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Abstract: We consider the high-frequency Helmholtz equation with a given
source term, and a small absorption parameter α > 0. The high-frequency (or:
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semi-classical) parameter is ε > 0. We let ε and α go to zero simultaneously. We
assume that the zero energy is non-trapping for the underlying classical flow.
We also assume that the classical trajectories starting from the origin satisfy a
transversality condition, a generic assumption.

Under these assumptions, we prove that the solution uε radiates in the outgo-
ing direction, uniformly in ε. In particular, the function uε, when conveniently
rescaled at the scale ε close to the origin, is shown to converge towards the out-
going solution of the Helmholtz equation, with coefficients frozen at the origin.
This provides a uniform version (in ε) of the limiting absorption principle.

Writing the resolvent of the Helmholtz equation as the integral in time of
the associated semi-classical Schrödinger propagator, our analysis relies on the
following tools: (i) For very large times, we prove and use a uniform version
of the Egorov Theorem to estimate the time integral; (ii) for moderate times,
we prove a uniform dispersive estimate that relies on a wave-packet approach,
together with the above mentioned transversality condition; (iii) for small times,
we prove that the semi-classical Schrödinger operator with variable coefficients
has the same dispersive properties as in the constant coefficients case, uniformly
in ε.

2000 Mathematics Subject Classification number: Primary 35Q40; Sec-
ondary 35J10, 81Q20.

1 Introduction

In this article, we study the asymptotics ε → 0+ in the following scaled Helm-
holtz equation, with unknown wε,

iε αε wε(x) +
1

2
∆xwε(x) + n2(εx)wε(x) = S (x) . (1.1)

In this scaling, the absorption parameter αε > 0 is small, i.e.

αε → 0+ as ε → 0.

The limiting case αε = 0+ is actually allowed in our analysis. Also, the index
of refraction n2(εx) is almost constant,

n2(εx) ≈ n2(0).

The competition between these two effects is the key difficulty of the present
work.

In all our analysis, the variable x belongs to R
d, for some d ≥ 3. The index

of refraction n2(x) is assumed to be given, smooth and non-negative1

∀x ∈ R
d, n2(x) ≥ 0, and n2(x) ∈ C∞(Rd). (1.2)

It is also supposed that n2(x) goes to a constant at infinity,

n2(x) = n2
∞ + O

(
〈x〉−ρ

)
as x → ∞, (1.3)

1Our analysis is easily extended to the case where the refraction index is a function that
changes sign. The only really important assumption on the sign of n is n2

∞
> 0, see Proposition

4. Otherwise, all the arguments given in this paper are easily adapted when n2(x) changes
sign, the analysis being actually simpler when n2(x) has the wrong sign because contribution
of terms involving χδ(Hε) vanishes in that case (see below for the notations).
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for some, possibly small, exponant ρ > 02. In the language of Schrödinger
operators, this means that the potential n2

∞ − n2(x) is assumed to be either
short-range or long range. Finally, the source term in (1.1) uses a function S(x)
that is taken sufficiently smooth and decays fast enough at infinity. We refer
to the sequel for the very assumptions we need on the refraction index n2(x),
together with the source S (see the statement of the main Theorem below).

Upon the L2-unitary rescaling

wε(x) = εd/2uε(εx),

the study of (1.1) is naturally linked to the analysis of the high-frequency Helm-
holtz equation,

iεαεu
ε(x) +

ε2

2
∆xuε(x) + n2(x)uε(x) =

1

εd/2
S
(x

ε

)
, (1.4)

where the source term S(x/ε) now plays the role of a concentration profile at the
scale ε. In this picture, the difficulty now comes from the interaction between the
oscillations induced by the source S(x/ε), and the ones due to the semiclassical
operator ε2∆/2 + n2(x). We give below more complete motivations for looking
at the asymptotics in (1.1) or (1.4).

The goal of this article is to prove that the solution wε to (1.1) converges
(in the distributional sense) to the outgoing solution of the natural constant
coefficient Helmholtz equation, i.e.

lim
ε→0

wε = wout , where wout is defined as the solution to

i0+wout(x) +
1

2
∆xwout(x) + n2(0)wout(x) = S (x) . (1.5)

In other words,

wout = lim
δ→0+

(
iδ +

1

2
∆x + n2(0)

)−1

S

= i

∫ +∞

0

exp

(
it

(
1

2
∆x + n2(0)

))
S dt. (1.6)

It is well-known that wout can also be defined as the unique solution to (∆x/2+
n2(0))wout = S that satisfies the Sommerfeld radiation condition at infinity

x√
2|x|

· ∇xwout(x) + in(0)wout(x) = O

(
1

|x|2
)

as |x| → ∞. (1.7)

The main geometric assumptions we need on the refraction index to ensure
the validity of (1.5) are twofolds. First, we need that the trajectories of the
Hamiltonian ξ2/2 − n2(x) at the zero energy are not trapped. This is a stan-
dard assumption in this context. It somehow prevents accumulation of energy in
bounded regions of space. Second, it turns out that the trajectories that really
matter in our analysis, are those that start from the origin x = 0, with zero en-
ergy ξ2/2 = n2(0). In this perspective, we need that these trajectories satisfy a
transversality condition: in essence, each such ray can self-intersect, but we
require that the self-intersection is then “tranverse” (see assumption (H) page

2Here and below we use the standard notation 〈x〉 := (1 + x2)1/2.
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35, i.e. (7.23), (7.24), in section 7 below). This second assumption prevents
accumulation of energy at the origin.

We wish to emphasize that the statement (1.5) is not obvious. In particular,
if the transversality assumption (H) page 35 is not fullfilled, our analysis shows
that (1.5) becomes false in general. We also refer to the end of this paper for
“counterexamples”.

The central difficulty is the following. On the one hand, the vanishing ab-
sorption parameter αε in (1.1) leads to thinking that wε should satisfy the Som-
merfeld radiation condition at infinity with the variable refraction index
n2(εx) (see (1.7)). Knowing that lim|x|→∞ n2(εx) = n2

∞, this roughly means

that wε should behave like exp(i2−1/2n∞|x|)/|x| at infinity in x (in dimension
d = 3, say). On the other hand, the almost constant refraction index n2(εx) in
(1.1) leads to observe that wε naturally goes to a solution of the Helmholtz equa-
tion with constant refraction index n2(0). Hoping that we may follow the
absorption coefficient αε continuously along the limit ε → 0 in n2(εx), the state-
ment (1.5) becomes natural, and wε should behave like exp(i2−1/2n(0)|x|)/|x|
asymptotically. But, since n(0) 6= n∞ in general, the last two statements are
contradictory ... As we see, the strong non-local effects induced by the Helmholtz
equation make the key difficulty in following the continuous dependence of wε

upon both the absorption parameter αε → 0+ and on the index n2(εx) → n2(0).

Let us now give some more detailed account on our motivations for looking
at the asymptotics ε → 0 in (1.1).

In [BCKP], the high-frequency analysis of the Helmholtz equation with
source term is performed. More precisely, the asymptotic behaviour as ε → 0
of the following equation is studied3

iεαεu
ε(x) +

ε2

2
∆xuε(x) + n2(x)uε(x) =

1

εd/2
S
(x

ε

)
, (1.8)

where the variable x belongs to R
d, for some d ≥ 3, and the index of re-

fraction n2(x) together with the concentration profile S(x) are as before (see
[BCKP]). Later, the analysis of [BCKP] was extended in [CPR] to more gen-
eral oscillating/concentrating source terms. The paper [CPR] studies indeed
the high-frequency analysis ε → 0 in

iεαεu
ε(x) +

ε2

2
∆xuε(x) + n2(x)uε(x) =

1

εq

∫

Γ

S

(
x − y

ε

)
A(y) exp

(
i

φ(x)

ε

)
dσ(y). (1.9)

(See also [CRu] for extensions - see [Fou] for the case where n2 has discontinu-
ities). In (1.9), the function S again plays the role of a concentration profile like
in (1.8), but the concentration occurs this time around a smooth submanifold
Γ ⊂ R

d of dimension p instead of a point. On the more, the source term here
includes additional oscillations through the (smooth) amplitude A and phase
φ. In these notations dσ denotes the induced euclidean surface measure on
the manifold Γ, and the rescaling exponant q depends on the dimension of Γ
together with geometric considerations, see [CPR].

3note that we use here a slightly different scaling than the one used in [BCKP]. This a
harmless modification that is due to mere convenience.
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Both Helmholtz equations (1.8) and (1.9) modelize the propagation of a
high-frequency source wave in a medium with scaled, variable, refraction index
n2(x)/ε2. The scaling of the index imposes that the waves propagating in the
medium naturally have wavelength ε. On the other hand, the source in (1.8)
as well as (1.9) is concentrating at the scale ε, close to the origin, or close to
the surface Γ. It thus carries oscillations at the typical wavelength ε. One
may think of an antenna concentrated close to a point or to a surface, and
emmitting waves in the whole space. The important phenomenon that these
linear equations include precisely lies in the resonant interaction between
the high-frequency oscillations of the source, and the propagative modes of the
medium dictated by the index n2/ε2. This makes one of the key difficulties of
the analysis performed in [BCKP] and [CPR].

A Wigner approach is used in [BCKP] and [CPR] to treat the high-frequency
asymptotics ε → 0. Up to a harmless rescaling, these papers establish that the
Wigner transform fε(x, ξ) of uε(x) satisfies, in the limit ε → 0, the stationnary
transport equation

0+f(x, ξ) + ξ · ∇xf(x, ξ) + ∇xn2(x) · ∇ξf(x, ξ) = Q(x, ξ), (1.10)

where f(x, ξ) = lim fε(x, ξ) measures the energy carried by rays located at
the point x in space, with frequency ξ ∈ R

d. The limiting source term Q
in (1.10) describes quantitatively the resonant interactions mentioned above.

In the easier case of (1.8), one has Q(x, ξ) = δ
(
ξ2/2 − n2(0)

)
δ(x) |Ŝ(ξ)|2,

meaning that the asymptotic source of energy is concentrated at the origin in
x (this is the factor δ(x)), and it only carries resonant frequencies ξ above this
point (due to δ

(
ξ2/2 − n2(0)

)
). A similar but more complicated value of Q is

obtained in the case of (1.9). In any circumstance, equation (1.10) tells us that
the energy brought by the source Q is propagated in the whole space through
the transport operator ξ ·∇x +∇xn2(x) ·∇ξ naturally associated with the semi-
classical operator −ε2∆x/2−n2(x). The term 0+f in (1.10) specifies a radiation
condition at infinity for f , that is the trace, as ε → 0 of the absorption coefficient
αε > 0 in (1.8) and (1.9). It gives f as the outgoing solution

f(x, ξ) =

∫ +∞

0

Q (X(s, x, ξ), Ξ(s, x, ξ)) ds.

Here (X(s, x, ξ), Ξ(s, x, ξ)) is the value at time s of the characteristic curve of
ξ · ∇x + ∇xn2(x) · ∇ξ starting at point (x, ξ) of phase-space (see (1.13) below).
Obtaining the radiation condition for f as the limiting effect of the absorp-
tion coefficient αε in (1.8) is actually the second main difficulty of the analysis
performed in [BCKP] and [CPR].

It turns out that the analysis performed in [BCKP] relies at some point
on the asymptotic behaviour of the scaled wave function wε(x) = εd/2uε(εx)
that measures the oscillation/concentration behaviour of uε close to the origin.
Similarly, in [CPR] one needs to rescale uε around any point y ∈ Γ, setting
wε

y(x) := εd/2uε(y + εx) for any such y. We naturally have

iεαεw
ε(x) +

1

2
∆xwε(x) + n2(εx)wε(x) = S (x) ,

in the case of (1.8), and a similar observation holds true in the case of (1.9).
Hence the natural rescaling leads to the analysis of the prototype equation
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(1.1). Under appropriate assumptions on n2(x) and S(x), it may be proved
that wε, solution to (1.1), is bounded in the weighted L2 space L2(〈x〉1+δ dx),
for any δ > 0, uniformly in ε. For a fixed value of ε, such weighted estimates are
consequences of the work by Agmon, Hörmander, [Ag], [AH]. The fact that these
bounds are uniform in ε is a consequence of the recent (and optimal) estimates
established by B. Perthame and L. Vega in [PV1], [PV2] (where the weighted
L2 space are replaced by a more precise homogeneous Besov-like space). The
results in [PV1] and [PV2] actually need a virial condition of the type 2n2(x)+x·
∇xn2(x) ≥ c > 0, an inequality that implies both our transversality assumption
(H) page 35, and the non-trapping condition, i.e. the two hypothesis made
in the present paper. We also refer to the work by N. Burq [Bu], Gérard and
Martinez [GM], T. Jecko [J], as well as Wang and Zhang [WZ], for (not optimal)
bounds in a similar spirit. Under the weaker assumptions we make in the present
paper, a weaker bound may also be obtained as a consequence of our analysis.
In any case, once wε is seen to be bounded, it naturally possesses a weak limit
w = limwε in the appropriate space. The limit w clearly satisfies in a weak
sense the equation

(
1

2
∆x + n2(0)

)
w(x) = S(x). (1.11)

Unfortunately, equation (1.11) does not specify w = limwε in a unique way,
and it has to be supplemented with a radiation condition at infinity. In view
of the equation (1.1) satisfied by wε, it has been conjectured in [BCKP] and
[CPR] that limwε actually satisfies

limwε = wout,

where wout is the outgoing solution defined before. The present paper answers
the conjecture formulated in these works. It also gives geometric conditions for
the convergence lim wε = wout to hold.

As a final remark, let us mention that our anaylsis is purely time-dependent.
We wish to indicate that similar results than those in the present paper were re-
cently and independently obtained by Wang and Zhang [WZ] using a stationary
approach. Note that their analysis requires the stronger virial condition.

Our main theorem is the following

Main Theorem
Let wε satisfy iεαεw

ε(x) + 1
2∆xwε(x) + n2(εx)wε(x) = S(x), for some se-

quence αε > 0 such that αε → 0+ as ε → 0. Assume that the source term S
belongs to the Schwartz class S(Rd). Suppose also that the index of refraction
satisfies the following set of assumptions

• (smoothness, decay). There exists an exponent ρ > 0, and a positive
constant n2

∞ > 0 such that for any multi-index α ∈ N
d, there exists a

constant Cα > 0 with

∣∣∣∂α
x

(
n2(x) − n2

∞

) ∣∣∣ ≤ Cα 〈x〉−ρ−|α|. (1.12)

6



• (non-trapping condition). The trajectories associated with the Hamilto-
nian ξ2/2− n2(x) are not trapped at the zero energy. In other words, any
trajectory (X(t, x, ξ), Ξ(t, x, ξ)) solution to

∂

∂t
X(t, x, ξ) = Ξ(t, x, ξ), X(0, x, ξ) = x,

∂

∂t
Ξ(t, x, ξ) =

(
∇xn2

)
(X(t, x, ξ)) , Ξ(0, x, ξ) = ξ, (1.13)

with initial datum (x, ξ) such that ξ2/2− n2(x) = 0, is assumed to satisfy

|X(t, x, ξ)| → ∞, as |t| → ∞.

• (tranversality condition). The tranvsersality condition (H) page 35 (see
also (7.23) and (7.24)) on the trajectories starting from the origin x = 0,
with zero energy ξ2/2 = n2(0), is satisfied.

Then, we do have the following convergence, weakly, when tested against any
function φ ∈ S(Rd),

wε → wout.

First remark
Still referring to (H) page 35, or (7.23), (7.24)) for the precise statements, we
readily indicate that the transversality assumption (H) essentially requires that
the set

{(η, ξ, t) ∈ R
2d×]0,∞[ s.t. X(t, 0, ξ) = 0, Ξ(t, 0, ξ) = η, ξ2/2 = n2(0)}

is a smooth submanifold of R
2d+1, having a codimension > d + 2, a generic

asssumption. In other words, zero energy trajectories issued from the origin
and passing several times through the origin x = 0 should be “rare”.

Second remark
As we already mentionned, it is easily proved that the virial condition 2n2(x)+
x · ∇xn2(x) ≥ c > 0 implies both the non-trapping and the transversality con-
ditions. This observation relies on the identities ∂t

(
X(t, x, ξ)2/2

)
= X(t, x, ξ) ·

Ξ(t, x, ξ) and ∂t (X(t, x, ξ) · Ξ(t, x, ξ)) =
[
2n2(x) + x · ∇xn2(x)

]
|x=X(t,x,ξ) ≥

c > 0, where (X(t, x, ξ), Ξ(t, x, ξ) is any trajectory with zero energy (see section
6 for computations in this spirit).

In fact, the virial condition implies even more, namely that trajectories issued
from the origin with zero energy never come back to the origin. In other words,
the set involved in assumption (H) page 35 is simply void, and (H) is trivially
true under the virial condition. As the reader may easily check, such a situation
allows to considerably simplify the proof we give here: the tools developped in
sections 3, 4, 5, 6 are actually enough to make the complete analysis, and one
does not need to go into the detailed computations of section 7 in that case.

Last, the above Theorem asserts the convergence of wε: note in passing
that even the weak boundedness of wε under the sole above assumptions (i.e.
without the virial condition) is not a known result.

The above theorem is not only a local convergence result, valid for test
functions φ ∈ S. Indeed, by density of smooth functions in weighted L2 spaces,
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it readily implies the following immediate corollary. It states that, provided wε

is bounded in the natural weighted L2 space, the convergence also holds weakly
in this space. In other words, the convergence also holds globally.

Immediate corollary
With the notations of the main Theorem, assume that the source term S above
satisfies the weaker decay property

‖S‖B :=
∑

j∈Z

2j/2‖S‖L2(Cj) < ∞, (1.14)

where Cj denotes the annulus {2j ≤ |x| ≤ 2j+1} in R
d. Suppose also that the

index of refraction satisfies the smoothness condition of the main Theorem, with
the non-trapping and transversality assumptions replaced by the stronger

• (virial-like condition) 2
∑

j∈Z

sup
x∈Cj

(
x · ∇n2(x)

)
−

n2(x)
< 1. (1.15)

Then, we do have the convergence wε → wout, weakly, when tested against any
function φ such that ‖φ‖B < ∞,

Under the simpler virial condition 2n2(x)+x ·n2(x) ≥ c > 0, a similar result
holds with the space B replaced by the more usual weighted space L2

(
〈x〉1+δdx

)

(δ > 0 arbitrary). Here, we give a version where the decay (1.14) assumed on
the source S is the optimal one, and the above weak convergence holds in the
optimal space.

It is well known that the resolvent of the Helmholtz operator maps the
weighted L2 space L2

(
〈x〉1+δdx

)
to L2

(
〈x〉−1−δdx

)
for any δ > 0 ([Ag], [J],

[GM]). Agmon and Hörmander [AH] gave an optimal version in the constant
coefficients case: the resolvent of the Helmholtz operator sends the weighted L2

space B defined in (1.14) to the dual weighted space B∗ defined by

‖u‖B∗ := sup
j∈Z

2−j/2‖u‖L2(Cj). (1.16)

For non-constant coefficients, that are non-compact perturbations of constants,
Perthame and Vega in [PV1] and [PV2] established the optimal estimate in B-
B∗ under assumption (1.15). In our perspective, the assumption (1.15) is of
technical nature, and it may be replaced by any assumption ensuring that the
solution wε to (1.1) satisfies the uniform bound

‖wε‖B∗ ≤ Cd,n2 ‖S‖B, (1.17)

for some universal constant Cd,n2 that only depends on the dimension d ≥ 3
and the index n2.

Proof of the immediate Corollary
Under the virial-like assumption (1.15), it has been established in [PV1] that
estimate (1.17) holds true. Hence, by density of the Schwartz class in the space
B, one readily reduces the problem to the case when the source S and the test
function φ belong to S(Rd). The Main Theorem now allows to conclude.

Needless to say, the central assumptions needed for the theorem are the non-
trapping condition together with the transversality condition. Comments are

8



given below on the very meaning of the transversality condition (H) page 35
(i.e. (7.23), (7.24)), to which we refer.

To state the result very briefly, the heart of our proof lies in proving that un-
der the above assumptions, the propagator exp

(
iε−1t

(
−ε2∆x/2 − n2(x)

))
, or

its rescaled value exp
(
it
(
−∆x/2 − n2(εx)

))
, satisfy “similar” dispersive prop-

erties as the free Schrödinger operator exp
(
it
(
−∆x/2 − n2(0)

))
, uniformly in ε.

This in turn is proved upon distinguishing between small times, moderate times,
and very large times, each case leading to the use of different arguments and
techniques.

The remainder part of this paper is devoted to the proof of the main The-
orem. The proof being long and using many different tools, we first draw in
section 2 an outline of the proof, giving the main ideas and tools. We also
define the relevant mathematical objects to be used throughout the paper. The
proof itself is performed in the next sections 3 to 8. Examples and counterex-
amples to the Theorem are also proposed in the last section 9.

The main intermediate results are proposition 1, proposition 2, proposition 3,
together with the more difficult proposition 4 (that needs an Egorov Theorem
for large times stated in Lemma 5). The key (and most difficult) result is
proposition 7. The latter uses the tranversality condition mentioned before.

2 Preliminary Analysis: outline of the proof of

the Main Theorem

2.1 Outline of the proof

Let wε be the solution to iεαεw
ε + 1

2∆wε + n2(εx)wε = S (x) , with S ∈ S(Rd).
According to the statement of our main Theorem, we wish to study the asymp-
totic behaviour of wε as ε → 0, in a weak sense. Taking a test function
φ(x) ∈ S(Rd), and defining the duality product

〈wε, φ〉 :=

∫

Rd

wε(x)φ(x) dx,

we want to prove the convergence

〈wε, φ〉 → 〈wout, φ〉 as ε → 0.

where the outgoing solution of the (constant coefficient) Helmholtz equation
wout is defined in (1.5), (1.6) before.

First step: preliminary reduction - the time dependent approach
In order to prove the weak convergence 〈wε, φ〉 → 〈w, φ〉, we define the

rescaled function

uε(x) =
1

εd/2
wε
(x

ε

)
. (2.1)

It satisfies iεαεu
ε +ε2/2 ∆uε+n2(x)uε = 1/εd/2S (x/ε) =: Sε(x), where for any

function f(x) we use the short-hand notation

fε(x) =
1

εd/2
f
(x

ε

)
.
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Using now the function uε instead of wε, we observe the equality

〈wε, φ〉 = 〈uε, φε〉. (2.2)

This transforms the original problem into the question of computing the semi-
classical limit ε → 0 in the equation satisfied by uε. One sees in (2.2) that this
limit needs to be computed at the semiclassical scale (i.e. when tested upon a
smooth, concentrated function φε).

In order to do so, we compute uε in terms of the semiclassical resolvent(
iεαε + (ε2/2)∆ + n2(x)

)−1
. It is the integral over the whole time interval

[0, +∞[ of the propagator of the Schrödinger operator associated with ε2∆/2 +
n2(x). In other words we write

uε =

(
iεαε +

ε2

2
∆ + n2(x)

)−1

Sε

= i

∫ +∞

0

exp

(
it

(
iεαε +

ε2

2
∆ + n2(x)

))
Sε dt. (2.3)

Now, defining the semi-classical propagator

Uε(t) := exp

(
i
t

ε

(
ε2

2
∆ + n2(x)

))
= exp

(
−i

t

ε
Hε

)
, (2.4)

associated with the semi-classical Schrödinger operator

Hε := −ε2

2
∆ − n2(x), (2.5)

we arrive at the final formula

〈wε, φ〉 = 〈uε, φε〉 =
i

ε

∫ +∞

0

e−αεt 〈Uε(t)Sε, φε〉 dt. (2.6)

Our strategy is to pass to the limit in this very integral.

Second step: passing to the limit in the time integral (2.6)
In order to pass to the limit ε → 0 in (2.6), we need to analyze the contribu-

tions of various time scales in the corresponding time integral. More precisely,
we choose for the whole subsequent analysis two (large) cutoff parameters in
time, denoted by T0 and T1 , and we analyze the contributions to the time
integral (2.6) that are due to the three regions

0 ≤ t ≤ T0 ε, T0 ε ≤ t ≤ T1 , and t ≥ T1 .

We also choose a (small) exponent κ > 0, and we occasionally treat separately
the contributions of very large times

t ≥ ε−κ.

Associated with these truncations, we take once and for all a smooth cutoff
function χ defined on R, such that

χ(z) ≡ 1 when |z| ≤ 1/2, χ(z) ≡ 0 when |z| ≥ 1,

χ(z) ≥ 0 for any z. (2.7)
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To be complete, there remains to finally choose a (small) cutoff parameter in
energy δ > 0. Accordingly we distinguish in the L2 scalar product 〈Uε(t)Sε, φε〉
between energies close to (or far from) the zero energy, which is critical for our
problem. In other words, we set the self-adjoint operator

χδ (Hε) := χ

(
Hε

δ

)
.

This object is perfectly well defined using standard functional calculus for self-
adjoint operators. We decompose

〈Uε(t)Sε, φε〉 =
〈
Uε(t)χδ(Hε)Sε, φε

〉
+
〈
Uε(t) (1 − χδ) (Hε)Sε, φε

〉
.

Following the above described decomposition of times and energies, we study
each of the subsequent terms:

• The contribution of small times is

1

ε

∫ 2T0 ε

0

χ

(
t

T0 ε

)
e−αεt 〈Uε(t)Sε, φε〉 dt.

We prove in section 3 that this term actually gives the dominant contribution in
(2.6), provided the cutoff parameter T0 is taken large enough. This (easy) anal-
ysis essentially boils down to manipulations on the time dependent Schrödinger
operator i∂t + ∆x/2 + n2(εx), for finite times t of the order t ∼ T0 at most.

• The contribution of moderate and large times, away from the zero
energy, is

1

ε

∫ +∞

T0 ε

(1 − χ)

(
t

T0 ε

)
e−αεt

〈
Uε(t) (1 − χδ) (Hε)Sε, φε

〉
dt.

We prove in section 4 below that this term has a vanishing contribution, provided
T0 is large enough. This easy result relies on a non-stationnary phase argument
in time, recalling that Uε(t) = exp(−itHε/ε) and the energy Hε is larger than
δ > 0.

• The contribution of very large times, close to the zero energy is

1

ε

∫ +∞

ε−κ

e−αεt
〈
Uε(t)χδ (Hε)Sε, φε

〉
dt.

We prove in section 5 that this term has a vanishing contribution as ε → 0.
To do so, we use results proved by X.P. Wang [Wa]: these essentially assert
that the operator 〈x〉−s Uε(t)χδ(Hε) 〈x〉−s has the natural size 〈t〉−s as time
goes to infinity, provided the critical zero energy is non-trapping. Roughly,
the semiclassical operator Uε(t)χδ(Hε) sends rays initially close to the origin,
at a distance of the order t from the origin, when the energy is non trapping.
Hence the above scalar product involves both a function Uε(t)χδ (Hε)Sε that is
localized at a distance t from the origin, and a function φε that is localized at
the origin. This makes the corresponding contribution vanish.

The most difficult terms are the last two that we describe now.
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• The contribution of large times, close to the zero energy is

1

ε

∫ ε−κ

T1

e−αεt
〈
Uε(t)χδ (Hε)Sε, φε

〉
dt.

The treatment of this term is performed in section 6. It is similar in spirit to
(though much harder than) the analysis performed in the previous term: using
only information on the localization properties of Uε(t)χδ (Hε)Sε and φε, we
prove that this term has a vanishing contribution, provided T1 is large enough.
To do so, we use ideas of Bouzouina and Robert [BR], to establish a version
of the Egorov theorem that holds true for polynomially large times in ε. We
deduce that for any time T1 ≤ t ≤ ε−κ, the term Uε(t)χδ (Hε)Sε is localized
close to the value at time t of a trajectory shot from the origin. The non-trapping
assumption then says that for T1 large enough, Uε(t)χδ (Hε) Sε is localized away
from the origin. This makes the scalar product 〈Uε(t)χδ (Hε)Sε, φε〉 vanish
asymptotically.

• The contribution of moderate times close to the zero energy is

1

ε

∫ T1

T0 ε

(1 − χ)

(
t

T0 ε

)
e−αεt

〈
Uε(t)χδ (Hε) Sε, φε

〉
dt.

This is the most difficult term: contrary to all preceding terms, it cannot be
analyzed using only geometric informations on the microlocal support of the
relevant functions. Indeed, keeping in mind that the function Uε(t)χδ (Hε)Sε is
localized on a trajectory initially shot from the origin, whereas φε stays at the
origin, it is clear that for times T0 ε ≤ t ≤ T1 , the support of Uε(t)χδ (Hε)Sε and
φε may intersect, due to trajectories passing several times at the origin. This
might create a dangerous accumulation of energy at this point. For that reason,
we need a precise evaluation of the semi-classical propagator Uε(t), for times up
to the order t ∼ T1 . This is done using the elegant wave-packet approach of M.
Combescure and D. Robert [CRo] (see also [Ro], and the nice lecture [Ro2]):
projecting Sε over the standard gaussian wave packets, we can compute Uε(t)Sε

in a quite explicit fashion, with the help of classical quantities like, typically,
the linearized flow of the Hamiltonian ξ2/2 − n2(x). This gives us an integral
representation with a complex valued phase function. Then, one needs to insert
a last (small) cutoff parameter in time, denoted θ > 0. For small times, using
the above mentioned representation formula, we first prove that the term

1

ε

∫ θ

T0 ε

(1 − χ)

(
t

T0 ε

)
e−αεt

〈
Uε(t)χδ (Hε)Sε, φε

〉
dt,

vanishes asymptotically, provided θ is small, and T0 is large enough. To do so,
we use that for small enough θ, the propagator Uε(t) acting on Sε resembles
the free Schrödinger operator exp

(
it[∆x/2 + n2(0)]

)
. In terms of trajectories,

on this time scale, we use that Uε(t)Sε is localized around a ray that leaves
the origin at speed n(0). Then, for later times, we prove that the remaining
contribution

1

ε

∫ T1

θ

e−αεt
〈
Uε(t)χδ (Hε)Sε, φε

〉
dt,

is small. This uses stationary phase formulae in the spirit of [CRR], and this
is where the transversality assumption (H) page 35 enters: trajectories passing
several times at the origin do not accumulate to much energy at this point.
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We end up this sketch of proof with a figure illustrating the typical trajectory
(and the associated cutoffs in time) that our analysis has to deal with.

ε−κ

spreading
increases with time

trajectory in the constant
coefficients case

Uε (t) S ε

Sε

T1time 

ϕε

T0 εtime 

point X(t) of the trajectory
at time 

typical spreading 

time

ε
t

time θ

initial wave function     shot from x=0

support of the test function

2.2 Notations used in the proof

Throughout this article, we will make use of the following notations.

• Semi-classical quantities
The semi-classical Hamiltonian Hε and its associated propagator Uε(t) have
already been defined. We also need to use the Weyl quantization. For a symbol
a(x, ξ) defined on R

2d, its Weyl quantization is

(Opw
ε (a)f) (x) :=

1

(2πε)d

∫

R2d

ei (x−y)·ξ
ε a

(
x + y

2
, ξ

)
f(y) dy dξ.

Throughout the paper, we use the standard semi-classical symbolic calculus,
and refer, e.g., to [DS] or [Ma]. In particular, for a weight m(x, ξ), we use
symbols a(x, ξ) in the class S(m), i.e. symbols such that for any multi-index α,
there exists a constant Cα so that

|∂αa(x, ξ)| ≤ Cαm(x, ξ), ∀(x, ξ) ∈ R
2d.

The notation a ∼ ∑
εkak means that for any N and any α, there exists a

constant CN,α such that

∣∣∣∣∣∂
α

(
a(x, ξ) −

N∑

k=0

εkak(x, ξ)

) ∣∣∣∣∣ ≤ CN,α εN+1m(x, ξ), ∀(x, ξ) ∈ R
2d.

• Classical quantitities
Associated with the Hamiltonian H(x, ξ) = ξ2/2−n2(x), we denote the Hamil-
tonian flow

Φ(t, x, ξ) = (X(t, x, ξ) , Ξ(t, x, ξ)),
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defined as the solution of the Hamilton equations

∂

∂t
X(t, x, ξ) = Ξ(t, x, ξ), X(0, x, ξ) = x,

∂

∂t
Ξ(t, x, ξ) =

(
∇xn2

)
(X(t, x, ξ)) , Ξ(0, x, ξ) = ξ. (2.8)

These may be written shortly

∂

∂t
Φ(t, x, ξ) = J

DH

D(x, ξ)
(Φ(t, x, ξ)) , (2.9)

where J is the standard symplectic matrix

J =

(
0 Id

−Id 0

)
. (2.10)

The linearized flow of Φ is denoted by

F (t, x, ξ) :=
DΦ(t, x, ξ)

D(x, ξ)
. (2.11)

It may be decomposed into

F (t, x, ξ) =

(
A(t, x, ξ) B(t, x, ξ)
C(t, x, ξ) D(t, x, ξ)

)
, (2.12)

where the matrices A(t), B(t), C(t), and D(t) are, by definition

A(t, x, ξ) =
DX(t, x, ξ)

Dx
, B(t, x, ξ) =

DX(t, x, ξ)

Dξ
,

C(t, x, ξ) =
DΞ(t, x, ξ)

Dx
, D(t, x, ξ) =

DΞ(t, x, ξ)

Dξ
.

Upon linearizing (2.8), the matrices A(t), B(t), C(t), and D(t) clearly satisfy
the differential system

∂

∂t
A(t, x, ξ) = C(t, x, ξ), A(0, x, ξ) = Id,

∂

∂t
C(t, x, ξ) =

D2n2

Dx2
(X(t, x, ξ)) A(t, x, ξ), C(0, x, ξ) = 0, (2.13)

together with

∂

∂t
B(t, x, ξ) = D(t, x, ξ), B(0, x, ξ) = 0,

∂

∂t
D(t, x, ξ) =

D2n2

Dx2
(X(t, x, ξ)) B(t, x, ξ), D(0, x, ξ) = Id. (2.14)

In short, one may write as well

∂

∂t
F (t, x, ξ) = J

D2H

D(x, ξ)2
(Φ(t, x, ξ)) F (t, x, ξ). (2.15)

A last remark is in order. Indeed, it is a standard fact to observe that the matrix
F (t, x, ξ) is a symplectic matrix, in that

F (t, x, ξ)TJF (t, x, ξ) = J, (2.16)
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for any (t, x, ξ). Here, the exponent T denotes transposition. Decomposing F (t)
as in (2.12), this gives the relations

A(t)TC(t) = C(t)TA(t), B(t)TD(t) = D(t)TB(t),

A(t)TD(t) − C(t)TB(t) = Id. (2.17)

These can be put in the following useful form

(A(t) + iB(t))
T

(C(t) + iD(t)) = (C(t) + iD(t))
T

(A(t) + iB(t))

(C(t) + iD(t))
T

(A(t) − iB(t)) (2.18)

− (A(t) + iB(t))T (C(t) − iD(t)) = 2iId.

These relations will be used in section 7.

3 Small time contribution: the case 0 ≤ t ≤ T0 ε

In this section, we prove the following

Proposition 1. We use the notations of section 2. The refraction index n2 is
assumed bounded and continuous. The data S and φ are supposed to belong to
S(Rd). Then, the following holds:

(i) for any fixed value of T0 , we have the asymptotics

i

ε

∫ 2T0 ε

0

χ

(
t

T0 ε

)
e−αεt 〈Uε(t)Sε, φε〉 dt

−→
ε→0

i

∫ 2T0

0

χ

(
t

T0

)
〈exp

(
it(∆x/2 + n2(0))

)
S, φ〉 dt. (3.1)

(ii) Besides, there exists a universal constant Cd depending only on the dimen-
sion, such that the right-hand-side of (3.1) satisfies

∣∣∣∣∣i
∫ 2T0

0

χ

(
t

T0

)
〈exp

(
it(∆x/2 + n2(0))

)
S, φ〉 dt − 〈wout, φ〉

∣∣∣∣∣

≤ Cd T0
−d/2+1 −→

T0 →∞
0. (3.2)

Proof of proposition 1
Part (i)
In order to recover the limiting value announced in (3.1), we first perform the
inverse scaling that leads from wε to uε (see (2.1)). We rescale time t by a factor
ε as well. This gives

1

ε

∫ +∞

0

χ

(
t

T0 ε

)
e−αεt 〈Uε(t)Sε, φε〉 dt

=

∫ +∞

0

χ

(
t

T0

)
e−εαεt 〈Uε(ε t)Sε, φε〉 dt

=

∫ +∞

0

χ

(
t

T0

)
e−εαεt 〈exp

(
it
(
∆/2 + n2(εx)

))
S, φ〉 dt.
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We now let

wε(t, x) := exp
(
it
(
∆/2 + n2(εx)

))
S(x).

The function wε(t, x) is bounded in L∞
(
R; L2

(
R

d
))

, and it satisfies in the
distribution sense

i∂tw
ε(t, x) = −1

2
∆xw

ε(t, x) − n2(εx)wε, wε(0, x) = S(x).

These informations are enough to deduce that there exists a function w(t, x) ∈
L∞

(
R; L2

(
R

d
))

such that a subsequence of wε(t, x) goes, as ε → 0, to w(t, x)

in L∞
(
R; L2

(
R

d
))

- weak∗. On the more, the limit w(t, x) obviously satisfies
in the distribution sense

i∂tw(t, x) = −1

2
∆xw(t, x) − n2(0)w, w(0, x) = S(x).

In other words
w(t) = exp

(
it
(
∆/2 + n2(0)

))
S(x).

Hence, by uniqueness of the limit, the whole sequence wε(t, x) goes to w(t, x)
in L∞

(
R; L2

(
R

d
))

-weak∗. This proves (3.1) and part (i) of the proposition.

Part (ii)
This part is easy and relies on the standard dispersive properties of the free
Schrödinger equation. Indeed, we have

∣∣∣〈exp
(
it
(
∆x/2 + n2(0)

))
S, φ〉

∣∣∣

≤
∥∥∥ exp

(
it
(
∆x/2 + n2(0)

))
S
∥∥∥

L∞

‖φ‖L1

≤ Cd t−d/2 ‖S‖L1 ‖φ‖L1 ,

(recall that S and φ are assumed smooth enough to have finite L1 norm), for
some constant Cd > 0 that only depends upon the dimension d. This, together
with the integrability of the function t−d/2 at infinity when d ≥ 3, ends the
proof of (3.2).

4 Contribution of moderate and large times, a-

way from the zero energy

In this section we prove the (easy)

Proposition 2. We use the notations of section 2. The index n2 is assumed
to have the symbolic behaviour (1.12). The data S and φ are supposed to belong
to L2(Rd). Then, there exists a constant Cδ > 0, which depends on the cutoff
parameter δ, such that for any ε ≤ 1, and T0 ≥ 1, we have

∣∣∣∣∣
1

ε

∫ +∞

T0 ε

(1 − χ)

(
t

T0 ε

)
e−αεt

〈
(1 − χδ (Hε))Uε(t)Sε, φε

〉
dt

∣∣∣∣∣

≤ Cδ

(
1

T0
+ α2

ε

)
. (4.1)
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Proof of proposition 2
The proof relies on a simple non-stationary phase argument. Indeed, this term
has the value

1

ε

∫ +∞

0

(1 − χ)

(
t

T0 ε

)
e−αεt

〈
(1 − χδ (Hε)) exp

(
−i

t

ε
Hε

)
Sε, φε

〉
dt.

Hence, making the natural integrations by parts in time, we recover the value

ε2

∫ +∞

0

∂3

∂t3

(
(1 − χ)

(
t

T0 ε

)
e−αεt

)

〈
(1 − χδ (Hε))

(−iHε)3
exp

(
−i

t

ε
Hε

)
Sε, φε

〉
dt.

A direct inspection shows that this is bounded by

C ε2 δ−3 ‖S‖L2 ‖φ‖L2

∫ +∞

0

∣∣∣∣∣
∂3

∂t3

(
(1 − χ)

(
t

T0 ε

)
e−αεt

) ∣∣∣∣∣ dt

≤ C ε2 δ−3 ‖χ‖W 3,∞

(
1

T0
2ε2

+
1

T0 ε
+ α2

ε + α2
ε

)
.

5 Contribution of large times, close to the zero

energy: the case t ≥ ε
−κ

In this section we prove the following

Proposition 3. We use the notations of section 2. The index n2 is assumed
to have the symbolic behaviour (1.12). The Hamiltonian flow associated with
ξ2/2−n2(x) is assumed non-trapping at the zero energy level. Finally, the data
S and φ are supposed to belong to S(Rd). Then, for any δ > 0 small enough,
and for any κ > 0, there exists a constant Cκ,δ depending on κ and δ, so that

∣∣∣∣∣
1

ε

∫ +∞

ε−κ

e−αεt
〈
Uε(t)χδ (Hε)Sε, φε

〉
dt

∣∣∣∣∣ ≤ Cκ,δ ε. (5.1)

The proof relies on the dispersive properties of the semi-classical propagator
Uε(t), inherited from the ones of the classical flow Φ(t). More quantitatively, we
use in this section a Theorem by X.P. Wang [Wa], that we now state. Our index
of refraction n2(x) is such that n2(x) lies in C∞(Rd), and it has the symbolic
behaviour

n2(x) = n2
∞ − V (x), with |∂αV (x)| ≤ 〈x〉−ρ−|α|

(the case 0 < ρ ≤ 1 is the long-range case, and the case ρ > 1 is the short-range
case, in the terminology of quantum scattering). On the more, the trajectories
of the classical flow at the zero energy (i.e. on the set {(x, ξ) ∈ R

2d s.t. ξ2/2−
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n2(x) = 0}) are assumed non-trapped. It is known [DG] that this non-trapping
behaviour is actually an open property, in that

there exists a δ0 > 0 such that for any energy E

satisfying |E| ≤ δ0, the trajectories of the classical flow (5.2)

at the energy E are non-trapping as well.

Under these circumstances, it has been proved in [Wa] that for any real s > 0,
and for any η > 0, the following weighted estimate holds true,

∀t ∈ R, ‖〈x〉−sUε(t)χδ(Hε)f‖L2 ≤ Cδ,η,s

〈t〉s−η
‖〈x〉sf(x)‖L2 , (5.3)

provided the cutoff in energy δ satisfies δ ≤ δ0, i.e. provided we are only looking
at trajectories having a non-trapping energy. This inequality holds for any test
function f , and for some constant Cδ,η,s depending only on δ, η and s. In the
short-range case (ρ > 1), one may even take η = 0 in the above estimate. Note
that [Wa] actually proves more: in some sense, the non-trapping behaviour of
the classical flow is equivalent to the time decay (5.3). We refer to the original
article for details. We are now ready to give the

Proof of proposition 3
Taking δ ≤ δ0, we estimate, using (5.3),

1

ε

∣∣∣∣∣

∫ +∞

ε−κ

e−αεt 〈χδ (Hε)Uε(t)Sε, φε〉 dt

∣∣∣∣∣

≤ 1

ε

∫ +∞

ε−κ

‖〈x〉−sUε(t)χδ(Hε)Sε‖L2 ‖〈x〉sφε‖L2 dt

≤ 1

ε
‖〈x〉sSε(x)‖L2 ‖〈x〉sφε‖L2

∫ +∞

ε−κ

Cδ,η,s

〈t〉s−η
dt

≤ Cδ,η,s εκ(s−η−1)−1 ‖〈x〉sSε(x)‖L2 ‖〈x〉sφε‖L2

Hence, taking s large enough, and η small enough, e.g. s = 2 + 2/κ, η = 1, we
obtain an upper bound of the size

Cκ,δ ε ‖〈x〉sS(x)‖L2 ‖〈x〉sφ‖L2 .

Here we used the easy fact that ‖〈x〉sfε(x)‖L2 ≤ ‖〈x〉sf(x)‖L2 , when ε ≤ 1,
together with ‖〈x〉sS(x)‖L2 < ∞, and similarly for φ.

6 Contribution of large times, close to the zero

energy: the case T1 ≤ t ≤ ε
−κ

To complete the analysis of the contribution of “large times” and “small ener-
gies” in (2.6) that we begun in section 5, there remains to estimate the term

1

ε

∫ ε−κ

T1

(1 − χ)

(
t

T1

)
e−αεt 〈χδ (Hε) Uε(t)Sε, φε〉 dt. (6.1)

In this section, we prove the
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Proposition 4. We use the notations of section 2. The index n2 is assumed
to have the symbolic behaviour (1.12) with n2

∞ > 04. The Hamiltonian flow
associated with ξ2/2−n2(x) is assumed non-trapping at the zero energy. Finally,
the data S and φ are supposed to belong to S(Rd). Then, for δ > 0 small enough,
there exists a T1 (δ) depending on δ such that for any T1 ≥ T1 (δ), we have for
κ small enough,

∣∣∣∣∣
1

ε

∫ ε−κ

T1

(1 − χ)

(
t

T1

)
e−αεt 〈χδ (Hε)Uε(t)Sε, φε〉 dt

∣∣∣∣∣
≤ Cκ,δ ε, as ε → 0, (6.2)

for some constant Cκ,δ that depends upon κ and δ.

The idea of proof is the following: the functions Sε and φε are microlocally
supported close to points (x0, ξ0) ∈ R

2d such that x0 = 0 (due to the concen-
tration of both functions close to the origin as ε → 0). On the more, using
the Egorov Theorem, one may think of the time evolved function Uε(t)Sε as
being microlocally supported close to points (X(t; x0, ξ0), Ξ(t; x0, ξ0)) that are
trajectories of the classical flow, with initial data (x0, ξ0) such that x0 = 0.
Using the non-trapping assumption on the classical flow, we see that for large
times t ≥ T1 with T1 large enough, the trajectory X(t; x0, ξ0) with x0 = 0 is
far away from the origin. Hence the microlocal support of Uε(t)Sε and φε do
not intersect, and the factor (6.1) should be arbitrary small in ε as ε → 0.

The difficulty in making this last statement rigorous lies in the fact that we
need to use the Egorov Theorem up to (polynomially) large times of the order
t ∼ ε−κ. This difficulty is solved in Lemma 5 below. Indeed, upon adapting a
recent result of Bouzouina and Robert [BR] we give remainder estimates in the
Egorov Theorem that hold up to polynomially large times (logarithmic times
are obtained in the context of [BR]). This is enough to conclude.

6.1 Proof of proposition 4

The proof is given in several steps.

First step: Preliminary reduction
In this step we quantify the fact that the functions involved in the scalar

product in (6.2) are microlocalized close to the zero energy ξ2/2 = n2(x) (in
frequency) and close to the origin x = 0 (in space). To do so, we simply write,
using the fact that S and φ belong to S(Rd),

φε(x) = χδ(|x|)φε(x) + Oδ(ε
∞) in L2(Rd),

and similarly for Sε. This means that for any integer N , there exists a CN,δ > 0
that depends on N and δ, such that ‖φε(x) − χδ(|x|)φε(x)‖L2(Rd) ≤ CNεN . As
a consequence, we may rewrite the contribution (6.1) we are interested in as

1

ε

∫ ε−κ

T1

(1 − χ)

(
t

T1

)
e−αεt 〈χδ(|x|)χδ (Hε)Uε(t)χδ(|x|)Sε, φε〉 dt

4The assumption n2
∞

is crucial, see Lemma 5 below. It ensures that the wave Uε(t)Sε

propagates with a uniformly non-zero speed, at infinity in time t.
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up to an Oδ(ε
∞). There remains to bound the above term by

≤ ‖Sε‖L2 ‖φε‖L2 × 1

ε

∫ ε−κ

T1

∥∥∥χδ (|x|)χδ (Hε)Uε(t)χδ (|x|)
∥∥∥
L(L2)

dt

≤ C

ε

∫ ε−κ

T1

∥∥∥χδ (|x|) χδ (Hε)Uε(t)χδ (|x|)
∥∥∥
L(L2)

dt , (6.3)

up to an Oδ(ε
∞). Our strategy is to now evaluate the operator norm under the

integral sign. This task is performed in the next two steps.

Second step: symbolic calculus
In view of (6.3), our analysis boils down to computing, for any T1 ≤ t ≤ ε−κ,
the operator norm

∥∥∥χδ (|x|)χδ (Hε) Uε(t)χδ (|x|)
∥∥∥

2

L(L2)
.

Expanding the square, this norm has the value
∥∥∥χδ (|x|) U∗

ε (t)χδ (Hε)χ2
δ (|x|)χδ (Hε) Uε(t)χδ (|x|)

∥∥∥
L(L2)

. (6.4)

Now, and for later convenience, we rewrite the above localizations in energy and
space, as microlocalisations in position and frequency.

Using the functional calculus for pseudodifferential operators of Helffer and
Robert [HR] (see also the lecture notes [DS] and [Ma]), there exists a symbol
Xδ(x, ξ) such that

χδ (Hε) = Opw
ε (Xδ) + O(ε∞) in L(L2).

The symbol Xδ(x, ξ) is given by a formal expansion

Xδ(x, ξ) ∼
∑

k≥0

εkXδ
(k)(x, ξ), (6.5)

where the expansion (6.5) holds in the class of symbols that are bounded to-
gether with all their derivatives. Furthermore, the principal symbol of Xδ is
computed through the natural equality

Xδ
(0)(x, ξ) = χδ

(
ξ2

2
− n2(x)

)
.

Finally, the explicit formulae in [DS] give at any order k ≥ 0 the following

information on the support of the symbols Xδ
(k),

supp Xδ
(k) ⊂ {|ξ2/2 − n2(x)| ≤ δ}.

Hence (6.4) becomes, using standard symbolic calculus,
∥∥∥χδ (|x|) U∗

ε (t)
[
Opw

ε (Xδ(x, ξ) ♯ χ2
δ (|x|) ♯Xδ(x, ξ))

]
Uε(t)χδ (|x|)

∥∥∥
L(L2)

,(6.6)

up to an Oδ(ε
∞) (Here we used the uniform bound ‖Uε(t)‖L(L2) ≤ 1). Let

us define for convenience the following short-hand notation for the symbol in
brackets in (6.6):

bδ(x, ξ) := Xδ(x, ξ) ♯ χ2
δ (|x|) ♯Xδ(x, ξ).
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The only information we need in the sequel is that bδ admits an asymptotic

expansion bδ =
∑

k≥0 εkb
(k)
δ , where each b

(k)
δ has support

supp bδ
(k) ⊂ {|x| ≤ δ} ∩ {|ξ2/2 − n2(x)| ≤ δ} =: E(δ).

This serves as a definition of the (compact) set E(δ) in phase space. In the
sequel, we summarize these informations in the following abuse of notation

supp bδ ⊂ E(δ). (6.7)

The remainder part of our analysis is devoted to estimating
∥∥∥χδ (|x|) U∗

ε (t)Opw
ε (bδ(x, ξ))Uε(t)χδ (|x|)

∥∥∥
L(L2)

,

and the hard part of the proof lies in establishing an “Egorov theorem for large
times”, to compute the conjugation U∗

ε (t)Opw
ε (bδ(x, ξ))Uε(t) in (6.4).

Third step: an Egorov theorem valid for large times - End of the proof
Now we claim the following

Lemma 5. We assume that the refraction index has the symbolic behaviour
(1.12) with n2

∞ > 05. We also assume that the zero energy is non-trapping for
the flow. Take the cutoff parameter in energy δ small enough. Then,

(i) Let Φ(t, x, ξ) be the classical flow associated with the Hamiltonian ξ2/2−
n2(x). Let F (t, x, ξ) be the linearized flow. For any multi-index α, and for any
(small) parameter η > 0, there exists a constant Cδ,|α|,η such that for any initial
datum (x, ξ) ∈ E(δ) = {|x| ≤ δ} ∩ {|ξ2/2 − n2(x)| ≤ δ}, we have

∀t ∈ R,

∣∣∣∣∣
∂αF (t, x, ξ)

∂(x, ξ)α

∣∣∣∣∣ ≤ Cδ,|α|,η 〈t〉(1+η)(1+|α|)+2|α|. (6.8)

In other words, the linearized flow has at most polynomial growth with time.

(ii) As a consequence, for any time t, there exists a time-dependent symbol

bδ(t, x, ξ) ∼
∑

k≥0

εkbδ
(k)(t, x, ξ),

such that the following holds: there exists a number cδ > 0 such that for any
N > 0, there exists a constant Cδ,N such that

∥∥∥∥∥U
∗
ε (t)Opw

ε (bδ)Uε(t) − Opw
ε

(
N∑

k=0

εkbδ
(k)

)∥∥∥∥∥
L(L2)

≤ Cδ,N εN+1 〈t〉cδN2

. (6.9)

Again, the error grows polynomially with time, and we have some control on the
dependence of the estimates with the truncation parameter N .

(iii) Moreover, we have the natural formulae

bδ
(0)(t, x, ξ) = bδ (Φ(t, x, ξ)) ,

and, for any k ≥ 0 we have the information on the support

supp bδ
(k)(t, x, ξ) ⊂ {(x, ξ) ∈ R

2d s.t. Φ(t, x, ξ) ∈ E(δ)}.
5The assumption n2

∞
> 0 is crucial, see (6.11)
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We postpone the proof of Lemma 5 to paragraph 6.2 below. We first draw its
consequences in our perspective.

Leaving N as a free parameter for the moment, we obtain

∥∥∥χδ (|x|) U∗
ε (t)Opw

ε (bδ(x, ξ))Uε(t)χδ (|x|)
∥∥∥
L(L2)

=
∥∥∥χδ (|x|) Opw

ε

(
N∑

k=0

εkbδ
(k)(t, x, ξ)

)
χδ (|x|)

∥∥∥
L(L2)

+ Oδ

(
εN+1 〈t〉cδN2

)

=
∥∥∥Opw

ε

(
χδ (|x|) ♯

(
N∑

k=0

εkbδ
(k)(t, x, ξ)

)
♯ χδ (|x|)

)∥∥∥
L(L2)

+ Oδ

(
εN+1 〈t〉cδN2

)
.

Now, part (iii) of Lemma 5 and standard symbolic calculus indicate that the
above symbol has support6 in

N
∪

k=0

(
supp χδ (|x|) ∩ supp bδ

(k)(t, x, ξ)
)

⊂ {(x, ξ) s.t. |x| ≤ δ, and Φ(t, x, ξ) ∈ E(δ)}.

The non-trapping condition (and more precisely estimate (6.10) below) allows
in turn to deduce that this set is void for t large enough. Hence, up to taking a
large value of T1 , T1 ≥ T1 (δ) for some T1 (δ), we eventually obtain in (6.3),

1

ε

∫ ε−κ

T1

∥∥∥χδ (|x|) χδ (Hε)Uε(t)χδ (|x|)
∥∥∥
L(L2)

dt

≤ 1

ε

∫ ε−κ

T1

Oδ

(
ε(N+1)/2〈t〉cδN2/2

)
dt ≤ Oδ

(
ε(N−1)/2−cδκN2/2

)
≤ Oκ,δ(ε),

for κ small enough (and N = 4 will do). This ends the proof of proposition 4.

6.2 Proof of Lemma 5: an Egorov theorem for polynomi-

ally large times

In view of the above proof, we are left with the task of proving the large time
Egorov theorem of Lemma 5. To do so, we follow here closely ideas developped
in [BR] in a slightly different context. Part (iii) of the Lemma is proved in [BR],
so we will skip this aspect. The implication (i) ⇒ (ii) in Lemma 5, which we
prove below for completeness, is also essentially proved in [BR]. Our main task
in the sequel turns out to be the proof part (i) of the Lemma.

The proof is given in several steps.

First step: estimates on the flow Φ(t, x, ξ)

6we make here the same abuse of notation than in (6.7).
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In this step, we prove that for small enough a δ, there is a time T (δ), depending
on δ, such that for any initial datum (x, ξ) of phase-space in the set E(δ) =
{|x| ≤ δ} ∩ {|ξ2/2 − n2(x)| ≤ δ} (see 6.7)), one has

∀t ≥ T (δ), |X(t, x, ξ)| ≥ Cδ t, (6.10)

for some constant Cδ > 0 that depends on δ, that is however independent of both
time t and the initial point (x, ξ) under consideration. The proof is standard
and uses the information n2

∞ > 0.
First, the non-trapping condition implies that for any large number R′ > 0,

and for any initial point (x, ξ) ∈ E(δ), there exists a time T (R′, x, ξ) such that

∀t ≥ T (R′, x, ξ), |X(t, x, ξ)| ≥ R′.

By continuous dependence of the flow X(t, x, ξ) with respect to the initial data
(x, ξ), and compactness of the set E(δ), there is a time T (R′, δ), that now
depends upon R′ and δ only, such that for any initial point (x, ξ) ∈ E(δ), there
holds

∀t ≥ T (R′), |X(t, x, ξ)| ≥ R′.

In other words, the trajectory X(t, x, ξ) goes to infinity as time goes to infinity,
uniformly with respect to the initial datum (x, ξ) ∈ E(δ).

Second, we get estimates for the standard “escape function” of quantum and
classical scattering, namely the function X(t) · Ξ(t). We compute

∂

∂t
(X(t, x, ξ) · Ξ(t, x, ξ)) = 2

(
Ξ2(t, x, ξ)

2
− n2 (X(t, x, ξ))

)

+ 2n2 (X(t, x, ξ)) + X(t, x, ξ) · ∇n2 (X(t, x, ξ))

= 2

(
ξ2

2
− n2(x)

)
+ 2n2 (X(t, x, ξ)) + X(t, x, ξ) · ∇n2 (X(t, x, ξ))

(thanks to the conservation of energy)

−→
t→∞

2

(
ξ2

2
− n2(x)

)
+ 2n2

∞,

uniformly with respect to the initial datum (x, ξ) ∈ E(δ). Hence, using the fact
that n2

∞ > 0, and taking a possibly smaller value of the cutoff parameter δ, we
obtain the existence of a constant Cδ > 0, and another time T (δ), such that

∀t ≥ T (δ), X(t, x, ξ) · Ξ(t, x, ξ) ≥ Cδ t. (6.11)

Using the fact that ∂
∂t

(
1
2 X2(t, x, ξ)

)
= X(t, x, ξ) · Ξ(t, x, ξ), we deduce the

desired lower bound

∀t ≥ T (δ),
1

2

(
X2(t, x, ξ) − X2(T (δ), x, ξ)

)
≥ Cδ

t2

2
.

Second step: estimates on the linearized flow F (t, x, ξ).
One first proves the estimate (6.8) in the case α = β = 0. By its very definition
(2.11), the linearized flow

F (t, x, ξ) =

(
A(t, x, ξ) B(t, x, ξ)
C(t, x, ξ) D(t, x, ξ)

)
.
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satisfies (see (2.13), (2.14)) the differential system

∂

∂t
A(t, x, ξ) = C(t, x, ξ), A(0, x, ξ) = Id,

∂

∂t
C(t, x, ξ) = D2n2 (X(t, x, ξ)) A(t, x, ξ), C(0, x, ξ) = 0, (6.12)

together with

∂

∂t
B(t, x, ξ) = D(t, x, ξ), B(0, x, ξ) = 0,

∂

∂t
D(t, x, ξ) = D2n2 (X(t, x, ξ)) B(t, x, ξ), D(0, x, ξ) = Id. (6.13)

Here, the notation D2n2(x) refers to the Hessian of the function n2(x) in the
variable x. Due to the assumption (1.12) on the behaviour of n2(x) at infinity,
we readily have

|D2n2(x)| ≤ C 〈x〉−ρ−2,

for some constant C > 0, independent of x. This, together with the previous
bound (6.10) on the behaviour of the flow X(t, x, ξ) at infinity in time, gives
the estimate

∣∣D2n2 (X(t, x, ξ))
∣∣ ≤ C0 〈t〉−ρ−2, (6.14)

for some constant C0 > 0 which is independent of time t ≥ 0, and of the point
(x, ξ) in phase-space. We are thus in position to estimate A(t) and C(t) using
(6.12). Integrating (6.12) in time, and setting

ε(t) := |D2n2 (X(t, x, ξ)) | (6.15)

for convenience, we obtain (dropping the dependence on (x, ξ) of the various
functions),

|A(t) − Id| ≤
∫ t

0

(t − s) ε(s) |A(s) − Id| ds +

∫ t

0

(t − s) ε(s) ds, (6.16)

|C(t)| ≤
∫ t

0

ε(s) |A(s)| ds. (6.17)

Choose now a constant C∗, and define the time t∗ as

t∗ := sup{t ≥ 0 s.t. |A(t) − Id| ≤ C∗〈t〉1+η}.

We prove that t∗ = +∞, provided C∗ is large enough. Indeed, for any time
t ≤ t∗, using (6.16) together with the decay (6.14), we have

|A(t) − Id| ≤ C0C∗

∫ t

0

(t − s)〈s〉−ρ−1+η ds ≤ C0C∗ t

∫ t

0

〈s〉−ρ−1+η ds

≤ C0C∗Cη t

(for some constant Cη > 0, provided η > 0 satisfies η < ρ/2 )

< C∗ 〈t〉1+η

(provided t is large enough, t ≥ T (C0, Cη), for some T (C0, Cη)

that only depends on C0 and Cη).
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On the other hand, we certainly have |A(t)− Id| ≤ C∗〈t〉1+η for bounded values
of time t ≤ T (C0, Cη), provided C∗ is large enough. Hence t∗ = +∞. Inserting
this upper-bound for A in (6.17) gives

|C(t)| ≤ Cη,

for some Cη > 0, provided η > 0 is small enough. We may estimate B(t) and
D(t) in the similar way. The analysis is the same, and starts with the formulae

|B(t)| ≤ t +

∫ t

0

(t − s) ε(s) |B(s)| ds,

|D(t)| ≤ 1 +

∫ t

0

ε(s) |B(s)| ds.

We skip the details. At this level, we have obtained the bound

|F (t, x, ξ)| ≤ Cη 〈t〉1+η,

for any (small enough) η > 0, and a constant Cη independent of (t, x, ξ).

Third step: estimates on the derivatives of the linearized flow
Let now α be any multi-index. We prove (6.8) by induction on |α|. Define, for
any p ≥ 1

Mp(t) := sup
|β|=n

sup
(x,ξ)∈R2d

∣∣∣∣∣
∂βΦ(t, x, ξ)

∂(x, ξ)β

∣∣∣∣∣,

We have proved in the second step above that

M1(t) ≤ Cη 〈t〉1+η.

Assume that for some integer p0, the estimate

Mp(t) ≤ Cp,η 〈t〉p(1+η)+2(p−1),

has been proved for any p ≤ p0. We wish to prove the analogous estimate
for Mp0+1. Take any multi-index α of length |α| = p0. From now on, we
systematically omit the dependence of the various functions and derivatives
with respect to (x, ξ), and write ∂αF (t), ∂αH instead of ∂αF (t, x, ξ)/∂(x, ξ)α,
∂αH(x, ξ)/∂(x, ξ)α and so on. Upon differentiating α times the linearized equa-
tion (2.15) on F , we obtain,

∂t (∂αF (t)) = J
∑

β≤α

(
α
β

)
∂β
(
D2H (Φ(t))

) (
∂α−βF (t)

)
. (6.18)

In order to make estimates in (6.18), we first need to write the Faà de Bruno
formula as

∂β
(
D2H ◦ Φ(t)

)
= β!

∑

γ,m

(
∂γD2H

)
◦ Φ(t) ×

∏

ζ

1

m(ζ)!

(
∂ζΦ(t)

ζ!

)m(ζ)

.

Here β ∈ N
2d, γ ∈ N

2d, and ζ ∈ N
2d are multiindices, and m associates to each

multi-index ζ ∈ N
2d, another multi-index m(ζ) ∈ N

2d. Also, the above sum
carries over all values of γ, m, and ζ such that

∑

ζ

m(ζ) = γ,
∑

ζ

ζ |m(ζ)| = β. (6.19)
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Finally, when |β| ≥ 1, the above sums carries over γ’s and ζ’s such that |γ| ≥ 1
and |ζ| ≥ 1. All this gives in (6.18),

∂t (∂αF (t)) = J
∑

β≤α

β!

(
α
β

)∑

γ,m

(
∂γD2H

)
◦ Φ(t)

×
∏

ζ

1

m(ζ)!

(
∂ζΦ(t)

ζ!

)m(ζ)

× ∂α−βF (t).

Hence, putting apart the contribution stemming from β = 0, we recover

∂t (∂αF (t)) = J D2H (Φ(t)) (∂αF (t)) + Rα(t), (6.20)

where the remainder term Rα(t) is estimated by

|Rα(t)|

≤ C|α|

∑

06=β≤α

∑

γ,m

|
(
∂γD2H

)
◦ Φ(t)|

∏

ζ

(
|∂ζΦ(t)|

)|m(ζ)| |∂α−βF (t)|

≤ C|α|

∑

06=β≤α

∑

γ,m

|∂α−βF (t)|
∏

ζ

(
|∂ζΦ(t)|

)|m(ζ)|
.

for some constant C|α| > 0 that depends on |α|. The last line uses the fact
that supx,ξ |∂γD2H(x, ξ)| ≤ Cγ for some constant Cγ . Using the inductive
assumption, we recover

|Rα(t)| ≤ C|α|,η

∑

06=β≤α

∑

γ,m

〈t〉(|α−β|+1)(1+η)+2|α−β|

×
∏

ζ

〈t〉(|ζ|(1+η)+2(|ζ|−1)) |m(ζ)|

≤ C|α|,η

∑

06=β≤α

〈t〉(1+η)(1+|α−β|+
∑

ζ |ζ||m(ζ)|)+2(|α−β|+
∑

ζ(|ζ|−1) |m(ζ)|)

= C|α|,η

∑

06=β≤α

〈t〉(1+η)(1+|α−β|+|β|)+2(|α−β|+|β|−|γ|)

≤ C|α|,η 〈t〉(1+η)(1+|α|)+2(|α|−1) .

Here we used the constraints (6.19) together with the information |γ| ≥ 1. Using
Lemma 6 below in equation (6.20) satisfied by ∂αF , we obtain,

|∂αF (t)| ≤ C|α|,η 〈t〉(1+η)(|α|+1)+2|α|.

Hence
Mp0+1(t) ≤ Cp0,η 〈t〉(1+η)(p0+1)+2p0 .

This ends the recursion.

Fourth step: A Gronwall Lemma for solutions to the linearized Hamilton equa-
tion
The preceding step uses the following
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Lemma 6. Assume the function G(t, x, ξ) satisfies the differential equation

∂G(t, x, ξ)

∂t
= J · D2H (Φ(t, x, ξ)) · G(t, x, ξ) + O

(
〈t〉λ

)
, (6.21)

G(0, x, ξ) = 0,

where the O
(
〈t〉λ

)
is uniform in (x, ξ). Then, G satisfies the uniform estimate

G(t, x, ξ) = O
(
〈t〉λ+2

)
.

Proof of Lemma 6
Decompose G(t) ≡ G(t, x, ξ) as

G(t) =

(
AG(t) BG(t)
CG(t) DG(t)

)
.

Then, equation (6.21) for G writes

∂

∂t
AG(t) = CG(t) + O

(
〈t〉λ

)
, AG(0) = 0, (6.22)

∂

∂t
CG(t) = D2n2 (X(t)) AG(t) + O

(
〈t〉λ

)
, CG(0) = 0,

together with

∂

∂t
BG(t) = DG(t) + O

(
〈t〉λ

)
, BG(0) = 0, (6.23)

∂

∂t
DG(t) = D2n2 (X(t)) BG(t) + O

(
〈t〉λ

)
, DG(0) = 0.

Equations (6.22) give rise to the estimates

|AG(t)| ≤ C

∫ t

0

(t − s)
(

ε(s) |AG(s)| + 〈s〉λ
)

ds, (6.24)

|CG(t)| ≤ C

∫ t

0

ε(s) |AG(s)| ds, (6.25)

where the function ε(s) is defined in (6.15) above. Using ε(s) ≤ C0 〈s〉−ρ−2 ≤
Cη 〈s〉−η−2 for any small η > 0 (see (6.14)), gives in equation (6.24),

|AG(t)| ≤ Cη t

∫ t

0

〈s〉−η−2 |AG(s)| ds + C 〈t〉λ+2 . (6.26)

From this it can be deduced that

|AG(t)| ≤ C 〈t〉λ+2.

(for a given constant C∗, define indeed t∗ = sup{t ≥ 0 s.t. |AG(t)| ≤ C∗ 〈t〉λ+2

- one deduces from (6.26) that t∗ = +∞ provided C∗ is large enough - see (6.16)
and sequel for details). Equation (6.25) then gives

|CG(t)| ≤ Cη

∫ t

0

〈s〉−η−2 |AG(s)| ds ≤ Cη 〈t〉λ+1−η .

The estimates for BG and DG are the same. This ends the proof of the Lemma.

27



Fifth step: adapting the estimates of [BR]
We now put together the estimates on the linearized flow obtained before, to
complete the proof of parts (ii) and (iii) of Lemma 5.

The construction of the symbols bδ
(k)(t, x, ξ) in Lemma 5 is made in an

explicit way in [BR]. Part (iii) of Lemma 5 follows. Also, the remainder estimate
(6.9) is a consequence of the above estimates on the linearized flow F (t, x, ξ)
and its derivatives, upon adapting the analysis of [BR]. Let us indeed write the
rough (but simpler) estimate

|∂αF (t, x, ξ)| ≤ Cα〈t〉4|α|+2,

corresponding to the special choice η = 1 in (6.8). Then, Theorem 1.2 - formula
(12) of [BR],

bδ
(0)(t, x, ξ) = bδ (Φ(t, x, ξ)) ,

together with the Faá de Bruno formula, give for any multi-index α the estimate

|∂αbδ
(0)(t, x, ξ)| ≤ C|α| 〈t〉4|α|.

From Theorem 1.2 - formula (14) of [BR], we have for any k ≥ 1 the explicit
value

bδ
(k)(t, x, ξ) =

∑

|α|+ℓ=k+1

0≤ℓ≤k−1

Γ(α)

∫ t

0

[
∂αH × ∂αbδ

(ℓ)
]
◦ Φ(t − s, x, ξ) ds,

where Γ(α) is a harmless coefficient whose explicit value is given in [BR]. This,
together with the Faá de Bruno formula, implies for any k ≥ 1, the upper-bound

|∂αbδ
(k)(t, x, ξ)| ≤ C|α|,k 〈t〉c0(k|α|+k2+1),

for some fixed number c0, independent of α and k. Then, using formulae (51),
together with (52), (54), (97) and (99) of [BR] gives the estimate (6.9). This
ends the proof of Lemma 5.

7 Contribution of moderate times, close to the

zero energy

After the work performed in sections 3 through 6, there only remains to estimate
the most difficult term

1

ε

∫ T1

T0 ε

(1 − χ)

(
t

T0 ε

)
e−αεt

〈
Uε(t)χδ (Hε) Sε, φε

〉
dt.

This is the key point of the present paper.
The main result of the present section is the following

Proposition 7. We use the notations of section 2. The index n2 is assumed to
have the symbolic behaviour (1.12). The zero energy is assumed non-trapping
for the Hamiltonian ξ2/2 − n2(x). Finally, we need the tranversality condition
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(H) page 35 on the trajectories Φ(t, x, ξ) with initial data satisfying x = 0,
ξ2/2 = n2(0). Then, the following two estimates hold true,

(i) for any fixed value of the truncation parameters θ, T1 and δ, we have

1

ε

∫ T1

θ

(1 − χ)

(
t

θ

)
e−αεt

〈
Uε(t)χδ (Hε) Sε, φε

〉
dt −→

ε→0
0.

(ii) for θ > 0 small enough, there exists a constant Cθ > 0 such that for any
ε ≤ 1, we have

1

ε

∫ 2θ

T0 ε

(1 − χ)

(
t

T0 ε

)
χ

(
t

θ

)
e−αεt

〈
Uε(t)χδ (Hε)Sε, φε

〉
dt

≤ Cθ T0
−d/2+1 −→

T0 →+∞
0.

The remainder part of this paragraph is devoted to the proof of proposition 7.
In order to shorten the notations, we define

χ̃ε(t) := (1 − χ)

(
t

T0 ε

)
e−αεt, (7.1)

so that the proof of proposition 7 boils down to estimating

1

ε

∫ T1

T0 ε

χ̃ε(t)
〈
χδ (Hε) Sε, Uε(−t)φε

〉
dt. (7.2)

The precise value of the cut-off function χ̃ε(t) in the analysis of (7.2) will be
essentially irrelevant in the sequel.

Proof of proposition 7
The proof is given in several steps. As in section 6, we begin with some

preliminary reductions, exploiting the informations on the microlocal support
of the various functions. Then, we use the elegant wave-packet approach of
Combescure and Robert [CRo] to compute the semi-classical propagator Uε(t)
in (7.2) in a very explicit way - see Theorem 8 below: this gives a representation
in terms of a Fourier integral operator with complex phase, that is very well
suited for our asymptotic analysis (see also [CRR], or the work by Hagedorn
and Joye [H1], [H2], [HJ], or by Robinson [Rb], or even the seminal work by
Hepp [He] for similar representations - see also Butler [Bt]). This eventually
reduces the analysis to stationary phase arguments that are very much in the
spirit of [CRR], and where the tranversality assumption (H) page 35 turns out
to play a crucial role.

First Step: Preliminary reduction, projection over the gaussian wave packets
As in section 6 (see (6.3), (6.5), (6.7)), we may first build up a symbol a0(x, ξ) ∈
C∞

c (R2d) such that

supp a0 ⊂ {|x| ≤ δ} ∩ {|ξ2/2 − n2(x)| ≤ δ}, (7.3)

and
〈
χδ (Hε)Sε, Uε(−t)φε

〉
=
〈
Opw

ε (a0(x, ξ)) Sε, Uε(−t)φε

〉
+ Oδ(ε

∞).
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With the notation (6.5), we actually have the value a0(x, ξ) = Xδ(x, ξ)♯χδ (|x|).
Therefore, the asymptotic analysis of (7.2) reduces to that of the expression

1

ε

∫ T1

T0 ε

χ̃ε(t)
〈
Opw

ε (a0)Sε, Uε(−t)φε

〉
dt. (7.4)

Now, to be able to use the wave-packet approach of [CRo], we need to decompose
the above scalar product on the basis of the Gaussian wave packets

ϕε
q,p(x, ξ) := (πε)−d/4 exp

(
i

ε
p ·
(
x − q

2

))
exp

(
− (x − q)2

2ε

)
.

Each function ϕε
q,p is microlocally supported near the point (q, p) in phase-space.

Using the well-known orthogonality properties of these states, i.e.

〈u, v〉 = (2πε)−d

∫

R2d

dqdp 〈u, ϕε
q,p〉 〈ϕε

q,p, v〉,

for any u(x) and v(x) in the space L2(Rd), and forgetting the normalizing factors
like π, etc., we obtain in (7.4)

1

εd+1

∫ T1

T0 ε

∫

R2d

dtdqdp χ̃ε(t)
〈
Opw

ε (a0)Sε, ϕ
ε
q,p

〉〈
ϕε

q,p, Uε(−t)φε

〉

=
1

εd+1

∫ T1

T0 ε

∫

R2d

dtdqdp χ̃ε(t)
〈
Sε, Opw

ε (a0)ϕ
ε
q,p

〉〈
Uε(t)ϕ

ε
q,p, φε

〉
. (7.5)

Before going further, and in order to prepare for the use of the stationary phase
theorem below, we make the simple observation that the integral dqdp over R

2d

in (7.5) may be carried over the compact set {|x| ≤ 2δ}∩{|ξ2/2−n2(x)| ≤ 2δ},
up to a negligible error Oδ(ε

∞). For that purpose, take a function χ0(q, p) ∈
C∞

c (R2d) such that

suppχ0(q, p) ⊂ {|x| ≤ 2δ} ∩ {|ξ2/2 − n2(x)| ≤ 2δ}
χ0(q, p) ≡ 1 on

{
|x| ≤ 3δ/2} ∩ {|ξ2/2 − n2(x)| ≤ 3δ/2

}
. (7.6)

We claim the following estimate holds true:
∫

R2d

dqdp (1 − χ0(q, p))
∥∥∥Opw

ε (a0)ϕ
ε
q,p

∥∥∥
2

L2(Rd)
= Oδ(ε

∞). (7.7)

Indeed, we have the following simple computation:
∥∥Opw

ε (a0)ϕ
ε
q,p

∥∥2

L2(Rd)
=
〈
Opw

ε (a0♯a0)ϕ
ε
q,p, ϕ

ε
q,p〉

=

∫

R2d

dxdξ (a0♯a0)(x, ξ) W (ϕε
q,p)(x, ξ)

(where W (ϕε
q,p) denotes the Wigner transform of ϕε

q,p)

= ε−d

∫

R2d

dxdξ (a0♯a0)(x, ξ) exp

(
−|q − x|2 + |p − ξ|2

ε

)
,

and the last line uses the fact that the Wigner transform of ϕε
q,p is a Gaussian.

Now, using supp (a0♯a0) ⊂ {|x| ≤ δ}∩{|ξ2/2−n2(x)| ≤ δ}, together with (7.6),
establishes (7.7).
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Using this estimate (7.7), and replacing back the factor Opw
ε (a0) by the

identity in (7.5), we arrive at the conclusion

1

ε

∫ T1

T0 ε

χ̃ε(t)
〈
χδ (Hε) Sε, Uε(−t)φε

〉
dt = OT1 ,δ (ε∞) +

1

εd+1

∫ T1

T0 ε

∫

R2d

dtdqdp χ̃ε(t)χ0(q, p)
〈
Sε, ϕ

ε
q,p

〉〈
Uε(t)ϕ

ε
q,p, φε

〉
.

Our strategy is to now pass to the limit in the term

1

εd+1

∫ T1

T0 ε

∫

R2d

dtdqdp χ̃ε(t)χ0(q, p)
〈
Sε, ϕ

ε
q,p

〉〈
Uε(t)ϕ

ε
q,p, φε

〉
. (7.8)

In order to do so, we need to compute the time evolved gaussian wave packet
Uε(t)ϕ

ε
q,p in an accurate way.

Second Step: Computation of Uε(t)ϕ
ε
q,p - reducing the problem to a stationary

phase formula
The following theorem is proved in [CRo] (see also [Ro], [Ro2])

Theorem 8. ([CRo], [Ro]) We use the notations of section 2. Under as-
sumption (1.12) on the refraction index n2(x), there exists a family of functions
{pk,j(t, q, p, x)}(k,j)∈N2 , that are polynomials of degree at most k in the variable

x ∈ R
d, with coefficients depending on t, q, p, such that for any ε ≤ 1, the

following estimate holds true: for any given value of T1 , and any given integer
N , we have, for any time t ∈ [0, T1 ],

∥∥∥∥∥Uε(t)ϕ
ε
q,p − exp

(
i

ε
δ(t, q, p)

)
Tε(qt, pt)ΛεQN (t, q, p, x)

M(F (t, q, p))
(
π−d/4 exp

(
−x2/2

))
∥∥∥∥∥

L2(Rd)

≤ CN,T1 εN , (7.9)

where

QN(t, q, p, x) := 1 +
∑

(k,j)∈IN

ε
k
2−jpk,j(t, q, p, x) ,

IN := {1 ≤ j ≤ 2N − 1, 1 ≤ k − 2j ≤ 2N − 1, k ≥ 3j} .

Here, the following quantities are defined:
• Λε is the dilation operator

(Λεu) (x) := ε−d/4 u

(
x√
ε

)
, (7.10)

• Tε(qt, pt) is the translation (in phase-space) operator

(Tε(qt, pt)u) (x) := exp

(
i

ε
pt ·
(
x − qt

2

))
u(x − qt), (7.11)

• (qt, pt) denotes the trajectory

(qt, pt) := (X(t, q, p), Ξ(t, q, p)) , (7.12)
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• δ(t, q, p) denotes quantity

δ(t, q, p) =

∫ t

0

(
p2

s

2
+ n2(qs)

)
ds − qt · pt − q · p

2
, (7.13)

• M(F (t, q, p)) is the metaplectic operator associated with the symplectic matrix
F (t, q, p). It acts on the gaussian as

M(F (t, q, p))

(
exp

(
−x2

2

))
=

det(A(t, q, p) + iB(t, q, p))−1/2
c exp

(
i
Γ(t, q, p)x · x

2

)
. (7.14)

Here, the square root det(A(t, q, p) + iB(t, q, p))
−1/2
c is defined by continuously

(hence the index c) following the argument of the complex number det(A(t, q, p)+
iB(t, q, p)) starting from its value 1 at time t = 0. Also, the complex matrix
Γ(t, q, p) is defined as

Γ(t, q, p) = (C(t, q, p) + iD(t, q, p)) (A(t, q, p) + iB(t, q, p))−1. (7.15)

Remark
If the refraction index n2(x) is quadratic in x, then formula (7.9) is exact, and
the whole family {pk,j} vanishes. This is essentially a consequence of the Mehler
formula. We refer to [Fo] for a very complete discussion about the propagators
of pseudo-differential operators with quadratic symbols.

In the case when n2(x) is a general function, the polynomials pk,j are ob-
tained in [CRo] using perturbative expansions “around the quadratic case”. We
refer to [Ro] for a very clear and elegant derivation of these polynomials. Let us
quote that similar formulae are derived and used in [HJ]. The idea of consider-
ing such perturbations “around the quadratic case” traces back to [He], see also
[H1], [H2], [Rb].

The fact that the matrix A(t) + iB(t) is invertible, and Γ(t) is well defined,
is proved in [Fo], see also [Ro2]. It is a consequence of the symplecticity of F (t)
(see the relations (2.17)). We refer to the sequel for an explicit use of these
important relations.

In the next lines, we apply the above theorem, and transform formula (7.8)
accordingly.

On the one hand, we use the Parseval formula in (7.8) to compute the two
scalar products. Forgetting the normalizing factors like π, etc., it gives, e.g. for
the first scalar product,

〈Sε, ϕ
ε
q,p〉 = ε−d/2

∫

Rd

dxdξ exp(ix · ξ/ε) Ŝ(ξ)ϕε
q,p(x)

= ε−d/2

∫

Rd

dxdξ exp(ix · ξ/ε)χ1(x) Ŝ(ξ)ϕε
q,p(x) + O(ε∞),

for any truncation function χ1 being ≡ 1 close to the origin. On the other
hand, we use formula (7.9) to compute Uε(t)ϕ

ε
q,p in (7.8), using the short-hand

notation

PN (t, q, p, x) := π−d/4 det(A(t, q, p) + iB(t, q, p))−1/2
c QN(t, q, p, x).
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These two tasks being done, we eventually obtain in (7.8), upon computing
the relevant phase factors explicitly,

1

ε

∫ T1

T0 ε

χ̃ε(t)
〈
χδ (Hε) Sε, Uε(−t)φε

〉
dt = OT1 ,δ (ε∞) +

1

ε(5d+2)/2

∫ T1

T0 ε

∫

R6d

dtdqdpdξdηdxdy χ̃ε(t) exp

(
i

ε
Ψ(x, y, ξ, η, q, p, t)

)

Ŝ(ξ)φ̂∗(η)χ0(q, p)χ1(x, y)PN

(
t, q, p,

y − qt√
ε

)
. (7.16)

where χ1 ∈ C∞
c is ≡ 1 close to (0, 0). Here, the crucial (complex) phase factor

has the value

Ψ(x, y, ξ, η, q, p, t) =

∫ t

0

(
p2

s

2
+ n2(qs)

)
ds − p · (x − q) + pt · (y − qt)

+ x · ξ − y · η + i
(x − q)2

2
+

Γ(t)(y − qt) · (y − qt)

2
(7.17)

Our goal is now to apply the stationary phase formula to estimate (7.17). Ob-
viously, the cutoff in time away from t = 0 in (7.16) prevents one to use directly
the stationary phase formula close to t = 0. This is the reason why times close
to 0 are treated apart in the sequel (see steps four and five below - see also the
outline of proof given in section 2).

Third Step: computing the first and second order derivatives of the phase Ψ
First, it is an easy exercice, using the symplecticity relations (2.17), to prove
that the matrix Γ(t) is symmetric and it has positive imaginary part. The
relation

Im (Γ(t)(y − qt) · (y − qt)) =
∣∣ (A(t) + iB(t))

−1
(y − qt)

∣∣2,

implies indeed

ImΨ = |x − q|2 +
∣∣ (A(t) + iB(t))

−1
(y − qt)

∣∣2.
Hence we recover the equivalence

ImΨ = 0 iff y = qt and x = q. (7.18)

Second, using the differential system (2.13), (2.14) satisfied by the matrices
A(t), B(t), C(t), and D(t), we prove

∇q,p

(∫ t

0

(
p2

s

2
+ n2(qs)

)
ds

)
=

(
A(t)Tpt − p

B(t)Tpt

)
.

This gives the value of the gradient of Ψ

∇x,y,ξ,η,q,p,tΨ(x, y, ξ, η, q, p, t) =



−p + ξ + i(x − q)
pt − η + Γ(t)(y − qt)

x
−y

C(t)T(y − qt) + i(q − x) + A(t)TΓ(t)(qt − y)
−(x − q) + D(t)T(y − qt) + B(t)TΓ(t)(qt − y)

−p2
t

2
+ n2(qt) + ∇n2(qt) · (y − qt) + pt · Γ(t)(qt − y)




. (7.19)
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This computation is done up to irrelevant O
(
(y − qt)

2 + (x − q)2
)

terms.

These observations allow to compute the stationary set, defined as

M := {(x, y, ξ, η, q, p, t) ∈ R
6d×]0, +∞[

s.t. ImΨ = 0 and ∇x,y,ξ,η,q,pΨ = 0}. (7.20)

Note (see above) that we exclude the original time t = 0 in the definition of M .
In view of (7.18), (7.19), the set M has the value

M = {(x, y, ξ, q) s.t. x = y = q = 0, ξ = p}

∩
{

(p, η, t) s.t.
η2

2
= n2(0), qt = 0, pt = η

}
. (7.21)

Note that the second set reads also, by definition,

{
(p, η, t) s.t.

η2

2
= n2(0), X(t, 0, p) = 0, Ξ(t, 0, p) = η

}
.

Last, there remains to compute the Hessian of Ψ at the stationary points. A
simple but tedious computation gives, for any point (x, y, ξ, η, q, p, t) ∈ M , the
value

D2
x,y,ξ,η,q,p,tΨ

∣∣∣
(x,y,ξ,η,q,p,t)∈M

=




iId 0 Id 0 −iId −Id 0

0 Γt 0 −Id Ct−ΓtAt Dt−ΓtBt ∇n2(0)

−Γtη

Id 0 0 0 0 0 0

0 −Id 0 0 0 0 0

−iId CT
t −AT

t Γt 0 0 −CT
t At+iId −CT

t Bt −CT
t η

+AT
t ΓtAt +AT

t ΓtBt +AT
t Γtη

−Id DT
t −BT

t Γt 0 0 Id−DT
t At −DT

t Bt −DT
t η

+BT
t ΓtAt +BT

t ΓtBt +BT
t Γtη

0 ∇n2(0)T 0 0 −ηTCt −ηTDt −ηT∇n2(0)

−ηTΓt +ηTΓtAt +ηTΓtBt +ηTΓtη




.

Here we wrote systematically At, Bt, etc. instead of A(t), B(t), etc. The above
matrix is symmetric, due to the relation (2.18). The very last computation we
need is that of KerD2Ψ at stationary points. The value of D2Ψ|M clearly shows
that

Ker
(
D2Ψ|M

)
=

{
(X, Y, Ξ, H, Q, P, T ) s.t. X = Y = Q = 0, Ξ = P,

−H + (Dt − ΓtBt)P + T (∇n2(0) − Γtη) = 0,

(−CT
t + AT

t Γt)BtP + T (−CT
t + AT

t Γt)η = 0,

(−DT
t + BT

t Γt)BtP + T (−DT
t + BT

t Γt)η = 0,

ηT(−Dt + ΓtBt)P + TηT(−∇n2(0) + Γtη) = 0
}
.
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Hence, using DT
t −BT

t Γt = (At + iBt)
−1, together with CT

t −AT
t Γt = −i(At +

iBt)
−1, and (At + iBt)

−1,T + ΓtBt = Dt (see (2.18)), we obtain

Ker
(
D2Ψ|M

)
=
{

(X, Y, Ξ, H, Q, P, T ) s.t. X = Y = Q = 0, Ξ = P,

and ηTH = 0, BtP + Tη = 0, H = DtP + T∇n2(0) = 0
}
. (7.22)

Fourth Step: Application of the stationary phase Theorem - proof of part (i)
of proposition 7
In this step, we formulate the main geometric assumption on the flow Φ(t, x, ξ),
that allows for the proof that the contribution in (7.16) vanishes asymptotically.

(H) Transversality assumption on the flow

We suppose that the stationary set

M = {x = y = q = 0, ξ = p} ∩
{

η2

2
= n2(0), X(t, 0, p) = 0, Ξ(t, 0, p) = η

}

is a smooth submanifold of R
6d×]0, +∞[, satisfying the additional constraint

k := codimM > 5d + 2. (7.23)

We also assume that at each point m = (x, y, ξ, η, q, p, t) ∈ M ,
the tangent space of M at m is

TmM =
{
(X, Y, Ξ, H, Q, P, T ) s.t. X = Y = Q = 0, Ξ = P,

and ηTH = 0, BtP + Tη = 0,−H + DtP + T∇n2(0) = 0
}
. (7.24)

In other words, we assume that TmM is precisely given by
linearizing the equations defining M .

First Remark
We show below examples of flows satisfying the above assumption. It is a
natural, and generic, assumption. Note in particular that the assumption on
the codimension is natural, in that the equations defining M give (roughly)
4d constraints on (x, y, q, ξ), one constraint on η, and again 2d constraints on
the momentum p, the solid angle η/|η|, and time t. Hence one has typically
k = 6d + 1.

Second remark
Equivalently, the above assumption may be formulated as follows. The set

M := {(p, η, t) s.t.
η2

2
= n2(0), X(t, 0, p) = 0, Ξ(t, 0, p) = η}

is assumed to be a smooth submanifold of R
2d+1, satisfying the additional con-

straint codimM > d + 2, and whose tangent space is given by

{(P, H, T ) s.t. ηTH = 0, BtP + Tη = 0, DtP + T∇n2(0) − H = 0}.

Note in passing that the conservation of energy allows to replace the requirement
η2/2 = n2(0) by the equivalent p2/2 = n2(0) in the definition of M.
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Third Remark
Provided M is a smooth submanifold with tangent space given upon linearizing
the constraints, its codimension anyhow satisfies

codimM ≥ 5d + 2.

Equivalently, provided M is a smooth submanifold with the natural tangent
space, its codimension anyhow satisfies

codimM ≥ d + 2.

As a consequence, the analysis given below (see (7.27)) establishes that 〈wε, φ〉
is uniformly bounded in ε. This fact is not known in the literature.

Under assumption (H), we are ready to use the stationary phase Theorem in
(7.16), at least for large enough times t (recall that the very point t = 0 is
excluded from the definition of M above). Indeed, assumption (H) precisely
asserts the equality

TmM = Ker
(
D2Ψ|M

)
,

so that the Hessian D2Ψ|M is non-degenerate on the normal space (TmM)⊥.
This is exactly the non-degeneracy that we need in order to apply the station-
nary phase Theorem.

To perform the claimed stationary phase argument, we first take a (small)
parameter

θ > 0.

We use a cutoff in time χ(t/θ) with χ as in (2.7), and evaluate the contribution

1

ε

∫ T1

θ

χ̃ε(t)

(
1 − χ

(
t

θ

))〈
χδ (Hε)Sε, Uε(−t)φε

〉
dt = OT1 ,δ (ε∞)+

1

ε(5d+2)/2

∫ T1

θ

∫

R6d

χ̃ε(t)

(
1 − χ

(
t

θ

))
exp

(
i

ε
Ψ(x, y, ξ, η, q, p, t)

)

Ŝ(ξ)φ̂∗(η)χ0(q, p)χ1(x, y)PN

(
t, q, p,

y − qt√
ε

)
dtdxdydξdηdqdp.

When the point (x, y, ξ, η, q, p, t) is far from the stationary set M , the integral
is O(ε∞). Close to the stationary set M , using the fact that the integral carries
over a compact support, we may use a partition of unity close to M , and on
each piece we may use straightened coordinates (α, β) ∈ R

6d+1−k×R
k such that

(x, y, ξ, η, q, p, t) = γ(α, β), where γ is a local diffeomorphism, with

(x, y, ξ, η, q, p, t) ∈ M ⇐⇒ α = 0.

Using such coordinates, we recover a finite sum of terms of the form

1

ε(5d+2)/2

∫

Ω

dxdydξdηdqdp exp

(
i

ε
Ψ(x, y, ξ, η, q, p, t)

)

Ŝ(ξ)φ̂∗(η)PN

(
t, q, p,

y − qt√
ε

)
χ2(x, y, ξ, η, q, p, t)

=
1

ε(5d+2)/2

∫

Ω′×Ω′′

dα dβ exp

(
i

ε
Ψ ◦ γ(α, β)

)

(
Ŝ(.)φ̂∗(.)PN

(
., ., .,

.√
ε

))
◦ γ(α, β) χ3(α, β), (7.25)
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where Ω, Ω′, Ω′′ are bounded, open subsets, and χ2, χ3 are cutoff functions.
Thanks to the non-degeneracy of the Hessian D2Ψ in the normal direction to
M , for any β, we have

(
det

D2Ψ ◦ γ

Dα2

)
(0, β) 6= 0.

Hence, by the standard stationary phase Theorem, for any integer J , the above
integral has the asymptotic expansion to order J

ε(k−5d−2)/2

∫

Ω′′

dβ exp

(
i

ε
Ψ ◦ γ(0, β)

)

×
J∑

j=0

εj Q2j(∂α, ∂β)

((
Ŝ(.)φ̂∗(.)PN

(
., ., .,

.√
ε

))
◦ γ χ3

)
(0, β) (7.26)

+ ε(k−5d−2)/2O

(
εJ+1 sup

k≤2J+d+3

∥∥∥∂k
(α,β)

(
Ŝ(.)φ̂∗(.)PN

(
., ., .,

.√
ε

)
χ3

)∥∥∥
)

,

where the Q2j ’s are differential operators of order 2j. Now, we anyhow have

∀j ∈ N εj∂2j
y PN

(
., ., .,

y√
ε

)
= O(1).

On the more, PN is a polynomial of degree ≤ 4N in its last argument. This
implies that the ε(k−5d−2)/2O(. . .) in (7.26) has at most the size

O
(
εJ+1+(k−5d−2)/2−2N

)
.

Hence, taking J large enough (J ≥ 2N will do), we eventually obtain in (7.26),
using the assumption (H) on the codimension k (k > 5d + 2),

1

ε(5d+2)/2

∫ T1

θ

χ̃ε(t)

(
1 − χ

(
t

θ

))〈
χδ (Hε)Sε, Uε(−t)φε

〉
dt

= Oθ,T1 ,δ

(
ε(k−5d−2)/2

)
−→
ε→0

0. (7.27)

Fifth Step: Elimination of times such that T0 ε ≤ t ≤ θ - proof of part (ii) of
proposition 7
The previous step leaves us with the task of estimating

1

ε

∫ 2θ

T0 ε

χ̃ε(t)χ

(
t

θ

)〈
χδ (Hε)Sε, Uε(−t)φε

〉
dt.

The idea is to now come back to the semiclassical scale, and write

1

ε

∫ 2θ

T0 ε

χ̃ε(t)χ

(
t

θ

)〈
χδ (Hε)Sε, Uε(−t)φε

〉
dt

=

∫ 2θ/ε

T0

χ

(
εt

θ

)〈
χδ (Hε) Sε, exp

(
−it

(
ε2∆ + n2(x)

))
φε

〉
dt . (7.28)
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This term is expected to be small, provided T0 is large enough. Indeed, the
propagator exp

(
−it

(
ε2∆ + n2(x)

))
acting on φε is expected to be close to the

free propagator exp
(
−it

(
ε2∆ + n2(0)

))
on the time-scale we consider. Hence

the propagator should have size O(t−d/2) for large values of time, and the above

time integral should be O(T0
−d/2+1) → 0 as T0 → ∞.

We give below a quantitative proof of this rough statement, based on the
exact computation of the propagator exp

(
−it

(
ε2∆ + n2(x)

))
obtained in Theo-

rem 8. The proof given below could easily be replaced by a slightly simpler one,
upon writing the propagator as a Fourier Integral Operator with real phase. We
do not detail this aspect, since we anyhow had to use in the previous steps the
more precise expansion of the propagator given by Theorem 8: this theorem has
indeed the great advantage to give a representation of the propagator that is
valid for all times.

From the second step above (see (7.16)), we know

∫ 2θ/ε

T0

χ

(
εt

θ

)〈
χδ (Hε)Sε, exp

(
−it

(
ε2∆ + n2(x)

))
φε

〉
dt

= OT1 ,δ (ε∞) +

∫ 2θ/ε

T0

χ

(
t

θ

)
× ε−

5d
2

∫

R6d

exp (iΨ(εt)/ε)

Ŝ(ξ)φ̂∗(η)χ0(q, p)χ1(x, y)PN

(
t, q, p,

y − qεt√
ε

)
dxdydξdηdqdp, (7.29)

where we drop the dependence of the phase Ψ in (x, y, ξ, η, q, p). To estimate
this term, we now concentrate our attention on the space integral

fε(t) := ε−
5d
2

∫

R6d

exp

(
i
Ψ(εt)

ε

)
Ŝ(ξ)φ̂∗(η)

χ0(q, p)χ1(x, y)PN

(
t, q, p,

y − qεt√
ε

)
dxdydξdηdqdp. (7.30)

We claim we have the following dispersion estimate, uniformly in ε,
∣∣fε(t)

∣∣ ≤ Cθ t−d/2, for some Cθ > 0, provided T0 ≤ t ≤ 2θ/ε. (7.31)

Assuming (7.31) is proved, equation (7.29) shows that

1

ε

∣∣∣∣∣

∫ 2θ

T0 ε

χ̃ε(t) χ

(
t

θ

)〈
χδ (Hε)Sε, Uε(−t)φε

〉
dt

∣∣∣∣∣ ≤ Cθ T0
− d

2 +1 −→
T0 →∞

0 ,

(7.32)

in any dimension d ≥ 3, which is enough for our purposes. It is thus sufficient
to prove (7.31).

We have in mind that the integral (7.30) defining fε(t) should concentrate
on the set x = y = q = 0, qt = 0, pt = η, p = ξ. Also, the present case should be
close to the “free” case where the refraction index n2(x) has frozen coefficients
at the origin n2(x) ≈ n2(0). For that reason, we perform in (7.30) the changes
of variables

(x − q)/
√

ε → x, (y − qεt)/
√

ε → y, q →
√

εq,

ξ → p +
√

εξ, η → Ξ(εt,
√

εq, p) +
√

εη.
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We also put apart the important phase factors in the obtained formula. This
gives

fε(t) =

∫

R4d

dqdpdη exp
(
it Ψ̃(p, εt,

√
εq,

√
εη)
)

G(q, p, η, εt,
√

εq,
√

εη),

(7.33)

up to introducing the phase

Ψ̃(p, εt,
√

εq,
√

εη) :=
1

εt

∫ εt

0

(
Ξ(s,

√
εq, p)2

2
+ n2

(
X(s,

√
εq, p)

))
ds

+

√
εp · q − Ξ(εt,

√
εq, p) · X(εt,

√
εq, p)

εt

+
√

εη ·
√

εq − X(εt,
√

εq, p)

εt
,

together with the amplitude (C∞, and compactly supported in p,
√

εq)

G(q, p, η, εt,
√

εq,
√

εη) :=

∫

R3d

dxdydξ exp (iξ · (q + x) − iη · (y + q))

exp

(
−x2

2
+ i

Γ(εt,
√

εq, p)y · y
2

)

Ŝ(p +
√

εξ)φ̂∗(Ξ(εt,
√

εq, p) +
√

εη)χ0

(√
εq, p

)

χ1(
√

ε(q + x), X(εt,
√

εq, p) +
√

εy) PN

(
t,
√

εq, p, y
)
. (7.34)

Now, the idea is to use the stationary phase formula in the p variable in (7.33),
where t plays the role of the large parameter. We wish indeed to recognize in
(7.33) a formula of the form

∫
dp exp

(
−it

p2

2

)
× smooth(p),

to recover the claimed decaying factor t−d/2 in (7.31). In other words, we wish to
get the same dispersive properties as for the free Schrödinger equation. This is
very much reminiscent of the dispersive effects proved for small times in [Dsf] for

wave equations with variable coefficients, and relies on the fact that Ψ̃ ≈ −p2/2
as εt ≤ θ is small enough.

In order to do so, we need to get further informations both on the phase Ψ̃
and the amplitude G.

Firstly, the smooth amplitude G is defined in (7.34). It clearly is compactly
supported in p and

√
εq. Also, the gaussian exp(−x2/2 + iΓ(εt,

√
εq, p)y · y/2)

belongs to the Schwartz space S
(
R

2d
)

in the variables x and y (recall indeed
that ImΓ(εt) > 0, and εt belongs to a compact set), uniformly in the compactly
supported parameters εt,

√
εq, and p. From this it follows that the amplitude

G(q, p, η, εt,
√

εq,
√

εη) belongs to the Schwartz space S
(
R

2d
)

in the first and
third variables q and η, it is C∞

c (Rd) in the second variable p, and these infor-
mations are uniform with respect to the compactly supported parameters εt,√

εq, together with the (non-compact) parameter
√

εη.

Secondly, the smooth phase Ψ̃ depends upon the small parameter εt ∈ [0, 2θ],
together with the two position/velocity variables

√
εq and p. All of them belong
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to a compact set. It also depends upon the variable
√

εη, which is not in a
compact set. On the more, we have the easy first order expansion in the (small)
parameter εt ≤ 2θ,

Ψ̃(p, εt,
√

εq,
√

εη) =

− p2

2
+ n2(

√
εq) −

√
εq · ∇xn2

(√
εq
)
−
√

εη · (p + O(θ)) + O
(
θ2
)
.

Here the remainder terms O(θ), O(θ2), only depend upon the compactly sup-
ported parameters εt ≤ 2θ and p,

√
εq (they do not depend upon

√
εη), and

they are uniform with respect to these variables. Hence, the stationary points
of the phase (in the p variable) are given by

−p −
√

εη(1 + O(θ)) + O
(
θ2
)

= 0. (7.35)

Finally, there remains to observe that the Hessian of the phase in p is

D2Ψ̃

Dp2
= −Id + O(θ). (7.36)

Upon taking θ small enough, all these informations allow us to make use of
the standard stationary phase estimate in p. More precisely, we write,

fε(t) =

∫

R2d

dqdη

〈q〉2d 〈η〉2d

∫

Rd

dp exp
(
i t Ψ̃(p, εt,

√
εq,

√
εη)
)

〈q〉2d 〈η〉2d G(q, p, η, εt,
√

εq,
√

εη). (7.37)

For each given values of q and η, we analyze the integral over p in (7.37). If√
εη is outside some compact set around the support of G in p, integrations by

parts in p together with the information (7.35), allow to prove that the integral
over p in (7.37) is bounded, for any integer N , by CN,θt

−N for some CN,θ > 0
independent of q and η. Hence the corresponding contribution to fε is bounded
by CN,θt

−N as well. Now, for
√

εη in some compact set around the support of
G in p, we may use the information (7.36): this, together with the stationary
phase Theorem with the parameters εt,

√
εq,

√
εη in a compact set, establishes

that the integral over p in (7.37) is bounded by Cθt
−d/2 for some Cθ > 0, and Cθ

turns out to be independent of q and η. Hence the corresponding contribuition
to fε in (7.37) is bounded by Ct−d/2 as well.

All this gives the claimed estimate

|fε(t)| ≤ Cθt
−d/2.

The proof of proposition 7 is complete.

8 Conclusion: Proof of the main Theorem

We want to prove the convergence

〈wε, φ〉 −→ 〈wout, φ〉,

40



when the source S and the test function φ are Schwartz class. Therefore, one
needs to prove

i

ε

∫ +∞

0

e−αεt 〈Uε(t)Sε, φε〉 dt → 〈wout, φ〉 as ε → 0.

Proposition 1 asserts

i

ε

∫ 2T0 ε

0

χ

(
t

T0 ε

)
e−αεt 〈Uε(t)Sε, φε〉 dt = 〈wout, φ〉

+ OT0 (ε0) + O

(
1

T
d/2−1
0

)
,

where the notation O(ε0) denotes a term going to zero with ε, and OT0 (ε0)
emphasizes the fact that the convergence depends a priori on the value of T0 .
On the other hand Proposition 2 asserts

1

ε

∫ +∞

T0 ε

(1 − χ)

(
t

T0 ε

)
e−αεt

〈
Uε(t) (1 − χδ) (Hε)Sε, φε

〉
dt

= O

(
1

T0

)
+ O(ε0).

Now, for very large times and almost zero energies, Proposition 3 shows, for δ
small enough, and any κ,

1

ε

∫ +∞

ε−κ

e−αεt
〈
Uε(t)χδ (Hε)Sε, φε

〉
dt = Oκ,δ(ε).

As for large times and almost zero energies, Proposition 4 shows that, for δ
small enough, κ small enough, and T1 large enough,

1

ε

∫ ε−κ

T1

e−αεt
〈
Uε(t)χδ (Hε)Sε, φε

〉
dt = Oκ,δ(ε)

Finally, for moderate times and almost zero energies, one has the following two
informations. First, for θ small enough, and uniformly in ε, we have

1

ε

∫ 2θ

T0 ε

(1 − χ)

(
t

T0 ε

)
χ

(
t

θ

)
e−αεt

〈
Uε(t)χδ (Hε)Sε, φε

〉
dt

= Oθ

(
1

T0
d/2−1

)
.

Second, for any fixed value of θ > 0, and T1 ,

1

ε

∫ T1

θ

(1 − χ)

(
t

T0 ε

)
e−αεt

〈
Uε(t)χδ (Hε) Sε, φε

〉
dt

= Oθ,T1 ,δ

(
ε0
)
.

All these informations show our main Theorem, upon conveniently choosing the
cutoff parameters θ, T0 , T1 (in time), δ (in energy), and the exponent κ (in
time). This ends our proof.
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9 Examples and counterexamples

9.1 The harmonic oscillator

Given an appropriate potential V (x), and defining the semi-classical Schrödinger
operator

Hε = −ε2

2
∆x + V (x),

our main Theorem proves

1

ε

∫ +∞

0

e−αεt

〈
exp

(
−i

t

ε
Hε

)
Sε, φε

〉
dt−→

ε→0

∫ +∞

0

〈
exp (−it [−∆x/2 + V (0)])S, φ

〉
dt. (9.1)

Though we used in many places that our analysis requires a potential of the
form

V (x) = −n2(x) = −n2
∞ + O(〈x〉−ρ),

it seems interesting to investigate the validity of (9.1) when the potential is
harmonic

V (x) = V (0) +

d∑

j=1

ω2
j

2
x2

j , (9.2)

for some frequencies ωj ∈ R, and a given value V (0) < 0. Such a potential does
not enter our analysis since it is confining. However, it is easily proved that for
pairwise rationally independent values of the frequencies ωj, the transversality
assumption (H) page 35 is true for this potential, whereas in the extreme case
where all ωj ’s are equal, this assumption fails. On the other hand, one may use
the Mehler formula [Ho] (see [C] for a use of these formulae in the nonlinear
context) to compute the propagator

exp


−i

t

ε


−ε2∆x/2 +

d∑

j=1

ω2
j x2

j/2




 = (9.3)

d∏

j=1

(
ωj

2iπε sin(ωjt)

)1/2

exp

(
iωj

2ε sin(ωjt)

[
(x2

j + y2
j ) cos(ωjt) − 2xjyj

])

(Here we identified the propagator and its integral kernel).
Surprinsingly enough, using the Mehler formula to compute the limit on the

left-hand-side of (9.1), we may prove that for rationally independent ωj’s, the
convergence result (9.1) is locally true in this case, for dimensions d ≥ 4, i.e (9.1)
is true with the upper bounded +∞ replaced by T , for any value of T > 0.

We do not give the easy computations leading to this result. The idea is the
following: at each time kπ/ωj (k ∈ Z), the trajectory of the harmonic oscillator
shows periodicity in the direction j. However, due to rational independence, at
times kπ/ωj, the trajectory does not show periodicity in any of the d− 1 other
directions. Hence one gets enough local dispersion from these directions to show
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that the corresponding contribution to the time integral on the left-hand-side
of (9.1) is roughly

O

(∫ (1+kπ/ωj)/ε

(−1+kπ/ωj)/ε

t−(d−1)/2 dt

)
= O

(
ε(d−1)/2−1

)
→ 0,

as long as d − 1 > 2, i.e. d ≥ 4.
Needless to say, in the extreme case where all ωj’s are equal, the result in

(9.1) is false, even locally: in this case, periodicity creates a disastrous accumu-
lation of energy at the origin (all rays periodically hit the origin at times kπ/ω,
k ∈ Z).

To our mind, this simple example indicates that our main Theorem probably
holds true for less stringent assumptions on the refraction index. For instance,
a uniform (in time) version of our transversality assumption is probably enough
to get the result (without assuming neither decay at infinity of the refraction
index, nor assuming the non-trapping condition).

9.2 Examples of flows satisfying the transversality condi-

tion

We already observed that the harmonic oscillator with rationally independent
frequencies does satisfy the transversality assumption (H). One actually has
the value k = 6d + 1 (see (7.23)) of the codimension in that case.

It is also easily verified that the flow of a particle in a constant electric field,
i.e. the case of a potential

V (x) = x1,

does satisfy (H) as well, with k = 6d + 1.
Coupling the two flows, it is also verified that the potential

V (x) = x1 +

d∑

j=1

ω2
jx

2
j/2,

does satisfy (H) as well, with k = 6d + 1.
Clearly, these examples are satisfactory, in that we may assume that the

potential has the above mentioned values close to the origin, and we may trun-
cate outside some neighbourhood of the origin so as to build up a potential that
satisfies the global assumptions we met in our main Theorem.
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tential, Ann. Henri Poincaré, Vol. 3, N. 4, pp 757-772 (2002).

[CPR] F. Castella, B. Perthame, O. Runborg, High frequency limit of the
Helmholtz equation II: source on a general smooth manifold, Comm. P.D.E.,
Vol. 27, N. 3-4, pp. 607-651 (2002).

[CRu] F. Castella, O. Runborg, In preparation.

[CRo] M. Combescure, D. Robert, Semiclassical spreading of quantum wave
packets and applications near unstable fixed points of the classical flow,
Asymptot. Anal., Vol. 14, no. 4, pp. 377-404 (1997).

[CRR] M. Combescure, J. Ralston, D. Robert, A proof of the Gutzwiller semi-
classical trace formula using coherent states decomposition, Comm. Math.
Phys., Vol. 202, no. 2, pp. 463-480 (1999).
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