production, or for some newly produced particles.

• The requirement of a high–luminosity is achieved by squeezing the electrons and

positrons into bunches of very small transverse size, leading to beamstrahlung which re-

sults into beam energy loss and the smearing of the initially sharp e+e− c.m. energy. Since

the precise knowledge of the initial state energy is very important for precision studies [in

particular in some channels where one would need missing mass techniques], beamstrahlung

should be reduced to a very low level, as is already the case in narrow beam designs.
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• The longitudinal polarization of the electron [and also positron] beam should be easy to

obtain as has already been shown at the SLC. Degrees of polarization of the order of 80–90%

and 40–50% for, respectively, the electron and positron beams are expected. The longitudinal

polarization might be important when it comes to make very precise measurements of the

properties of Higgs bosons and to suppress some large backgrounds [in particular from W

bosons] to its production signals [485].

• By building a bypass for the transport of the electron and positron bunches, for instance,

very high luminosities can also be obtained at energies in the range of 100 GeV. Operating

on the Z boson resonance, 109 Z bosons can be produced, a sample which is two orders of

magnitude larger than the one obtained at LEP1. This GigaZ machine, in particular since

longitudinal polarization will be available, could significantly improve the precision tests of

the SM which have been performed in the previous decade [486].

• Last but not least, the linear collider can run in three additional modes. First, one just

needs to replace the positron bunches by electron bunches to have an e−e− collider. Then,

by illuminating the initial lepton bunches by laser photons, one can convert the original

collider into an eγ or γγ collider, with a comparable total center of mass energy energy and

luminosity as the initial lepton collider [487, 488]. Higgs particles can be produced as s–

channel resonance at γγ colliders [489,491–493] and this mode will be very useful to address

problems such as the Higgs boson couplings to photons and its CP properties. These options,

will be also considered in this section.

Very recently, the International Technology Recommendation Panel has recommended

[473] that the next linear e+e− machine, which should and hopefully will be a joint project,

the International Linear Collider (ILC), is based on superconducting radio–frequency cavi-

ties. The machine should, in a first step, run at energies between
√
s = 200 and 500 GeV

with an integrated luminosity of 500 fb−1 in the four first years, have the possibility of 80%

polarized electron beams and two interaction regions with easy switching. In a second phase,

the machine should run at an energy of
√
s = 1 TeV with an integrated luminosity of 1 ab−1

in four years. As options, the panel recommended that the machine should possibly run in

the e−e− mode, have 50% positron polarization, the possiblity to operate near the MZ and

2MW thresholds, and the possibility to run in the eγ and γγ modes.

In our study of the physics of the Higgs boson at e+e− linear colliders, we will assume

for the numerical analyses three values for the c.m. energy,
√
s = 0.5, 1 and 3 TeV which

will correspond to the two phases discussed above and to the subsequent CLIC phase, and

an integrated luminosity L ∼ 500 fb−1. We will also consider briefly the GigaZ option and

in some detail the option of turning the machine into to a γγ collider, the particularities of

which are summarized in the following subsection.
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4.1.2 The photon colliders

The Compton scattering of laser photons with energies ω0 in the eV range with high–energy

electrons, Ee ∼ O(100 GeV), leads to a tight bunch of back–scattered high–energy photons

[487, 488]. The kinematics of the process is governed by the dimensionless parameter x =

4ω0Ee/m
2
e. The fraction of energy carried by the back–scattered photon, y = ω/Ee, is

maximal for ymax = x/(1 + x). The highest energy, compared to the e− beam energy

is therefore obtained for very large values of the parameter x. However, to prevent the

creation of e+e− pairs in the annihilation of the laser and scattered photons, one demands

that x <∼ x0 = 4.83. For this value, the photon collider can have as much as ∼ 80% of the

energy of the original e+e− collider. The scattering angle of the obtained photons is given

by θ(y) ≃ me(1 + x)/Ee ×
√
ymax/y − 1 and is of the order of a few micro–radians.

The energy spectrum of the back–scattered photon

fc(y) = σ−1
c dσc(y)/dy (4.1)

depends on the product of the the mean helicity of the initial electron λe and on the degree

of circular polarization of the laser photon Pγ, with −1 ≤ 2λePγ ≤ +1. It is defined by the

differential Compton cross section [488]

dσc

dy
=
πα2

xm2
e

[f0 + 2λePγf1 + 2λePγ′f2 + PγPγ′f3] (4.2)

where the dependence on the polarization of the back–scattered photon Pγ′ has been retained.

In terms of the variable r = y/(x(1 − y)), the functions fi (i=0,..,3) read

f0 =
1

1 − y
+ 1 − y − 4r(1 − r) , f1 = xr(1 − 2r)(2 − y)

f2 = xr(1 + (1 − y)(1 − 2r)2) , f3 = (1 − 2r)(
1

1 − y
+ 1 − y) (4.3)

When the polarization of the scattered photon is discarded, the integrated Compton cross

section can be cast into the form

σc = σnp
c + 2λePγσ

p
c

σnp
c =

πα2

xm2
e

[
1

2
+

8

x
− 1

2(1 + x)2
+
(
1 − 4

x
− 8

x2

)
ln(x+ 1)

]

σp
c =

πα2

xm2
e

[
− 5

2
+

1

x+ 1
− 1

2(x+ 1)2
+
(
1 +

2

x

)
ln(x+ 1)

]
(4.4)

By selecting a given polarization of the initial e− and laser beams, one can have different

shapes for the energy distribution of the scattered photons: a flat distribution if the electron
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and the laser have the same polarization, or an almost monochromatic distribution peaked

at ymax if they have opposite polarization. The latter scenario if of course very interesting.

Because of the small scattering angle θ of the photons, the luminosity of the spectrum

depends on the the conversion distance, i.e. the distance between the intersecting point

of the laser and the electron beam and the interaction point, as well as on the size and

shape of the electron beam. A geometrical factor ρ = bθ/a takes into account the non–zero

conversion distance b and the radius a of the assumed round electron beam [typically, the

sizes are a ∼ O(102 nm) and b ∼ O(1 cm)]. If ρ is much larger than unity, only the photons

with high energy can meet at the interaction point, while for ρ ≪ 1, photons with various

energies collide and give a rather broad spectrum.

When the Compton backscattered photons, that we will denote by γ1 and γ2, are taken

as initial states, the cross section for the process γγ → X with polarized photons reads

dσ̂γγ =

4∑

i,j=0

ξ1iξ2j dσ̂ij (4.5)

in the ξ1i and ξ2j photon Stokes parameter basis [with zeroth components ξ10 = ξ20 = 1].

The event rate dN can be then written as

dN = dL 〈dσ̂γγ〉 = dL
3∑

i,j=0

〈ξ1iξ2j〉 dσ̂ij (4.6)

where dL is the differential γγ luminosity and the average 〈ξ1iξ2j〉 is along the interaction

region [only the diagonal terms in the product are relevant in general].

For circularly polarized laser beams, one has for the average Stokes parameters

〈ξ12ξ22〉 = ξ12ξ22 , 〈ξ13ξ23〉 = −〈ξ11ξ21〉 ≪ 1 (4.7)

so that the event rate can be written in terms of the luminosities corresponding to the JZ = 0

and JZ = ±2 scattering channels, as

dN = dLJZ=0 dσ̂JZ=0 + dLJZ=±2 dσ̂JZ=±2

dLJZ=0 =
1

2
dL (1 + 〈ξ12ξ22〉) , dLJZ=±2 =

1

2
dL (1 − 〈ξ12ξ22〉) (4.8)

With this polarization, a broad luminosity spectrum can be achieved by using electrons

and laser photons with like-handed helicities and a small value, ρ ∼ 0.6, which leads to low

energetic backscattered photons in the interaction region. In contrast, a sharp spectrum

peaking near ymax can be obtained using opposite–handed electrons and laser photons in a

more restrictive interaction region ρ ∼ 3; see Fig. 4.1 (left). The events in the JZ = 0 (JZ =
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Figure 4.1: Normalized γ luminosities as functions of z =
√
sγγ/

√
se+e− for left: circularly

polarized lasers with x0 = 4.83 and the solid (dashed) lines are for opposite-handed (like-
handed) photons and electrons with ρ = 3 (0.6), and right: linearly polarized lasers with
∆γ = 0, ρ = 0.6 and x0 = 1 (0.5) for the solid (dashed) lines. The lasers are assumed to be
completely polarized and the electrons 85% longitudinally polarized, and the configurations
for both collider arms are the same; from Ref. [493].

±2) channels can be enhanced (suppressed) by choosing the laser and electron beams so that

x0 = 4.83, which in addition, maximizes the collider energy.

For linearly polarized laser beams, neglecting ρ 6= 0 effects for simplicity, the average

Stokes parameters are

〈ξ12ξ22〉 ≃ 〈ξ12〉〈ξ22〉 = 4λe−λe+ c1c2

〈ξ13ξ23 − ξ11ξ21〉 ≃ 〈ξ13〉〈ξ23〉 − 〈ξ11〉〈ξ21〉 = P1tP2t ℓ1ℓ2 cos 2(∆γ) (4.9)

where Pti are the mean linear laser polarizations while ci and ℓi are the induced circular

and linear polarizations of the backscattered photons; ∆γ is the angle between the planes

of maximal linear polarization of the two lasers. The circular polarizations c and linear

polarizations ℓ are large for, respectively, high and low values of the parameter x, and both

increase with y. The event rate in this case is given by

dN = dL|| dσ̂|| + dL⊥ dσ̂⊥ +
1

2
dLC (dσ̂JZ=0 − dσ̂JZ=2) (4.10)

dL|| =
1

2
dL (1 + 〈ξ13ξ23 − ξ11ξ21〉) , dL⊥ =

1

2
dL (1 − 〈ξ13ξ23 − ξ11ξ21〉) , dLC = dL 〈ξ12ξ22〉

For this polarization, one has to make a compromise between having a good separation of

the || and ⊥ components, which needs a small value of x, and having a high energy which

needs a larger value since the available energy is proportional to x/(x+ 1).

For more details on the main features of the γγ machines, such as energy, luminosity

distributions, polarization, etc..., see the reviews given in Refs. [491–493].
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4.1.3 Future muon colliders

The concept of µ+µ− colliders, although introduced already in the late sixties [494], has been

taken very seriously only in the last decade. A Muon Collider Collaboration (MMC) [495,496]

has been formed in the US in the mid–nineties to complete the R&D that is required to

determine whether a muon collider is technically feasible and, in the case of a positive answer,

to propose a design for a First Muon Collider. In the late nineties, the European community

joined the project and a study report on the feasibility of a muon collider at CERN has been

produced [497]. A three–step scenario for a muon collider is presently foreseen [496,497]:

– i) A first step would be an intense proton source for producing muons which will be

then captured, cooled, accelerated and stored. In the storage ring, they will then decay and

would allow to produce high–intensity and high–quality neutrino beams which could be used

to perform detailed studies of neutrino oscillations and neutrino–nucleon scattering, as well

as some physics with stopped muons such as the measurement of the muon magnetic and

electric dipole moments and the search for some rare µ decays.

– ii) The second step would be a µ+µ− collider with a center of mass energy in the range√
s ∼ 100–200 GeV. This collider could do the same physics as an e+e− collider, but it will

also be a Higgs factory that would possibly allow to study in more detail the properties of

the Higgs particles that have been produced at the LHC and at the ILC.

– iii) A final step would be then to operate the muon collider at the maximum possible

c.m. energy and to probe the physics of the multi–TeV scale. For instance, energies up to√
s ∼ 7 TeV could be reached with the facilities that are available at CERN. However, with

the present designs [and not to mention the very high luminosities which need to be achieved

in this case], the radiation induced by the neutrinos is extremely high for c.m. energies in

excess of a few TeV and poses a very serious problem. Major technological developments

are therefore required to reach this high–energy step.

In this report, we will be interested only in the second phase of the muon collider, that

is, the Higgs factories with c.m. energies
√
s <∼ 200 GeV. Compared to an e+e− machine,

the main advantages of a muon collider as far as Higgs physics is concerned [498–501], are

mainly due to the fact that the muon is much heavier than the electron, mµ/me ∼ 200:

the Higgs boson coupling to muons is much larger than the coupling to electrons, yielding

significantly larger rates for s–channel Higgs production at muon colliders, µ+µ− → H [the

production rate in this channel is of course negligible in e+e− collisions].

Another advantage of µ+µ− colliders, compared to e+e− colliders, is the very precise

knowledge of the beam energy spectrum which would allow for very high precision analyses

of the mass, total width and peak cross section of the produced Higgs resonance. According to

the analyses performed in Ref. [496,497], the energy can be tuned with a precision ∆Eb/Eb ∼
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×10−6 [i.e. 100 keV for
√
s = 100 GeV] and values ten times smaller seem possible. The

small amount of beamstrahlung [which, in e+e− collisions, induces an energy loss of a few

percent that is difficult to measure very precisely] and bremsstrahlung [again due to the

larger mass of the muon compared to the electron] could lead to a relative beam energy

spread or resolution of the order of R = σEb
/Eb ∼ 10−3 down to R = 3 × 10−5 and which

could be known with an accuracy of ∆σEb
/Eb ∼ 0.5%. Such a small energy spread is very

important when performing a scan around the very narrow Higgs resonance, ΓH ∼ 2 MeV

for MH ∼ 100 GeV. In addition, since synchrotron radiation is also very small, one can still

use the available circular machines. The energy calibration can be made by spin precession

as the muons that are produced in the weak decays of pions are 100% polarized, leading to

a natural longitudinal polarization of approximately 30% which, however, drops to the level

of ∼ 20% due to the handling before injection into the collider. The drawback, compared

to e+e− machines, is that it is difficult to maximize this polarization without an important

loss in luminosity and that a muon collider cannot be turned into a γγ or µγ collider.

Nevertheless, the design of the machine is still at an early stage and many problems

remain to be solved [496,497]. In addition, the delivered luminosity which can be achieved is

still uncertain, and it depends strongly on the baseline parameters of the collider; Tab. 4.2.

There is, for instance, a particularly strong dependence on the beam energy resolution.

As can be seen from the table, at
√
s = 100 GeV, the estimates indicate that only L ∼

1031 (1032) cm−2s−1 can be obtained for a resolution of R = 0.003% (0.1%), leading to an in-

tegrated luminosity
∫
L = 0.1 (1) fb−1 per year. The luminosity, however can substantially be

increased with energy reaching, for R ∼ 0.1%, values of the order of L ∼ 1033 (1035) cm−2s−1

for
√
s ∼ 0.4 (3) TeV; see Table 4.2 and the details given in Refs. [496, 497].

c.m. energy 3 TeV 400 GeV 100 GeV
p power (MW) 4 4 4
1/τµ (Hz) 32 240 960
µ/bunch 2 × 1012 2 × 1012 2 × 1012

circumference (m) 6000 1000 350
〈B〉 (T) 5.2 4.7 3
neffective

turns 785 700 450
6-D ǫ6,N × 10−10 (πm3) 1.7 1.7 1.7
R = δp/p (%) 0.16 0.14 0.12 0.001 0.003
RMS ǫT (π mm-rad) 0.05 0.05 0.085 0.0195 0.29
β∗ and σz (cm) 0.3 2.6 4.1 9.4 14.1
σr (µm) 3.2 26 86 196 294
Luminosity (cm2s−1) 7 × 1034 1033 1.2 × 1032 2.2 × 1031 1031

Table 4.2: Possible parameter sets for a µ+µ+ Higgs factory at
√
s = MH = 100 GeV as

expected by the MCC [496]; higher energy machines are also shown for comparison.
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4.1.4 Higgs production processes in lepton collisions

In e+e− collisions with center of mass energies beyond LEP2, the main production mech-

anisms for Higgs particles are the Higgs–strahlung process [32, 105, 111, 113] and the WW

fusion mechanism [112,245,246,502,503], depicted in Fig. 4.2,

Higgs − strahlung process : e+e− −→ (Z∗) −→ Z H (4.11)

WW fusion process : e+e− −→ ν̄ν (W ∗W ∗) −→ ν̄ ν H (4.12)

•

e−

e+

Z∗

H

Z

•

e−

e+
W ∗

W ∗

H

νe

ν̄e

Figure 4.2: The dominant Higgs production mechanisms in high–energy e+e− collisions.

There are several other mechanisms in which Higgs bosons can be produced in e+e− collisions:

the ZZ fusion process [243–245, 503, 504], the radiation off heavy top quarks [505, 506] and

the double Higgs boson production process either in Higgs–strahlung or WW/ZZ fusion

[255,257,263,507,508]

ZZ fusion process : e+e− −→ e+e−(Z∗Z∗) −→ e+e−H (4.13)

radiation off heavy fermions : e+e− −→ (γ∗, Z∗) −→ f f̄ H (4.14)

double Higgs production : e+e− −→ ZHH , ℓℓHH (4.15)

These are, in principle, higher–order processes in the electroweak coupling with production

cross sections much smaller than those of the Higgs–strahlung process and the WW fusion

channel [for ZZ fusion, only at low energies]. However, with the high luminosity planned

for future linear colliders, they can be detected and studied. These processes are extremely

interesting since they allow for the determination of some of the fundamental properties of

the Higgs particle, such as its self–coupling and its Yukawa coupling to top quarks.

There also other higher–order processes in which Higgs particles can be produced in e+e−

collisions, but with even smaller production cross sections than those mentioned previously:

associated production with a photon, e+e− → H + γ [509], loop induced Higgs pair pro-

duction, e+e− → HH [510], associated production with vector bosons, e+e− → V V + H

[511,512], and associated production with a gauge boson and two fermions, e+e− → V H+f f̄

[511]. Except possibly for the two latter processes, the cross sections are in general below

the femtobarn level and, thus, too small for the processes to be detected at future machines,

unless extremely high–luminosities are made available.
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Higgs particles can be produced as s–channel resonances [489] [among other possibilities

which will be also discussed] in the γγ option of future e+e− linear colliders

γγ −→ H (4.16)

allowing the measurement of the important Hγγ coupling. In the eγ option, one can also

produce the Higgs boson in the channel eγ → νeW
−H [513].

Finally, on can also produce the Higgs boson as an s–channel resonance at future muon

colliders [498, 514]

µ+µ− −→ H (4.17)

In the following section, we will discuss the dominant production processes in some detail

and summarize the main features of the subleading processes. We will first focus on e+e−

linear colliders in the e+e− option, and discuss in more details the physics potential at the

first phase with center of mass energies around
√
s ∼ 500 GeV [515, 516]; occasionally, we

will comment on the benefits of raising the energy of the machine. The case of the γγ option

of the machine, as well as the physics at future muon colliders will be postponed to the

previous–to–last and last sections.

Since e+e− colliders are known to be high–precision machines as demonstrated at LEP

and SLC, the theoretical predictions have to be rather accurate and thus the radiative

corrections to the Higgs production processes have to be taken into account. The one–loop

electroweak and QCD radiative corrections to the most important production mechanisms

have been completed only recently [517–529] and we will summarize their main effects.

In addition, the main motivation of future e+e− in the sub–TeV energy range is the

detailed exploration of the electroweak symmetry breaking mechanism and the thorough

study of the fundamental properties of the Higgs particle, in particular the spin and parity

quantum numbers. At least in the main processes, we will study the energy and the angular

dependence of the cross sections as well as the angular correlations of the final decay products,

and confront, whenever possible, the predictions for the JPC = 0++ case of the SM Higgs

particle to what would be expected if the Higgs were a pseudoscalar boson with JPC = 0+−

spin–parity assignments. We will discuss the measurements of the Higgs mass and total

decay width, the Higgs couplings to fermions and gauge bosons, and the Higgs self–coupling

which allows for the reconstruction of part of the scalar potential that is responsible of the

spontaneous breaking of the electroweak symmetry.

Some particular points relevant to this section have been already discussed in the context

of hadron colliders or in the section on the decays of the Higgs particle. However, some

important features will be rediscussed in the context of lepton colliders, to make the section

more complete and self–contained.
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4.2 The dominant production processes in e+e− collisions

4.2.1 The Higgs–strahlung mechanism

The production cross section

The production cross section for the Higgs strahlung process is given by

σ(e+e− → ZH) =
G2

µM
4
Z

96πs
(v̂2

e + â2
e) λ

1/2 λ+ 12M2
Z/s

(1 −M2
Z/s)

2
(4.18)

where as usual âe = −1 and v̂e = −1 + 4s2
W are the Z charges of the electron and λ1/2 the

usual two–particle phase space function

λ = (1 −M2
H/s−M2

Z/s)
2 − 4M2

HM
2
Z/s

2 (4.19)

The production cross section is shown in Fig. 4.3 as a function of the Higgs mass for the

values of the c.m energy
√
s = 0.5, 1 and 3 TeV. At

√
s = 500 GeV, σ(e+e− → HZ) ∼ 50

fb for MH ∼ 150 GeV, leading to a total of ∼ 25.000 Higgs particles that are created at an

integrated luminosity of
∫
L = 500 fb−1, as expected for future machines. The cross section

scales as the inverse of the c.m. energy, σ ∼ 1/s, and for moderate Higgs boson masses it

is larger for smaller c.m. energies. The maximum value of the cross section for a given MH

value is at
√
s ∼MZ +

√
2MH . An energy of the order of

√
s ∼ 800 GeV is needed to cover

the entire Higgs boson mass range allowed in the SM, MH <∼ 700 GeV.

ps = 3 TeV
ps = 1 TeVps = 500 GeV �(e+e� ! HZ) [fb℄

MH [GeV℄ 1000100

100
10
1

0.1
Figure 4.3: Higgs boson production cross sections in the Higgs–strahlung mechanism in e+e−

collisions with c.m. energies
√
s = 0.5, 1 and 3 TeV as a function of MH .
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The energy dependence

The recoiling Z boson in the two–body reaction e+e− → ZH is mono–energetic, EZ =

(s−M2
H +M2

Z)/(2
√
s), and the mass of the Higgs boson can be derived from the energy of

the Z boson, M2
H = s− 2

√
sEZ +M2

Z , if the initial e+ and e− beam energies are sharp.

The excitation curve rises linearly with the phase–space factor λ1/2, which is characteristic

to the production of a scalar particle in association with a Z boson

σ(e+e− → HZ) ∼ λ1/2 ∼
√
s− (MH +MZ)2 (4.20)

This behavior for the JPC = 0++ SM Higgs boson can be compared with the case of a CP–

odd Higgs boson A with JPC = 0+− quantum numbers and with couplings given in §2. The

total production cross section for the process e+e− → ZA [159, 535]

σ(e+e− → ZA) = η2
G2

µM
6
Z

48πM4
A

(â2
e + v̂2

e)
λ3/2

(1 −M2
Z/s)

2
(4.21)

has a momentum dependence ∼ λ3/2 that is characteristically different from the ZH cross

section near threshold. This is illustrated in Fig. 4.4, where the behavior near the production

threshold for the assignments JPC = 0++ and 0+− is shown for a Higgs mass MH = 120 GeV.

� = A� = H
M� = 120 GeV�(e+e� ! Z�) [fb℄

ps [GeV℄ 220218216214212210

1001010.10.01
Figure 4.4: The e+e− → ZΦ cross section energy dependence near the threshold for the two
parity cases Φ = H and Φ = A [with η = 1] with MΦ = 120 GeV.

In fact, as discussed in Ref. [536], the linear threshold behavior of the SM Higgs boson

rules out not only the quantum number JP = 0− but also JP = 1−, 2+ and higher spin 3±, · · ·,
which rise with higher powers of λ too. The production of states with the two remaining

spin–parity assignments JP = 1+, 2+ can be ruled out using the angular correlations as is

discussed hereafter.
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The angular distribution

The angular distribution of the Z/H bosons in the bremsstrahlung process is also sensitive

to the spin of the Higgs particle [537]. The explicit form of the angular distribution, with θ

being the scattering angle, is given by

dσ(e+e− → ZH)

d cos θ
∼ λ2 sin2 θ + 8M2

Z/s→
3

4
sin2 θ (4.22)

and approaches the spin–zero distribution asymptotically, ∝ sin2 θ, in accordance with the

equivalence theorem which requires that the production amplitude becomes equal to the

amplitude where the Z boson is replaced by the neutral Goldstone boson w0. Thus, for high

energies, the Z boson is produced in a state of longitudinal polarization

σL

σL + σT
= 1 − 8M2

Z

12M2
Z + λs

(4.23)

Let us again confront the characteristics of a JPC = 0++ state with those of a pseudoscalar

Higgs boson A. In the process e+e− → ZA, the angular distribution is given by

dσ(e+e− → ZA)

d cos θ
∼ 1 + cos2 θ (4.24)

independent of the energy. The Z boson in the final state is purely transversally polarized,

so that the cross section need not be ∼ sin2 θ in this case.

If the Higgs particle were a mixture Φ of scalar and pseudoscalar bosons, with a coupling

to the virtual and real Z bosons given by

gZZΦ = gZZH

(
gµν + iηM−2

Z ǫµνρσp
σ
Zp

ρ
Z

)
(4.25)

the angular distribution of e+e− → ΦZ would read [Af = 2afvf/(a
2
f + a2

f ) as usual]

dσ(e+e− → ZΦ)

d cos θ
∼ 1 +

sλ2

8M2
Z

sin2 θ + ηAe
sλ

M2
Z

cos θ + η2s
2λ2

M4
Z

(1 + cos2 θ) (4.26)

The presence of the interference term proportional to η is a clear indication of CP–violation

in the Higgs sector. One can thus define an observable [538], conveniently written as,

〈O〉 = 2Re
(M(e+e− → ZH)M∗(e+e− → ZA)

|M(e+e− → ZH)|2
)
∝ ηAe

sλ

M2
Z

(4.27)

which quantifies the amount of this CP–violation.

The angular momentum structure specific to Higgs production can also directly be con-

fronted experimentally with the one of the process e+e− → ZZ that is distinctly different.

Mediated by electron exchange in the t–channel, the amplitude for this process is built–up

by many partial waves, peaking in the forward/backward directions. The two angular dis-

tributions, together with the angular distribution for the CP–odd Higgs case, e+e− → AZ,

are compared with each other in Fig. 4.5 which demonstrates the specific character of the

SM Higgs production process.
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e+e� ! ZZ
e+e� ! ZA
e+e� ! ZHMH = 120 GeVps = 500 GeV(1=�)d�=dos�
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10.80.60.40.20
Figure 4.5: Angular distribution in the process e+e− → HZ for

√
s = 500 GeV and MH =

120 GeV. The distributions for the CP–odd Higgs and e+e− → ZZ cases are also shown.

The angular correlations

The pattern for the Z boson polarization in the e+e− → HZ,HA and ZZ processes can be

checked [159, 535]: while the distribution of the fermions in the Z → f f̄ rest frame with

respect to the Z flight direction is given by sin2 θ∗ for longitudinally polarized Z bosons, it

behaves as (1± cos θ∗)
2 for transversally polarized states, after averaging over the azimuthal

angles. The definition of the polar angles θ and θ∗ is shown in Fig. 4.6; the azimuthal angle

φ∗ is the angle between the plane of the f f̄ from Z decays and the Higgs decay products.

Including the azimuthal angles, the final angular correlations may be written for the

process e+e− → ZH with Z → f f̄ , as [159]

dσ(e+e− → ZH)

dcθdcθ∗dφ∗
∼ s2

θs
2
θ∗ −

1

2γ
s2θs2θ∗cφ∗

+
1

2γ2
[(1 + c2θ)(1 + c2θ∗) + s2

θs
2
θ∗c2φ∗

]

−2AeAf
1

γ

[
sθsθ∗cφ∗

− 1

γ
cθcθ∗

]
(4.28)

where sθ = sin θ etc, Af = 2vfaf/(v
2
f + a2

f) and γ2 = E2/M2
Z = 1 + λs/4M2

Z . As before, θ is

the polar Z angle in the laboratory frame, θ∗ the polar fermion angle in the Z rest frame and

φ∗ the corresponding azimuthal angle with respect to the e+e− → ZH production plane.

After integrating out the polar angles θ and θ∗, one finds the familiar cos φ∗ and cos 2φ∗

dependence discussed in §2.2.4 associated with P–odd and even amplitudes, respectively

dσ(e+e− → ZH)

dφ∗
∼ 1 + a1 cosφ∗ + a2 cos 2φ∗
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a1 = −9π2

32
AeAf

γ

γ2 + 2
, a2 =

1

2

1

γ2 + 2
(4.29)

The azimuthal angular dependence disappears for high energies ∼ 1/γ as a result of the

dominating longitudinal polarization of the Z boson.

Note again the characteristic difference to the 0+− case, e+e− → ZA→ f f̄A [159, 175]

dσ(e+e− → ZA)

dcθdcθ∗dφ∗
∼ 1 + c2θc

2
θ∗ −

1

2
s2

θs
2
θ∗ −

1

2
s2

θs
2
θ∗c2φ∗

+ 2AeAfcθcθ∗ (4.30)

e− e+

Z

H

θ

θ∗

Figure 4.6: The definition of the polar angles θ, θ∗ in the process e+e− → ZH → Hff̄ .

This time, the azimuthal dependence is P–even and independent of the energy in contrast

to the 0++ case; after integrating out the polar θ, θ∗ angles

dσ(e+e− → ZA)

dφ∗
∼ 1 − 1

4
cos 2φ∗ (4.31)

The production of the two states with JP = 1+, 2− quantum numbers, which also lead

to a β behavior near the kinematical threshold as in the 0+ case, can be ruled out using the

angular correlations as they lead to (1+ c2θ)s
2
θ∗

and (1+ c2θ∗)s
2
θ distributions which are absent

in the SM Higgs case [174].

We can thus conclude that the angular analysis of the Higgs production in e+e− →
Z∗ → ZH with Z → f f̄ , together with the threshold behavior of the cross section, allows

stringent tests of the JPC = 0++ quantum numbers of the Higgs boson in the low and

intermediate mass range. [In the high mass range, MH >∼ 2MW , when the Higgs boson

decays almost exclusively into two vector bosons, the Higgs spin–zero and parity can be

checked not only in the production process e+e− → HZ, but also in the decay processes

H → V V → 4f as discussed in §2.2.4. The full correlations between the final decay products

e+e− → HZ → ZV V → 6f has not been yet worked out explicitly because of the rather

complicated six fermion final state.].
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4.2.2 The WW fusion process

The production cross section

The WW fusion process [112, 243–246, 503] is most important for small values of the ratio

MH/
√
s, i.e. high energies where the cross section grows ∼M−2

W log(s/M2
H). The production

cross section, discussed in §3.3 at hadron colliders, can be more conveniently written as

σ =
G3

µM
4
V

64
√

2π3

∫ 1

κH

dx

∫ 1

x

dy

[1 + (y − x)/κV ]2
[
(v̂2

e + â2
e)

2f(x, y) + 4v̂2
e â

2
eg(x, y)

]
(4.32)

f(x, y) =

(
2x

y3
− 1 + 2x

y2
+

2 + x

2y
− 1

2

)[
z

1 + z
− log(1 + z)

]
+
x

y3

z2(1 − y)

1 + z

g(x, y) =

(
− x

y2
+

2 + x

2y
− 1

2

)[
z

1 + z
− log(1 + z)

]

with κH = M2
H/s, κV = M2

V /s, z = y(x − κH)/(κV x) and v̂, â the electron couplings to the

massive gauge bosons, v̂e = âe =
√

2 for the W boson. [Note that in the effective longitudinal

W approximation, and as discussed in §3.3.5, one obtains a simple result for the cross section

of this process, but which is as large as twice the exact result for small Higgs boson masses.].

The production cross section is shown in Fig. 4.7 as a function of MH at c.m energies√
s = 0.5, 1 and 3 TeV. For Higgs masses in the intermediate range the cross section is

comparable to the one of the Higgs–strahlung process at
√
s = 500 GeV, leading to ∼ 25.000

events for the expected luminosity L = 500 fb−1, and is larger at higher energies.

ps = 500 GeV
ps = 1 TeV
ps = 3 TeV

�(e+e� ! H���) [fb℄
MH [GeV℄ 1000700500300200160130100

1000
100
10
1

0.1
Figure 4.7: Higgs production cross sections in the WW fusion mechanism in e+e− collisions
with c.m. energies

√
s = 0.5, 1 and 3 TeV as a function of MH .
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The full cross section with the interference with Higgs–strahlung

The overall cross section that will be observed experimentally for the process e+e− → H+

ν̄ν will not be due to the WW fusion process only, but part of it will come from the

Higgs–strahlung process, e+e− → HZ, with the Z boson decaying into the three types of

neutrinos. A compact expression for the full cross section of the Higgs–strahlung and WW

fusion mechanisms, including the interference terms, has been derived in the general case by

choosing the energy EH and the polar angle θ of the Higgs particle as the basic variables

in the e+e− c.m. frame. Decomposing the total contribution into 3 parts, the contributions

3 × gS from Higgs-strahlung with Z decays into three types of neutrinos, gW from WW

fusion, and gI from the interference term between fusion and Higgs–strahlung for ν̄eνe final

states, one has for energies
√
s above the Z resonance [245, 246]

dσ(e+e− → Hν̄ν)

dEH d cos θ
=
G3

µM
8
ZpH√

2π3s
(3 gS + gI + gW ) (4.33)

gS =
v̂2

e + â2
e

96

ssν + s1s2

(s−M2
Z)

2
[(sν −M2

Z)2 +M2
ZΓ2

Z ]
, gW =

c8W
s1s2r

H+

gI =
(v̂e + âe)c

4
W

8

sν −M2
Z

(s−M2
Z) [(sν −M2

Z)2 +M2
ZΓ2

Z ]
HI (4.34)

where all the abbreviated quantities have been defined in eq. (3.28), the factor H+ in

eq. (3.27), while the factor HI for the interference term is given by

HI = 2 − (h1 + 1) log
h1 + 1

h1 − 1
− (h2 + 1) log

h2 + 1

h2 − 1
+ (h1 + 1)(h2 + 1)

ℓ√
r

(4.35)

To derive the total cross section σ(e+e− → Hν̄ν), the differential cross section must be

integrated over θ and EH , with the boundary conditions given in eq. (3.29). The two main

components and the total cross section for e+e− → Hν̄ν are displayed in Fig. 4.8 as a

function of the c.m. energy for MH = 115 and 150 GeV. One can see that Higgs-strahlung is

dominant a lower energies, WW fusion at higher energies, and the interference term is small

except in the cross over regions.

At e+e− colliders, the initial e± beams can be polarized longitudinally. The Higgs–

strahlung andWW fusion require opposite helicities of the e− and e+ beams. Denoting σU,L,R

the cross sections for unpolarized e−/e+, e−L/e
+
R and e−R/e

+
L , respectively, one obtains [246]

σU ∝ 3 gS + gI + gW , σL ∝ 6 gS + 4 gI + 4 gW , σR ∝ 6 gS (4.36)

The cross section for WW fusion of Higgs particles increases by a factor four, compared with

unpolarized beams, if left–handed electrons and right-handed positrons are used. By using

right–handed electrons, the WW fusion mechanism is switched off. The interference term

cannot be separated from the WW fusion cross section.
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Figure 4.8: The production cross section for the process e+e− → Hν̄ν as a function of
√
s

for MH = 115 and 150 GeV. The three components, i.e. Higgs–strahlung, WW fusion, their
sum, and the total cross section including the interference term, are shown; from Ref. [518].

4.2.3 The electroweak radiative corrections

To have a full control on the production cross sections of the Higgs–strahlung and WW

fusion processes, in view of the high–precision tests which can be performed using them, the

electroweak radiative corrections must be taken into account. These corrections, consisting

of virtual and real corrections with the emission of an additional photon in the final or

initial state (ISR), have been completed recently. Note, however, that at high–energy linear

colliders, in addition to ISR, one has also to take into account the beam energy spread and

beamstrahlung. The latter is machine dependent and will smear out the c.m. energy and

the system moves along the beam axes, it must be thus suppressed as strongly as possible

in order to allow for high–quality analyses which are often based on kinematical constraints

derived from the precise knowledge of the initial beam energies.

The Higgs–strahlung process

At one–loop order, the radiative corrections to the Higgs–strahlung process consist of self–

energy, vertex and box corrections to the tree–level amplitude and the emission of an addi-

tional photon in the initial state; Fig. 4.9. The corrections have been calculated some time

ago [517] and reanalyzed recently in the context of the full e+e− → Hν̄ν process [518–520].

Let us summarize the main features of these corrections.

226



•
e+

e−

γ, Z
f

Z

H •
•

γ

Figure 4.9: Generic diagrams for the O(α) corrections to the process e+e− → HZ.

The photonic corrections to the initial state, that is vertex and self–energy corrections

with photon exchange as well as photon radiation (ISR) can be implemented using the struc-

ture function approach discussed in §1.2 [see, eq. (1.103)]. The fermionic corrections which

are contained in the running of the QED constant α for the light fermions, eq. (1.74), and

the correction to the ρ parameter for the heavy top quark, eq. (1.106), can be incorporated

by using the improved Born approximation (IBA): starting with the Born cross section

defined in terms of the bare electromagnetic coupling α(0), one performs the substitution

πα(0) →
√

2GFM
2
W (1 −M2

W/M
2
Z) which absorbs the correction ∆r ≃ ∆α − 3∆ρ. One has

also to include the additional corrections to the HZZ vertex and in particular the heavy top

contributions, δt
HZZ in eq. (2.77). The largest part of the weak correction is then absorbed

into the couplings and the remaining corrections should be in principle rather small [518].

The overall correction to the tree–level e+e− → HZ amplitude, including an additional

term that is logarithmic in the top quark mass, is then given by [19]

Kt
e+e−→HZ ≃ 1 +

α

4πs2
W

1

gi

[
1

8

(
6
cW
sW

+ gi

)
m2

t

M2
W

+
3 − 2s2

W

3cWsW
log

mt

MW

]
(4.37)

These factors correct in fact the amplitudes with left– and right–handed electrons with

couplings gL = (2s2
W − 1)/(2sWcW ) and gR = sW/cW . At low and moderate energies this

approximation is rather good. However, at high energies, it turns out that this expression

in the heavy–top quark limit does not reproduce exactly the full mt dependent result, as a

consequence of the presence of the box contributions which depend both on s and mt.

The WW fusion process

Since already at the tree–level theWW–fusion mechanism is a three–body final state produc-

tion process [which was thus not trivial to handle], the calculation of the one–loop radiative

corrections is a real challenge. Indeed, not only one has to deal with the numerous dia-

grams involving self–energy, vertex and box corrections [due to the additional final state,

the number of such diagrams is much larger than for a 2 → 2 process like Higgs–strahlung],

one has to consider in addition one–loop corrections involving pentagonal diagrams which

are extremely difficult to handle, and corrections with real photon emission, leading to four

particles in the final state which are rather involved; see Fig. 4.10. To these complications,
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one has to add the fact that to derive the full corrections to the e+e− → Hνν̄ final state,

both the WW fusion mechanism and the Higgs–strahlung process with Z → νν̄ have to be

considered and added coherently.

•
e+

e−

ν̄

ν

f
H

W

W • •

Figure 4.10: Generic diagrams for the O(α) corrections to the WW fusion process.

The challenge of deriving these corrections has been met by three groups. In Ref. [519],

the calculation was performed using GRACE-LOOP [530], an automatic calculation system. In

Ref. [520], the results have been obtained as a MAPLE output using the program DIANA [531]

without an explicit evaluation. In Ref. [518], the calculation has been performed in two

independent ways, using the program FeynArts [532] to generate the Feynman graphs, and

using Mathematica to express the amplitudes in terms of standard matrix elements or using

the package FormCalc [533] based on Form [534]. We will briefly summarize the main results

of this calculation, mostly relying on Ref. [518].

The ISR corrections stemming from the radiation of a photon from the initial e+e−

states and from the intermediate W bosons, can again be obtained in the structure function

approach either at O(α) or including higher–order corrections. The running of the elec-

tromagnetic constant due to the light fermion contributions [because the cross section is

proportional to α3, this leads to a ∼ 18% change of the cross section] can be included using

the IBA discussed previously. Finally, since the WW–fusion cross section gets its main con-

tribution from small momenta W bosons, the loop corrections are mainly determined by the

νeeW and HWW vertices at zero–momentum transfer. The correction to the eνeW vertex

is well described by ∆r and the HWW vertex correction is given by δt
HWW in eq. (2.77). It

turns out that these corrections largely cancel the corresponding ones when Gµ is used in

the tree–level expression of the amplitude and one obtains a small remaining piece [518]

Kt
e+e−→Hνν̄ = 1 − 5α

16πs2
W

m2
t

M2
W

(4.38)

which approximates the fermionic contribution to the amplitude quite well. To this correc-

tion, one has to add the bosonic contribution for which no simple approximation is possible.

Numerical results

The final output of the calculation is shown in Fig. 4.11, where the radiative corrections to

the Higgs strahlung process [left figure] and the the WW fusion mechanism [right figure],
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Figure 4.11: Relative electroweak corrections to the Higgs–strahlung e+e− → HZ and to WW
fusion e+e− → Hνν̄ processes resulting from ISR at O(α) ISR and beyond, fermion loops,
and non–ISR bosonic corrections as a function of

√
s for MH = 150 GeV; from Ref. [518].

without the small interference terms, are shown as a function of
√
s for MH = 150 GeV. The

various components, the fermionic contribution, the bosonic contribution, the initial state

radiation at O(α) and beyond, are displayed.

In the case of WW fusion, the ISR corrections, the bulk of which comes from O(α)

contributions, are negative for all energies as a consequence of the decrease of the effective

c.m. energy which leads to a smaller cross section. The fermionic corrections are negative

and small, being at the level of −2%, while the bosonic corrections range from +1% near

the production threshold to −3% at high energy. For the Higgs strahlung process, at high

enough energies
√
s >∼ 500 GeV, the fermionic contribution is positive and almost constant,

+10%, while the bosonic contribution is negative and large, increasing in absolute value

with
√
s. The largest correction is due to the O(α) ISR [ the contribution of higher–orders

is again very small], which increases the cross section by 20% for
√
s = 1 TeV.

Adding the channel where the neutrinos are coming from the Higgs–strahlung process

and the small interference term, one obtains the total production cross section for the full

e+e− → Hνν̄ process. The relative corrections to the lowest order cross section for the

various components are shown in Fig. 4.12 for MH = 115 and 150 GeV as a function of√
s. Below the threshold, the correction to the ZH channel are large and negative, reaching

∼ −20%, rise fastly near threshold, and at
√
s = 1 TeV reach the level of ∼ 20 (10)%

for MH = 115 (150) GeV. The corrections to the WW fusion channel rise also sharply at

the threshold, reach quickly a plateau with a level of −10% beyond
√
s = 500 GeV. The
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corrections to the complete process follow those of the WW component at high energy and

those of the HZ process at low energies, a consequence of the relative magnitude of the two

processes at tree–level. They are always negative, being of order −10% at
√
s >∼ 350 GeV.

ZH+WWWWZHtotal
MH = 115GeVps [GeV℄

d�d�tree � 1 [%℄

1000900800700600500400300200100

20151050�5�10�15�20�25�30
ZH+WWWWZHtotal
MH = 150GeVps [GeV℄

d�d�tree � 1 [%℄

1000900800700600500400300200100

20151050�5�10�15�20�25�30
Figure 4.12: Relative corrections to the complete process e+e− → Hνν̄ and the contributions
of the various components as a function of

√
s and for MH = 115 and 150 GeV; from [518].

4.3 The subleading production processes in e+e− collisions

4.3.1 The ZZ fusion mechanism

The cross section for the ZZ fusion mechanism, e+e− → e+e−(Z∗Z∗) → e+e−H , Fig. 4.13,

is given by the same expression in eq. (4.32) for the WW fusion mechanism with the vector

boson V = Z having the usual couplings to the electron v̂e = −1 + 4s2
W , âe = −1. The total

production cross section is about an order of magnitude smaller than the cross section for

WW fusion, σ(WW → H)/σ(ZZ → H) ∼ 16c2W ∼ 9, a mere consequence of the fact that

the neutral current couplings are smaller than the charged current couplings. The lower rate,

however, could be at least partly compensated by the clean signature of the e+e− final state.

The cross section is shown in Fig. 4.14 as a function of MH for the c.m. energies
√
s = 0.5,

1 and 3 TeV. It follows the same trend as the WW fusion cross section.

•
e−

e+
Z∗

Z∗ H

e−

e+

Figure 4.13: Higgs boson production in the ZZ fusion mechanism in e+e− collisions.
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Figure 4.14: Higgs production cross sections in the ZZ fusion mechanism in e+e− collisions
with c.m. energies

√
s = 0.5, 1 and 3 TeV as a function of MH .

Similarly to the WW fusion case, the overall cross section for the process e+e− → H +

e+e− receives contributions gS from Higgs–strahlung with Z → e+e−, gZ±
from ZZ fusion,

and gI from the interference term between fusion and Higgs–strahlung [504]

dσ(e+e− → He+e−)

dEH d cos θ
=
G3

µM
8
ZpH√

2 π3s
(gS + gI + gZ+ + gZ−) (4.39)

with

gS =
(v̂2

e + â2
e)

2

192

sse + s1s2

(s−M2
Z)

2
[(se −M2

Z)2 +M2
ZΓ2

Z ]

gI =
(v̂2

e + â2
e)

2
+ 4v̂2

e â
2
e

64

se −M2
Z

(s−M2
Z) [(se −M2

Z)2 +M2
ZΓ2

Z ]
HI

gZ+ =
(v̂2

e + â2
e)

2
+ 4v̂2

e â
2
e

32 s1s2r
H+ , gZ− =

(v̂2
e − â2

e)
2

32 s1s2r
(1 − cχ)H− (4.40)

where the same abbreviations as in the formulas for the W fusion case, with the appropriate

replacements, ν → e and W → Z, have been used. The three components and the total

cross sections follow the same trend as in the case of the WW fusion process.

The calculation of the one–loop radiative corrections to this process follows the same

lines as the one for the companion process e+e− → Hνν̄, the only difference being that there

are additional diagrams where photons are exchanged between the initial and final state

electrons and positrons, and also between the final state e+e− pair. The corrections have

been calculated using the GRACE-LOOP [530] system, and the result has recently appeared in

Ref. [521]. They are shown in Fig. 4.15 as a function of
√
s for three Higgs mass values.
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After subtracting the photonic corrections which decrease the cross section by about 5%

for
√
s >∼ 350 GeV, as shown in the left–hand side of Fig. 4.15, one obtains a rather small

electroweak correction: when the tree–level cross section is expressed in terms of Gµ, the

correction is O(−5%) at
√
s = 350–500 GeV and varies very little with energy to reach −4%

at 1 TeV, as can be seen in the right–hand side of Fig. 4.15. The correction is also almost

independent of the Higgs mass in the chosen range, MH ∼ 100–200 GeV. The correction

when α is used as input at the tree–level is also shown.

400 600 800 1000

−10
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10

δ

MH=120GeV

MH=150GeV

MH=180GeV

CM energy [GeV]

[%]

δW

e+e− −−> e+e−H

Gµ
W

Figure 4.15: The photonic corrections (left) and the genuine electroweak radiative corrections
in the Gµ and α schemes (right) for the process e+e− → He+e− as a function of the c.m.
energy for MH = 120, 150 and 180 GeV; from Ref. [521].

For the process e+e− → He+e−, the pattern for the polarized and unpolarized cross

sections is slightly more complicated than for the WW fusion process [504]

σU ∝ gS + gI + gZ+ + gZ− , σLL = σRR ∝ 2 gZ−

σLR/RL ∝ 2
(v̂e ± âe)

2

(v̂2
e + â2

e)
gS + 2

(v̂e ± âe)
4

(v̂2
e + â2

e)
2 + 4v̂2

e â
2
e

(gI + gZ+)

Since v̂e ∼ −1 + 4s2
W ≪ âe, the difference between σRL and σLR is, however, strongly

suppressed and one obtains σLR ≃ σLR = 2(gS + gI + gZ+
).

Finally, let us note that in the e−e− option of future high-energy linear colliders, one can

produce Higgs bosons in a similar channel [503]

e−e− −→ e−e−(Z∗Z∗) −→ e−e−H (4.41)

The production cross section [up to some statistical factors due to the identical initial and

final states] and the main features of the process are the same as those discussed above for

the e+e− option of the machine.
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4.3.2 Associated production with heavy fermion pairs

The process at the tree–level

In the SM, the associated production of Higgs bosons with a pair of heavy fermions, e+e− →
Hff̄ [505,506], proceeds through two set of diagrams: those where the Higgs boson is radi-

ated off the f and f̄ lines, and a diagram where the Higgs boson is produced in association

with a Z boson which then splits into an f f̄ pair; Fig. 4.16.

e+

e− γ, Z

f

f̄

H
• γ, Z

•
Z

•

Figure 4.16: Diagrams for the associated production of Higgs bosons with a fermion pair.

Since the fermion and Higgs boson masses must be kept non–zero, the total cross sec-

tion for these processes is quite involved. However, the Dalitz density, once the angular

dependence is integrated out, can be written in a simple and compact form [506]

dσ(e+e− → f f̄H)

dx1dx2
=
ᾱ2Nc

12πs

{[
Q2

eQ
2
f +

2QeQfvevf

1 − z
+

(v2
e + a2

e)(v
2
f + a2

f )

(1 − z)2

]
G1 (4.42)

+
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e + a2
e

(1 − z)2

[
a2

f

6∑

i=2

Gi + v2
f (G4 +G6)

]
+
QeQfvevf

1 − z
G6

}

with ᾱ ≡ α(s) ∼ 1/128, Nc the color factor and ve, ae the usual couplings of fermions to

the Z boson, eq. (1.63). z is the scaled mass of the Z boson, z = M2
Z/s and we will use

later on the scaled masses f = m2
f/s and h = M2

H/s. x1 = 2Ef/
√
s and x2 = 2Ef̄/

√
s are

the reduced energies of the f and f̄ states; we will also use the Higgs scaled energy, xH =

2EH/
√
s = 2−x1−x2, as well as the variables xZ and x12 defined by xZ = xH −1−h+z and

x12 = (1−x1)(1−x2). In terms of these variables and the gHff = mt/v and gHZZ = 2MZ/v

Higgs couplings, the coefficients Gi, with i = 1–6, are given by
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H
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(4.43)
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Integrating over the fermion energies, with the boundary conditions given in eq. (2.18), one

obtains the total production cross section. In the case of e+e− → tt̄H , it is shown in Fig. 4.17

as a function of MH for three c.m. energy values
√
s = 0.5, 1 and 3 TeV.

ps = 500 GeV
ps = 3 TeV
ps = 1 TeV �(e+e� ! Ht�t) [fb℄

MH [GeV℄ 500400300200160130100

1
0.1

Figure 4.17: The cross section for the associated production of the Higgs boson with tt̄ pairs
in e+e− collisions with c.m. energies

√
s = 0.5, 1 and 3.TeV. The dotted lines are when only

the contributions with the Higgs radiated off the top quark lines is taken into account.

While the cross section is in general small for the lowest c.m. energy
√
s = 500 GeV, it is

more important at
√
s = 1 TeV as a result of the larger available phase–space. For

√
s = 3

TeV, it becomes again smaller as it scales like 1/s. The cross section is at the level of a few to

a fraction of a femtobarn, depending on the Higgs mass and the c.m. energy and therefore,

this process requires high–luminosities. The tt̄H final state in this associated production

mechanism is generated almost exclusively through Higgs–strahlung off top quarks. As

shown in Fig. 4.17, the additional contributions from Higgs bosons emitted by the Z line

are very small, amounting, for
√
s ≤ 1 TeV, to only a few percent. In addition, since top

quark pair production in e+e− collisions at high energy is known to be dominated by photon

exchange, the bulk of the cross section is generated by the e+e− → γ∗ → tt̄H subprocess.

This process thus allows the determination of the important Yukawa coupling of the Higgs

boson to top quarks in an almost unambiguous way.

The radiative corrections

The QCD corrections to the process e+e− → tt̄H , consist of the top vertex and self–energy

corrections and the emission of an additional gluon in the final state, e+e− → tt̄H + g. The

rather involved analytical expression of the cross section at NLO can be found in Refs. [522,

523]; see also Refs. [524, 525]. The corrections can be interpreted in an easy way and be

given analytically, in two kinematical regimes [522].
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(i) In the case where the invariant tt̄ mass is close to the threshold, the rescattering

diagrams generated by the gluon exchange between the two quarks gives rise to a correction

that is proportional to αs/βt, where βt is the top quark velocity which vanishes at the

threshold in the tt̄ rest frame. The K–factor in this case is given by [522]

Kthresh
e+e−→tt̄H = 1 + 64αs/(9π) πmt

[
(
√
s−M2

H)2 − 4m2
t

]−1/2
(4.44)

This pole is regularized by the vanishing phase–space at threshold in the leading order cross

section, once it is integrated over the 3–body phase space.

(ii) At high energies, these rescattering corrections become less important. For the

dominant component of the e+e− → tt̄H process, i.e. Higgs radiation off top quarks, the

correction can be crudely estimated in the limit s≫ m2
t ≫M2

H : the radiation of a low mass

Higgs boson can be separated from the top quark production process. The cross section can

then be approximated by the product of the probability of producing top quark pairs [which

at high energies, is given by the well known factor 1 + αs/π] and the probability for the

splitting processes t→ t+H and t̄→ t̄H [which at this order, gives a factor −2αs for each

state]. The net result will be then an NLO coefficient factor [522]

Khigh−en.
e+e−→tt̄H = 1 − 3αs/π (4.45)

leading to a correction factor, K ∼ 0.9 at high energies. The QCD correction factor is shown

in Fig. 4.18 as a function of the c.m. energy for MH = 150 GeV.

The electroweak corrections have been calculated only recently, by two of the groups

that evaluated the correction to the WW fusion process [524, 525]. The calculation’s tech-

niques are the same as those discussed previously. [There is a third calculation performed

in Ref. [526] but the results differ from those of two other calculations at large c.m. ener-

gies and at the threshold.] The results are also shown in Fig. 4.18 together with the QCD

corrections, as a function of the c.m. energy and for MH = 150 GeV.

As can be seen, the weak bosonic corrections are at the level of +10% close to the

2mt + MH threshold and drop rapidly with increasing energy to reach −20% at
√
s = 1.5

TeV. The fermionic corrections are approximately +10% over the entire energy range. The

QED corrections, which include the full photonic and the higher–order ISR corrections are

large and negative near threshold and rise with the energy to reach a few percent at
√
s = 1.5

TeV. At energies above
√
s ∼ 600 GeV, the fermionic, weak bosonic and QED contributions

partly cancel each other, leading to a total electroweak correction that is almost constant

and of the order of −10%. This is of the same order as the QCD correction far enough

from the production threshold. The total cross section at NLO, in which both the QCD

and electroweak corrections are included, is thus 10 to 15% smaller than at tree–level for√
s >∼ 750 GeV; see the right–hand side of Fig. 4.18.
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Figure 4.18: The QCD and the various components and the electroweak radiative corrections
(left) and the total QCD and electroweak corrections (right) for the process e+e− → tt̄H+X
as a function of the c.m. energy for MH = 150 GeV; from Ref. [524].

The pseudoscalar case and the Higgs CP properties

If the Higgs boson were of pseudoscalar nature, with couplings to fermions as given in

eq. (2.1) the dominant contribution to the cross section of the process e+e− → f f̄A would

be also due to the Higgs radiation off the heavy fermion that are produced mainly through

photon exchange. The expression of the Dalitz density dσ(e+e− → f f̄A)/dx1dx2 will be

still as in eq. (4.43), with the coefficients G1 and G2 given by [here a = M2
A/s] [506, 541]

G1 =
g2

Aff

x12

[
x2

A − a
( x2

A

x12
(1 + 2f) + 2(xA − 1 − a)

)]

G2 = −2
g2

Aff

x12

[
x12(1 + xA) − a(x12 − 4f + 2xA − 2a) + f

x2
A

x12
(x12 − 3a)

]
(4.46)

while the contributions of G3–G6 can be neglected [note that additional contributions to

this process might come from other channels in two–Higgs doublet models]. As can be seen,

because the top quark is massive, the Dalitz density is different from the CP–even Higgs

case by terms of O(m2
t/s) which, for moderate c.m. energies, are not too small. This feature

provides an additional means to discriminate between a scalar and a pseudoscalar Higgs

boson and even, to probe CP violation in the tt̄–Higgs couplings when both components are

present, as discussed in Ref. [543].
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If one assumes general Higgs couplings to top quarks compared to the SM, L(Htt) =

(a + ibγ5)gHtt [and also to the Z boson, L(HZZ) = cgHZZgµν , when the diagram e+e− →
HZ∗ with Z∗ → tt̄ is included, since its contribution needs not to be small relative to the

dominant ones in extensions of the SM], one would have a rather involved dependence of

the e+e− → tt̄H cross section on the phase space. The differential cross section can be

written in a general form as dσ/dΦ =
∑

i difi(Φ), where Φ is the final state phase–space

configuration and di are combinations of the Higgs coupling parameters a, b, c [in the SM,

only the combinations di =a
2, ac and c2 will be present with a=c=1]. An optimal technique

has been proposed in Ref. [543] for determining the coefficients di of the cross section, by

using appropriate weighting functions wi(Φ) such that
∫
ωi(dσ/dΦ) = di, with the additional

requirement that the statistical error in the extraction of the coefficients is minimized.

4.3.3 Higgs boson pair production

To establish the Higgs mechanism experimentally, once the Higgs particle is discovered, the

characteristic self–energy potential of the SM must be reconstructed. This task requires the

measurement of the trilinear and quartic self–couplings of the Higgs boson, λHHH = 3M2
H/v

and λHHHH = 3M2
H/v

2. The trilinear Higgs coupling can be measured directly in pair

production of Higgs particles in e+e− collisions and several mechanisms can be exploited.

Higgs pairs can be produced through double Higgs–strahlung off Z bosons [257,507,508,544]

e+e− → Z∗ −→ ZHH (4.47)

and vector boson [mostly W boson] fusion into two Higgs bosons [255, 257,508]

e+e− → V ∗V ∗ −→ ℓℓHH (4.48)

The Feynman diagrams for the two processes are shown in Fig. 4.19 and, as can be seen,

one of them involves the triple Higgs interaction. The other diagrams are generated by the

gauge interactions familiar from single Higgs production in the dominant processes.

(a)

• •

e+

e− Z∗

Z

H

H • • •

(b)

• •
e+

e−

e+

e−

W ∗

W ∗

H

H

•
• •

Figure 4.19: Higgs pair production in the bremsstrahlung and WW fusion processes.
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The complete reconstruction of the SM Higgs potential requires the measurement of the

quadrilinear coupling λHHHH which can be accessed directly only through the production of

three Higgs bosons, e+e− → ZHHH and e+e− → ν̄eνeHHH . However, these cross sections

are reduced by two to three orders of magnitude compared to the corresponding double Higgs

production channels, and are therefore too small to be observed at future e+e− colliders even

with the large luminosities which are planned [see §4.3.4].

The double Higgs–strahlung

The differential cross section for the process of double Higgs-strahlung, e+e− → ZHH , after

the angular dependence is integrated out, can be cast into the form [508]

dσ(e+e− → ZHH)

dx1dx2
=

G3
µM

6
Z

384
√

2π3s

(â2
e + v̂2

e)

(1 − µZ)2
Z (4.49)

where the electron–Z couplings are defined as usual, eq. (1.63). x1,2 = 2E1,2/
√
s are the

scaled energies of the two Higgs particles, x3 = 2 − x1 − x2 is the scaled energy of the Z

boson, and we define yi = 1 − xi; the scaled masses are denoted by µi = M2
i /s. In terms of

these variables, the coefficient Z may be written as

Z =
1

8
a2f0 +

1

4µZ(y1 + µH − µZ)

[
f1

y1 + µH − µZ
+

f2

y2 + µH − µZ
+ 2µZ a f3

]
+

{
y1 ↔ y2

}

with a =
λ′HHH

y3 + µZ − µH

+
2

y1 + µH − µZ

+
2

y2 + µH − µZ

+
1

µZ

(4.50)

The coefficients fi are given by

f0 = µZ [(y1 + y2)
2 + 8µZ ]

f1 = (y1 − 1)2(µZ − y1)
2 − 4µHy1(y1 + y1µZ − 4µZ) + µZ(µZ − 4µH)(1 − 4µH) − µ2

Z

f2 = [µZ(1 + µZ − y1 − y2 − 8µH) − (1 + µZ)y1y2](2 + 2µZ − y1 − y2)

+ y1y2[y1y2 + µ2
Z + 1 + 4µH(1 + µZ)] + 4µHµZ(1 + µZ + 4µH) + µ2

Z

f3 = y1(y1 − 1)(µZ − y1) − y2(y1 + 1)(y1 + µZ) + 2µZ(µZ + 1 − 4µH) (4.51)

The first term in the coefficient a includes the scaled trilinear coupling λ′HHH = 3M2
H/M

2
Z .

The other terms are related to sequential Higgs–strahlung and the 4 gauge–Higgs boson

coupling; the individual terms can easily be identified by examining the propagators.

The production cross section, which is a binomial in the self–coupling λHHH , is shown in

Fig. 4.20 as a function of the Higgs mass for three c.m. energies
√
s = 0.5, 1 and 3 TeV. It is

of the order of a fraction of a femtobarn when it is not too much suppressed by phase–space

and because it is mediated by s channel gauge boson exchange and scales like 1/s, it is higher

at lower energies for moderate Higgs masses. In addition, since the process is mediated by
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Z–boson exchange, the cross section is doubled if oppositely polarized electron and positron

beams. The cross section for the ZHH final state is rather sensitive to the λHHH coupling:

for
√
s=500 GeV and MH =120 GeV for instance, it varies by about 20% for a 50% variation

of the trilinear coupling as shown in the figure.

� = 1:5�SM� = �SM� = 0:5�SM
= 1 TeV
ps = 500 GeV

= 3 TeV

�(e+e� ! HHZ) [fb℄

MH [GeV℄ 250200160130100
0.1

Figure 4.20: The cross section for the double Higgs–strahlung in e+e− collisions, e+e− →
HHZ, at c.m. energies

√
s = 0.5, 1 and 3 TeV as a function of MH . Shown for

√
s = 500

GeV are the effects of a variation of the trilinear coupling by 50% from its SM value.

The one–loop radiative corrections to the double Higgs–strahlung process, which are

also very involved to calculate since already at the tree–level one has to deal with three

massive particle in the final state and thus one has to consider pentagonal diagrams and

four–body finals states at NLO, have again been calculated recently by two independent

groups [527,528], with results that agree reasonably, in particular at low energies. The QED

corrections follow the same trend as what has been observed in the case of the e+e− → tt̄H

process for MH = 150 GeV: they are very large and negative for c.m. energies near the

production threshold, ∼ −40% at
√
s ∼ 400 GeV, and decrease in absolute value to reach

the level of a few percent above
√
s ∼ 600 GeV, ∼ +5% at 1.5 TeV; see the left panel of

Fig. 4.21. For the pure weak corrections calculated when using α in the Born cross section,

they are rather small, not exceeding ∼ +5% near the threshold and at moderate c.m. energies

when the cross section is maximal; see right panel of Fig. 4.21. At higher energies the weak

correction turns negative and increases in size to reach ∼ −10% at
√
s = 1.5 TeV. The

weak correction calculated in the IBA is also shown (dotted lines). As in the case of the

e+e− → HZ parent process, this approximation fails to reproduce the magnitude of the

weak corrections, especially at high energies. The approximate top quark mass correction

to the Higgs self–coupling does also not reproduce the bulk of the weak correction.
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Figure 4.21: The full O(α) relative correction (left panel) and the relative electroweak cor-
rection δW (right panel) as a function of the c.m. energy for MH = 120, 150, 180 GeV; the
genuine weak correction in the IBA is presented for MH = 120 GeV (dotted line) [527].

Note that the correction to the invariant mass distribution of the Higgs pair, which can

be a means to isolate the HHH vertex since the two Higgs bosons originate from the decay

of an off–shell scalar particle [545], has also been calculated and found to be small.

The WW fusion process

At high energies, double Higgs boson production in the WW fusion channel, e+e− → νν̄HH

[255,257], provides the largest cross section for Higgs masses in the intermediate mass range,

in particular when the initial beams are polarized. [Again, the ZZ fusion channel has a

cross section that is one order of magnitude smaller compared to WW fusion as a result

of the smaller Z couplings to electrons]. The cross section for this four–particle final state

is very involved but it can be roughly estimated in the equivalent W -boson approximation,

WW → HH . Taking into account only the dominant longitudinal W contribution, denoting

by βW,H the W,H boson velocities in the c.m. frame, we define the variable xW = (1 −
2M2

H/ŝ)/(βWβH) with ŝ1/2 is the invariant energy of the WW pair. The amplitude MLL has

been given in eq. (3.90) when this process was discussed at hadron colliders, and integrating

out the angular dependence, the corresponding total cross section reads [508, 545]

σ̂LL =
G2

FM
4
W

4πŝ

βH

βW (1 − β2
W )2

{
(1 + β2

W )2

[
1 +

λ′HHH

(ŝ−M2
H)/M2

Z

]2

+
16

(1 + β2
H)2 − 4β2

Hβ
2
W

[
β2

H(−β2
Hx

2
W + 4βWβHxW − 4β2

W ) + (1 + β2
W − β4

W )2
]

+
1

β2
Wβ

2
H

(
ℓW +

2xW

x2
W − 1

)[
βH(βHxW − 4βW )(1 + β2

W − β4
W + 3x2

Wβ
2
H)
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+ β2
HxW (1 − β4

W + 13β2
W ) − 1

xW

(1 + β2
W − β4

W )2

]
+

2(1 + β2
W )

βWβH

[
1 +

λHHH

(ŝ−M2
H)/M2

Z

]

×
[
ℓW (1 + β2

W − β4
W − 2βWβHxW + β2

Hx
2
W ) + 2βH(xWβH − 2βW )

]}
(4.52)

with ℓW = log[(xW −1)/(xW +1)]. After folding the cross section of the subprocess with the

longitudinal WL spectra given in eq. (3.51), one obtains the total e+e− cross section in the

effective WLWL approximation, which exceeds the exact value of the e+e− → νν̄HH cross

section by a about a factor 2 to 5 depending on the collider energy and the Higgs mass.

ps = 1 TeV
ps = 3 TeV

ps = 500 GeV

WLWL approximation�(e+e� ! HH���) [fb℄

MH [GeV℄ 300200160130100

1
0.1

Figure 4.22: The cross section for the WLWL → HH process in e+e− collisions with at c.m.
energies

√
s = 0.5, 1 and 3 TeV as a function of MH .

The cross section is shown in Fig. 4.22 as a function of MH for
√
s = 0.5, 1 and 3 TeV. As

expected, the fusion cross sections increase with rising energy. Again, there is a significant

variation of the cross section with a variation of λHHH . The transverse components of the W

bosons give rather small contributions through WTWT → HH for large Higgs masses. Note

that the O(α) corrections have been also calculated using GRACE-LOOP and a preliminary

result has appeared in Ref. [521]; the corrections are of O(10%).

4.3.4 Other subleading processes in e+e− collisions

Finally, there are other subdominant higher–order Higgs production processes: the associated

production with a photon, the loop induced as well as some tree–level higher–order double

Higgs production, the associated Higgs production with gauge boson pairs and the associated

production with two fermions and a gauge boson. We will briefly summarize the main

features of these processes for completeness.
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Higgs production in association with two gauge bosons

Similarly to what one observes at hadron colliders, in high–energy e+e− collisions, the W

pair production e+e− → W+W−, has a very large cross section. This is also the case of

e+e− → ZZ and Zγ production37, which are mediated by t–channel electron exchange. It is

thus tempting to take advantage of these large production rates and consider the emission

of an additional Higgs particle from one of the gauge boson lines

e+e− →W+W−H , ZZH , ZγH (4.53)

as shown in Fig. 4.23. The hope is that the suppression by the additional electroweak factor

might be compensated by the initially large production rates.

•

e+

e−

ℓ H

V

V •V

V

V

H •
V

V

H
γ

Figure 4.23: Diagrams for associated Higgs boson production with two gauge bosons.

This turns out to be quite true [264,511,512] at least for the process e+e− → HZγ [where

one has to apply a cut on the transverse momentum PT >∼ 5 GeV of the photon] and for

the e+e− → W+W−H mechanism, the cross sections are quite sizable. At
√
s = 800 GeV

and for MH ∼ 100–200 GeV, they are at the level of a few fb as shown in Fig. 4.24. With

the expected luminosity L = 500 fb−1, they could lead to more than 1000 events which are

rather clean. For masses MH ∼ 300 GeV, they are still at the level of 1 fb, which is only

one order of magnitude smaller than the Higgs–strahlung process at these values of MH and√
s. Again, as one might have expected, the production rate for the e+e− → HZZ process

is an order of magnitude smaller than that of the e+e− → WWH process. Note that the

cross sections for these processes do not become larger at higher energies.

Once the Higgs particle has been detected in the main channels, these processes could

be useful: in conjunction with the dominant Higgs–strahlung and WW fusion processes,

they would allow to test the quartic couplings involving Higgs and gauge bosons and for

instance to probe directly the HZW+W− and HγW+W− couplings and even, potentially,

C–violating HZZZ and HγZZ couplings which are absent in the SM.

37As noted before, the process with the additional final state photon should be viewed as part of the
radiative corrections to the Higgs–strahlung process [the same remark holds for the process e+e− → νeν̄eHγ
to be discussed later, which is part of the QED correction to the WW fusion mechanism]. However, this
process can be discussed on its own since here the photon is required to be detected and the e+e− → HZγ
process can have a comparable rate than the parent process which scales as 1/s at high energies, as the ISR
photon will decrease the effective c.m. energy.
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Figure 4.24: The cross sections for the associated production of the Higgs boson with a pair
of gauge bosons, e+e− → HV V , as a function of MH at

√
s = 800 GeV; from [264].

Higgs production in association with a gauge boson and two leptons

Also as in the case of the LHC, Higgs bosons can be produced in association with a gauge

boson and two leptons in the fusion processes [264, 511]

e+e− → νee
±W∓H , νeν̄eγH , νeν̄eZH (4.54)

with some generic Feynman diagrams shown in Fig. 4.25.

•
e+

e−

ℓ

ℓ
V ∗

V ∗

H

V

• •

Figure 4.25: Feynman diagrams for the associated production of a Higgs boson with a gauge
boson and two leptons in e+e− collisions.

Since, as previously discussed, the parent fusion processes e+e− → Hℓℓ have rather large

production cross sections at high energies, one might hope again that the emission of an

additional gauge boson will still lead to a reasonable event rate, similarly to the case of

double Higgs boson production in the vector boson fusion channels e+e− → HHℓℓ discussed

in the preceding subsection. These processes have been considered in Ref. [511] and are
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being updated [264]. The cross sections for e+e− → νν̄ZH e+e− → νeWH are shown in

Fig. 4.26 as a function of the c.m. energy for MH = 160 GeV. As can be seen, they follow

the general trend of vector boson fusions mechanisms and increase with energy and/or lower

Higgs masses. They are quite sizable since, for e+e− → νee
±W∓H , the cross section reaches

almost the level of 10 fb at
√
s ∼ 1 TeV for MH ∼ 120 GeV. The cross section is a factor of

∼ 5 smaller in the case of the e+e− → νeν̄eZH mechanism and is even smaller in the case of

e+e− → e+e−ZH which is not shown.

HWe�HZ��
MH = 160 GeV�(e+e� ! HV ``) [fb℄

ps [GeV℄ 1000850700600500400300250

10
1

0.1
0.01

Figure 4.26: The cross sections for the associated production of the Higgs boson with a gauge
boson and two leptons, e+e− → HV ℓℓ, as a function of

√
s for MH = 160 GeV. They have

been obtained using the program WHIZARD [546].

Higgs production in association with a photon

In the SM, the process where a Higgs boson is produced in association with a photon,

e+e− → Hγ [509], proceeds through s–channel γ∗γH and Z∗γH vertex diagrams, but ad-

ditional t–channel vertex and box diagrams involving W/neutrino and Z/electron exchange

also occur; Fig. 4.27. The s–channel contributions involve the same form factors as the

effective couplings for the H → Zγ, γγ decays discussed in S2.3, but with one of the two

photons and the Z boson being virtual, with an effective mass MZ∗ =
√
s.

•
e+

e−

γ, Z

γ

H
νe W

γ

H
•

Figure 4.27: Diagrams for associated Higgs production with a photon in e+e− collisions.
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Since it is a higher–order process in the electroweak coupling, the cross section is rather

small, σ(e+e− → Hγ) ∼ 0.05 fb for MH ∼ 100–200 GeV at
√
s = 500 GeV. However, since

the photon is mono–chromatic, the signal is very clean allowing for a reasonable hope to

isolate these events if enough luminosity is collected a future high–energy colliders. Note

that the longitudinal polarization of both electron and positron beams will increase the cross

sections by about a factor of 4 compared to the unpolarized case. This process would then

allow for an alternative way to have access to the induced Hγγ and HZγ couplings and,

potentially, to probe the heavy particles involved in the loops.

Loop induced double Higgs production

Due to CP invariance, the ZHH coupling is absent in the SM and the process e+e− →
Z → HH does not occur at tree–level but only through loop contributions [510]. Because of

orbital momentum conservation, the amplitudes for the vertex diagrams with s–channel γ

and Z bosons giving rise to two H bosons vanish [only the contribution of the longitudinal

component of the Z boson survives but it is proportional to the electron mass and is thus

negligible]. In addition, because of chiral symmetry for me = 0, the diagrams involving the

He+e− vertices give zero contributions. The contribution of vertices involving the HHV V

interaction give also contributions that are proportional to me or mνe
. Therefore, in the SM,

the process e+e− → HH can be generated only through box diagrams involving W/neutrino

and Z/electron virtual states, Fig. 4.28.

•

•

e+

e−
ℓ V

H

H
•

• H

H

Figure 4.28: Diagrams for the loop induced Higgs pair production.

Again, because of the additional electroweak factor, the production cross sections are

rather small. Except when approaching the MH = 2MW threshold, where there is a small

increase, the cross section is practically constant and amounts to ∼ 0.2 fb at
√
s = 500

GeV for MH ∼ 100–200 GeV. With left–handed polarization of the electron beam, the cross

section is increased by a factor of two, while for left–handed electrons and right–handed

positrons, it increases by a factor of four; these simple factors are due to the fact that, as

usual the box with the W contribution is much larger than the one with the Z contribution.

With a very high luminosity, one might hope that the final state can be isolated. A deviation

from the SM expectation would signal a breakdown of CP–invariance or the existence of new

particles contributing to the loop diagrams.
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Higher order tree–level multi Higgs production

Finally, there are also higher–order processes for double Higgs production which occur at the

tree–level. Besides the ZZ fusion process e+e− → HHe+e− which, as mentioned previously,

has a cross section that is one order of magnitude smaller than that of the WW fusion

process, one has the following reactions [V = W,Z and ℓ = e, νe]:

associated double Higgs production with two gauge bosons : e+e− −→ V V HH

associated double Higgs production with two leptons : e+e− −→ ℓℓHH

associated double Higgs production with tt̄ pairs : e+e− −→ tt̄HH (4.55)

•
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Figure 4.29: Higher order double Higgs production processes at the tree–level.

Some Feynman diagrams for these reactions [those which involve the trilinear Higgs

interaction] are displayed in Fig. 4.29. The production cross sections for these processes have

been calculated in Refs. [547] using the package CompHEP [548] for the automatic evaluation of

the full set of amplitudes and, as expected, they are very small. The e+e− →WWHH cross

section is at the level of 0.03 fb at
√
s ∼ 700 GeV even for a Higgs mass as low as MH ∼ 65

GeV, while the rate for e+e− → ZZHH is again one order of magnitude smaller; for the

same MH value, the e+e− → e+e−HH cross section, in turn, can reach the level of ∼ 0.1 fb

at very high energies,
√
s = 2 TeV. In the case of the e+e− → tt̄HH process [547, 549], the

cross section is at the level of 6 (15) ab at a c.m. energy
√
s = 0.8 (1.6) TeV for MH ∼ 130

GeV and mt = 175 GeV. Thus, about 10 of such events could be produced if very high

luminosities, L ∼ 1 ab−1, can be collected at these energies.

In the case of triple Higgs production processes, which would allow for the determination

of the quartic Higgs coupling, the cross section are unfortunately too small as mentioned

earlier. In the e+e− → ZHHH process [508,547], for instance, the signal amplitude squared

involving the four–Higgs coupling [as well as the irreducible Higgs–strahlung amplitudes] is

suppressed by a factor [λ2
HHHH/16π2]/[λ2

HHH/M
2
Z ] ∼ 10−3 relative to e+e− → ZHH , not to

mention the phase–space suppression due to the additional final–state heavy particle. The

cross sections are below the atobarn level: σ(HHHZ) ∼ 0.44 ab for MH ∼ 110 GeV and√
s ∼ 1 TeV and are not very sensitive to a variation of the trilinear coupling: σ(HHHZ) ∼

0.41 (0.46) ab when λHHHH is altered by a factor 1
2
(3

2
) [508]. The fusion process e+e− →

HHHνν̄ has also a very small cross section, σ(HHHνν̄) ∼ 0.4 ab at
√
s = 3 TeV [550].
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4.4 Higgs studies in e+e− collisions

In this section, we will summarize the precision tests of the SM Higgs sector which can

be performed at an e+e− machine operating in the 350–1000 GeV energy range. We will

also briefly discuss the additional precision studies which can be made by moving to higher

energies at CLIC and by revisiting the physics at the Z resonance in the GigaZ option. We

will almost exclusively rely on the detailed studies which have been performed for the TESLA

Technical Design Report [480,486] and the very recent analyses of the CLIC Physics working

group [484], since they involve realistic simulations of the experimental environments38. We

refer to these two reports for more details and for more references on the original work.

We will also mention some updated analyses which appeared during the Linear Collider

Workshops held in Amsterdam [557] and Paris [558]. Complementary material can be found

in the reports of the American Linear Collider working group [482] and of the JLC working

group [483], as well as in the detailed reviews given in Refs. [515, 559].

4.4.1 Higgs boson signals

As discussed in the previous subsections, the main production mechanisms for SM Higgs

particles are the Higgs–strahlung process e+e− → ZH and the WW fusion process e+e− →
ν̄eνeH . Subleading production channels are the ZZ fusion mechanism, e+e− → e+e−H ,

the associated production with top quarks e+e− → tt̄H and double Higgs production in

the strahlung e+e− → HHZ and fusion e+e− → ν̄νHH processes which, despite the small

production rates will be very useful when it comes to study the Higgs properties. The

other production processes, although some of them have substantial cross sections such as

e+e− → HW+W− and νee
±W∓H , will not, at least in the context of the SM, provide any

additional information and we will ignore them in the following discussion.

The cross sections have been given previously, but we summarize them again in Fig. 4.30

for four c.m. energies
√
s = 350 GeV, 500 GeV, 1 TeV and 3 TeV, as functions of the Higgs

mass. They have been obtained with the fortran code HPROD [560]. We should mention

that these cross sections do not include the radiative corrections which have been discussed

in this section [except that we work in the IBA which absorbs some of the electroweak

corrections], and no photon ISR nor beamstrahlung effects have been taken into account.

However, since these corrections and effects are rather small, except in peculiar regions of

the phase space [such as for e+e− → tt̄H near threshold and e+e− → HZ at
√
s ≫ MH ],

these numbers approach the exact results to better than 5 to 10% depending on the process,

and this approximation is sufficient for most of the purposes that one can have before the

38For the TESLA analyses in particular, the backgrounds, the beamstrahlung and detector response have
been taken into account, generally using programs such as CompHEP [548] or WHiZard [546] in addition to the
usual Monte-Carlo generators [398,551,552], Circe [553] and SIMDET [554] or BRAHMS [555]; see Ref. [556].
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experiments actually start. In Table 4.3, we display the numerical values of the cross sections

for selected values of the Higgs mass at the two different energies
√
s = 500 GeV and 1 TeV.

MH (GeV) σ(HZ) σ(Hνeν̄e) σ(He+e−) σ(Htt̄) σ(HHZ) σ(HHνν̄)

115 58.67 81.98 8.77 0.36 0.19 0.03

120 57.91 78.30 8.38 0.23 0.18 0.02

130 56.31 71.28 7.64 0.07 0.14 0.01

140 54.61 64.71 6.95 – 0.11 –

150 52.83 58.58 6.30 – 0.08 –

160 50.96 52.88 5.69 – 0.05 –

170 49.03 47.60 5.13 – 0.03 –

180 47.03 42.71 4.60 – 0.02 –

200 42.88 34.03 3.67 – – –

300 21.38 8.26 0.89 – – –

400 3.24 0.73 0.07 – – –

MH (GeV) σ(HZ) σ(Hνeν̄e) σ(He+e−) σ(Htt̄) σ(HHZ) σ(HHνν̄)

115 12.90 219.54 24.26 2.50 0.12 0.30

120 12.86 214.58 23.73 2.38 0.12 0.27

130 12.76 204.92 22.70 2.16 0.12 0.21

140 12.66 195.60 21.70 1.96 0.11 0.16

150 12.55 186.63 20.73 1.79 0.11 0.12

160 12.44 178.01 19.80 1.63 0.10 0.10

170 12.32 169.72 18.90 1.49 0.10 0.07

180 12.19 161.76 18.03 1.36 0.10 0.06

200 11.92 146.78 16.40 1.14 0.09 0.03

300 10.22 88.19 9.93 0.45 0.03 –

400 8.13 50.32 5.68 0.16 – –

500 5.89 26.55 3.00 0.04 –

600 3.78 12.41 1.40 – – –

700 2.03 4.75 0.53 – – –

800 0.81 1.24 0.14 – – –

Table 4.3: Numerical values for SM Higgs production cross sections [in fb] in e+e− collisions
at two center of mass energies

√
s = 500 GeV (top) and

√
s = 1 TeV (bottom) for selected

values of the Higgs boson mass. These numbers have been obtained with the program HPROD

[560] and no radiative correction nor beamstrahlung is included.
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Figure 4.30: Production cross sections of the SM Higgs boson in e+e− collisions in the
dominant and subdominant processes as a function of the Higgs mass for four center of mass
energies,

√
s = 350 GeV, 500 GeV, 1 TeV and 3 TeV. Radiative corrections, initial state

radiation and beamstrahlung effects are not included. The cross sections have been obtained
with the program HPROD [560].
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As previously mentioned, the Higgs–strahlung cross section scales as 1/s and therefore

dominates at low energies, while the one of WW fusion mechanism rises like log(s/M2
H)

and becomes more important at high energies. At
√
s ∼ 500 GeV, the two processes have

approximately the same cross sections, O(50 fb) for the interesting Higgs mass range 115

GeV <∼ MH <∼ 200 GeV. With an integrated luminosity L ∼ 500 fb−1, as expected at

the TESLA machine for instance, approximately 30.000 and 40.000 events can be collected

in, respectively, the HZ and νν̄H channels for MH ∼ 120 GeV. This sample is more than

enough to observe the Higgs particle and to study its properties in great detail.

In the Higgs–strahlung process, the recoiling Z boson, which can be tagged through its

clean ℓ+ℓ− decays, with ℓ = e or µ, but also through decays into quarks which have a much

larger statistics, is mono–energetic and the Higgs mass can be derived from the energy of

the Z boson since the initial e± beam energies are sharp when the effect of beamstrahlung is

strongly suppressed. Therefore, it will be easy to separate the signal from the backgrounds

[561, 562]. In the low mass range, MH <∼ 140 GeV, the process leads to bb̄qq̄ and bb̄ℓℓ final

states, with the b–quarks being efficiently tagged by means of micro–vertex detectors. In the

mass range where the decay H →WW ∗ is dominant, the Higgs boson can be reconstructed

by looking at the ℓℓ+ 4–jet or 6–jet final states, and using the kinematical constraints on

the fermion invariant masses which peak at MW and MH , the backgrounds are efficiently

suppressed. Also the ℓℓqq̄qℓν and qq̄qq̄ℓν channels are easily accessible.

It has been shown in the detailed simulations [480] that only a few fb−1 data are needed

to obtain a 5σ signal for a Higgs boson with a mass MH <∼ 150 GeV at a 500 GeV collider,

even if it decays invisibly [as could happen in some extensions of the SM]. In fact, for such

small masses, it is better to move to lower energies where the Higgs–strahlung cross section

is larger. Fig. 4.31 shows the reconstructed Higgs mass peaks in the strahlung process at√
s = 350 GeV with a luminosity L = 500 fb−1 for MH = 120 GeV in the decay H → qq̄

and for MH = 150 GeV in the decay H →WW ∗. At this energy and integrated luminosity,

Higgs masses up to MH ∼ 260 GeV can be probed in this channel.

MH (GeV) 350 GeV 500 GeV 1000 GeV

120 4670 2020 377

180 2960 1650 365

250 230 1110 333

Max MH 258 407 730

Table 4.4: Expected number of signal events for 500 fb−1 for the Higgs-strahlung channel
with dilepton final states e+e− → ZH → ℓ+ℓ−X, at different

√
s and MH values. The last

line is for the maximum MH value yielding more than 50 signal events in this final state.
The numbers for

√
s=1 TeV do not include the selection cuts and ISR corrections of [480].
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Figure 4.31: The Higgs mass peak reconstructed in different channels with constrained fits for
two values of MH , an integrated luminosity of 500 fb−1 and

√
s = 350 GeV in HZ → qq̄ℓ+ℓ−

at MH = 120 GeV (left) and HZ →W+W−ℓ+ℓ− at MH = 150 GeV (right); from Ref. [480].

Moving to higher energies, Higgs bosons with masses up to MH ∼ 400 GeV can be

discovered in the strahlung process at an energy of 500 GeV and with a luminosity of 500

fb−1. For even higher masses, one needs to increase the c.m. energy of the collider and, as

a rule of thumb, Higgs masses up to ∼ 80%
√
s can be probed. This means that a 1 TeV

collider can probe the entire SM Higgs mass range, MH <∼ 700 GeV. Table 4.4 shows the

maximal Higgs mass values which can be reached at various c.m. energies by requiring at

least 50 signal events in the process e+e− → HZ → Hℓℓ.

The WW fusion mechanism offers a complementary production channel. In the low

mass range where the decay H → bb̄ is dominant, flavor tagging plays an important role to

suppress the 2–jet plus missing energy background. The e+e− → Hν̄ν → bb̄ν̄ν final state

can be separated from the corresponding one in the Higgs–strahlung process e+e− → HZ →
bb̄ν̄ν [563] by exploiting their different characteristics in the νν̄ invariant mass which are

measurable through the missing mass distribution; see Fig. 4.32. The polarization of the

electron and positron beams, which allow to switch on and off the WW fusion contribution,

can be very useful to control the systematic uncertainties.

For larger Higgs boson masses, when the decays H → WW (∗), ZZ(∗) are dominant, the

main backgrounds areWW (Z) and ZZ(Z) production which have large cross sections at high

energies and eventually tt̄, but again, they can be suppressed using kinematical constraints

from the reconstruction of the Higgs mass peak. For even higher masses, when the Higgs

boson decays into tt̄ final states, the e+e− → tt̄ and tt̄e+e− backgrounds can be reduced to

a manageable level by exploiting the characteristics of the νν̄bb̄bb̄WW signature.
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Figure. 4.32: The missing mass distribution in the νν̄bb̄ final state at
√
s = 350 GeV (left)

and 500 GeV (right) for MH = 120 GeV in WW fusion, Higgs–strahlung and the interfer-
ence, as well as for the background. The WW fusion contribution is measured from a fit to
the shape of this distribution; from Ref. [480].

Turning to the subleading processes, we have seen that the ZZ fusion mechanism has a

cross section that is one order of magnitude smaller than WW fusion, a result of the smaller

neutral couplings compared to the charged current couplings. However, the full final state

can be reconstructed in this case. At c.m. energies above 1 TeV, the cross section exceeds

the one of the Higgs strahlung process so that e+e− → He+e− can be used instead for model

independent searches by tagging the e+e− pair and reconstructing the missing mass [558].

The associated production with top quarks has a very small cross section at
√
s = 500

GeV due to the phase space suppression but at
√
s = 800 GeV it can reach the level of a few

femtobarn. For MH <∼ 140 GeV, the spectacular final state signal, W+W−bb̄bb̄, has large

backgrounds which can be suppressed by tagging the b–quarks and reconstructing the Higgs

mass. The statistics are nevertheless very small and one has to resort to a neural network

analysis to isolate the signal from the remaining backgrounds. For higher Higgs masses,

the final state Htt̄→ 4Wbb̄ has also large backgrounds, which are nevertheless manageable

again using a neutral network.

The cross section for the double Higgs production in the strahlung process is at the level

of ∼ 1
2

fb for a light Higgs at
√
s = 500 GeV and is smaller at higher energies. The large

backgrounds from four and six fermion events can be suppressed for MH <∼ 140 GeV by using

the characteristic signal of four b–quarks and a Z boson, reconstructed in both leptonic an

hadronic final to increase the statistics, and using b–tagging. For higher Higgs masses, the

dominant final state is Z + 4W . In contrast, the cross section for the e+e− → νeν̄eHH is

extremely small at
√
s = 500 GeV but reaches the fb level at

√
s = 3 TeV.
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4.4.2 Precision measurements for a light Higgs boson

Once the Higgs boson is found, it will be of great importance to explore all its fundamental

properties. This can be done at great details in the clean environment of e+e− linear colliders:

the Higgs boson mass, its spin and parity quantum numbers and its couplings to fermions,

massive and massless gauge bosons as well as its trilinear self–couplings can be measured

with very good accuracies. The measurements would allow to probe in all its facets the

electroweak symmetry breaking mechanism.

The Higgs boson mass

Many of the properties of the SM Higgs boson can be determined in a model independent

way by exploiting the recoil mass technique in the strahlung process, e+e− → HZ. The

measurement of the recoil e+e− or µ+µ− mass in e+e− → ZH → Hℓℓ, allows a very good

determination of the Higgs boson mass [564, 565]. At
√
s = 350 GeV and with a luminosity

of L = 500 fb−1, a precision of ∆MH ∼ 70 MeV can be reached for a Higgs mass of

MH ∼ 120 GeV. The precision can be increased to ∆MH ∼ 40 MeV by using in addition the

hadronic decays of the Z boson which have more statistics [565] . Accuracies of the order

of ∆MH ∼ 80 MeV can also be reached for MH values between 150 and 180 GeV when the

Higgs boson decays mostly into gauge bosons [see Ref. [566], however]. The reconstructed

Higgs mass peak is shown in Fig. 4.33 at a 350 GeV collider in the two channels HZ → bb̄qq̄

for MH = 120 GeV and HZ → W+W−qq̄ for MH = 150 GeV. The obtained accuracy on

MH is a factor of two better than the one which could be obtained at the LHC.
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Figure 4.33: The Higgs mass peak reconstructed in different channels with constrained fits for
two values of MH , an integrated luminosity of 500 fb−1 and

√
s = 350 GeV in HZ → bb̄qq̄

at MH = 120 GeV (left) and HZ → W+W−qq̄ at MH = 150 GeV (right); from Ref. [480].
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The Higgs spin and parity

The determination of the JP = 0+ quantum numbers of the SM Higgs boson can also be

performed in the strahlung process. As discussed in §4.2.1, the measurement of the rise

of the cross section near threshold, σ(e+e− → HZ) ∝ λ1/2 rules out JP = 0−, 1−, 2+ and

higher spin 3±, · · ·, which rise with higher powers of the velocity λ1/2. A threshold scan with

a luminosity of 20 fb−1 at three center of mass energies is sufficient to distinguish the various

behaviors; Fig. 4.34. The production of states with the two remaining JP = 1+, 2− quantum

numbers can be ruled out using the angular correlations of the final state e+e− → HZ → 4f .

The angular distribution of the Z/H bosons in the Higgs–strahlung process is also sensi-

tive to the spin–zero of the Higgs particle: at high–energies the Z is longitudinally polarized

and the distribution follows the ∼ sin2 θ law which unambiguously characterizes the pro-

duction of a JP = 0+ particle, since in the case of a pseudoscalar Higgs boson, the angular

distribution would behave as 1 + cos2 θ. Assuming that the Higgs particle is a mixed CP–

even and CP–odd state with η parameterizing the mixture, the angular distribution given by

eq. (4.26) can be checked experimentally. This is shown in the right–hand side of Fig. 4.34,

where one can see that the parameter η can be measured to a precision of 3–4 percent, which

is the typical size of electroweak radiative corrections, which in CP–conserving models could

generate the CP–odd component of the ZZΦ coupling. Note that the Higgs JPC quantum

numbers can also be checked by looking at correlations in the production e+e− → HZ → 4f

or in the decay H → WW ∗, ZZ∗ → 4f processes, just as in the LHC case but with more

accuracy at the LC since one can use the larger hadronic modes of the W and Z bosons.
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1σ uncertainties at
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The CP nature of the Higgs boson would be best tested in the couplings to fermions,

where the scalar and pseudoscalar components might have comparable size. Such tests

can be performed in the decay channel H → τ+τ− for MH <∼ 140 GeV by studying the

spin correlations between the final decay products of the two τ leptons [158, 160]. The

acoplanarity angle between the decay planes of the two ρ mesons produced from τ+ and τ+,

which can be reconstructed in the Higgs rest frame using the τ lifetime information, is a

very sensitive probe, allowing a discrimination between a CP–even and CP–odd state at the

95% CL for MH = 120 GeV at the usual energy and luminosity [167]; using the additional

information from the τ impact parameter significantly improves this determination.

If the observed Higgs boson is a mixture of CP–even and CP–odd states, with a coupling

gΦττ = gHττ (cosφ+ i sinφγ5) with φ = 0 in the SM Higgs case, the angular distributions in

the τ± → ρ±ν decays allow to measure the mixing angle with an accuracy of φ ∼ 6◦. This is

shown in Fig. 4.35, which displays the distribution of the acoplanarity angle ϕ∗ between the

decay planes of the ρ+ and ρ− in the rest frame of the pair, for several values of the mixing

angle φ, as a result of a simulation for
√
s = 350 GeV and L = 1 ab−1.
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Figure 4.35: Distribution of the reconstructed acoplanarity angle ϕ∗ for φ = 0 (full his-
togram), φ = π/8 (dashed) and φ = π/4 (dotted) for y1y2 > 0 (left) and y1y2 < 0 (right)
with y1,2 = (Eπ± −Eπ0)/(Eπ± + Eπ0); the lines indicate the results of the fits; from [557].

Finally, and as discussed in §4.3.2, the differential cross section in associated production

with top quarks, e+e− → tt̄H , is sensitive to the CP nature of the Higgs boson. However, no

analysis has been performed to verify at which extent this information can be experimentally

extracted. For heavier Higgs bosons, when the H → τ+τ− becomes too small, these studies

cannot be performed anymore. A promising channel would be the decay H → tt̄ for MH >

2mt, but again, no realistic simulation of the potential of this channel has been performed.
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The Higgs couplings to gauge bosons

The fundamental prediction that the Higgs couplings to ZZ/WW bosons are proportional

to the masses of these particles can be easily verified experimentally since these couplings

can be directly determined by measuring the production cross sections in the bremsstrahlung

and the fusion processes. σ(e+e− → HZ → Hℓ+ℓ−) can be measured by analyzing the recoil

mass against the Z boson and provides a determination of the gHZZ couplings independently

of the decay modes of the Higgs boson. Adding the two lepton channels, one obtains a

statistical accuracy of less than 3% at
√
s ∼ 350 GeV and with

∫
L = 500 fb−1 [564].

The coupling gHWW for MH <∼ 2MW can determined from the measurement of the total

cross section of the process e+e− → W ∗W ∗νν̄ → Hνν̄ which, as discussed previously, can

be efficiently separated from the e+e− → HZ → Hνν̄ channel and from the backgrounds,

see Fig. 4.32. A precision of also less than 3% can be achieved for MH = 120 GeV, but

at a slightly higher energy,
√
s ∼ 500 GeV, where the production rate is larger [569]. The

precision becomes worse for increasing Higgs mass as a result of the falling cross section.

The accuracies which can be achieved are shown in Tab. 4.5 for three Higgs masses and

the precision on the Higgs couplings is half of these errors, since the cross sections scale as

g2
HV V . Thus, a measurement of the Higgs couplings to gauge bosons can be performed at

the statistical level of 1 to 2% and would allow to probe the quantum corrections.

Channel MH = 120 GeV MH = 140 GeV MH = 160 GeV

σ(e+e− → HZ) 2.5% 2.7% 3.0 %

σ(e+e− → Hνν̄) 2.8% 3.7% 13 %

Table 4.5: Relative precision in the determination of the SM Higgs cross sections for 120
GeV ≤MH ≤ 160 GeV with L = 500 fb−1 at

√
s = 350 and 500 GeV; from Ref. [480].

The Higgs decay branching ratios

The measurement of the branching ratios of the Higgs boson [570–580] is of utmost impor-

tance. For Higgs masses below MH <∼ 150 GeV a large variety of branching ratios can be

measured at the linear collider, since the bb̄, cc̄ and gg final states can be very efficiently

disentangled by means of vertex detectors [581]. The bb̄, cc̄ and τ+τ− fractions allow to mea-

sure the relative couplings of the Higgs boson to these fermions and to check the prediction

of the Higgs mechanism that they are indeed proportional to fermion masses; in particular

BR(H → τ+τ−) ∼ m2
τ/3m̄

2
b allows such a test in a rather clean way. The gluonic branching

ratio is indirectly sensitive to the tt̄H Yukawa coupling and would probe the existence of

new strongly interacting particles that couple to the Higgs and which are too heavy to be

produced directly. The branching ratio of the loop induced γγ and Zγ Higgs decays are also

very sensitive to new heavy particles and their measurement is thus very important. The
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branching ratio of the Higgs decays into W bosons starts to be significant for MH >∼ 120 GeV

and allows to measure again the HWW coupling in an independent way. In the mass range

120 GeV <∼ MH <∼ 180 GeV, the H → ZZ∗ fraction is too small to be precisely measured,

but for higher masses it is accessible and allows an additional determination of the HZZ

coupling.

There are two methods to measure the Higgs branching ratios: first by measuring the

event rate in the Higgs–strahlung process for a given final state configuration and then

dividing by the total cross section which is measured from the recoil mass, and second, by

selecting a sample of unbiased events in the e+e− → HZ recoil mass peak and determining

the fraction of events corresponding to a given final state decay. The first case, which is

called the indirect method has been used to study the Higgs branching ratios for the TESLA

TDR [480,572], while the second one called the direct method, appeared only recently [573].

Both methods give rather similar results but, since they are almost independent, these results

may be combined to provide a significant improvement of the expected accuracies.
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Figure 4.36: The theoretical predictions [with the bands due to the uncertainties in the mea-

surement of the quark masses and αs] and the experimental accuracy [the points with error

bars] for the SM Higgs branching ratios at
√
s = 350 GeV with 500 fb−1; from Ref. [480].

The expected accuracies on the Higgs branching fractions are shown in Fig. 4.36 and

in Table 4.6 [the low–energy (LE) numbers at the left] mostly at
√
s = 350 GeV and with

500 fb−1 integrated luminosity for MH ≤ 160 GeV. The bb̄, cc̄, τ+τ−, gg and WW branching

ratios of the Higgs boson can be measured with a very good accuracy. For the mass value
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MH = 120 GeV and using the indirect method, one obtains an accuracy of, respectively,

2.4%, 8.3%, 5%, 5.5% and 5.1%. When combined with the direct method measurements

labeled LE(D), the errors decrease quite significantly. The uncertainties in the measurements

become larger when approaching the WW threshold: at MH ∼ 160 GeV, only the bb̄,WW

and ZZ fractions are accessible, with still a poor accuracy in the latter case. For MH ∼ 200

GeV, a higher energy
√
s = 500 GeV is needed to compensate for the falling cross section,

and the precision is good only for the WW and ZZ channels. For the H → bb̄ decays, an

energy of 800 GeV and 1 ab−1 data are required to reach the quoted precision of 17%.

MH [GeV] 120 140 160 200

Decay mode Relative Precision (%)

LE LE(D) HE LE HE LE HE LE HE

bb̄ 2.4 1.5 1.6 2.6 1.8 6.5 2.0 17. 9.0

cc̄ 8.3 5.8 – 19. –

ττ 5.0 4.1 – 8.0 –

gg 5.5 3.6 2.3 14.0 3.5 – 14.6

WW 5.1 2.7 2.0 2.5 1.8 2.1 1.0 3.5 2.5

ZZ 16.9 – 9.9 –

γγ 23 21. 5.4 – 6.2 – 24

Zγ 27. –

µµ 30 –

Table 4.6: Summary of expected precisions on Higgs boson branching ratios from existing
studies within the ECFA/DESY workshops (LE) [557] obtained for 500 fb−1 at

√
s = 350

GeV, except for MH = 200 GeV where BR(WW ) and BR(ZZ) are measured at
√
s = 500

GeV and BR(bb) which uses 1 ab−1 at 800 GeV, as in the case of BR(µµ). LE stand for
the measurement with the indirect method, while LE(D) is for the combined measurements
of the direct and indirect methods [573]. HE is the combination of the measurements from
the direct method with the NLC results obtained for 1 ab−1 at

√
s = 1 TeV [574].

In the low Higgs mass range, even the rare decays into γγ and Zγ final states can be

measured with an accuracy of approximately 5 to 20% [574, 575, 577]. The very rare decay

into muon pairs is also measurable, though with a rather poor accuracy, by going to high

energies and taking advantage of the enhanced production rates in e+e− → Hνν̄ [578]. A

luminosity of 1 ab−1 is necessary to probe all these rare decay modes of the Higgs boson.

Finally, invisible Higgs decays can also be probed with a very good accuracy, thanks to

the missing mass technique. One can also look directly for the characteristic signature of

missing energy and momentum. Recent studies show that in the range 120 GeV <∼ MH <∼
160 GeV, an accuracy of ∼ 10% can be obtained on a invisible decay with a branching ratio

of 5% and a 5σ signal can be seen for a branching ratio as low as 2% [580].
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Moving to higher energies,
√
s = 1 TeV, the larger rate for the WW fusion process helps

improving the accuracy on the main decay branching ratios and even search for rare decays

[as it was the case for H → µ+µ−]. In the right–hand side of Table 4.6, the HE numbers

stand for measurements performed at this energy and with 1 ab−1 data, when combined with

the respective measurements at low energies [574]. As can be seen the accuracy on some

decay branching ratios, in particular BR(H → bb̄, γγ), can be significantly improved.

The Higgs total decay width

The total decay width of the Higgs boson, forMH >∼ 200 GeV, is large enough to be accessible

directly from the reconstruction of the Higgs boson lineshape. For smaller Higgs masses,

the total decay is less than 1 GeV and it cannot be resolved experimentally. However,

it can be determined indirectly by exploiting the relation between the total and partial

decay widths for some given final states. For instance, in the decay H → WW ∗, the total

decay width is given by ΓH = Γ(H → WW ∗)/BR(H → WW ∗). One can then combine

the direct measurement of the H → WW ∗ branching ratio discussed above and use the

information on the HWW coupling from the WW fusion cross section to determine the

partial decay width Γ(H → WW ∗). Alternatively, on can exploit the measurement of the

HZZ coupling from the production cross section of the Higgs–strahlung process, since the

mass reach is higher than in WW fusion, and assume SU(2) invariance to relate the two

couplings, gHWW/gHZZ = 1/ cos θW . The accuracy on the total decay width measurement

follows then from that of the WW branching ratio and the gHWW coupling.

Channel MH = 120 GeV MH = 140 GeV MH = 160 GeV

gHWW from σ(e+e− → Hνν) 6.1% 4.5% 13.4 %

gHWW from σ(e+e− → HZ) 5.6% 3.7% 3.6 %

BR(WW ) at
√
s = 1 TeV 3.4% 3.6% 2.0 %

Table 4.7: Relative precision in the determination of the SM Higgs decay width with
∫
L =

500 fb−1 at
√
s = 350 GeV using the two methods described in the text [480]. The last line

shows the improvement which can be obtained when combining these results with those which
can be extracted from measurements

√
s ∼ 1 TeV and with

∫
L = 1 ab−1 [574].

As shown in Tab. 4.7, in the range 120 GeV <∼MH <∼ 160 GeV an accuracy ranging from

4% to 13% can be achieved on ΓH if the HWW coupling is measured in the fusion process.

This accuracy greatly improves for higher MH values by assuming SU(2) universality which

allows to use the HWW coupling as derived from the strahlung process. If in addition a

measurement of BR(H → WW ) is performed at higher energies and combined with the

previous values, the accuracy on the total Higgs width will greatly improve for high masses.

Note that the same technique would allow to extract the total Higgs decay width using
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the γγ decays of the Higgs boson together with the cross section from γγ → H → bb̄ as

measured at a photon collider. This is particularly true since the measurement of BR(γγ)

at
√
s ∼ 1 TeV is rather precise, allowing the total width to be determined with an accuracy

of ∼ 5% with this method for MH = 120–140 GeV independently of the WW measurement.

The Higgs Yukawa coupling to top quarks

The Higgs Yukawa coupling to top quarks, which is the largest coupling in the electroweak

SM, is directly accessible in the process where the Higgs is radiated off the top quarks,

e+e− → tt̄H , since the contribution from the diagram where the Higgs boson is radiated

from the Z line, e+e− → HZ → Htt̄, is very small; Fig. 4.17. Because of the limited

phase space, this measurement can only be performed at high energies
√
s >∼ 500 GeV. For

MH <∼ 140 GeV, the Yukawa coupling can be measured in the channel WWbb̄bb̄ with the

W bosons decaying both leptonically and hadronically to increase the statistics; b–tagging

is essential in this mass range [582, 583]. For higher Higgs masses, MH >∼ 140 GeV, the

channels with bb̄ + 4W have to be considered, with again, at least two W bosons decaying

hadronically, leading to 2 leptons plus 6 jets and one lepton plus 8 jets, respectively. The

complexity of the final states and the small statistics requires a neural network analysis [582].
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Figure 4.37: Expected accuracies for the measurement of the Htt̄ coupling as a function of

MH in the process e+e− → tt̄H for
√
s = 800 GeV and 1 ab−1 in various decay channels. A

5% systematical error is assumed on the normalization of the background; from Ref. [582].

The expected accuracies on the Htt̄ Yukawa coupling are shown in Fig. 4.37 from

Ref. [582] as a function of the Higgs mass, for
√
s = 800 GeV and a luminosity of 1 ab−1.

Assuming a 5% systematical uncertainty on the normalization of the background, accuracies

on the Htt̄ Yukawa coupling of the order of 5% can be achieved for Higgs masses in the low

range. A 10% measurement is possible up to Higgs masses of the order of 200 GeV.
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For large masses, MH >∼ 350 GeV, the Htt̄ coupling can be derived by measuring the

H → tt̄ branching ratio with the Higgs boson produced in the strahlung and WW fusion

processes [584, 585]. A detailed simulation, performed for the TESLA TDR in the latter

channel, shows that once the tt̄ and e+e−tt̄ backgrounds are removed by requiring four light

jets and two b quarks in the final state in addition to the missing energy, an accuracy of

the order of 5% (12%) for a Higgs mass of 400 (500) GeV can be achieved on the top quark

Yukawa coupling, again at
√
s = 800 GeV and with L ∼ 1 ab−1 data [586].

The trilinear Higgs coupling

The measurement of the trilinear Higgs self–coupling, which is the first non–trivial probe

of the Higgs potential and, probably, the most decisive test of the electroweak symmetry

breaking mechanism, is possible in the double Higgs–strahlung process. For Higgs masses

in the range 120 GeV <∼ MH <∼ 140 GeV, one has to rely on the bb̄ decays, and the cross

section in the e+e− → HHZ → b̄bb̄b + ℓ+ℓ− or qq̄ channels is rather small, see Fig. 4.20,

while the four and six fermion background are comparatively very large.

The excellent b–tagging efficiencies and the energy flow which can be achieved at future

linear colliders makes it possible to overcome the formidable challenge of suppressing the

backgrounds, while retaining a significant portion of the signal. Accuracies of about 20%

can be obtained on the measurement of the e+e− → HHZ cross section in the mass range

below 140 GeV; see the left–hand side of Fig. 4.38. Neural network analyses allow to improve

the accuracy of the measurement from 17% to 13% at a Higgs mass MH = 120 GeV, and to

obtain a 6σ significance for the signal [587]; see also [588].

Since the sensitivity of the e+e− → HHZ to the trilinear Higgs coupling is diluted by the

additional contributions originating from diagrams where the Higgs boson is emitted from

the Z boson lines, only an accuracy of ∆λHHH ∼ 22% can be obtained for MH = 120 GeV

at an energy of
√
s ∼ 500 GeV with an integrated luminosity of L ∼ 1 ab−1. The accuracy

becomes worse for higher Higgs masses. In particular, for MH >∼ 140 GeV, the H → WW ∗

decays must be used, leading to the even more complicated 4W+2f final state topologies.

No experimental analysis has been attempted yet.

Also in this case, one can proceed to higher energy and take advantage of the WW fusion

process e+e− → HHνν̄ [589, 590] which has a larger cross section, in particular with longi-

tudinally polarized e± beams. The estimated sensitivity of the trilinear Higgs couplings to√
s is shown in the right–hand side of Fig. 4.38 for MH = 120 and 150 GeV with polarized

electron beams and no efficiency loss [589]. It is dominated by Higgs–strahlung at low energy

and WW fusion for
√
s >∼ 700 GeV. A recent simulation at

√
s = 1 TeV which combines both

the e+e− → ZHH and e+e− → HHνν̄ processes withHH → 4b final states, assuming a 80%

e−L polarization and a luminosity of 1 ab−1, shows that an accuracy of ∆λHHH/λHHH ∼ 12%
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may be achieved if the trilinear coupling is SM–like [589]. The relative phase of the coupling

and its sign, may be also measured from the interference terms [558,589].
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Figure 4.38: The accuracy in the determination of σ(e+e− → ZHH) for several Higgs

masses at
√
s = 500 GeV with L = 1 ab−1 (left) [587] and the sensitivity of λHHH to the

c.m. energy for L = 1 ab−1, PL(e−) = 100% and without efficiency corrections (right) [589].

Expectations for a heavier Higgs boson

Finally, let us make a few remarks about a Higgs boson that is heavier than 2MZ , which

has been recently discussed in Ref. [591]. In this case, all decay channels other than H →
WW,ZZ are not accessible experimentally. The only exceptions are the bb̄ decays for masses

MH <∼ 200 GeV and the tt̄ decays for MH >∼ 350 GeV. However, the Higgs boson mass and

its total decay width, as well as the production cross sections which provide the couplings to

gauge bosons, can be obtained from the line shape. Typical accuracies on these parameters

are shown in Table 4.8 at a c.m. energy of 500 GeV with 500 fb−1. The accuracies of the

WW and ZZ branching are also shown for the same energy and luminosity. Thus, relatively

precise measurements can also be performed for heavier Higgs particles [other decay channels

have not been discussed yet].

MH(GeV) ∆σ(%) ∆MH(%) ∆ΓH (%) ∆BR(WW ) (%) ∆BR(ZZ) (%)

200 3.6 0.11 34 3.5 9.9

240 3.8 0.17 27 5.0 10.8

280 4.4 0.24 23 7.7 16.2

320 6.3 0.36 26 8.6 17.3

Table 4.8: Expected precision on heavier Higgs lineshape parameters with 500 b−1 at
√
s =

500 GeV [557] and on the WW/ZZ branching ratios with 1 ab−1 at
√
s = 1 TeV [574].
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4.4.3 Combined measurements and the determination of the couplings

Once the Higgs production cross sections and the various decay branching ratios have been

measured, one can then derive the Higgs boson couplings to fermions and gauge bosons. This

is a crucial test for the experimental verification that the Higgs mechanism is responsible for

the generation of the masses of the particles. Since some of the couplings can be determined in

different ways, while other determinations are partially correlated, a global fit to the various

observables is highly desirable to extract the Higgs couplings in a model independent way.

Such a fit would optimize the collected information and takes properly into account all the

experimental correlations between the various measurements.

A dedicated program called hfitter [592], based on hdecay [214] for the calculation of

the Higgs boson branching ratios, has been developed for this purpose. It uses as inputs the

production cross sections σ(e+e− → HZ), σ(e+e− → Hνν̄) and σ(e+e− → tt̄H), and the

branching ratios into WW, γγ, bb̄, cc̄, τ+τ− and gg. It uses the full covariance matrix for the

correlated measurements, and the non–correlated measurement of the Higgs self–coupling

from σ(e+e− → HHZ) can be added. The results for the accuracies on the Higgs couplings

to fermions, gauge bosons and the self–coupling are displayed in Table 4.9 for MH = 120

GeV and 140 GeV at a c.m. energy of 500 GeV with a luminosity of 500 fb−1 [except again

for the measurement of gHtt which has been performed at
√
s = 800 GeV with a luminosity

of 1 ab−1; the same luminosity is also used for the measurement of λHHH ]. For completeness,

we also display the errors on the Higgs boson mass, its total decay width and its CP–even

component [∆CP represents the relative deviation from the 0++ case], which have been

measured at
√
s = 350 GeV with the same luminosity L = 500 fb−1.

As can be seen, an e+e− linear collider in the energy range
√
s = 350–800 GeV and a

high integrated luminosity, L ∼ 500 fb−1, is a very high precision machine in the context of

Higgs physics. This precision would allow the determination of the complete profile of the

SM Higgs boson, in particular if its mass is smaller than ∼ 140 GeV. It would also allow to

distinguish the SM Higgs particle from a scalar particle occurring in some of its extensions,

with a very high level of confidence.

Thus, very precise measurements can be performed at the next linear collider allowing the

detailed exploration of the electroweak symmetry breaking mechanism and the determination

of the fundamental properties of the Higgs boson in the SM. We have seen in the previous

section on hadron colliders that while the SM Higgs boson will undoubtedly be produced

at the LHC, the detailed study of its properties will be a difficult task in the rather hostile

hadronic environment. Due to the limited signal statistics for some channels, the large

backgrounds and various systematic uncertainties, the LHC can provide only some ratios of

Higgs couplings [as well as the Higgs mass and the total decay width for MH >∼ 200 GeV,

which can be measured rather well]. The measurement of the various absolute couplings can
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Quantity MH = 120 GeV MH = 140 GeV

∆MH ± 0.00033 ± 0.0005

ΓH ± 0.061 ± 0.045

∆CP ± 0.038 –

λHHH ± 0.22 ± 0.30

gHWW ± 0.012 ± 0.020

gHZZ ± 0.012 ± 0.013

gHtt ± 0.030 ± 0.061

gHbb ± 0.022 ± 0.022

gHcc ± 0.037 ± 0.102

gHττ ± 0.033 ± 0.048

Table 4.9: Relative accuracy on Higgs couplings obtained from a global fit. An integrated lu-
minosity of 500 fb−1 at

√
s = 500 GeV is assumed except for the measurement of gHtt(λHHH),

which assumes 1000 fb−1 at
√
s = 800 (500) GeV in addition. On top of the table we dis-

play the accuracies on the Higgs mass, the total width and its CP–component as obtained at√
s = 350 GeV with 500 fb−1.

be performed only at an e+e− collider. There is therefore a clear complementarity between

the LHC and linear collider Higgs physics programs.

From the previous discussions, one can single out two physics points for which e+e−

colliders have some weakness: the determination of the total width is rather poor [without the

γγ option] for low mass Higgs bosons and the CP–quantum numbers cannot be determined

in a very convincing way for MH >∼ 140 GeV when the H → τ+τ− decay mode becomes too

rare. Unambiguous tests of the CP properties of the Higgs boson can be performed at photon

colliders in the loop induced process γγ → H or at muon colliders in the process µ+µ− → H ,

if suitable polarization of the initial beams is available. The measurement of ΓH can benefit

from the precise determination of the Higgs photonic width at γγ colliders. However, it

is at the muon collider that extremely good accuracies on ΓH can be obtained by simply

performing a threshold scan around the Higgs resonance produced in µ+µ− → H . These

topics will be addressed in detail in the next section. Before that, we will first summarize

the benefits of raising and lowering the energy of the e+e− collider.
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4.4.4 Measurements at higher and lower energies

Measurements at CLIC

Some of the previous measurements can significantly benefit from an increase of statistics.

This can be obtained not only by increasing the luminosity, but also by raising the energy.

Indeed, at the c.m. energies relevant for CLIC,
√
s ∼ 3 TeV, the cross section for the WW

fusion process becomes extremely large. If the luminosity is also scaled with s, a sample of

more than one million Higgs particles can be collected for L = 3 ab−1. Some of the previous

measurements could thus be performed with more accuracy, and new ones could be made

possible. Examples of such measurements at CLIC are as follows [484]:

i) With L = 3 ab−1 at a c.m. energy of 3 TeV, 400 H → µ+µ− events can be collected

for MH = 120 GeV. This sample would allow the measurement of the Higgs couplings to

muons to better than 5% [the precision drops to 10% for MH = 150 GeV due to the smaller

branching ratio]. The dimuon signal can be isolated from the important WW,WWνν̄, ZZνν̄

backgrounds with a statistical significance which is rather large; see the left–hand side of

Fig. 4.39. This would be the first precise measurement of the Higgs couplings to second

generation fermions since, as seen previously, although the Hcc̄ coupling can be determined

with the same accuracy, the associated theoretical uncertainties are rather large.

ii) The H → bb̄ branching ratio becomes very small in the intermediate and high Higgs

mass ranges, and at
√
s = 500 GeV, it cannot be determined to better than 10% for MH ∼

200 GeV. At
√
s = 3 TeV, the signal to background ratio is very favorable at these masses,

see the right–hand side of Fig. 4.39, and the rather large number of events to be collected

at CLIC would allow a measurement of the Hbb̄ coupling with an accuracy of 5% for Higgs

masses up to about MH = 250 GeV.
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Figure 4.39: The reconstructed signals for e+e− → νν̄H → νν̄µ+µ− for MH = 120 GeV
(left) and e+e− → νν̄H → νν̄bb̄ for MH = 200 GeV (right) at CLIC with

√
s=3 TeV [550].
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iii) The trilinear Higgs coupling can be measured in the WW fusion process, e+e− →
νν̄HH , for which the cross section reaches the level of a few fb at energies around 3 TeV.

A relative accuracy of ∼ 10% can be obtained on this coupling for Higgs masses up to 250

GeV. Contrary to e+e− → HHZ, the interference between the diagram involving the self–

Higgs coupling and the others, is negative. The sensitivity to λHHH can be enhanced by

studying the angle θ∗ of the H∗ → HH system in its rest frame: because of the scalar nature

of the Higgs boson, the cos θ∗ distribution is flat for H∗ → HH while it is peaked in the

forward direction for the other diagrams [545]; see the left–hand side of Fig. 4.40. A fit of the

distribution has been performed and allows a very nice determination of the λHHH coupling

as shown in the right–hand side of Fig. 4.40. Note that the quadrilinear Higgs couplings

remains elusive, even at c.m. energies of 5 TeV.
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Figure 4.40: The cos θ∗ distribution in the process e+e− → HHνν̄ due to the diagram
containing the triple Higgs vertex (red/light grey) and other diagrams (blue/dark grey)
for MH = 120 GeV at

√
s=3 TeV (left) and the reconstructed | cos θ∗| distribution for

λHHH/λ
SM
HHH =1.25,1.0,0.75 and 0.5 from bottom to top, with the points with error bars

showing the expectation for 5 ab−1 of data (right); from Ref. [550].

The higher energy of the collider can also be very useful in the case where the Higgs boson

is very heavy. For MH ∼ 700 GeV and beyond, the cross sections in the Higgs–strahlung

and WW fusion processes are very small at
√
s ∼ 1 TeV [see Fig. 4.30] and do not allow to

perform detailed studies. At CLIC energies,
√
s = 3 TeV, one has σ(e+e− → Hνν̄) ∼ 150

fb which allows for a reasonable sample of Higgs particles to be studied. In addition, the

cross section for the ZZ fusion process is large enough, σ(e+e− → He+e−) ∼ 20 fb for

MH ∼ 700 GeV, to allow for model independent Higgs searches in much the same way as in

the Higgs–strahlung process at low energies, since the forward electron and positron can be

tagged, and the mass recoiling against them can be reconstructed. The high energy available

at CLIC will be also important to investigate in detail a possible strongly interacting Higgs

sector scenario, as will be discussed in another part of this review.
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The GigaZ and MegaW options

The high luminosities available at the next generation of e+e− colliders would allow to collect

more than 109 Z bosons in one year by running at energies close to the resonance. The same

luminosity would allow to collect more than 106 W boson pairs near the WW threshold.

These samples are two orders of magnitude larger than those obtained at LEP1 and LEP2

and can be used to significantly improve the high–precision tests of the SM which have been

performed in the last decade [486].

At GigaZ, using the possibility of polarizing the electron/positron beams, one can mea-

sure the longitudinal left–right asymmetry ALR = 2aeve/(a
2
e + v2

e) ∼ 2(1 − 4 sin2 θlep
eff ) with

a very high statistical accuracy in hadronic and leptonic Z decays. Using the Blondel

scheme [593], the asymmetry can be obtained from the cross sections when the polariza-

tion of both the electron and positron beams Pe± are used in the various combinations,

σ = σunpol[1−Pe+Pe− +ALR(Pe+ −Pe−)], leading to a systematical error of about 10−4. This

corresponds to a measurement of the electroweak mixing angle with a precision

∆ sin2 θlep
eff ≃ 1.3 × 10−5 (4.56)

which is one order of magnitude more accurate than the presently measured value, sin2 θlep
eff =

0.2324 ± 0.00012. The measurement of the total and partial Z decay widths and the var-

ious polarization and/or forward–backward asymmetries can be significantly improved. In

particular, the measurement of the ratio of leptonic to hadronic Z decay widths with an

expected accuracy of ∆Rℓ/Rℓ ∼ 0.05%, would allow a clean measurement of the strong

coupling constant to better than ∆αs ≃ 0.001.

On the other hand, one can perform a scan around the WW threshold, where the cross

section for W pair production rises quickly, σ(e+e− → W+W−) ∼ β, allowing an accurate

measurement of the W boson mass. With an integrated luminosity of only L ≃ 100 fb−1 at√
s ∼ 2MW and a 6 point scan, the mass can be measured with an accuracy

∆MW ≃ 6 MeV (4.57)

which is six times better than the present measurement, MW = 80.449 ± 0.034 GeV, and

almost three times the precision which can be reached at the LHC and at the LC.

Since the top quark mass, which leads to the major part of the theoretical uncertainties

in the present high–precision observables, will be measured with an accuracy of ∆mt ≃ 200

MeV at the LC and that αs will be known more precisely at this time, ∆αs ≃ 0.001, the

only dangerous source of errors from SM inputs will be the hadronic uncertainty in ∆α. One

might hope that with the low energy e+e− experiments which will be performed in the future,

the error will reduce to ∆αhad ≃ 5×10−5. Taking also into account the error ∆MZ ≃ 2 MeV
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on the Z boson mass, which at this level of precision induces an error on sin2 θlep
eff which is

of the same size as the experimental error, the future total theoretical uncertainties on the

two observables from the various sources are estimated to be [594]

∆ sin2 θlep
eff ≃ ±3 × 10−5 , ∆MW ≃ ±3 MeV (4.58)

The very small experimental and theoretical errors on these two parameters will allow to test

the SM on much more solid grounds than in the past and to isolate the effects of the Higgs

boson in the electroweak radiative corrections with an incredible accuracy. This is exempli-

fied in the left–handed part of Fig. 4.41 where the expected accuracy in the determination

of the Higgs boson mass at GigaZ/MegaW in the plane MH–mt, together with the allowed

bands for sin2 θlep
eff and MW , are shown. The central values of the various input parameters

and the Higgs mass, as well as the area labeled “now”, are for the measurements which were

available in the year 2K. One can simply notice the vast improvement which can be made

at the GigaZ/MegaW option, where one can indirectly measure the Higgs boson mass with

a precision of ∆MH/MH ∼ 7% [594]. One can also use the direct measurement of the Higgs

boson mass at the LC (and LHC) with ∆MH ≃ 50 MeV, to predict the value of sin2 θlep
eff and

MW and to check the consistency of the SM, as shown in the right–hand side of Fig. 4.41.

Because of the high–precision which can be reached at GigaZ/MegaW, the improvement

compared to the present situation and even after LHC/LC is again spectacular.
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4.5 Higgs production in γγ collisions

As discussed in §4.1.2, future high–energy e+e− linear colliders can be made to run in the

eγ or γγ mode by using Compton back scattering of laser light off the high–energy electron

beams [487,488]. These colliders will have practically the same energy, up to ∼ 80%, as the

original e+e− collider and a luminosity that is somewhat smaller. One of the best motivations

for turning to the γγ mode of the linear collider is undoubtedly the study of the properties of

the Higgs boson, which can be produced as a resonance in the s–channel [489–492]. In this

context, two main features which are difficult to study in the e+e− mode, can be investigated

at such colliders: first the precise measurement of the Hγγ coupling [595–599] and second,

the determination of the CP–properties of the Higgs boson [160, 599–604]. Several other

studies can also be made, such as the measurement of the Higgs boson self–coupling and its

Yukawa coupling to top quarks, although these studies can be already performed in e+e−

collisions [and, in general, in a much cleaner way].

4.5.1 Higgs boson production as an s–channel resonance

The production cross section for the process γγ → X with initial state polarized photons,

can be written in the helicity basis as

dσ̂γγ =
∑

i,j,k,l=±
ρ1

ik ρ
2
jlMijM

∗
kl dΓ (4.59)

where Mij are the invariant scattering amplitudes with photon helicities i, j = ±1 and dΓ the

phase space element divided by the incoming flux. Comparing to the cross section written

in the Stokes parameter basis, the elements of the photon polarization density matrix are

such that, ρi
±± = 1

2
(1 ± ξi2), ρ

i
+− = ρi∗

−+ = −1
2
(ξi3 − iξi1). The unpolarized cross section is

dσ̂ = dσ̂00 =
1

4
dΓ
(
|M++|2 + |M−−|2 + |M+−|2 + |M−+|2

)

=
1

2
(dσ̂JZ=0 + dσ̂JZ=±2) =

1

2
(dσ̂|| + dσ̂⊥) (4.60)

where dσ̂JZ=0 (dσ̂JZ=±2) are the cross sections for photons with total helicity 0 (±2) and

dσ̂|| (dσ̂⊥) for parallel (orthogonal) linear photon polarizations.

In the case of a spin–zero particle, the production occurs through the JZ = 0 channel. In

terms of the Higgs total decay width ΓH , the width into two photons Γ(H → γγ) and into

a given final state X, Γ(H → X), the cross section for the subprocess γγ → H is given by

σ̂(W ) = 8π
Γ(H → γγ)Γ(H → X)

(W 2 −M2
H)2 +M2

HΓ2
H

(1 + λ1λ2) (4.61)

where W is the invariant mass of the γγ system. Using the same photon helicities λ1λ2 = 1

projects out the JZ = 0 component and therefore maximizes the Higgs cross section.
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For masses below MH <∼ 2MZ , the Higgs boson is very narrow with a total decay width

ΓH <∼ 1 GeV, and therefore, the detector resolution should be taken into account. When the

Higgs boson width can be neglected, a rather simple way to obtain the effective signal cross

section is to introduce a Gaussian smearing of the γγ invariant mass W [490]

Neff = Leff
dσeff

dW
(W ) =

∫ ym
√

s
e+e−

MX

dW ′ 1√
2πδ

exp

{
−(W ′ −W )2

2δ2

}
dL
dW ′ 〈σ̂(W ′)〉 (4.62)

and selecting events within a bin of invariant masses MH ± ∆, where the Higgs boson mass

is assumed to be precisely known already. In the previous expression, Leff and ym
√
se+e− are

the effective luminosity and the maximum energy of the γγ collider, and δ is one sigma of

the detector resolution for W . The cross section for the signal process γγ → H → X can be

written as [for ΓH ≪MH , ΓHMH [(W 2 −M2
H)2 +M2

HΓ2
H ]−1 ≃ π

2MH
δ(W −MH)]

σ̂signal(W ) = 4π2Γ(H → γγ)BR(H → X)

M2
H

(1 + λ1λ2)δ(W −MH) (4.63)

Inserting this expression in eq. (4.62), and selecting the events in the bin MH ± ∆, one has

Leff σ
eff
signal(MH) = R(∆/δ)

dL
dW

JZ=0
∣∣∣∣
W=MH

4π2Γ(H → γγ)BR(H → X)

M2
H

(4.64)

with R(∆/δ) being the Gaussian error function giving the fraction of signal events contained

in the bin MH ± ∆ [for instance, for ∆ = 2δ one has R ≃ 0.95].

The effective background, γγ → X, for an effective invariant mass of the two–photon

system W = MH can be approximated by

N eff
bckg(W ) ≃ 2∆

dL
dW

〈dσ̂bckg(W )〉 (4.65)

if one assumes a smooth enough distribution of two–photon invariant masses weighted with

luminosity distributions.

To have a large effective cross section for the Higgs boson signal, the γγ energy must

be tuned at the peak, 0.8
√
se+e− ∼ MH for a perfect spectrum, while the luminosity with

circularly polarized laser photon and electron beams chosen so that they have opposite

handedness with x = 4.83. The JZ = 0 events containing the signal are then enhanced,

while the JZ = ±2 events are suppressed [488,605].

The measurement of the rate Γ(H → γγ) × BR(H → X), and thus the Hγγ coupling

squared if the branching ratio is known, will follow from eq. (4.64) if the effective luminosity

and the Higgs mass are specified, and from the signal and background rates. The statistical

error in the decay width times branching ratio determination is

∆(Γ × BR)/(Γ × BR) = (Leff)−1S−1
√
S +B (4.66)
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Low mass Higgs boson

In the low mass range, MH <∼ 130 GeV, the Higgs boson will mainly decay into bb̄ final

states, H → bb̄, and the main source of background is the continuum production of b– and

c–quark pairs [606], including gluon radiation which leads to fake two–jet events [607]. The

total cross section for heavy quark production, γγ → qq̄, with a polar cut in the center of

mass of the two–photon system | cos θ| < c is given, at the tree–level, by

σ̂JZ=0(W ) =
12πα2Q4

q

W 2

8m2
q

W 2

(
1 −

2m2
q

W 2

)[
1

2
log

1 + cβ

1 − cβ
+

cβ

1 − c2β2

]

σ̂JZ=2(W ) =
12πα2Q4

q

W 2

[
1

2
(5 − β4) log

1 + cβ

1 − cβ
− cβ

(
2 +

(1 − β2)(3 − β2)

1 − c2β2

)]
(4.67)

with the quark velocity β =
√

1 − 4m2
q/W

2 and electric charge Qq. One can choose c = 0.7

which helps to eliminate many background events which are peaked in the forward and

backward direction, with only a moderate loss of the signal events. In addition, as can be

seen, the contribution of the JZ = 0 channel is proportional to m2
q/W

2 and is therefore

strongly suppressed [606]. Choosing the configuration where λ1λ2 = 1 helps to suppress the

two–jet background, while it maximizes the signal cross section; see e.g. Ref. [488, 605].

The background cross sections receive important QCD radiative corrections [607, 608],

which are particularly large for the JZ = 0 component to which additional continuum qq̄g

final states contribute [one can select slim two–jet final state configurations to suppress this

gluon radiation contribution to the JZ = 0 amplitude], and also non–negligible electroweak

corrections [609]. The radiative corrections to the signal cross section discussed in §2.3.1, and

the corrections to the interference between the signal and background cross sections [610]

have to be taken into account. In addition, one has to consider low energy γγ → hadrons

processes which contribute to the overlaying events [611]. The overlaying events are peaked

in the forward and backward directions and can be suppressed by the angular cut. b–tagging

is of course mandatory and one can take advantage of the fact that the Higgs boson is

produced almost at rest so that the total longitudinal momentum of the visible particles is

smaller than the total visible energy.

A full simulation, which uses a realistic spectrum for the photon collider and includes

the overlaying γγ → hadrons events, as well as a realistic b–tagging, has been recently

performed [596]. The signal and backgrounds events have been generated with all the relevant

higher–order corrections and including the fragmentation into hadrons, and the expected

response of the detector has been taken into account. Cuts such as those discussed above

have been applied and the output is shown in Fig. 4.42 where the energy of the original

collider,
√
see = 210 GeV leading to a yearly luminosity of Lγγ = 410 fb−1, has been

optimized for the production of a Higgs boson with a mass MH = 120 GeV.
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The left–hand side of the figure displays the reconstructed invariant mass distribution of

the selected bb̄ events, when it is corrected to take into account the effect of the undetected

neutrinos. The Higgs boson signal as well as the bb̄(g) and cc̄(g) backgrounds including

the overlaying events are displayed for MH = 120 GeV at the luminosity of 410 fb−1. The

most precise measurement of the H → γγ width is obtained in the mass window 110–

150 GeV which is indicated. With the assumed luminosity, about 7000 signals events are

reconstructed with about 9000 background events surviving the cuts, leading to a signal over

background ratio of order one. Therefore, a statistical accuracy of 1.8% can be achieved on

the measurement of Γ(H → γγ)×BR(H → bb̄). The right–hand side of the figure shows the

accuracy of the measurement of Γ(H → γγ) × BR(H → bb̄) for various Higgs mass values,

with and without the inclusion of the overlaying events (OE). Again, this is the result of a

full simulation where the energy of the initial collider has been optimized to produce a Higgs

boson with a mass MH = 130, 140, 150 and 160 GeV. A precision of 2–7% can be obtained

in the entire Higgs mass range MH = 120–160 GeV.
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Figure 4.42: The reconstructed invariant mass distribution of the bb̄ signal and the bb̄(g)
and cc̄(g) backgrounds for MH = 120 GeV at the luminosity of 410 fb−1 (left) and the
accuracy of the measurement of the cross section σ(γγ → H → bb̄) for various Higgs mass
values, with and without the inclusion of the overlaying events (right); from Ref. [596].

From the measurement of the branching ratio of the Higgs decays into bottom quarks

which, as seen previously, can be made with an accuracy of 1.5% for MH = 120 GeV [see

Table 4.7], the partial decay width Γ(H → γγ) can be extracted with a precision of 2.3%.

With a precise measurement of the H → γγ branching ratio in the e+e− mode of the collider,

one can determine the Higgs total width with an accuracy of the order of 10%.
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Heavier Higgs bosons

For masses larger than MH >∼ 140 GeV, the Higgs boson decays predominantly into massive

gauge bosons, H → WW and H → ZZ, the branching ratios being ∼ 2/3 and 1/3, respec-

tively, for the charged and neutral decays for MH above the ZZ threshold. The total Higgs

decay width becomes significant, being of the order of ΓH ∼ 1.5 (8) GeV for MH = 200 (300)

GeV, and cannot be neglected anymore. However, the total production cross section of such

heavy Higgs particles is of the same order as the one discussed previously, once the energy

of the γγ collider is tuned to the Higgs boson mass.

The backgrounds for the production of such a Higgs boson at γγ colliders are vector boson

production, γγ → W+W− and γγ → ZZ. The former process occurs at the tree–level and

has an extremely large cross section, σ(γγ →W+W−) ∼ O(102 pb) in both the JZ = 0 and

JZ = ±2 channels [612,613]. This background cannot therefore be very efficiently suppressed

by selecting only the JZ = 0 channel in which the Higgs boson is produced. The only region

where the signal and backgrounds have similar rates is for MH ∼ 170 GeV, where the Higgs

boson decays almost 100% of the time into WW bosons, while the background cross sections

are not yet too large since they increase with higher photon c.m. energy [598].

In the case of ZZ boson final states, the background is generated only at the one–loop

level [597] since the Z boson is neutrally charged and does not couple directly to photons. It

is therefore much less dangerous than the WW background: for c.m. energies of the order

of
√
sγγ ∼ 200 − 300 GeV, the cross section is at the level σ(γγ → ZZ) ∼ O(102 fb) in

the JZ = 0 channel. Therefore, for MH >∼ 180 GeV where the ZZ Higgs branching ratio

becomes significant, the cross section is dominated by the Higgs boson contribution.

For photons colliding with a total angular momentum JZ = 0, the interference between

the signal γγ → H → V V and the background γγ → V V must be taken into account. For

WW final states, the interference is very large: for MH >∼ 200 GeV, this term is negative

and is larger than the resonant contribution from the Higgs boson, leading to a decrease

of the total WW cross section. For ZZ production, the interference term is rather small,

although it has visible effects, resulting for instance in an asymmetric Higgs resonance.

Thus, in addition to the extraction of the Hγγ couplings as in the H → bb̄ case discussed

before, these processes could in principle allow for the determination of the phase of the

Hγγ amplitude via a measurement of the interference term which is sensitive to it.

A detailed simulation has been also performed in these two channels [599] and the analysis

follows the same lines as what has been previously discussed in the case of γγ → H → bb̄. The

cuts have been optimized to select the final states H → WW → qq̄qq̄ and H → ZZ → qq̄ℓℓ.

The center of mass energy of the original electron collider has been tuned to optimize the

Higgs production: for
√
see = 305 (500) GeV, which is the optimal choice for MH = 200 (350)

GeV, a luminosity of about 600 (1000) fb−1 can be collected in a photon collider such as the
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one discussed for TESLA. Once the distributions of the reconstructed invariant masses for

γγ →WW and ZZ are obtained experimentally, one can fit the simulated mass distribution

with the width Γγγ and the phase φγγ as being the only free parameters.

The output is shown in Fig. 4.43 where the statistical accuracies expected for the Γγγ

width and the φγγ phase are displayed for four examples of Higgs masses MH = 200, 250, 300

and 350 GeV. The solid thick light (yellow) line shows for comparison the prediction in a

specific two–Higgs doublet model (2HDM). As can be seen for low Higgs masses, MH ∼ 200

GeV, the width can be measured with a precision ∆Γγγ ≃ 3% which is similar to the

accuracy obtained in the case of H → bb̄. For this Higgs mass value, the phase can be

measured with an accuracy of ∆φγγ ∼ 35 mrad. For higher Higgs masses the uncertainties

increase and for MH = 350 GeV, they are a factor of three larger. Note that the phase

is mainly constrained by the WW process as expected, while the width is more accurately

measured in the channel ZZ → qq̄ℓℓ as the background is smaller. Thus, it is only the

combination of the two processes which allow to determine both parameters.
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Figure 4.43: Expected statistical errors in the determination of the Higgs width Γγγ (left)
and phase φγγ (right) at a photon collider, from the simultaneous fit to the observed W+W−

and ZZ mass spectra. The yellow (thick light) band shows the prediction in a 2HDM [599].

For even heavier Higgs bosons, MH >∼ 350 GeV, the H → tt̄ decays can be in principle

exploited. However, the branching fraction is not very large, BR(H → tt̄) ∼ 15% for

MH ≃ 400 GeV, and becomes even smaller for higher masses. The main background process

γγ → tt̄ has a much larger cross section [which is still given by eq. (4.67)] compared to b–

quark production, first because of the larger charge Qt = +2/3 with the cross section being

proportional to Q4
q , and second, because the JZ = 0 contribution is not suppressed since

the top quark mass is of the same order as the effective γγ energy. Furthermore, the total

width of the Higgs boson becomes too large, ΓH ∼ 30 GeV for the previous mass value, and

the particle is not a narrow resonance anymore; because of this large ΓH value, one has to
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integrate this background in a rather large bin.

For all these reasons, the process γγ → H → tt̄ is expected to be a rather difficult channel

to exploit. However, it can provide some valuable information on the CP properties of the

produced Higgs particle [601–604], a subject to which we turn our attention now.

4.5.2 Measuring the CP–properties of the Higgs boson

Measurements using photon polarization

The general amplitude for the production of a spin–zero Higgs particle in two–photon colli-

sions, γγ →Higgs, can be written in terms of the CP–even and CP–odd components of the

Hγγ coupling which are proportional to, respectively, (ǫ1 · ǫ2) and (ǫ1 × ǫ2), as

Mλ1λ2
= (ǫ1 · ǫ2)C+ + (ǫ1 × ǫ2)C− (4.68)

where C+ (C−) are the CP–even (odd) contributions to the amplitude. Four independent

functions describe the process out of the 16 helicity amplitudes present in the general case

dσ̂00 + dσ̂22 =
1

2
dΓ
(
|M++|2 + |M−−|2

)
= |C+|2 + |C−|2

dσ̂20 + dσ̂02 =
1

2
dΓ
(
|M++|2 − |M−−|2

)
= −2Im

(
C+C∗

−
)

dσ̂31 + dσ̂13 = dΓ Im
(
M++M

∗
−−
)

= −2Re
(
C+C∗

−
)

dσ̂33 + dσ̂11 = dΓ
(
M++M

∗
−−
)

= |C+|2 − |C−|2 (4.69)

One can then define the asymmetries [600]

A1 =
|M++|2 − |M−−|2

|M++|2 + |M−−|2
= − 2Im(C+C∗

−)

|C+|2 + |C−|2

A2 =
2Im(M++M

∗
−−)

|M++|2 + |M−−|2
= − 2Re(C+C∗

−)

|C+|2 + |C−|2

A3 =
2Re(M++M

∗
−−)

|M++|2 + |M−−|2
=

|C+|2 − |C∗
−|2

|C+|2 + |C−|2
(4.70)

and write the event rate as dN = dLJZ=0dσ̂ with

dLJZ=0 = dL
[
1 + 〈ξ12ξ22〉 + 〈ξ12 + ξ22〉A1 + 〈ξ13ξ21 + ξ11ξ23〉A2 + 〈ξ13ξ23 − ξ11ξ21〉A3

]
(4.71)

with the unpolarized cross section given by

dσ̂0 =
1

4
dΓ
(
|M++|2 + |M−−|2

)
(4.72)

If A1 and A2 are both non–zero, then, CP is violated since the Higgs boson is a mixture

of CP–even and CP–odd states. One can thus, by analyzing the spins of the final photons,
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probe CP–violation. If the Higgs boson is a definite CP–eigenstate, that is it is a pure scalar

or pseudoscalar particle, one has A1 = A2 = 0 and A3 = ηC with ηCP = 1 (−1) for a CP–even

(CP–odd) Higgs particle. The luminosity written above simplifies then to

dLJZ=0 = dL
[
1 + 〈ξ12ξ22〉 + ηCP〈ξ13ξ23 − ξ11ξ21〉

]
(4.73)

In fact, if CP is conserved, one has M++ = ηCPM−− leading to the relation between cross

sections with parallel and orthogonal linear polarization for the photons, dσ̂|| − dσ̂⊥ =

ηCP·(dσ̂||+dσ̂⊥). This means that only photons with parallel (orthogonal) linear polarizations

couple to scalars (pseudoscalars). Note that only if the lasers are linearly polarized it is

possible to distinguish between the two CP quantum numbers since the relevant average for

the Stokes parameters, 〈ξ13ξ23 − ξ11ξ21〉, is negligible for circularly polarized lasers.

In practice, the asymmetry A3 is determined by making two runs and measuring the

difference of the event rates for lasers with parallel polarization, ∆γ = 0, and lasers with

perpendicular polarization, ∆γ = π
2

[600]

〈A3〉 =
σeff(∆γ = 0) − σeff(∆γ = π

2
)

σeff(∆γ = 0) + σeff(∆γ = π
2
)

(4.74)

where the contamination from the background is taken into account σeff = σeff
signal + σeff

bckg. In

terms of the electron and laser beam polarization, the asymmetry is given by

〈A3〉 ≃
ηCP σsignal P1tP2t〈ℓ1ℓ2〉

1
2
(1 + 4λe−λe+〈c1c2〉)(2σ̂signal + σ̂bckg

0 ) + 1
2
(1 − 4λe−λe+〈c1c2〉)σ̂bckg

2

(4.75)

where the effects for ρ 6= 0 have been ignored for simplicity [there is also a generally small con-

tribution to the background in the numerator from the component σ̂bckg
|| − σ̂bckg

⊥ ∝ m4
q/W

4].

As can be seen, a very important role is played by the linear laser polarization Pit, the aver-

age of the induced linear polarizations of the photons [the asymmetry is directly proportional

to the product] and by the longitudinal polarizations of the electron beams and the induced

circular polarization of the photons.

The statistical significance of the signal is given by

NSD(A3) =
|σeff(∆γ = 0) − σeff(∆γ = π

2
)|√

σeff(∆γ = 0) + σeff(∆γ = π
2
)
×

√
Leff (4.76)

With the machine parameters, polarization and luminosity discussed above, a measurement

at the level of 10% can be made, allowing the distinction between the two CP possibilities

for the Higgs particle; see Ref. [600] for an analysis where a realistic luminosity spectra and

photon polarizations are taken into account.
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Measurements using angular distributions

Another way to test the CP nature of the produced Higgs particle is to study the angular

distributions in its decays. For a relatively heavy Higgs boson, MH >∼ 2MZ , this can be

done in the final state H → WW,ZZ → 4f in which, as discussed in §2.2.4, the angular

correlations between the final state fermions are very different in the case of scalar and

pseudoscalar Higgs particles. For instance, the azimuthal dependence on the angle ∆φ

between the decay planes of the two vector bosons is characteristically different in the 0++

and 0+− cases [159, 174]. Another different observable is the correlation

ζ =
sin2 θ1 sin2 θ3

(1 + cos2 θ1) (1 + cos2 θ3)
(4.77)

where θ1 and θ3 are the polar angles of the two fermions from the V → f f̄ decays defined in

Fig. 2.11, and which corresponds to the ratio of the angular distributions expected for the

decay of a scalar and a pseudoscalar particle in the limit MH ≫ MV .

A detailed simulation in the decay channels H → ZZ → ℓℓjj and H → WW → 4j has

been performed [599] along the same lines as for the measurement of the amplitudes of the

HV V couplings and their phases discussed earlier. The output of this analysis is shown in

Fig. 4.44 for the example of a Higgs boson with a mass MH = 200 GeV, produced in the

γγ mode of an e+e− collider with initial energy of
√
se+e− = 305 GeV and decaying into

ZZ → ℓℓjj final states. The figure shows the number of expected events for a scalar and

pseudoscalar Higgs boson and for the non–resonant SM background, for a variation of the

reconstructed azimuthal angle ∆φZZ (left) and the correlation ζZZ (right). The points with

error bars indicate the statistical precision of the measurements after a one year running of

a photon collider with a luminosity of 600 fb−1.
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Figure 4.44: The measurement of the azimuthal angle ∆φZZ and the correlation ζZZ in the
process γγ → H → ZZ → ℓℓjj for MH = 200 GeV at a photon collider; from [599].

277



If the HV V coupling, including CP–violation, is parameterized as gHV V = λ cosΦ with

λ = 1 and Φ = 0 in the SM, from a combined fit of the H → WW/ZZ → 4f events which

includes a free variation of the two photon width and phase one can measure the absolute

magnitude of the coupling with a precision ∆λ/λ = 2% and the CP–violating phase with a

precision ∆Φ = 50 mrad, in the entire Higgs mass range MH = 200–350 GeV [599].

Similar tests can be performed in the decayH → tt̄ for a heavier Higgs particle, MH > 350

GeV. In particular, the interference pattern of the resonant and the continuum amplitudes

for the γγ → tt̄ allows to check the parity of the Higgs boson and the presence of CP–

violation, by using circularly polarized colliding photons [602]. Indeed, from the tt̄ decay

angular distribution one can built four convoluted observables, Σ1..4

Σi(
√
sγγ) =

∫
d
√
sγγ

∑

λ1, λ2

(
1

L
dLλ1λ2

d
√
sγγ

)(
3β

32πsγγ

∫
Si

λ1λ2
(θ,

√
sγγ)d cos θ

)
(4.78)

θ being the polar angle of the t momentum in the γγ c.m. frame and the first bracket

corresponding to the normalized luminosity distribution for each of the photon λ1λ2 he-

licity combinations. The functions Si
λ1λ2

contain the information on the γγ → tt̄ helicity

amplitudes

S1
λ1λ2

=
∣∣MRR

λ1λ2

∣∣2 , S2
λ1λ2

=
∣∣MLL

λ1λ2

∣∣2 , S3(4)
λ1λ2

= 2Re(Im)
[
MRR

λ1λ2
MLL∗

λ1λ2

]
(4.79)

Writing the γγ → tt̄ amplitudes as sums of the resonant and non–resonant contributions

Mσσ
λλ = [Mt]

σσ
λλ +

(√
sγγ

MΦ

)3

rΦ · i
[
1 + exp

(
2i tan−1

s2
γγ −M2

Φ

MΦΓΦ

)]
(4.80)

the phase of the resonance amplitude is shifted by rΦ which is essentially the phase of the

γγΦ coupling when neglecting the phase in the ttΦ vertex. In the left–hand side of Fig. 4.45,

the four observables Σ1..4 for the production of scalar H and pseudoscalar A bosons with

MΦ = 400 GeV, are shown for two values of the γγΦ phase, arg(rΦ) = 0 and π
4
, and one can

see the difference is significant enough to be measured experimentally.

Another possibility to probe the Higgs CP–quantum number in γγ → tt̄ production is to

look at the net polarization of the t/t̄ quarks either with circularly polarized [603] or linearly

polarized photons [601]. In the latter case, the top polarization has been analyzed through

the decay lepton energy and angular distributions in the decay t→ bℓν; the full differential

distribution of the decay lepton has been written and, in terms of the initial state e+e−

polarizations λe+e− = ±1 and final charge of the decay lepton eℓ± = ±1, one can obtain four

cross section σ(±,±) from which one can construct six asymmetries that are sensitive to the

Higgs coupling [601]

A1/4 =
σ(+,±) − σ(−,−)

σ(+,±) + σ(−,−)
, A2/3 =

σ(+,∓) − σ(−,+)

σ(+,∓) + σ(−,+)
, A5/6 =

σ(±,+) − σ(±,−)

σ(±,+) + σ(±,−)
(4.81)
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Figure 4.45: Left: The observables Σ1 (solid), Σ2 (dashed), Σ3 (dot–dashed) and Σ4 (dotted)
for the production of H and A bosons for arg(rΦ) = 0 and π

4
with x = 4.8, PL = −1.0 and

Pe = 0.9; from Ref. [602]. Right: The asymmetries A1..6 as a function of the e− beam energy
for continuum γγ → tt̄ production (dotted line) and when the resonant contribution with
MΦ = 500 GeV is included (solid lines); from Ref. [601].

A5/6 are charge asymmetries for a given polarization and will vanish for zero–angle, which

will not be the case for the purely CP–violating A1/2 asymmetries; A3/4 are the polarization

asymmetries for a given lepton charge. Note that the charge asymmetries do not vanish in the

case of the SM where only the non–resonant amplitude is taken into account. The sensitivity

of the six asymmetries to the Φγγ coupling and to its possible CP–violating component is

exhibited in the right–hand side of Fig. 4.45 for a specific point with MΦ = 500 GeV and

a Φγγ vertex which has both real and imaginary parts, as a function of the electron beam

energy. As can be seen the asymmetries can be large and, in most cases, different from the

asymmetries of the continuum γγ → tt̄ production.

Finally, for MH <∼ 140 GeV, one can also study the CP–nature of the Higgs boson by

looking at the polarization of the τ leptons produced in γγ → H → τ+τ−. One can again

construct polarization asymmetries which probe both the Hγγ and Hττ couplings [614]

4.5.3 Other Higgs production mechanisms

Other processes than Higgs boson production as s–channel resonances have been discussed

in the context of γγ colliders: Higgs boson pair production via loop diagrams [615, 616],

production in association with vector bosons [545,617,618] and associated Higgs production

with top quarks [619]. At eγ colliders, the Higgs boson can also be produced in the reaction

eγ → νeW
+H [622,623]. In this section, we will briefly summarize the main features of these

processes, concentrating only on the magnitude of the cross sections of the subprocesses [i.e.

without folding with the photon luminosity spectra].
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Higgs pair production: γγ → HH

The pair production of Higgs boson in γγ collisions is induced by loops of top quarks and

W bosons where two sets of diagrams are involved: (i) s–channel vertex diagrams where the

intermediate Higgs particle splits into two and which involves the trilinear Higgs boson cou-

pling λHHH ; the contributions of these diagrams are essentially the same as those discussed

for γγ → H , except that here the Higgs particle is virtual, and (ii) box diagrams involving

top quarks and W bosons, as well as vertex and self–energy diagrams which do not involve

the trilinear Higgs coupling but the quartic Higgs–gauge boson interaction.

The cross section has been calculated in Ref. [615] in the SM case; see also Ref. [616].

At small energies,
√
sγγ ∼ 500 GeV, it is dominated by the top quark contribution. For

photons having the same helicities, it is at the level of ∼ 0.5 fb for MH ∼ 100 GeV, decreases

very slowly with MH and falls–off rapidly when approaching the
√
sγγ = 2MH threshold.

At higher energies,
√
sγγ

>∼ 1 TeV, the cross section is dominated by the W boson loop

contribution which, contrary to the case of single Higgs boson, interferes constructively with

the top quark contribution for large enough MH . While the cross section is smaller than at

500 GeV for low MH , it increases with MH almost up to the kinematical boundary, where

it reaches values of the order 1 (10) fb at
√
sγγ ∼ 1 (2) TeV [this is mainly due to the large

triple and quartic Higgs couplings to the Goldstone or WL bosons which grow as M2
H ].

For opposite photon helicities, the cross section has the same magnitude as in the same–

helicity case for MH ∼ 100 GeV, but because in this case it is dominated by the contributions

of transverse W bosons it falls off more rapidly with increasingMH values even for high center

of mass energies. At
√
s = 2 TeV, there is bump for a very heavy Higgs boson.

The sensitivity of the production cross section to the trilinear Higgs coupling λHHH

depends on the relative weight of the diagram with the exchange of the Higgs boson in the

s–channel and the other diagrams [616]. For very heavy Higgs bosons, MH ∼ 500−800 GeV,

the cross section is very sensitive to the coupling λHHH , in particular near the
√
sγγ = 2MH

threshold where it is maximal: for MH ∼ 700 GeV, removing the trilinear coupling leads

to an increase of the cross section [which is unfortunately rather small, being less than 1

fb] by about 60%. For smaller MH values, the sensitivity is much weaker since the cross

section at high energies [where it is sizable] is dominated by the box contributions which

do not involve λHHH , while at low energies the rates are too small. Note finally, that a

change of the trilinear Higgs coupling does not affect the angular distribution of the Higgs

pair production process.

Thus, at very high energies and for rather heavy Higgs bosons, on can possibly probe the

trilinear Higgs coupling in the process γγ → HH . This is complementary to the e+e− case,

where the coupling can be best probed for low Higgs boson masses. However, to assess to

which extent the coupling can be measured, more detailed analyses are needed.
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Higgs production in association with top quarks: γγ → tt̄H

The process γγ → tt̄H offers an additional opportunity to probe the Yukawa coupling of

the Higgs boson to top quarks [619, 620]. Contrary to the similar process in the e+e− case,

where the Higgs boson can be radiated not only from the top quark lines but also from the

Z line in the Higgs strahlung like process e+e− → HZ∗ → Htt̄ [although the contribution of

the latter is very tiny as discussed earlier], in associated Htt̄ production in photon–photon

collisions the Higgs boson is only radiated from the top quark lines and the cross section is

directly proportional to the Htt̄ Yukawa coupling.

As in the case of e+e− collisions, the cross section for tt̄H production is rather small

at
√
sγγ ∼ 500 GeV, because of the limited phase space. It increases with energy and for

MH ∼ 100 GeV it reaches the level of σ(γγ → tt̄H) = O(1 fb) at
√
sγγ ∼ 1 TeV, where it

begins to flatten [this is opposite to the e+e− case, where σ ∝ 1/s]. The cross section drops

rapidly with increasing MH and at a c.m. energy of 1 TeV it is one order of magnitude

smaller for MH ∼ 200 GeV than for MH ∼ 100 GeV.

The γγ → tt̄H process can be used as a means to determine the CP properties of the

Higgs boson and to distinguish between scalar and pseudoscalar particles and to probe CP–

violation; in addition, associated Higgs production with lighter fermions, such as τ–leptons

and b–quarks, which have larger cross sections in extensions of the SM where the Higgs

couplings to down–type fermions are enhanced, has been discussed [621].

Higgs production in association with gauge bosons

As mentioned previously, the γγ → W+W− production cross section is enormous, being at

the level of O(100 pb) for c.m. energies around
√
sγγ ∼ 300− 500 GeV [612], and one could

attach one or even two additional Higgs bosons to the W lines, while still having sizable rates

[617]. For a Higgs boson with a mass MH ∼ 100 GeV, the cross section for γγ →W+W−H

is about 20 fb for
√
sγγ = 500 GeV and, therefore, it is at level of the cross section for

the Higgs–strahlung process in e+e− collisions with the same c.m. energy. The cross section

quickly rises with energy, to reach the level of 400 fb for
√
sγγ = 2 TeV, i.e. almost two

orders of magnitude larger than the Higgs–strahlung cross section which drops likes 1/s,

and of the same order as the dominant production mechanism, e+e− → Hνν̄. Compared to

the processes for associated Higgs production with gauge bosons in e+e− collisions discussed

previously, σ(γγ → W+W−H) is a factor of three larger than any of the e+e− → HV V

processes. Note however, that this process does not provide any additional information that

could not be obtained in the e+e− option of the machine.

A channel that is, in principle, more interesting is when two Higgs particles are produced

in association with the W boson pair. Indeed, similarly to the WW fusion mechanism
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WW → HH , this process is sensitive to the trilinear Higgs boson coupling since the Higgs

particle produced in γγ →WWH can split into two Higgs bosons. Unfortunately, the rates

are too small to be useful even with very high luminosities [545]: for γγ energies of the order

of 1 TeV, σ(γγ → W+W−HH) ∼ 0.02 fb for MH ∼ 100 GeV, and barely reaches 0.2 fb

at
√
sγγ ∼ 2 TeV. Finally, note that the Higgs bosons can be also produced in association

with a photon or Z boson in the loop induced process γγ → HZ [618] where, in particular,

virtual top quarks and W bosons contribute. The cross section are, however, rather small:

for
√
sγγ = 500 GeV and MH ∼ 100 GeV, they are at the level of 0.1 fb.

Higgs production in eγ collisions

Finally, let us close this discussion on Higgs physics at the γγ mode of future e+e− linear

colliders by considering the other possible option, the eγ mode, that can be obtained by

converting only one of the electron beams into a very energetic back–scattered photon.

Higgs bosons can be produced in eγ collisions through bremsstrahlung off the W lines,

e−γ → νeW
−H [622, 623]; the relevant diagrams are shown in Fig. 4.46.

e−

γ
e−

ν

W−

H
•

•

Figure 4.46: Diagrams for Higgs boson production in eγ collisions.

For a low mass Higgs boson, MH ∼ 100 GeV, the cross section for the subprocess [again

without folding with the photon spectrum] is at the level of ∼ 40 fb for
√
seγ = 500 GeV and

increases monotonically to reach values of the order of 100 (300) fb for
√
seγ = 1 (2) TeV;

i.e. the rates are comparable to those of the WW fusion in e+e− collisions at high energies.

While the variation of the cross section with the Higgs boson mass is rather pronounced

at low energies [σ(eγ → νeWH) drops by a factor of two when increasing MH from 100 to

150 GeV, as a result of phase space reduction], it is very mild at higher energies. When

convoluting the cross sections with the back–scattered photon flux, they are reduced by

about 50% at
√
seγ = 500 GeV and slightly less at higher energies [623].

The large Higgs production rates in this process could allow to perform an independent

determination of the HWW couplings [which can be made already in the e+e− → Hνν̄ pro-

duction and H →WW decay process if the Higgs is not too heavy] and to probe anomalous

contributions. However, the environment of the collision should be well under control to

match the accuracy which can be achieved in the clean e+e− mode of the linear collider.
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4.6 Higgs production at muon colliders

The ability of a future µ+µ− collider to investigate the Higgs sector of the SM and its

extensions has been discussed in numerous papers; see for instance the detailed reviews of

Refs. [496–501]. In this section, we will simply summarize the main studies which have been

performed in this context, concentrating on the benefits of such a collider compared to e+e−

linear colliders for determining the properties of the Higgs particle.

4.6.1 Higgs production in the s–channel

Resonant Higgs production at the tree–level

In µ+µ− collisions, the resonance production cross section for a Higgs boson decaying into a

final state X is given, in terms of the partial decay widths, by

σH(
√
s) =

4πΓ(H → µ+µ−)Γ(H → X)

(s−M2
H)2 +M2

HΓ2
H

(4.82)

In practice, however, on has to include the Gaussian center of mass energy spread σ√s.

Assuming a central c.m. energy value
√
s, one obtains after convolution [514]

σH(
√
s) =

1

2πσ√s

∫
σH(

√
ŝ) exp



−
(√

ŝ−√
s
)2

2σ2√
s


 d

√
ŝ (4.83)

which, when the energy is tuned to the Higgs boson mass value, gives

σH(
√
s ≃MH) =

4π

M2
H

BR(H → µ+µ−)BR(H → X)
[
1 + 8

π

(
σ√s/ΓH

)2]1/2
(4.84)

If the energy spread is much smaller than the Higgs boson total decay width, σ√s ≪ ΓH ,

the effective cross section is simply given by

σ√s ≪ ΓH : σH ≃ 4π

M2
H

BR(H → µ+µ−)BR(H → X) (4.85)

while in the opposite case, σ√s ≫ ΓH , the effective cross section reads

σ√s ≫ ΓH : σH ≃ 4π2

M2
H

Γ(H → µ+µ−)BR(H → X) × 1

2
√

2πσ√s

(4.86)

One needs therefore a very small resolution to maximize the Higgs boson production rate.

Recalling that there is a trade between the luminosity delivered by the machine and the

energy resolution R of the muon beams, §4.1.3, the production rate can be maximized by

choosing R such that the energy spread σ√s is slightly smaller than the Higgs boson total
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decay width, σ√s
<∼ ΓH , which in the SM corresponds to R = 0.003% for MH <∼ 120 GeV.

The energy spread can be then more conveniently written as [498]

σ√s = 0.002 GeV
( R

0.003%

)( √
s

100 GeV

)
(4.87)

For Higgs bosons in the low mass range, MH <∼ 130 GeV, a small resolution R = 0.003%

would be more advantageous. In the intermediate Higgs mass range, 130 GeV <∼ MH <∼
160 GeV, the Higgs boson is broad enough and one can use a resolution R = 0.01% without

too much loss of production rates. In such a case, the cross sections are functions of the

Higgs branching fractions and Higgs masses and practically do not depend on R; this is even

more true for Higgs bosons in the high mass range, MH >∼ 180 GeV. [See Table 2.1, for the

Higgs total width and branching ratios for selected values of MH .]

µ+µ− → bb̄ and the radiative corrections

For a light Higgs boson, MH <∼ 140 GeV, the dominant decay is H → bb̄ and one has

to consider the full process µ+µ− → bb̄ which receives contributions from the resonant

µ+µ− → H → bb̄ channel and continuum µ+µ− → γ, Z → bb̄ production; Fig. 4.47a. The

latter is mediated by gauge boson s–channel exchange and would act as a background.

(a) µ−

µ+ b̄

b

γ, Z

µ−

µ+ b̄

b

H

(b) µ−

µ+ b̄

b

γ
γ, Z,H

µ−

µ+

µ

f̄

f

f

γ, Z

γ, Z

µ−

µ+ b̄

bγ

γ, Z,H

(c) µ−

µ+ b̄

b

g
γ, Z,H

µ−

µ+ b̄

b

g
γ, Z,H

Figure 4.47: Lowest-order diagrams for µ−µ+ → bb̄ including the continuum and resonant
channels (a) as well as the photonic QED (b) and the final state QCD corrections (c).
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The photonic corrections which include the gauge invariant subset of initial and final

state virtual corrections and box diagrams involving at least one photon as well a initial

and final state photon radiation, Fig. 4.47b, and the QCD corrections to the final state with

virtual gluon exchange and gluon emission, Fig. 4.47c, have been calculated in Ref. [624]

with a careful treatment of both the Z and Higgs boson resonances. In the case where no

energy resolution is included, the results are shown in Fig. 4.48 for the production of a SM

Higgs boson with a mass MH = 115 GeV and 150 GeV. The tree–level couplings have been

expressed in terms in Gµ to encapsulate the leading electroweak correction and the running

b–quark mass has been used in the Hbb̄ coupling to absorb the bulk of the QCD corrections.
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Figure 4.48: The effective cross section for the Higgs production in µ+µ− → bb̄ for MH = 115
and 150 GeV. Shown are the Born cross sections and the cross section with electromagnetic
and QCD corrections. No energy resolutions has been assumed; from Ref. [624].

For the photonic corrections, the large ISR corrections from the radiative return to the

Z resonance can be suppressed by requiring that the invariant mass of the hadronic final

state, thus including gluon radiation, should not exceed 10 GeV compared to the Higgs

mass, Mhad >
√
s − 10 GeV. [For the continuum production, the main difference between

e+e− and µ+µ− collisions is due to the different leading logarithmic photonic corrections,

log(s/m2
ℓ), which leads to ISR effects that are roughly a factor of two smaller in µ+µ− than

e+e− collisions.] With this cut, the photonic corrections which are still dominated by O(α)

ISR turn then negative and of order −5 (10)% for MH = 115 (150) GeV for the continuum

production and ∼ −50% for the resonant production, leading to a reduction of the resonance

peak compared to the continuum background. The QCD corrections are positive, and as

they are larger for the Higgs mediated channel [∼ 20% as discussed in §2.1.2] compared to

bb̄ continuum production (∼ αs

π
∼ 4%), they tend to enhance the resonance peak.
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When including a beam energy resolution R = 0.003%, the relative impact of the radiative

correction stays the same. However, the signal peaks are suppressed, in particular for small

Higgs masses; for instance, the ratio is σ√s/ΓH ∼ 0.7 at MH = 115 GeV, compared to

σ√s/ΓH ∼ 0.2 at MH = 150 GeV, as can be seen in Fig. 4.49.
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Figure 4.49: Same as in Fig. 4.48, but with an energy resolution R = 0.003%; from [624].

Signals and backgrounds in µ+µ− → H → bb̄,WW,ZZ

In the main Higgs decay channels, H → bb̄,WW,ZZ, the cross sections for the signal and

the corresponding SM backgrounds are shown in the left–hand side of Fig. 4.50 as a function

of the Higgs mass in the range MH = 80–160 GeV for an energy resolution R = 0.003%.

In the right–hand side of the figure, the luminosity that is required to observe the signal at

the 5σ level is displayed for the same energy resolution. Various cuts have been applied to

reject part of the background [b tagging, cuts to remove gauge bosons in the forward and

backward directions] and are discussed in Ref. [498] from which we borrowed the figure.

As can be seen, the µ+µ− → H → bb̄ signal rate is rather large for MH <∼ 140 GeV,

leading to O(104) events for a luminosity of L = 1 fb−1. The backgrounds from direct

µ+µ− → γ, Z∗ → bb̄ production39 [the light quark–jet background can be removed with b–

tagging] is much larger than the signal for a Higgs boson in the mass range MH <∼ 115 GeV

which is ruled out by the LEP2 negative searches [in particular, for MH ∼ 90 GeV a huge

background from the resonant production µ+µ− → Z → bb̄ is present], and is of comparable

size as the signal in the mass range 115 GeV <∼ MH <∼ 135 GeV. For larger masses, the

signal event drop dramatically because of the decrease of the H → bb̄ branching ratio.
39Since the background is practically constant in the window MH ± σ√

s, one can measure it below and
above the resonance and eventually, subtract it if enough luminosity is available
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In the case of gauge boson production, µ+µ− → WW ∗ and ZZ∗, the event rates are much

smaller than those of the bb̄ final states in the low Higgs mass range, as a result of the tiny

branching ratios. For larger masses, MH ∼ 140 GeV, the WW and bb̄ cross sections become

comparable but the absolute rates are rather small; for MH >∼ 160 GeV, the cross sections

are below the femtobarn level. The backgrounds from continuum µ+µ− → WW ∗, ZZ∗

production [once cuts have been applied to remove for instance the forward and backward

events which are rare in the signal where the Higgs boson is centrally produced] do not

exceed the signal cross sections for MH <∼ 150 GeV. For higher Higgs masses, MH >∼ 160

GeV, when the production of two real gauge bosons opens up kinematically, the backgrounds

become much larger than the resonant signal.

Figure 4.50: The cross sections for the processes µ+µ− → bb̄,WW,ZZ for signals and
backgrounds as a function of MH for R = 0.003% (left) and the luminosity required for a 5σ
observation of the µ+µ− → H → bb̄,WW,ZZ signals (right); from Ref. [498].

For a SM Higgs boson with a mass MH >∼ 2MW , s–channel production in µ+µ− colliders

will, anyway, not be very useful since the total width becomes large and the H → µ+µ−

decay branching fraction drops drastically. However, there are extensions of the SM in which

Higgs bosons can have relatively large masses but suppressed total widths [this is the case of

e.g. pseudoscalar Higgs bosons which do not couple to massive gauge bosons at tree–level].

In this case, the production rates are not very suppressed and muon colliders can be valuable

tools in determining their properties as will be discussed in another part of this review.
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4.6.2 Determination of the properties of a light Higgs boson

In the SM, for Higgs bosons in the mass range MH <∼ 160 GeV, important measurements can

be performed at the muon collider in the channels µ+µ− → H → bb̄,WW ∗, ZZ∗ which have

sizable production rates as shown previously, as well as in the channel µ+µ− → H → τ+τ−.

The Higgs mass, its total decay width and the cross section for the various final states, which

are sensitive to the branching fractions and thus the Higgs couplings, can be determined.

The Higgs boson mass can be measured by a straightforward scan in the vicinity of√
s = MH . The approximate values of MH would be already known from measurements at

e+e− and hadron colliders, or being measured at the muon collider by producing first the

Higgs boson in the Higgs–strahlung channel, µ+µ− → HZ. The detection of the signal peak

for a Higgs mass MH = 110 GeV has been performed e.g. in Ref. [625] and the output is

summarized in Fig. 4.51 which has been obtained with 10 pb−1 data, assuming that the beam

energy spread is very small. The Monte Carlo generator PYTHIA has been used to generate

the µ+µ− → H → bb̄ signal and the µ+µ− → qq̄(γ) background events and a crude estimate

of detector effects [using a typical LEP detector] has been made; it has been assumed that

80% efficiency for b–quark tagging can be achieved as expected at the LC for instance. For

such a Higgs mass, one is close the Z boson resonance and the backgrounds are rather

large; they become smaller when one moves to higher Higgs masses, but the Higgs branching

ratio BR(H → bb̄) also becomes smaller. In another analysis presented in Ref. [497] but

which takes into account the energy spread, a precision of the order of ∆MH ∼ 0.1 MeV for

MH ≃ 115 GeV has been achieved with ∼ 30 data points with a luminosity L = 1.25 pb−1

per point and a resolution R = 0.003% [626].
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Figure 4.51: The µ+µ− → bb̄ production cross section as a function of the beam energy from
MH = 110 GeV; the points corresponding to 10 pb−1 data are superimposed and no beam
energy spread is taken into account; from Ref. [625].
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Since both the Higgs mass MH and its total width ΓH enter the cross section value at

the same time, and if one refrains from making any theoretical assumption on the partial

decay widths, a model–independent determination of ΓH is required. This determination

can be made [498, 627] by noting that if one adjusts the normalization of the theoretical

curve of ΓH at
√
s = MH in such a way that it agrees with the experimental curve, then

the wings of the theoretical curve are increased (decreased) if ΓH is larger (smaller). With

precise measurements at a central energy value
√
s and at the wings, one can measure ΓH

through the ratio of the cross sections at the central peak and on the wings, in which the

partial decay widths cancel out. This method, with a dedicated three point scan near the

threshold, allows to measure MH at the same time, and with a precision that is expected to

be better than the rough scan discussed above, with the same integrated luminosity.

However, for a light Higgs boson which might be very narrow, one could achieve a very

small beam energy resolution, σ√s ≪ ΓH , only at a cost of a low luminosity. In this case, it

has been advocated to operate the collider at the Higgs peak with two different resolutions,

σmin√
s ≪ ΓH and σmax√

s ≫ ΓH and determine the total width from the ratios of the peak cross

sections [627]. Using eqs. (4.85,4.86), one obtains

σH(σmin√
s )/σH(σmax√

s ) = [2
√

2σmin√
s ]/[

√
πΓH ] (4.88)

Figure 4.52a, shows the results of a Monte-Carlo simulation [501] for the determination of

the total decay width of the Higgs boson as a function of its mass in the range between 100

and 160 GeV. Also shown in the figure are the spread in the c.m. energy for a resolution

of R = 0.003% (solid circles) and the spread that is obtained if the resolution R is varied

in such a way that the beam energy spread is always 40% of the Higgs total decay width

(open squares). Here, one assumes that any value of the resolution R can be obtained, and

that the luminosity scales as R2/3; this procedure helps to optimize the Higgs production

rate and, hence, the statistical error on the production cross section.

Figure 4.52b displays the factor which reduces the peak cross section when the Gaussian

distribution with a width σ√s is included. This signal reduction factor is given by

SR = η AeA2

(√
π − 2

∫ A

0

e−t2dt

)
, A =

1

2
√

2

ΓH

σ√s

(4.89)

where η is factor which takes into account the effects of ISR. With a fixed resolution, R =

0.003% (filled circles), the signal cross section is reduced by approximately a factor of two

for low Higgs masses, MH <∼ 130 GeV, while for masses close to MH ∼ 160 GeV, the Higgs

total width becomes large enough and there is no reduction. For an optimally varying R

value (open squares), the peak cross section is reduced by a constant factor SR ≃ 0.8.

The peak cross section for the processes µ+µ− → bb̄ and µ+µ− → WW (∗) are shown

in Fig. 4.52c as a function of MH under the same conditions as above with an integrated
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Figure 4.52: a): The width of the SM Higgs boson as a function of its mass (triangles),
also shown are the effects of a fixed c.m. energy spread for R = 0.003% (filled circles) and
an optimal varying energy spread (open squares). b) The cross section suppression factor
due to the width of the beams if R = 0.003% (filled circles) and for the optimal varying R
(open squares). c): The fractional error with which the Higgs cross section can be measured
in the bb (stars) and WW ∗ decay modes (crosses) using 100 pb−1 data with R = 0.003%;
the solid circles show the accuracy with which the peak cross section can be extracted if the
SM branching ratios are assumed and the open squares show the error obtained in the same
running period by optimizing R. From Ref. [501].

luminosity of L = 100 pb−1. While the simulation of bb̄ decays is as described previously, the

efficiency in the channel H → WW ∗ is based a LEP2–type detector with the conservative

assumption that the spin information is not used to further reduce the non–resonant WW

background. As can be seen, the bb̄ cross section can be measured with a statistical accuracy

of about 10%, while a 20% accuracy can be achieved on the WW ∗ cross section for MH =
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130–150 GeV. The accuracy will improve by a factor of two if the luminosity is increased to

L = 400 pb−1, which corresponds to four years of running, thereby approaching those which

can be achieved at the LC. The accuracy on the production cross section for the ZZ final

state is expected to be worse as BR(H → ZZ∗) is very small in this mass range.

Once the Higgs mass, total decay width and peak cross sections have been determined,

one can measure the partial decay width into muons Γ(H → µ+µ−) and the final states

branching ratios BR(H → X). From the cross section eq. (4.86), they appear as the product

B(XX) = Γ(H → µ+µ−) × BR(H → X) (4.90)

These measurements can be then combined with other precision measurements performed

at the LHC and/or at e+e− colliders to determine the couplings of the Higgs boson in a

model independent way. For instance, the Higgs partial decay width into muons, if the

measurements at the linear collider (LC) discussed in the previous section are available, can

be determined through [499]

Γ(H → µ+µ−) =
B(XX)

BR(H → XX)LC
(4.91)

with bb̄ and WW ∗ final states for instance, where the branching ratios in the denominator

can be measured precisely at the LC in the low Higgs mass range, or make use of the total

decay width measured at muon colliders, via

Γ(H → µ+µ−) =
B(XX) × ΓH

Γ(H → XX)|LC
(4.92)

for the WW ∗ and eventually ZZ∗ final states where the partial widths can be measured at

the LC for large enough Higgs boson masses. The combination of all measurements allow a

very precise test of the Higgs couplings to fermions and gauge bosons and, in particular, a

precise determination of the Higgs boson couplings to second generation fermions.

4.6.3 Study of the CP properties of the Higgs boson

Measurements in the decay H → τ+τ−

A very interesting process to study at muon collider is µ+µ− → τ+τ− [628, 629]. This

process proceeds through s–channel photon and Z boson exchange, as well as via s–channel

Higgs boson exchange. In the former channels, the production is similar to what occurs in

e+e− collisions and, as discussed in §1.2, the process has characteristic forward–backward

and left–right asymmetries. Assuming that the µ± beams have longitudinal polarizations

P±, and using eqs. (1.92,1.97,1.99) for the cross section and asymmetries, one can write the

differential cross section for µ+µ− → γ, Z∗ → τ+τ− as

dσγ,Z

d cos θ
=

4πα2

3s
× 3

8
σU

[
(1 + cos2 θ) +

8

3
cos θAeff

FB

]
(4.93)
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where Aeff
FB has the usual component Aτ

FB already discussed, but also a component which

includes the information on the longitudinal polarization and Aτ
LR,FB in eq. (1.99)

Aeff
FB =

Aτ
FB + PeffA

τ
LR,FB

1 + PeffAτ
LR

, Peff =
P+ − P−
1 − P+P−

(4.94)

The angular distribution has a clear forward–backward asymmetry: it vanishes for θ = π
2

and

is large and positive for θ = 0. For
√
s = 120 GeV one has AFB ∼ 0.7 and ALR = 0.15 [628].

In the Higgs boson exchange channel, the differential cross section is flat and is simply

given, in terms of the effective cross section with
√
s = MH , by

dσ

d cos θ
=

1

2
σH (1 + P+P−) (4.95)

Considering this channel as the signal and the γ, Z exchange channel as the background, the

enhancement of the signal cross section compared to the background is given by

S

B
∼ 1 + P+P−

1 − P+P− + (P+ − P−)Aτ
LR

(4.96)

One can therefore use the polarization of the initial beams and the forward–backward asym-

metries to enhance the signal–to–background ratio.

One can also distinguish the signal from the background by using the final state polar-

ization of the τ leptons which are very different. We will briefly discuss this point, following

Ref. [628] and recalling the discussion of §2.1.4 on H → τ+τ− decays. In the two body decays

of the τ lepton, τ− → π−ντ , ρ
−ντ , etc.., defining θi as the angle between the momenta of the

τ lepton and the charged final particle, B as the branching ratio of the decay and Pτ = ±1

as the τ lepton helicity, the normalized differential decay rate in the τ rest frame is simply

1

Γ

dΓi

dcθi

=
Bi

2
(1 + riPτ cos θi) (4.97)

with ri = 1 for decays into pions and ri = −(m2
τ − 2m2

i )/(m
2
τ + 2m2

i ) ≃ 0.45 for i = ρ. In

the signal, µ+µ− → H → τ+τ−, the τ− and τ+ helicities are correlated as Pτ− =Pτ+ =±1,

and the spin correlated differential cross section with polarized P± beams reads

dσH

dcθi
dcθj

= (1 + P−P+) σH
BiBj

4

[
aiaj + bibjcθi

cθj

]
(4.98)

reaching a maximum (minimum) for cθi
= cθj

(cθi
= −cθj

) = ±1, with the significance of the

peaks depending on the magnitude of ri. In the case of the decay τ− → ρ−ντ , distinctive

peaks in the distribution can be seen for cθ
ρ−

=cθ
ρ+

= ±1 and P+ = P− = 25% [628].
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In contrast, in the standard channel µ+µ− → γ, Z∗ → τ+τ−, the τ leptons are produced

with helicities Pτ− = −Pτ+ = ±1, and the number of left–handed and right–handed τ

leptons are different because of the polarization left–right asymmetry. The spin correlated

differential distribution in this case is
dσγ,Z

dcθi
dcθj

= (1 − P−P+)σγ,Z (1 + PeffALR)

× 1

4
BiBj

[
(aiaj − bibjcθi

cθj
) + (aibjcθj

− ajbicθi
)Aeff

LR

]
(4.99)

with

Aeff
LR =

Aτ
FB,LR + PeffA

τ
FB

1 + PeffAτ
LR

(4.100)

Again, for the decay τ− → ρ−ντ , the peaks in the distribution for cos θρ− = − cos θρ+ = ±1

can be seen for P+ = P− = 25% [628]. The peaks occur in opposite regions compared to the

Higgs signal and the spin correlation in the signal is symmetric, while it is not the case in

the background as a consequence of the presence of the term Aeff
LR in eq. (4.99).

Summing both ρν and τν final states and using R = 0.0005%, P± = 25% and L = 1 fb−1,

one obtains the statistical error ǫ =
√
S +B/S on the cross section measurement which

determines to which extent the Hτ+τ− coupling can be measured. For MH = 110 (130)

GeV, one has ǫ ≃ 20% (30%) showing that one can observe the resonant µ+µ− → H →
τ+τ− process above the continuum background and therefore possibly measure the Hτ+τ−

coupling and check the Higgs boson spin.

Note that because of depolarization effects, this type of analysis cannot be performed in

the decays H → bb̄, while for H → tt̄ the rates are too small, the Higgs resonance being

too broad as discussed earlier. On the other hand, the CP quantum numbers of a relatively

heavier Higgs boson, MH >∼ 140 GeV, can be studied in the decays H → V V ∗ → 4f by

looking at angular distributions and correlations as discussed in detail in §2.2.4.

CP Measurements with transverse polarization

It is expected that muon colliders will have a natural transverse polarization of the order of

20% for both the µ+ and µ− beams. This polarization, if maximized, could also provide an

unambiguous test of the CP quantum numbers of the Higgs boson [163, 173, 630], similarly

to the case of γγ colliders previously discussed. Indeed, if one considers a scalar particle

with couplings to muons which have both CP–even and CP–odd components, L(Hµµ) ∝
Hµ̄(a+ ibγ5)µ, and assumes that the muon beams are 100% transversally polarized, with φ

being the angle between the µ+ and µ− transverse polarizations, the production cross section

of the Higgs boson in the s–channel reads

σ(µ+µ− → H) ∝ 1 − a2 − b2

a2 + b2
cosφ+

2ab

a2 + b2
sin φ (4.101)
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If the Higgs boson is a mixture of CP–even and CP–odd states, then both the a+ and a−

components are non–zero and the asymmetry

A1 =
σ(φ = π

2
) − σ(φ = −π

2
)

σ(φ = π
2
) + σ(φ = −π

2
)

=
2ab

a2 + b2
(4.102)

is large if a and b have the same magnitude. A non–zero value of this asymmetry would

indicate a clear violation of CP symmetry. For a pure CP–eigenstate, one of the coefficients

a or b is zero and the asymmetry

A2 =
σ(φ = π) − σ(φ = 0)

σ(φ = π) + σ(φ = 0)
=
a2 − b2

a2 + b2
(4.103)

is either equal to +1 or −1, if the Higgs boson is, respectively a CP–even or a CP–odd

state. In the ideal world, this is an unambiguous test of the CP nature of the Higgs boson.

However, the transverse polarization will most probably be not maximal and background

events will alter the signal and dilute the asymmetries. Thorough studies, including the

machine and background aspects must be performed to quantify the extent to which the

Higgs boson CP–properties can be measured; see Ref. [173] for such an attempt.
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∆r or the relation between the electroweak couplings and the weak boson masses in

Ref. [53], Part 1, p.55.

[61] M. Veltman, Nucl. Phys. B123 (1977) 89; M.S. Chanowitz, M.A. Furman and I. Hinch-

liffe, Phys. Lett. B78 (1978) 285.

[62] A. Djouadi and C. Verzegnassi, Phys. Lett. B195 (1987) 265; A. Djouadi, Nuovo Cim.

A100 (1988) 357; B. Kniehl, Nucl. Phys. B347 (1990) 86; F. Halzen and B. Kniehl,

Nucl. Phys. B353 (1991) 567; A. Djouadi and P. Gambino, Phys. Rev. D49 (1994)

3499.

[63] L. Avdeev, J. Fleischer, S.M. Mikhailov and O. Tarasov, Phys. Lett. B336 (1994) 560

and (E) ibid. B349 (1995) 597; K.G. Chetyrkin, J.H. Kühn and M. Steinhauser, Phys.
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D36 (1987) 310; A. Djouadi, J. Kühn and P.M. Zerwas, Z. Phys. C46 (1990) 411; A.

Djouadi, B. Lampe and P.M. Zerwas, Z. Phys. C67 (1995) 123; A.B. Arbuzov, D.Yu.

Bardin and A. Leike, Mod. Phys. Lett. A7 (1992) 2029 and (E) ibid. A9 (1994) 1515.

[75] A.A. Akhundov, D.Yu. Bardin and T. Riemann, Nucl. Phys. B276 1 (1986) 1; W.

Beenakker and W. Hollik, Z. Physik C40 (1988) 141; J. Bernabeu, A. Pich and A.

Santamaria, Phys. Lett. B200 (1988) 569; B.W. Lynn and R.G. Stuart, Phys. Lett.

B252 (1990) 676.

[76] F. Boudjema, A. Djouadi and C. Verzegnassi, Phys. Lett. B238 (1990) 423; A. Blondel,

A. Djouadi and C. Verzegnassi, Phys. Lett. B293 (1992) 253; A. Djouadi, G. Girardi,

C. Verzegnassi, W. Hollik and F.M. Renard, Nucl. Phys. B349 (1991) 48.

[77] A. Denner, W. Hollik and B. Lampe, Z. Phys. C60 (1993) 193.

301



[78] O.P. Sushkov, V.V. Flambaum and V.V. Khriplovich, Sov. J. Nucl. Phys. 20 (1975)

537; W. Alles, C. Boyer and A. Buras, Nucl. Phys. B119 (1977) 125.

[79] M. Lemoine and M. Veltman, Nucl. Phys. B164 (1980) 445; R. Phillipe, Phys. Rev.

D26 (1982) 1588; M. Bohm, A. Denner, T. Sack, W. Beenakker, F. Behrends and H.

Kuifj, Nucl. Phys. B304 (1988) 409; J. Fleisher, F. Jegerlehner and M. Zralek, Z. Phys.

C42 (1989) 409; W. Beenakker, K. Kolodziej and T. Sack, Phys. Lett. B258 (1991)

469; J. Fleisher, F. Jegerlehner and K. Kolodziej, Phys. Rev. D47 (1993) 830.

[80] For a review of weak boson production in e+e− collisions including radiative corrections,

see: W. Beenakker and A. Denner, Int. J. Mod. Phys. A9 (1994) 4837.

[81] For a recent review, see e.g. U. Baur, Measuring the W boson mass at hadron colliders,

published in “Zeuthen 2003, Electroweak precision data and the Higgs mass”, p. 47,

hep-ph/0304266.

[82] For a detailed discussion of electroweak SM processes at the LHC, including weak

boson production, see: R. Haywood, P. Hobson, W. Hollik and Z. Kunszt [conv.]

et al., Report of the Electroweak Working Group at “1999 CERN Workshop on SM

Physics at the LHC”, hep-ph/0003275.

[83] S.D. Drell and T.M. Yan, Ann. Phys. (NY) 66 (1971) 595.

[84] G. Altarelli, R.K. Ellis and G. Martinelli, Nuc. Phys. B157 (1979) 461; J. Kubar–André
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