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ON THE WEAK-COUPLING LIMIT FOR BOSONS AND FERMIONS

D. BENEDETTO*, F. CASTELLAT, R. ESPOSITO? AND M. PULVIRENTI*
3/10/2004

ABSTRACT. In this paper we consider a large system of Bosons or Fermions. We start with an
initial datum which is compatible with the Bose-Einstein, respectively Fermi-Dirac, statistics.
We let the system of interacting particles evolve in a weak-coupling regime. We show that, in
the limit, and up to the second order in the potential, the perturbative expansion expressing
the value of the one-particle Wigner function at time ¢, agrees with the analogous expansion
for the solution to the Uehling-Uhlenbeck equation.

This paper follows in spirit the companion work [2], where the authors investigated the
weak-coupling limit for particles obeying the Maxwell-Boltzmann statistics: here, they proved
a (much stronger) convergence result towards the solution of the Boltzmann equation.

1. INTRODUCTION

In 1933 Uehling and Uhlenbeck in Ref. [17] proposed the following kinetic equation,
called U-U in the sequel, for the time evolution of the one-particle Wigner function f(x,v;t)
associated with a large system of weakly interacting Bosons or Fermions (see Ref. [18] for
the definition of the Wigner function). The U-U equation is

O f (x,v;t)+v - Vo f(z,v;t) = /dv*/dv;/dv' W (v, vi|v',0))

(1.1)
{F710+8m%08)(1+87%0 L) — FL.(1+87°0f)(1+ 87°0 1)) |

where we use the standard short-hand notation

f=favt), fo=flr,oat), f=[f(@051), fi=Ff(@,050).
Here, W denotes the transition kernel

~

1 -~
W (v, 0.0, vl) = —5 [6(v' = v) + 00" - v.)]’
8 . (1.2)
(v +ve — v —0l) (5(5(@2 +v2 —0'? — vka)).
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Finally,

~

(k) = / dz ¢ 3 () (1.3)

is the Fourier transform of the two-body interaction potential ¢, and § = £1 for Bosons
and Fermions respectively.

Note that the factors 872 do not appear in the original U-U equation in Ref. [17],
because there, the distribution function is normalized in such a way that its integral on
the velocity variable equals the space density times 873. At variance, in (1.1), f is just
the standard Wigner function, whose integral on the velocities equals the space density.
Let us mention that equation (1.1) actually is cubic (and not quartic) in the unknown f:
apparent quartic terms have vanishing contribution, as shown by direct inspection.

Eq. (1.1) constitutes a natural modification of the usual quantum Boltzmann equation,
in order to take into account statistics. In particular, there is a H-functional

H(f) = /dx/dv{flogf —0(1 +87°0f) log(1 + 870 f)} (1.4)

driving the system to the Bose-Einstein and Fermi-Dirac equilibrium distribution:

1

M©v) = Gurmem = 8730

(1.5)

outside the Bose condensation region. Here 8 and u denote the inverse temperature and
the chemical potential respectively.

Eq. (1.1) is largely studied (see for istance [1] and [12] for physical consideration, and
[15], [7], [13], [14] ... for a more mathematically oriented analysis concerning the existence
of solutions and asymptotic behavior), so that it is certainly of great relevance to derive
this equation from the first principles, namely from the Schrédinger equation.

As clearly explained by H. Spohn in [16], Eq (1.1) is indeed expected to hold in the so
called weak-coupling limit, which consists in scaling space, time and the potential according
to

x —ex, t—ct, ¢— e, (1.6)

where ¢ is a small positive parameter.

A slightly different limit, usually called van Hove limit, scales ¢ and ¢ as in (1.6) but
leaves the microscopic space scale unchanged. Eq. (1.1) cannot be derived in the van Hove
limit in general but, in case of translationally invariant states, we expect to achieve the
homogeneous version of the U-U equation (for a large system). In fact Hugenholtz [11]
proved formally that this happens. Later on Ho and Landau [10] proved that the homo-
geneous U-U equation holds rigorously up to the second order expansion in the potential.
These approaches, as well as the recent contribution by Erdos et al. [8] (where the quantum
analog of the Boltzmann’s Stosszahlansatz is formulated), are based on the commutator
expansion of the time evolution of the observables of the CCR and CAR algebras.

In the present paper we approach the problem from a different viewpoint. We start
from the time evolution of a N particle quantum system in terms of the Wigner formalism.
Here the statistics enters only through the choice of the admissible states we take as initial
conditions. Such states, called quasi-free, must describe free Bosons and Fermions, so that
they cannot have any other correlations but those arising from the statistics. Therefore
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the first step is to characterize quasi-free states (see for example Ref. [4]) in terms of
the Wigner functions. Then we apply the dynamics (in terms of the usual hierarchy) and
represent the solution as a perturbative expansion. The truncation of this expansion up
to the second order in the potential is shown to converge to the expansion associated to
the U-U equation, up to the first order in the scattering cross section.

In other words we recover the result in Ref. [10] with the following main differences.
First we exploit the weak-coupling limit, so that we can deal with states which are not
necessarily translationally invariant. Second, we work directly in terms of the Wigner
formalism, in the same spirit of the Balescu book (see Ref. [1]). In doing so, we also
follow a previous work [2] by the authors for the Maxwell-Boltzmann statistics. Hence the
present work shows how the statistics can be handled in this formalism. Note in passing
that the case of the Maxwell-Boltzmann statistics allows for a much stronger (but still
partial) convergence result than the one presented here, see [2]. Note finally that the
present formalism also allows to handle the low-density limit, see [3], see also the last
section of this text.

It is also important to mention that a full rigorous derivation of the U-U equation (but
also of the usual Boltzmann equation arising for the Maxwell-Boltzmann statistics) is still
far beyond the present techniques and those of the previous references.

The plan of the paper is the following. In the next section we describe the particle
system. In Section 3 we establish the result. The rest of the paper is devoted to the
proofs.

2. THE PARTICLE SYSTEM.

We consider a Quantum particle system in R3. Let

9 =P L2(R?)" := P $Hn, (2.1)

n>0 n>0

be the Fock space. A state of the system is a self-adjoint, positive trace class operator

acting on $:
o= @ O (2.2)
n>0
We assume
Tro =1. (2.3)

The operator N, number of particles, is the multiplication by n on $),, and hence

(N)=> nTroy,, (2.4)

where the left hand side is the average number of particles in the state o. If 0, (X,;Y,,) is
the kernel of o,,, the Reduced Density Matrices (RDM) are defined by:

(n+m)!
m!

pn<Xn§ Yn) = Z

m>0

/an+m(Xn, Zoni Y, Zon) A2 (2.5)



4 D. BENEDETTO*, F. CASTELLAt, R. ESPOSITO# AND M. PULVIRENTT*
Here X, = (21,...,2,), ¥; € R3 denotes the n-particle configuration. Note that

Trpn = /dZn pn(Zn; Zn)

=) mm—1)...(m—n+1)Troy, = (N(N=1)...(N —n+1)),

m>n

(2.6)

and hence the RDM are equivalent to the classical correlation functions.
The Hamiltonian of the system is the self-adjoint operator acting on $) given by

H= éHn, (2.7)

where

H, = —% ZA% + Y @i — ), (2.8)

and the potential ¢ is a smooth two-body interaction. Here, h as well as the mass of the
particles are normalized to unity.
Under these circumstances, the time evolved state is given by the usual

o(t) = e HigeHt, (2.9)

Now, quantum statistics is taken into account by suitable properties of the physically
relevant states. Namely, for the Maxwell-Boltzmann (M-B) statistics we require symmetry
of pn(x1,...,Zn; Y1 ..., Yn) in the exchange of particle names. For the Bose-Einstein (B-E)
and Fermi-Dirac (F-D) statistics we require additionally

Py Ty Y1 e Yp) = Qs(ﬂ)pn(ml, T Yn(1) - Yn(n))s (2.10)

where m € P, is a permutation of n elements, and s(7) = 0 if the permutation is even,
s(m) =1 if it is odd.

Alternatively, the quantum statistics is automatically taken into account by considering
states on the algebra generated by the annihilation and creation operators a(z) and af(x)
(with the commutation and anti-commutation relations according to the B-E and F-D
statistics respectively). Then the RDM are defined as

Tr [aaT(xn) cal(zy)a(y) .. a(yn)] = pn(@1, - T Y1 - Yn) (2.11)

However we do not use here the second quantization formalism.
Given a state o, we define the Wigner transform [18] by

1 ‘ 1 1
W (X, V) = —— [ dy, e™¥n'Ve n(Xn — 1Y, X, —Yn>. 2.12

( ) (2r)3n / ¢ e 2 *3 (2.12)
Therefore the analogous of the classical correlation functions are the j-particle Wigner
functions defined through

n+j)!
B = Y P [, [av, w6, X vV, 2)

n>0
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Note that the F}’s are the Wigner transforms of the RDM p;, as one can easily check.
Due to the dynamics imposed by (2.9), it is a standard computation to check that the
Wigner function W,, evolves according to the Wigner-Liouville equation

oW + Y ;- Vo, Wy, = T, W, (2.14)
i=1
As a consequence, the j-particle Wigner functions F}’s satisfy the associated hierarchy
J
8tFj +ZU¢ V%Fj :Tij +Cj+1Fj+1, (2.15)
i=1

where T; and Cj41 will be defined below after Eq.(2.22), and the index j takes any value
between 1 and N. Equations (2.15) are analogous to the usual BBGKY hierarchy for the
classical systems and are derived in a similar manner. Note that by the definition of the
RDM the coefficient in front of Cj;; is one instead of N — j.

We now want to analyze (2.15) in the weak-coupling regime (1.6). Therefore, we set
[ (X35 Vst) i= Fy(e ™' X3 Ve '), (2.16)

where € > 0 is a small parameter, and we scale the potential as well, by setting

b — \/ed. (2.17)
The resulting, scaled, equation is
1
atf€+2vz Vo f} = 7 T+ g CGnlin (2.18)
where
(TEF) (X5 Vi) = Y (Tiuf) (X V)), (2.19)
0<k<t<j

and the Ty ,’s are defined as follows: if j = 1, we simply have T = 0; otherwise,

dh

Lo(zp—a0)

(T 7)) (X5,

o==+1 (220)
f;(xl,...,xj;vl,...,vk—05,...,vg+a§,...,vj>.

On the other hand, the C5; in (2.18) is computed as:

J
( +1f]+1 Xjav chj+1f]+1 X],V> (221)
k=1
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where
e e . dh ~ i ()
(Ck,j+1 _7—|—1)(X]7V7) =—1 Z g ﬁ d.’l?j+1 d’Uj_|_1 (ZS(h,)e e J
= (2.22)
h h
f;H(xl,...,mj+1;v1,...,vk—05,...,1)]'4_1 +U§).

Note that T and Cj4+4 are T and C%,, for € = 1. Last, we fix an initial condition sequence
{54372 (2.23)
according to the quantum statistics, and perform the limit ¢ — 0 in the resulting system.

Remark: Since

/fos,l(x, v)dadv = 3 (N), (2.24)

requiring || f§ 1z, = O(1), implies (N) = O(¢7%). In other words we are working in the
Grand-canonical formalism and the density is automatically rescaled. O

In the following we shall fix f§; to be a given (independent of €) probability density fo.
This means that its inverse Wigner transform

15 £ .y T+
play) = [T fo (T2 ), (2.25)

namely the one-particle rescaled RDM, is a superposition of WKB states.
We now make assumptions on the initial state to take into account the statistics. For
the M-B statistics a suitable initial sequence can be chosen completely factorized, e.g.

fo5=15" (2.26)

Such a notion of statistical independence, which corresponds to a complete factorization
of the RDM’s, is not compatible (but for the condensed Bose state) with the B-E and F-
D statistics which exhibit intrinsic correlations even for non interacting particle systems.
States describing free Bosons or Fermions are usually called quasi-free and are defined in
terms of the RDM’s by the following formula:

J
pien gy = 30 0O ] plen va), (2.27)
7T€'Pj =1

for some positive definite operator p on Lo(R?) with kernel p(z,y). We show in Appendix
how to construct explicitly quasi-free states for Bosons.

From now on we assume that the initial sequence (2.23) for the rescaled problem (2.18)
is given by the Wigner transform of a quasi-free state (2.27) generated by p(z,y) = p°(z,y)
given by (2.25). As a consequence the initial sequence {f?}32, for the hierarchy (2.18) is
of the form

X5,V = > 0o (X, V), (2.28)

TeP;
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with
- 1
[y, zg,01,..0,05) = (2w)3j/dyl---/dyj/dwl---/dwj
d iy iy T gy, VR (Tt Trk) € (229)
H @Yk R THIR T MR fo<f - Z(yk_yw(k)>awk) .
k=1

Eq. (2.29) follows from (2.27) and (2.25).

We underline once more that, in the present approach, the dynamics is given by the
hierarchy of equations (2.18) which are completely equivalent to the Schrodinger equation,
while the statistics enters only in the structure of the initial state.

In the weak-coupling limit ¢ — 0, we expect that f;(t) converges to a factorized state
(because the effects of statistics disappear in the macroscopic limit). On the more each
factor should be solution to the U-U equation (the collisions being affected by the statistics
because they involve microscopic scales).

3. THE MAIN RESULT.

Let f = f(z,v,t) be a solution to the U-U equation and set f;(-,-,¢) = f®I(-, -, ¢).
Then the sequence {f; }}’il satisfies the following hierachy of equations:

J
(0 + Zvi Ve fi = Qjj+1fiv1 + Qjj+2fj+2- (3.1)
i=1

Here the Q) j+1 contribution, a ”two particles term” in the terminology used below, is

j
(Qjj+1fi+1)(X;, V) = Z/dvé/dvﬂl/d?f}'ﬂ W (vk, vj+1|V) V1)
k=1

(3.2)

{fj—Fl(Xj?xk; Viy.en oy U;w .. .U;+1) — fj+1(Xj,xk; V1ot oy Uj_|_1>},

and the @); j 42 contribution, a "three particles term”, is
J
3
(@issafisn) 65, Vy) =850 3" [ dvg [dogin [y Wil o)
k=1
{fj+2(Xj7 Thy Ly V1y e vy v;g? .- '03+1avk) + fj—|—2(Xj7 Thy L3 V1y -y U;gv .- 'U3+17 Uj—|—1)
— fira (X5, xk $k§U17~--7Uj+17U;c) — fir2(X; xlka;?flw--an+1,“§'+1)}~

(3.3)

Also, (X,,y) denotes the (n + 1)-sequence (z1,...,Zn,Y).
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A formal solution to the hierarchy (3.1) is given by the following series expansion:

n—1

HH=Y % /Otdtl/otldtgu-/ot i

w05y
= (3.4)
S(t = 11)Qj j+a S(t1 — 12)Qjtar j+ar+as S(t2 — t3) - ..

| ‘ S(ty) 20Ut Hom)
Qj—|—051+"'+05n—17]+a1+”'+a" ( n) 0

)

where S(t) denotes the fream stream operator, namely,
(S0 f3)(X5, Vi) = Fi(X; = Vit, V5). (3.5)

As for the solution to the e-dependent hierarchy (2.18), we can also expand f? in the
similar way, at least at the formal level. This gives

n—1

Fo=> > /Otdtlfotldt2~-~/ot dt,

nZO Y1 _’Y?{,
7o (3.6)
g >
S(t = tl)Pj,j—FwS(tl o t2)Pj+71,j+v1+vzs(t2 —t3)...
0
P]§+’71+"'+’7n71,j+’71+"'+7nS(tn) Jtvi+-+n

where fJO is an initial quasi-free state given by (2.29), and

€ —Z e € —ie

We are not able to show the convergence of f£(t) to f;(t) in the limit ¢ — 0 even for
short times. However we are going to show that the two series agree up to the second
order in the potential. Namely, defining the second order contributions

t t
g(t) == S(t)fo+ /O dty S(t —t1)Q1.2S(t1) fE? + /O dty S(t —t1)Q1.3S(t1)fE3,  (3.8)

associated with f;(¢), and

() == S(t)fo + / dty S(t — t1)C55(t1) £

0

t t1
+ g4 / dtq / dta S(t — tl)CSS(tl — tg)TSS(tg)fg (39)
0 0
t t1
+5_7/ dt / dty S(t —t1)C5S(t1 — t2)C5S(t2) f3,
0 0

associated with f5(t), we rigorously prove below the convergence of g°(t) to g(t), under
suitable assumptions on the data of the problem.

Assumptions: We require ¢ to be real and even, so that q/b\ is real. In particular




ON THE WEAK-COUPLING LIMIT FOR BOSONS AND FERMIONS 9

This the most important assumption we need in the analysis. Besides, we shall need to
deal with ”smooth” data. Quantitatively, we assume the following regularity:

(141D Y D26 € Ly,

18] <2
for a sufficiently large o, and
fo(z,v) € Ly,
A+l + e 3o 3T (DL + D) fole ) € Ly, (3.10)

0<[Bl<20<|y[<2

for a sufficiently large a as well. In (3.10), 5 and v denote multi-indices, and D? , DY
denote derivatives with respect to the variables & and 7. Note that throughout this paper
we use the following normalization for the Fourier transform:

) = (Fof)(h) = / d f(z)ein e,
" (3.11)

f(@) = (Fr (k) = — / dn (e

Our main result is the

Theorem. Under the above assumptions, we have

lim §°(, 7. 1) = §(€,n,1),  for any t >0 and any (&, 1) € R°.

Remark: In the above statement (and the proofs given below), we found convenient to treat
the terms in (3.8) and (3.9) in terms of their Fourier transforms, for which the convergence
arises more naturally. However, we would like to stress that in the companion paper [2], a
stronger, but analogous, result is formulated in terms of the pointwise convergence in the
x — v space, hence without going to the Fourier space. O

Before entering the details of the proof we first analyze all the contributions in the right
hand side of (3.9).
The two-particle terms are (we skip the unessential operator fg dt; S(t —t1))

S5, :=e"2C58(t) f7, (3.12)

where the permutation 7 may take the two values 7 = (1,2) or 7 = (2, 1), together with

t1
7'2756 = 8_4/ dtg CSS(tl — tQ)TQES(tQ)f;, (313)
0

with 7 taking the values 7 = (1,2) or m = (2,1). There are four such terms.
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The three-particle terms are twelve, namely:

t1
W?T’r’g = 6_7/ dtz CiQS(tl - tQ)CigS(tQ)fg, (3.14)
0

and .
VI = / dty C5 5S(t1 — £2)C5.4S(t2) /5 (3.15)
0

with m € Ps3, the set of the permutations of three objects, whose cardinality is six.

Note that all the above terms are funtions of (z,v) (and ¢; of course).

For further convenience, and in view of the proof of our main result, we readily express
all these contributions in terms of their Fourier transforms.

We start with the following obvious three formulae for the basic operators S(t), 1%, and
Cy (see (3.5), (2.19)-(2.20), and (2.21)—(2.22), respectively):

T5 (&1, &im,m) = —i Y /dh ¢l 5 (na=m) f (51 - - &+ h,m 772)

o==+1
) h h
—ZO’%Wf <§ - _7 77770> )

C5f(&m) = T5 Fle,0:m,0)= —i 3 /
o=%1

S (&) = f(&n+&n).
These relations give in (3.12) through (3.15):

—% h h. h
825(577 3 Z /dh¢ _Z hnfﬂ—(g__7_777+t1(£ 8)7t1g>-
(3.16)
ye(§m) =— (27)° 0102/ dtQ/dhl/dhz o( h1 h2)
T o1,09==%1
e—’L—hl ’I]e—’L—hz (’I]—|—£(t1 t2) (tl t2)h1
~ 1 t1hy + toho t1hy + tah
3 (e——<h1+hz>,—<h1+h2>;n+t1§— e 2),
€ € € €
(3.17)
— g7 t1 - .
Wi (&) =— (2r)° Z 0102/ dtQ/th/th ¢(h1) (h2)
& o1,00==+1 0
0GR e—z"’—;h2~(n+(§—h—;)(t1—tz)) (3.18)
- h h th +toho tihy tah
€ € €
o7
3:(&m) =~ 20 0102/ dtz/dh1/dh2 d(h1) ¢(hs)
T o1,00=%1
e—igz—lhrn e—i%hz'%(tl—tz) (3~19)

~ 1 hy — h2 h2 tihy tihy —tahe toho
™ _ t — .
f3 <§ - yn + 15 c ; - ) c )
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Starting form those expressions, the plan of the proof is the following. In Section 4
we evaluate the two particle terms 87 . and 7,".. We prove that they converge towards
the associated two particles terms in the U-U equation. In Section 5 we deal with the
three-particle terms associated to the permutations 7m with a fixed element. Those are
shown to converge towards the associated three particles terms in the U-U equation, while
contributing by the quantity q/b\(v' —v)? +$(U' —v4)? to the transition kernel W (see (1.2)).
Finally in Section 6 we treat the three particle terms relative to cyclic permutations. We
recover in this way the missing contribution to the transition kernel, namely the cross term
0d(v' — v) d(v' — vs).

For sake of simplicity we shall carry out the computations for Bosons (f = 1), being
clear that the Fermionic case is just the same with suitable changes of sign.

4. TWO-PARTICLE TERMS.
We introduce the partial Fourier transform
v
f (1, iMoo mj) /dv1 /dv] 2 i R T, g v, ).

As a consequence of (2.29) we have

ff(ml,...,mj;m,...,nj) =

T + xw(k) 77k —Nr(k) Tk~ Txk) Mk T Nr(k) (4.2)
H f y + .
4 € 2
In particular, we have the obvious

SV (@, wosm, ) = folar, m) fo(wa, n2), (4.3)

together with

~ ~(x1+x € 1 — T +
2(2’1)(%@2;771,772) =fo - 2 - —(m —n2); — . 2+ nz e
2 4 € 2
+ . (4.4)
~(x1+x € T, —
7o 1 2+—(771—772)3+1 2+771 2 _
4 € 2
Hence, upon now performing the complete Fourier transform, we obtain,
7(1,2) 7 7
fa 7 (& &3m,m2) = fo(&,m) fo(€2,m2), (4.5)
together with
gQ’l)(§1,§2;7717772> :53/dy1/dy2 et 5y2) gmitz (11— 5v2)
= € m +n2
Jo <y1 - 1(771 —N2); —Y2 + 5 ) (4.6)
~ £ +
fo <y1 + 7 = m)i 2+ n 5 772) :



12 D. BENEDETTO*, F. CASTELLA*, R. ESPOSITO# AND M. PULVIRENTI*
We are now in position to analyse the term S for 7 = (1,2) and 7 = (2,1). First,
using the identity
. h -
Z ge 95 = _2jsin Tn,
o==1
we get the the explicit expression:

~ ~3 ~ hn\ - h h h,, h
8. =~ 25) /dh¢<h>sin(7")f; (5——, ,n+<§—g>t1,gt1). (4.7)

(2
In the case of § , a change of variable h — eh then gives, using (4.5), the value

SEM e = 2o [andtenysin (257) e~ mn+ (€ - e Fath e @9
Therefore, we may estimate

12
S5 <

< cwzuasuLw / dh [B] (|0 + (€ — )ta] + € — hlt) | Folhs b2 1Fol(€ — i + (€ — R)ty)

<Oz (sgup\nllfoKE;n) / dgsup €|l (€m) + 1 sup el ol i) / df\asgp%(am)\)
i

&

< Vs ((€]+ nl) folé: ) e s (01 + b o)

(4.9)
and the corresponding contribution vanishes with e.
In the case of 3‘5725’1) on the other hand, equations (4.7) and (4.6) give

~ 2__ . c .

fo <y1 - = {n+§t1——} ;—y2+n+§t1)
€t1 2
fo (y1 {n+€t1 - fTh} ;Y2 + n+2£t1)
2

= - /dh/dy1/dy2 o(h sm< ) eTimreF)Egihy

fo <y1+ y2+n+§t1)fo< ht1;y2+n+§t1)+0(\/g)-

2! 2 2
(4.10)
By the parity of ¢, the first term in the right hand side is vanishing: Indeed, it is anti-
symmetric in the exchange h — —h and y3 — —y2. Note that the mechanism that makes

the dominant, 0(5_1/ 2), contribution of S’;i’l), vanish in the limit, is very different from

the one involved in the vanishing of 5:5’1{;2): here, antisymmetry plays a crucial role. This
aspect will play an even more important, and more intricate, role in the next two sections.
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There remains to prove that the O(y/€) term in (4.10) indeed has the claimed size. It can
be written as

1

- o [ dndmdsa G sin (*57) (665 < 0n) o (6 6 )

oih-y2ti'dhe(261-6) (1 _ ez‘%(—yz-sﬂa—zm(@))) .

It may be estimated by

> n+¢&t > n+ €t
Janidion [ avsdea 1ol (66755 4 0e) 1ol (6 - 05 e
n+ &t n+é&t
<|§1| ’ 5 . +y2’+|€—§1| ’ 5 =~y -
Therefore the term Ss7, (21 Canishes as well.
As a conclusion, all terms &7, which are the ones that are linear in ¢, vanish in the
limit € — 0.

l\)l»—l

Ce

We now pass to the evaluation of the terms 7,7,

The contribution 7'2(;’2) has been already considered in Ref. [2]. However, for sake of
completeness, we analyze this term in the present context as well. Using (4.5) in (3.17),
and performing the change of variables:

h h t1 —t
LR =, TR (4.11)
€ €
we arrive at
7(1,2) 1
T,.7(&n) = — 5 0109 ds dh dk(,b (—h +¢k)
( ﬂ-) 01,02= :I:l
(4.12)

—i[n'h(%)—kdzh%] —ieZlkm —icoa & -[€s—25k]

(&

Jol€ = ks + 16 + hs — kty) fo(k; kty — hs).

(&

This term converges formally to

~ o
72(1’2)(£,n):_(271r) 0102/ ds/dh/dk‘(ZS (4.13)

o1,09==%1

—iln (B ) koS fe ke 4406 4+ hs — Et1) folk; kty — hs).

To justify the limit we split the integration in ds over the two intervals [0, 1], [1, +oc]. In
the first interval we bound the integrand by

19l | follro 16(R)] sup | fo(k,m)], (4.14)
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which is a Li(dkdh) function for any s € [0,1]. In the second part of the integration
domain, after the change of variables h — (kt; — hs), we bound the integrand by

~ ~ ~ 1
19117, Il follz. [folk,m)] 3, (4.15)

which is a L (dk dh ds) function on R3 x R3 x (1, +00). The claimed convergence in (4.13)
is then consequence of the Dominated Convergence Theorem. It holds uniformly in &, n

We now evaluate Ij\'z(,i’l)~ Inserting (4.6) in (3.17), and rescaling time t; — to = €s, the
resulting expression is:

~ 1
7—2(?1)(5777) - _ 0102/ ds/dh1/dh2/dy1/dy2 ¢(h1) d(hs)
; (27)6 4

01,02=—

—z—hl N e—z—hg (n+es€—2sh1) —z.’j (y1+5y2) z(h1—|—h2) Y2

(&1

~ € hit1 + ho(ty — ¢ + &t

fo<y1—1{n+£t1—2 it + halty ﬂ;—ywrn 51)
5 2

~ € hit1 + ho(t1 — s + &t

fo<y1+1[n+§t1—2 — i(l )};szrn 251).

(4.16)
Now the formal limit is:

(2 1)<£’ n) = — ﬁ i10102 /+OO ds/dh1/dh2/dy1/dy2 é( h1 h2)

01,02=—

e—ia—;hl'ne— ThQ’(n—QShl) —Z£~y1 Z(h1—|—h2)'y2

hi+ h + &t ~ hi+h + &t
12 2 _y2+77 €1>f0<1—t1 12 2;y2+77 251)_

fo <y1 + 1
(4.17)
To justify the limit we have to show the uniform (with respect to ¢) integrability of the

integrand in the right hand side of (4.16). To outline the decay with respect to the s
variable we observe

) 1 )
ezaghl-hgs — _ ho -V Qezaghl-hgs, 4.18
52 |h2 |4 ( 2 h1) ( )
and then proceed with the natural integration by parts with respect to hq in (4.16) (Recall
that 1/|ho|? is integrable close to the origin in dimension d = 3). Splitting the integral in ds
as before we may apply the Dominated Convergence Theorem, upon using the smoothness
of QS and fo, thus justifying the above formal limit.

Our last task is to interpret the result we have obtained, in terms of the U-U equation.
To do so, we first go back to the original variables, expressing 7;(1’2) and ’]'2(2’1) as functions
of (z,v). A straightforward computation yields, on the one hand,

1 02 — 01
7’2(172)($, 'U) — _ 0102 /dh/dU1 /d’l}2 ('U — V1 — h )
(27)? 2 (4.19)

01,02— il

AT (=R (a2h+ (01 — v2)) [(R)[? folz — vity,v1) fola — vat1, va),
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and, on the other hand (with he = h),

1
_(27r)3 alag/dh/dvl/dvg

01,02= +1

1—o0; 1+o01 02 — 01
(5(1}—1}1 5 T2 —h ) ) (4.20)

At (ooh - (—h — vy + v2)) B(h) p(—h — v1 + vo)

Jo(z —vit1,v1) folx — vaty, v2).

T, (z,v) =

Here we define the distribution
AT (a) ::/ ds '
0

Now, on both preceding formulae, we readily observe the following important fact. The
parity of g/g, and the symmetries h — —h, 01 — —01, 09 — —0o9 in (4.19), and h — —h,
01 — —01, 03 — —03, V1 < vg in (4.20), show that A™ may be replaced by 74 everywhere.
This will eventually give, as shown next, the desired conservation of energy in the limiting
U-U equation.

There remains to actually perform the sum ) o102 in (4.19) and (4.20), in order to
identify the very value of ’]'2(1’2) and 7'2(2’1). For 7'2(1’2) we make the following choice:

= 76() + ip.v. (é) . (4.21)

g1 (o] h (%1 V2
1 1 v —v v Vs
-1 -1 v— v Vs
1 -1 v = v vl
-1 1 v—1 v v,

This results in the final expression:

7(12)3311 47T2/dv*/dv /dv S(ve +v —v, — ')
(5024022 o) B - P 1)

where, with abuse of notation, we set the ”transported quantities”

f:f()(.’E—Utl,"U), f*:f0<.’E—U*t1,U*), f/:fo(x_vlthvl)? fi:f0<x_vit17vi)‘
Notice that, by changing v’ < v/, and using the conservation of momentum, we may
replace $|¢(v' — v)|* by 1|p(v' — v,)|? in (4.22).

Besides, for ’]'2(2’1) we make the following changes of variables:

(4.22)

01 g9 h V1 V2
1 1 v—1 Vs v
-1 -1 v —w v Vs
1 —1 v —w vl v
—1 1 v—1 v’ vl
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This results in the final expression:

7-2(21) T,V 4W2/dv*/dv /dv (ve + v — 0, — )

R ) (4.23)
(G024 =02 =) G =) B -0 (S~ 1)

As a conclusion for the 75 terms, we have eventually established the (desired) equality

’]'2(1’2) +T2(2’1) = /dv*/dv’/dv*W(U,v*\U/,Ui)(f/fi — ffi) (4.24)

This ends up the analysis of the two-particle terms.

5. THREE-PARTICLE TERMS: PERMUTATIONS WITH A FIXED ELEMENT

In this section we analyze Wi _ and Vi _ for the permutations 7 with a fixed element.
To simplify the notation we set

Wi, and Vy, form=(1,2,3),

and

Wi, and Vi_, i=1,2,3,

for the three permutations leaving i fixed. To state the result briefly, let us readily say
that the factors
Wi., V3.,  together with W3 _, Vi_,

give a vanishing contribution. Also, the sum
Wi + V.

is shown to vanish asymptotically, while each of these two terms is O(e™!) separately.
Here, anti-symmetry will play a central role. Finally, the two terms

1 2
W3,57 V3,57

do contribute to the limiting U-U equation through the cubic term. They build up the
transition kernel ¢(v' —v)? 4+ ¢(v — v4)2. The missing cross term 2¢ (v’ — v) (v — vy) in
W (v, v,|v',v,) will come up in the next section.

Let us show first that W3 _ and V{ _ are vanishing. From (3.18), scaling h; and hy and
summing on o1, 0y, we have

WS, = % / dts / dhy / dhs (chy) ¢(ehs)

SlIl (5 12 77) SlIl ( 5 (’17 + (tl — tg)(f hl)) (51)
o€ = (hy + ha),n + 1€ — (t1hy + tah)) fo(ha, tihn) fo(ha, tahs)
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due to the decay properties of ﬁ). The same argument easily leads to 179?’5 = O(e).

We now pass to the computation of )7\/\%5 This term is associated with the permutation

= (1,3,2). Upon Fourier transforming in x the relation (4.2) for fJ' (with j = 3), and
using the change of variables y; = (xo + 23)/2, y2 = (x2 — x3)/e in the corresponding
formula, we recover

7132)(51 £2,83,M,M2,M3) = € 3o (&1,m) /dylfdyQ e 2 (1 F5y2) gila- (V1 - 5y2)

(5.2)
= — + ~ — +
fo y1_€772 nga—yz-l-u fo y1+€n2 ng,yz-l-u .
4 2 4 2
Then, inserting (5.2) in the formula (3.18) relating the value of W] _, we arrive at
3,e
Ws (&,n) = "2 Z 0102/ dtz/dh1/dh2/d91/dyz ¢(h1) ¢(h2)
o1,090=%1 0
e—i(h1JErh2 y +h1 ho yz) e_z 2 Lp,. M~ i2 7]+(t1 tz)(f——))
~ hi+h t1hy +t2h
fo (é— R N R 2) (5.3)
7 ( tihy —tahe tihy -I- t2h2 )
0 4 ;
~ tih1 —toho tihy + toh
fo(y1+11422,11 2h2 )
Changing variables
k:h1+h2 b S:tl—tg
c ; 25 c )

we obtain

Wi (€,m) = —(271r>6 Z 0102/0% ds/dh/dk/dyl/dyg d(—h + k) o(h)
oa==%1

e_iT” (—h—+ek) —2 h (n+sh+ss(£ k)) —zk ‘Y1 — zyz( h—|—s§) ﬁ)(g o k‘, n + tl(f o k) + Sh>
~ t1h kt1 +sh kt1 — sh ~ t1h kt1 +sh kt1 — sh
7o ( 1 1TSS 1—sh ) 7o ( 1 1 1 +y2) _

A R A R
(5.4)
We are now in position to identify the rigorous limit of Wg’g, using the assumed decay of

<$ and ﬁ). The argument are those used in the previous section: we do not repeat them
here and in the sequel. Passing to the limit we get, eventually,

WL, n) = —(27106 o109 /+Oo ds/dh/dk/dyl/dyg 6(h

01,02—= +1

ei¥h'7}e_l_h s \—tk-y1+ih-y2 f0(§ k 77+t1(€ k‘) +Sh) (55)

~ tih kt; — sh tih kt; — sh
f0<y1+12 17 )fo( 127IT+312)-




18 D. BENEDETTO*, F. CASTELLAT, R. ESPOSITO# AND M. PULVIRENTT*

Last, we go back to the (x,v) variables, computing the inverse Fourier transform of the
above term. This gives

W;(x,v) = — 0'10'2/611]1/d1)2/d1)3 ‘(]5 'UQ_'UB)‘

01,02— +1

1 1-— —
6([1)2—1)3]- |:—?J—|—U2 o +v3 Ul}) (5(1}—1}1—1—01 02(1)3—112))

2 2 2

fo(x — Ultl, Ul) fo(x — Ugtl, UQ) fo(.’L‘ — U3t1,1)3).
(5.6)

This is our final expression of Wi. It will be interpreted later in terms of the v, v, v/, v
variables of the U-U equation.

In a similar fashion we compute V5 _ and its limit V§. We write
/13 2D (1,62, €5,m1,m2,m3) = €2 FolE2,12) /dyl /dyz e~ nt5y2) g mils (11— 52)

~ — - = — -
7 <y1_5n14n37_y2+n2 771) fo( n14n3,y2+n12ng).

(5.7)

We insert this expression into (3.19), and perform the change of variables h = hy, k =
(h1 — ha)/e, and s = (t; — to)/e. Passing to the limit ¢ — 0 at once, gives the asymptotic
value

V2(&,m) = ﬁa 2 _ﬂam /+Oods/dh/dk/dy1/dy2 6(h

f0< tlh 77+§t1—]€t1—8h_y) < tlh n+§t1—kt1—8h+y2)

2 2 1= 2

Fo (k. 1k 4 sh) e 1€ R gihvag—i%hn i A%
(5.8)
whose inverse Fourier transform is
Vi(z,v) = —7 UlUQ/d’l)l/d'UQ/dvg b(v1 — v3) |2
o1,02=%1
) ([1)1 — vs] - {Uz —vll+02 _v31 —02]) 5 (U_Ull—al _U31—|—0'1) (5.9)
2 9 5 .

folx —vity, v1) fo(z — vaty, ve) fol(z — vsty, v3).

Before coming to the computation of the other Wi’s and Vi’s, let us now identify the
link between the obtained values of Wi, V3, and the U-U equation. The following changes
of variables in Wi

01 g9 U1 V2 Vs
1 1 v vl Vs
-1 -1 v Vs vl
1 -1 v vl Vs
-1 1 v’ Vs v!
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yields the explicit value

Wi(z,v) :%/dv*/dv’/dv; (v — )|

, (5.10)
St v =0 = )8 (562 02 =0 =) (101~ 1.1
For V3 we set
01 02 U1 V9 VU3
1 1 vl Vs v
-1 -1 v Vs vl
1 -1 vl v v
-1 1 v v vl
and obtain the final
V2(x,v) = 27r/dv* /dv'/dvfk lb(v — 1))
, (5.11)
St v =0 )5 (G242 o = l2)) UL - ST
Last, using the symmetry v" < v/, (note that v —v = — (v}, —v,) and v/ — v, = v —v.) we
finally conclude after some computations that:
Wi+ V) (w0) = [du. v [ a5+ FOr £ = (' + 1110
(5.12)

S(v+v, —v —v))é (%(v2 + 0?2 —v'? — vf)) (Io(v" = o) + [o(v" — v.)]?).

This is the desired cubic term in the U-U equation, up to the fact that we only recover
here part of the total cross-section W (v, v, |v',v.) = [¢(v — v') + ¢(v — v4)]®. The missing
cross term will come up in the next section.

We now show that all other terms associated to permutations with a fixed element,
namely W3 _, V3 ., and Wi _ 4+ V3 _, give a vanishing contribution in the limit ¢ — 0.

We begin with W3 _. Inserting (5.7) into (3.18) and changing variables k = hie™!,
ho = h, we readily obtain:

W == 3 s [ e [k fan [ [ane 300 den

o1,090=%1

o~ 5 (O1n-ketozh-(n+(t1—t2)(§=k)) Giyo-h —i(ya+e'd ) (E—F)

fo <y1 - Z {n + &t — t1k — gtgh:| ;%(n + &ty — t1k) — yQ) (5.13)

~ € 2 1
fo <y1 + 1 [77 + &t — ik — gtzh} ;5(77 + &ty — k) + y2)

folk,t1k).
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Summing on oy and oy allows to compute the limit which is:

W3 £,n) @) / dtQ/dk/dh/dylfdyQ o(h otyz-h o —iy1-(§—k)

n—ék sin (2h (n+ (t1 —t2)(§ — k’)) fo <y1 + ;tQh ;(77‘1‘5151 —t1k) — yz) (5.14)

~ 1 1 .
Jo (y1 - §t2h§ 5(77 + &t — k) +y2) fo(k,t1k).

Note that the product of the two ﬁ)’s is invariant under the change of variables h — —h,
Y2 — —y2, as well as the oscillatory factor e®2". Therefore, using the parity of qg, it follows
that Wg(f, n) = —Wg(ﬁ, n). Hence

W2 = 0.

The term 179} is treated in the analogous way. We insert (5.2) into (3.19) and make the
change of variables h = ho, k = e 'h;, obtaining after summation over o; and os:

_1 N
VSE = / dtQ/dk;/dh/dyl/dyggb ek)
e—z'yl-k ez’y2~(h—65) sin (577 . k) sin <§h . kf(t1 — t2>)

~ 5 2 1 ~ 15 2 1

fo (yl 1 [tﬂf — —tzh} s =tk — y2> fo (y1 + - [tﬂf — _tQh:| s —t1k + y2>
€ 2 4 € 2

fol& — k. +t1(€ — k).

(5.15)

This term clearly goes to
V( /dtg/dk/dh/dyl/dyggﬁ\
—iy1-k giy2'h 1 1
2’1’] k | sin 2h k(tl - tg) f() Y1 + 2t2h; §t1]€ — Y (516)

fo <y1 - %tzh; %hk + y2) J?O(f —k,n+ti(§—F)).

Hence Vi = 0 for the same reason as before.

To end up this paragraph, let us last prove that the sum W§’75 + V§’75 vanishes asymp-
totically. First, we write

.]/‘?76(51752753777177727773) :53%(537773)/61211/61212 e—i&-(yﬁ-%yz)e—i§2~(y1—§y2)

~ — + ~ — +
o <y1_€77147727_y2+771 772) fo( 7714772,y2+7712772).

(5.17)
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We insert this formmula in (3.18), and perform the change of variables hy = h, hy = k.
In this way we recover, upon computing the sum > o109,

Wi (&m) = _I/dtQ/dk/dh/dm/dygqs
1

eW2h e =iyt 5u2) (6-k) iy (277 h) sin ( 5 “(n+ (tr —t2)§) — §k ~h(ty - t2))

~ € 2 1
folyr— = |n+&t—kta — =t1h| ;= (h+ &t — t2k) — Yo
4 € 2

~ € 2 1
fo (yl + 1 {77 + &t — Kty — gtlh] ;5(77+ Et1 — tak) + yz)

Folk, tak).
(5.18)

Similarly, using (5.17), (3.19), and performing again the change of variables h; = h,
ho = €k, we obtain:

V3 _(e.n) = _1/ dtQ/dk/dh/dylfdy2$

ei2-h o=iy1-(§=Fk) n—i5y2-(E+F)

sin (%n : h) sin (%k UG tQ)) (5.19)

~ £ 2 1

fO (yl + Z |:77 —|—§t1 + kto — gtlh:| ,5(774— ftl — tgk) + y2>
~ 5 2 1

Jolyr =7 |8tk ——tih 5 (1 + &t — tak) —
fo(k,tgk).

Hence, both terms Wg’s and 175’5 are O(e71). However we have the following expansions:

517\/\:3?”5 = Ay +eA; + O(e?), 5]75’75 = By +eB; + O(e?),

and it is easy to realize that Ag = —By. Moreover, after some straightforward calculation,
we obtain at the next order:

i . 1
A+ B = / dtQ/dk/dh/dylfdyg d(h) p(0)evzh =i (E=k) gipy <§n-h)
. 1 1
folk, tak) fo (y1 — §t1h 2(77 + &ty — tak) + yz) fo (yl +5tih; 5(77-1- §t1 — tak) — 3/2)
k 1
5 . (77 —|— (tl — tg)g) COS 5]6 . h(tl — tg) —|—

(1 fol(yr — 2t1h; 3(n + €t — t2k) +42)
—k-h(t; — k-V,log — -k .
sin (2 (t1 tz)) ( b f (1 + Sk S0 + €61 — 1ah) — 1) Y2
(5.20)
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Let us now exchange h — —h and ys — —ys. The term in braces is invariant because the
log term changes its sign. All the other terms are invariant but sin(n-h/2), which changes

sign. Therefore A; + By = —(A4; + B1), hence A; + By = 0. This shows that ngf,g + Vg”g
vanishes in the limit ¢ — 0.

6. THREE-PARTICLE TERMS: CYCLIC PERMUTATIONS

We still have to evaluate W3 _, Wg’;l, Vi. and V{: with 7 = (2,3,1) and 7! =
(3,1,2).

We first observe, for later convenience, the two relations

et —1 3 Tk
fi? (51752753;77177727773) :/dx1/d$2/d$3e Zk:l o Ek

T (1 +x2 € T — X2 Mt
f0< 2 + 4(771 n2); . + 5 )
xo + € To— T3 Mo+ (6.1)
~ 2 3 T2 — T3 2 3
f0< 5+ 4(772 n3); — t )
z (x3+T1 | € T3 —T1 | M3+
fo < 2 + 4(773 m); + 5 ) ;
AT(' —izs xkék
I3 (61,62, &33m1,m2,m3) = [ dxy [ dxy [ dwse k=1
~ (T2+w1 | € L2 —T1 | M2t
fo( 5 + 4(772 m); - + 5 )
x3+x € T3 — T ns +1n (6.2)
~ 3 2 T3 — T3 3 2
f0< 5+ 4(773 n2); + )
~ (x1+x3 € T —x3 M EN3
fo ( 5 + 4(771 n3); . + 5 ) :

Armed with these expressions, we begin with the computation of 17\/\37; ;1 and W§ .- Todo

so, we insert (6.1) and (6.2) in the general formula (3.18) relating the value of the Wgs’s.
In the so-obtained formulae, we also change variables, hy — —hq, ho — —ho for 771, and
01 — —o01, 09 — —o9 for m. With this new set of variables, the £’s and 7’s involved in
(3.18) are

hi+h h h
=6, L=F—, &G=F,
) t1hy +t2h tgh tgh (6.3)
771:77+§t1iMa 772::!::, 773::!227
€ € €
for 7= and 7 respectively. Also, the phases appearing in (3.18) are:
h
Spor = Zhy o+ Zhy <n+(t1 — t) [§+ —1D ,
2 2 €
(6.4)

h
Sﬂ:%hl'U—F%hg (77—|—(t1—t2) |:§—?1:|)
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All this gives in (3.18), the two values

o~ 1 =7
Wi (§n) =— ;71')6 0102/ dtQ/dm/dhz/dm/dmg/dxg

~—~

109==%1
~ xr1 + o 2t1h1 + tQhQ € _ 1 — X2 tQhQ ’F]
fo ( SR 4 T T Ty
]’; To + I3 _ tlhl — tghg . To — X3 _ tlhl + tghg (65)
o\ 2 4 7 ¢ 2
> (w3 +x1  tihy +2thy €_ x3—m1  tihy 7
fo ( 2 4 4"’ - T T

Blhy) B(hy) oo (€4 1EE2) giaa L iaa 22 i

e —7
W;,E(ﬁ’ﬁ) - - ;7{)6 0-10-2/ dtQ/dhlfth/dxl/de/dxs

( o100==%1
> (w2 +x1  201hy +t2hy € 2o —w1  t2hy @)
Jo < SR 4 AL 2c T3
}7 I3 + X9 _ tlhl — tghg . Tr3 — T i tlhl + tQhQ (66)
0 2 4 e 2
7 Ty +a3  tihy +20hy € _ xl —x3 Uil n n
0 2 4 4 2 2
D) Ghy) e (€7 HE) oo B oo 2 i

where we use the notation 7 =n 4+ &t;.
Now, we perform the following natural change of variables:

B 1 1
: To =1x1 + §t2h2 — €Y1, T3=1xT1— §t1h1 + €ys,
(6.7)

1 1
for 7 : To = X1 + §t2h2 + EY1, r3 = T1 — §t1h1 — EYs3.

for w

In both cases x; is unchanged. This finally gives the two relations

Wg:(&n) (;ﬂ 0102/ dtz/dh1/dh2/dm1/dy1/dy3

g102= +1

t1h +t h €
f0($1+ Sl 22 5[%-&/1] y1+;7)
tlhl —tzhg g (6.8)
folx1— 5(3/1 —Y3);—Y1 — Y3
t1h1+t2h2 €N ‘ 7
( ~5 3 m]mry

~

h1 ¢h2) —iz1-& —zy1 -h1 zyg hze 2 hy-ho(t —t2) 15 =
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WE(&,m) =

(;r Z 0102/ dtg/dhl/th/dxl/dyl/dyg

102==+1

th +th €
f0<$1+ 2 2—5[3—%}’&/14-2)
~ tihy —tohy € (6.9)
fo <9€1 L 2+§(y1—y3);—y1—y3>
~ t1h +th N n
f0< DAL 2+§[g—y3};y3+g)
¢( )e—1$1£ Zyl hl ’Ly3 h2€28h1 h2(t1 tz) ZS

Next, we come to the computation of 9{{6 and 17§T: We insert (6.1) and (6.2) in (3.19).
We also change h; — —h1, 09 — —09 for 7~ and hy — —ha, 09 — —09 for 7. This gives

the two identities

Vi (&,n) =

937:,5(57 77) ==

—7
° 0'10'2/ dtg/dhlfdhg/dxl/d$2/d$3
~ (2m)8

g102= +1

—~

~ xr1 + T2 2t1h1 + tQhQ E_ T1— X2 tQhQ 77]
fo ( 2 1 TP T T
T3 + 1 tlhl - tghg S _ Tr3 — I tlhl + t2h2 77 (610)
o ( 2 4 Ui 2e i)
~ (xa+x3  tihy +2thy 20— 23  tih
fo - ; -
2 4 € 2e

hq+ho

hi) b(h e_ixl'@*’h?l)em?'Te
3(h1) ¢(h2)

-7
° 0'10'2/ dtg/dhlfdhg/dxl/dxg/dxg
2m)6

. ho .S
—iT3- = ezSﬂ,1 7

Here the phases are:

( g102= +1

~ To + I Qtlhl + tghg 3 To — X1 tQhQ ’17
Jo < > 1 B T

~ xr1 + I3 tlhl - tghg g _ 1 — I3 tlhl + t2h2 77 (611)
Jo < 2 VR U [ 2 2
7 T3 +xy  tihy +2thy w3 — 9 +t1h1

"\ 2 4 e 2

$(h1) d(hs) omim1 (=) giva MR g i2 (i

Sp1 = —hy -+ —hy (t1 —t2)

(6.12)
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We make the following natural change of variable

1 1 n
for ﬂ-_l : L1 :Q?/1+§t2h2, $2:x/1_5y1, 1;3:'1;/1 _§t1h1 _€<y1+y3+g> ’
1 1 n
for 7 xlzfﬂi“‘gtzhz, Ty = 7] + €Y1, $3=9€1—§t1h1 +8(?J1 +y3+g>.
(6.13)
With this change of variables, we eventually obtain
—1 t
/\Tr_l 5
Vie (&m) = ~2n) > 0102/ dts /dhl /dhz /dl’i /dyl /dy3
i 0'10'2:i1 0
~ , tih1 + taha € |:77 ] ) 7
~ tlhl - t2h2 g, _ (614)
fo (w'l — 5 5ty tys)i—y s
~( , tihi+thy ¢ [77 } Ui
_ _ ST 49 . a
f0<x1 5 5 2+ Y1+ ys3 ,y3+2
Bll) Bha) 0154 € @i b gt haa(ts—t2) it 40 2)) 1
as well as
R 1 th
Vi(&m) =— (2r)° Z 0102/ dty /dh1 /th/dxi /dyl /dy3
o10o==%1 0
= tithy +tahe €7 ]
/ I . o
fo(‘%“r 2 2[2 yl}’yﬁz
~ tlhl — tghg g _ (615)
fo (w'l — 5 Tty tys)i—y -y
= tithy +tahe €7 n
/
fo(% 5 +2[2+ vt ys|iyst g

-~ -~ . . . i . h g
d(h1) d(hy) e™@1E em W1k giyaha o= 3zhi-ha(ti—ta) iz (1H€(t1—t2)) ¢iSx

Let us come to the computation of the limit of the above four terms 17\/\37; ;1, W\§ o 179’; ;1,

1/2\37; .- The phases carried by these terms are respectively:

o1h1 + ooh o Lot =t
%n+?2h2§(t1_t2)_x1§—y1h1+y3h2— 5 201 2h1-h27
o1hy + o2h o L=t =t
%~n+§h2~§(t1—t2)_x1~§_yl'h1+y3'h2—|— 2 th'h27
o1hy + h 1 1+oah —t
AL T o She &t —ty) — ) - E—y1-hi+ys-ho + 2 T2y b,
5 5 2 €
o1hi & h 1 1+o00t1 — 1t
%2'77+§h2'f(t1—t2)_$/1'§_y1'h1+y3'h2_ 2 b
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Denoting by W3 E W;r j, 93 R Yy V3 ., the eight terms relative to the values of o = £1,

we realize that W3 R Bt Wg ;’, VS . VS ., have only slowly varying phases, so that they
are individually O(e~ ) However, setting

5V/\7§;1’+ = Ay + Aje + O(£?), 6)7\/\9:’: = By + Bie + O(e?),

-~ N (6.16)
5V37:51’_ = Cy + Cie + O(?), eVi . = Do+ Die + O(£?),

an easy first order Taylor expansion gives Ag+Cy = Bg+Dg =0and A1 +B, =C1+D; =

0. Hence

1 Aﬂ-_17+ Aﬂ_:"’ Aﬂ-_lﬁ_ Aﬂ-:_ J—

lim (W5 + Wi+ V5 + V50 ) =0, (6.17)

e—0

For the other terms, which carry a rapidly oscillating phases, it is natural to rescale time,
setting s = e~ 1(t; — t3). Then, an easy computation shows

lim (Wss + W5, )Zr Wi, (6.18)
where
W3 (f 77 2 6 Z 01/ ds/dhl/th (/5 h1 )( —zhl-h25+eih1.h25)
7T o1==+1
/dxl/dyl/dyg e%(01h1—h2)-77 e—ixl-f e_yl'hl eiyg-hg
fO ($1+t1 L 9 2’ Y+ )f() (xl—tl ! 5 2;—y1_y3)
il hi+h
Jo («Tl —tl%,ys + g)

Finally, taking the inverse Fourier transform of this term, we obtain:

Wi (z,v) 27r/dv1/dv2/dv3 (vg —v1)¢(vg — vg)

[0(v+ve —vy —w3) — §(v —v3)] 5 ((v2 — 1) - (V3 — v2))
fo(z —vity,v1) fo(x — vaty, v2) fo(x — vati, v3) (6.20)

—om / do. / v, / av' B’ = v.) B’ — ) {fof F = F1.F'}

1
—(v? 02 —"? - vff)) )

5(U—|—v*—v’—v;)5(2

In the similar way we compute the limit

. 7r*1,—|— T, + T
Ehﬂ% (Vg,s +V5o ) = Vs,
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whose inverse Fourier transform admits the value

Vi (z,v) 27r/d111/dv2/dvg¢ 2—1}1)(/5(1)3—1)2)

§(v —v2) — 8(v —v1)] 6((vg — v1) - (v3 — v2))

fo x —vity,v1) fo(x — vati, v2) fo(x — vati,v3) (6.21)
_27r/dv*/dv /dv QS v — v, (v'—v){ff'fi—ff*fi}

1
—(? v =02 —0?) ).

(5(1}—1—1)*—1/—11;)6(2(

There remains to sum up the contributions of the terms W35 and VI. It gives, after
some computations using the exchange of variables v’ <+ v/, the missing cross term

V5 +V)(wo0) =2x [ o [ a [l (74 108 5= (1 + FOF L)
d(v4ve—v' —vl)d (%(02 T vsz)) (v —v) p(v) — vy).

This completes the proof of the theorem.

7. CONCLUDING REMARKS

It is well known that other possible scaling lead to kinetic equations as well. The most
important is the low-density limit (or Boltzmann-Grad limit): it is the regime in which
classical rarefied gases are described by the usual Boltzmann equation.

In our grand-canonical formalism it can be introduced in the following way. We do not
rescale ¢ which is O(1). On the other hand the rarefaction hypothesis is given by the
condition 2(N) = O(1). This means that (see (2.24))

i) = 0(e). (7.1)
Under this scaling, the hierarchy becomes (see (2.18))
4 1 1
o f; + ka Vo f; = ETJ‘Ef; + 8_4036'+1f;+1- (7.2)
k=1

Rescaling the correlation functions by defining;:

=i

(7.3)

we arrive at the hierarchy

J
- = 1. - 1 _ -
Oy + ka Vafj = ETJ' i+ 5_30j+1fj+17 (7.4)
k=1
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with a fixed initial datum of O(1). It is now clear that the terms C'C' are vanishing in
the limit ¢ — 0 and the statistical correlations are lost. On the other hand many terms
of the type CT...T are finite in the limit. It turns out that the sum of these terms
lead to the Born series expansion of the cross section. The underlying series actually
converges provided the potential ¢ is small. This task is performed in the case of the
Maxell-Boltzmann statistic in Ref. [3] by the authors. Here, a difficult point lies in the
identification of the cross section as the Born series expansion of quantum scattering, a
task which is achieved using an original identity derived in [6].

Another comment is in order. The U-U equation has been partially derived whenever
fo is the Wigner transform of a one-particle quasi-free state. As shown in Appendix, a
sufficient condition for the explicit construction of such a state is a small value of the
activity z. On the other hand the U-U equation for Bosons makes sense also for more
general initial conditions describing states with large activity. It seems very interesting to
understand whether the U-U dynamics of such states make sense from a physical point of
view and whether it can describe dynamical condensation phenomena.

APPENDIX: QUASI-FREE STATES FOR BOSONS

Let r be a one-particle state i.e. a self-adjoint positive operator whose kernel is denoted
by r(x,y). We want to construct a state which is compatible with the B-E statistics and
with a given average particle number.

Let 0, be a n-particle completely symmetric state given by

Un(Xna Yn) = Z ’I“(SL’l, yw(l)) o 'T(mnayﬂ(n))' (Al)
TeEP,
The state
D (42)
- — O0n, .
7T ER Yl
where

(1]

(2)=> %T;Tr O, (A.3)

n>0

is a normalized state for Bosons and
d
(N) =Tr[c*N] = i log =. (A.4)
z

We now compute the partition function Z(z) (see [9]):

(z) = Z %7: /d:z;l co.dxy, Z (21, Tr(1)) - - T(Tn, Ta(n))- (A.5)

n>0 T€Py

(1]

Given 7, let a1,...,a,, be non negative integers, a; denoting the number of cycles of
length j in 7. Clearly

n

Zjozj =n. (A.6)

j=1
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Given the sequence aq, ..., an,,

/dxl oy, (21, Tr1)) - T (T Tr(n)) H (Tr rJ> 7 (A.7)

The number of permutations associated to a given sequence aq, ..., q, is
a1
n! E ol (A.8)
Hence

1 = Tr iz Trrd 27

=225 [[———=e > —

s!
730550 gy go>1e=1 ¢ s

Jk=n

In the second equality s denotes the number of actual cycles in each permutation and
J1,---,Js are the lenghts of the cycles. The last sum is convergent for z sufficiently small
(away from Bose condensation region). Then, by (A.4) and (A.9)

= Z Tr (rz)? = z + o(2), (A.10)

Jj=1

for z small.
The RDM’s according to (2.5) are:

1 (n+7)! 2" .

Therefore we have:

<1 >Z (= |Z / A / dzn 1(21, &) - 7(2ns €x ), (A12)

Pj (X],Y])

[I]

where £ = (Y}, Z,,—;). Hence

Z /dZ (21, 2rr(1)) - - T(Zs5 Z0(s))

' EPg

(A.13)
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with r%(z,y) the kernel of r*.

Since _ _
(’I‘L—j)(ﬂ—]—S)!:l Zn:ZsZn—s:ZsZEkg
S

(n—j)! sl

we obtain

pi(X}.Y)) = :(1)2 DY H S b (2 ).

WGPJ l=1kp,=1

Defining the one-particle operator

ZZ l—zr

k>1

for z sufficiently small, we arrive at

pi (X5, Y3) = D 121, Yn ) - 72 (35, U ()
neP;

that is the characterization of the quasi-free state in terms of RDM.

(A.14)

(A.15)

(A.16)

(A.17)
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