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1 Introdu
tion.In the sequel �-
al
ulus means Chur
h's untyped �-
al
ulus, and we assume abasi
 knowledge of its syntax, whi
h 
an be found in [4℄. For this introdu
tion�-model only means \model of �-
al
ulus". In parti
ular �-models interpret �-terms modulo ��-
onversion (��), and they are extensional if the interpretationis modulo ���-
onversion (���):The problemati
. The main 
on
ern of this paper is the study of the
omplete latti
e �T whi
h 
onsists of all �-theories, ordered by in
lusion. A �-theory is a 
ongruen
e (with respe
t to abstra
tion and appli
ation) 
ontaining�� : Su
h a 
ongruen
e usually arises either from synta
ti
al and 
omputational
onsiderations or as the equational theory Th(M) of a �-modelM. The 
orre-sponden
e Th is far from being inje
tive, and we will also see that the questionof its \surje
tivity" is a key one. A �-model M is 
alled a proper model if it isnot the term model of Th(M). The best known 
omputational theories, besides�� and ��� ; are the theories H;H�; BT ,LT , NT , whose de�nitions are re
alledin Se
tion 3.2. It is here enough to say that BT equates two �-terms i� theyhave the same B�ohm tree, and that LT and NT are variants of BT , that H� andNT have been proved to be equal, and �nally that BT;H and H� are sensibletheories. Re
all that a theory is sensible if it equates all the unsolvable terms:We are interested in exploring the following generi
 questions.Problem 1 What do models tell us about the stru
ture of �T ?Given a 
lass C of proper �-models, a �-theory T is representable in C ifthere is an M in C su
h that Th(M) = T : We denote by �C the set of �-theories representable in C. The following problem is of 
ourse intimately linkedto the study of Th:Problem 2 What are the links between �T and �C; where C is some 
lass ofproper models.What should be very 
lear to the reader is that, even though �T , as wellas the �C0s for all interesting C0s; all have 
ardinality 2!, only a few expli
itlyde�nable theories 
an be proved to be the theory of a proper �-model. Amongthese ex
eptions are BT , LT andNT . Whether �� ; ��� andH are representableare long-standing questions, respe
tively due to Barendregt and Honsell, whi
hwill be dis
ussed all along the paper.We already surveyed in Se
tion 6 of [9℄ the state of the art 
on
erning thethree generi
 problems presented in this introdu
tion, and we listed a number ofrelated open questions. In the last four years signi�
ant progress was brought ina series of papers, mainly by Antonino Salibra, whether alone or in 
ollaborationwith Bu

iarelli, Lusin or the author. This makes it worthwhile to present inthis paper the new state of the art on �T , reorganize the material, update thelist of problems and present new ones, whi
h we 
onsider as very natural in viewof the new pi
ture. 3



The 
on
lusion of the paper will re
apitulate the new results, and will inparti
ular make pre
ise the questions raised in the previous survey whi
h havebeen brought an answer, following the order in whi
h these questions appearthere.To express the results we are interested in, we found it 
onvenient to in-trodu
e the notions of 2!-high, 2!-wide and 2!-broad (a notion stronger than2!-wide), whi
h will allow us to make pre
ise three interesting possible ways for�T and the �C 0s of being of 
ardinality 2!:Models and semanti
s. As it is well known, it took nearly 40 years to
onstru
t a proper �-model (S
ott 1969), and for this S
ott had to establishS
ott's 
ontinuous semanti
s. This �rst model, named D1, was an extensionalmodel, built as an inverse limit. Soon afterwards, two models admitting amu
h simpler 
onstru
tion, P! and E ; were proposed: respe
tively by S
ott andPlotkin (see e.g. [4, p. 469℄) and by Engeler [22℄ and Plokin (
f. [45℄). Moregenerally, the 
lass G of graph models, whi
h are 
alled Engeler-Plotkin-S
ottalgebras in [40℄, was isolated (E and P! 2 G): Let us re
all that E is the simplestof all proper �{models, and that all the graph models, and more generally allthe models we 
all \webbed models" (see below) 
an be seen as more or lesssophisti
ated, variants of E . Let us re
all also that Th(P!) = Th(E) =BT; andTh(D1) = H� = NT [27℄[56℄[40℄ (
f [4, Chapter 19℄).A graph model is des
ribed from a pair (D; i); 
alled its web, where D isan in�nite set and i an inje
tion from D� � D into D; where D� is the setof all �nite subsets of D: Su
h a model interprets a �-term as a subset of D;and abstra
tions as 
odes in P(D) of S
ott's 
ontinuous fun
tions on P(D); the
ode being 
omputed using i: Hen
e all the graph models belong to C
ont, whereC
ont is the 
lass of all the �-models whi
h 
an be built inside S
ott's semanti
s.We let Gden be the 
lass of graph models with 
ountable web; without loss ofgenerality one 
an suppose in this 
ase that D = N; nevertheless �Gden is veryri
h.More generally, webbed models 
an be de�ned, roughly speaking, as those�-models whi
h interpret �-terms in some R(D) � P(D); for some set D; andabstra
tions by 
odes inR(D) of fun
tions onR(D) enjoying some spe
i�
 prop-erties, in
luding 
ontinuity. Graph models form the simplest 
lass of webbedmodels.Se
tion 5 presents graph models, the methods available for building them,and some of the equational and inequational properties whi
h they all share.There are two known ways of building graph models: free and for
ing 
omple-tions of a partial web. Free 
ompletion mimi
s and generalizes the 
onstru
tionof E : It is, essentially, a re
ursive pro
edure, similar in essen
e to de�ning in-terse
tion type systems [16℄, although mu
h more general in some sense, butwhere redundan
ies are systemati
ally 
leaned. As noti
ed by Bu

iarelli andSalibra, free 
ompletion also allows us to de�ne a notion of produ
t in G [14℄.For
ing 
ompletion is a non re
ursive pro
edure, whi
h allows one, in parti
ular,4



to prove the easiness of 
 (i.e. the fa
t that 
 = t is 
onsistent with �� forall 
losed term t) via graph models [3℄. With Salibra, we re
ently generalizedthis method and used this to prove that �G, and some related sets of �-theories,are 2!-broad, and that moreover �T 
ontains an interval sublatti
e whi
h isdistributive, 2!-high and 2!-broad. Let us de�ne a positive graph model as amodel whi
h 
an be presented as the free 
ompletion of a positive partial pair,in the sense of [9℄ or of Se
tion 5.3.1. Positive graph models are sensible (the
onverse is false). In 
ontrast, models built by for
ing are most of the time nonsensible.In Se
tion 6 we will study the stru
ture of �G and of �Gs; whi
h is the 
lassof theories of sensible graph models. In parti
ular, we will see that �G, �Gdenand �Gs are 2!-broad; whether �G and �Gden are equal is an open question. Wewill also see that �Gs has a largest element (Bu

iarelli and Salibra [15℄), whi
his not true for �G; and this greatest element happens to be BT: On the otherhand we will see that several results whi
h are true for �G still hold for �Gs; butthat transferring the results from �G to �Gs ranges, when possible, from trivialto highly diÆ
ult (
ase of the un
ountability of �Gs): A key question, whi
h wealready raised in [9℄ and whi
h is still open, 
on
erns the existen
e of a (strong)approximation theorem allowing us to manage uniformly all the positive graphmodels. Sin
e we now know that �Gs admits BT as a top element, this wouldimply that BT is the unique positive graph theory.We fo
us on the 
lass G of graph models for the following reasons. First,all the re
ent positive results on �T whi
h were proved semanti
ally have beenproved using G; and se
ond, most of the results ever obtained on �T via othersub
lasses of C
ont 
ould have been obtained using G, at a signi�
antly lower 
ost.Of 
ourse this has to be taken with some salt, sin
e, for example, G 
ontainsno extensional models. But when dealing with extensional theories the samephilosophy applies to Krivine's extension K of G (see below and in Se
tion 7.1).In parti
ular, D1 and its variants 
an be presented as elements of K, whi
h is thesimplest way of getting rid of the inverse limit 
onstru
tion, and the simplest wayof studying these models [38℄. In Se
tion 5.2 we will however give an exampleof equations whi
h are 
onsistent with �� but 
an't be satis�ed by models ofK; and in parti
ular of G (Corollary 38), with the 
onsequen
e that the easinessof the �-term 
3I 
annot be proved using models of K; however Honsell andal. [1℄ have re
ently shown that this easiness 
an be proved semanti
ally using�lter models. Ex
ept for this example, the interest of 
lasses wider than G or Konly shows up when one needs a model whose underlying domain 
annot be a
omplete latti
e, e.g. be
ause one wishes to model some extension of �-
al
ulusinvolving added 
onstants with spe
ial behaviours.In
identally, let us re
all two other 
lasses of problems where using graphmodels makes life easier. First, the simplest models of G; to begin with E ; 
anbe used for proving some operational or synta
ti
 properties of lambda-
al
ulusin a more e
onomi
al and more 
uid way than when using interse
tion type5



systems (
f. [9℄). Se
ond, G and K 
an even prove interesting for showing the
onsisten
y of extensions of �-
al
ulus involving new 
onstants; the example ofthe strong surje
tive pairing [38℄ is sket
hed in Se
tion 5.5. To summarize, mostof the time, using G (or K when ne
essary) brings the same information thanusing wider 
lasses of models of C
ont for studying �T , more elegantly and at asigni�
antly lower 
ost.Se
tion 7 deals with K; and with 
lasses C belonging to other semanti
s thanS
ott's one. The main variants (or re�nements) of S
ott's semanti
s are Berryand Girard's stable semanti
s, Bu

iarelli and Ehrard's strongly stable seman-ti
s, and various weakly 
ontinuous semanti
s (a survey on these semanti
s andthe diverse 
lasses of models, as well as a 
omplete bibliography 
an be foundin [9℄). What makes these semanti
s workable is the existen
e, in ea
h of them,of 
lasses analogous to G;K (see Se
tion 7); moreover some models of C
ont;like D1, E and P! have analogues in these 
lasses. Hen
e, in general, all thepositive results proved for �G and �K 
an be transferred to these other 
lasses,in parti
ular all are 2!-large and 2!-in
omplete. Thus, the new informationwe get on �T using these 
lasses rather arises from the following third generi
question:Problem 3 What are the relative positions of the diverse �C's in �T :The deepest results on Problem 3, whi
h 
ompare �C
ont and its stableand strongly stable analogues, were obtained in the nineties and were alreadysurveyed in [9℄. The information we add here is, �rst, that these results stillhold (and more easily) when one repla
es C
ont by G and, se
ond, that one 
anlargely amplify some of these results for free by using generalized for
ing insteadof usual for
ing, sin
e this allows us to prove the 2!-broadness of some sets ofthe shape �C � �C0; instead of their mere non-emptyness. For dis
ussing thiswe also have to go deeper in the presentation of the earlier results than we didin [9℄. We will also see (end of Se
tion 2) that game semanti
s, although it hasattra
ted mu
h interest these last ten years in the 
ontext of typed �-
al
uli, isnot really relevant here.Let us end this introdu
tion by a remark whi
h also open questions. Aswe will see, subsets of �T 
an be proved to be 2!-wide or 2!-broad either bysynta
ti
 or by semanti
 means, but at present it seems we 
an't say anythingnon trivial on the height of �G; and hen
e on any interesting �C:2 Preliminaries.2.0.1 �-toys.�-
al
ulus. � and �Æ are, respe
tively, the set of �-terms and of 
losed �-terms (also 
alled 
ombinators). Con
erning spe
i�
 �-terms we set: I � �x:x;" � �x�y:xy; V � �x�y:x; F � �x:�y:y, 
 � ÆÆ; where Æ � �x:xx; :and6




3 � Æ3Æ3 where Æ3 � �x:xxx; a more traditional notation for V is K (when notviewed as a boolean). We will denote ��-
onversion by �� and ���-
onversionby ��� : Finally we re
all that the order of a �-term u is the largest integer n � 0su
h that u is ��-
onvertible to �x1:::�xn:u0 for some u0; if there is one, and 1if this is true for all n:�-theories. A �-theory is a 
ongruen
e on � (with respe
t to the operatorsof abstra
tion and appli
ation) whi
h 
ontains �� ; it 
an also be seen as a(spe
i�
) set of equations between �-terms. The set of all �-theories will bedenoted by �T : We will often drop the "�" of "�-theory", sin
e we will notuse any other kind of theories here. A �-theory is extensional if it 
ontains theequation I = "; and we let �Te be the set of extensional theories. It is 
lear that�� and ��� are, respe
tively, the least elements of �T and �Te.The �-theory generated (or axiomatized) by a set E of equations is the least�-theory 
ontaining it, denoted by TE : A theory T is �nitely axiomatizable ifT = TE for some �nite E; then it is 
lear from the existen
e of a pair 
onstru
tor�x�y�z:zxy in �; that T = TE for some singleton set E:We re
all that E ` r = smeans that r = s 2 TE: A set of equationsE is in
onsistent if TE = Top � ���;in parti
ular Top is the unique in
onsistent �-theory. For example V = F isin
onsistent, as well as F = I:We do not ask for 
onsisten
y in the de�nition of "�-theory", sin
e it willbe 
onvenient to 
onsider Top as a �-theory (whi
h is obviously extensional).Sensible �-theories. A �-theory is sensible if it is 
onsistent and all theunsolvable terms are 
ongruent, and is semi-sensible if it is 
onsistent and nosolvable term is 
ongruent to an unsolvable term; obviously �� and ��� are semi-sensible and non sensible. It is well known (and easy to prove) that sensibletheories are semi-sensible.Easiness. Given a �-theory T , a 
losed term u is T -easy if for all othert 2 �0 we have that T [ fu = tg is 
onsistent. It is easy to 
he
k that aT -easy term is ne
essarily unsolvable. On the other hand, the 
onsisten
y ofT 0 = T [ fu = Ig; implies that u = �x:u =2 T (otherwise F = I is in T 0); inparti
ular, the existen
e of a T -easy term implies that T is non sensible.A term u is easy if it is ��-easy, namely if fu = tg is 
onsistent for all
losed term t: The term 
 is the best known easy term, and it enjoys furtherproperties whi
h make it possible to prove semanti
ally its easiness (via graphmodels), using a for
ing te
hnique developed by Baeten and Boerbom [3℄.�-models. In this paper the word �-model 
an very well be understoodas a generi
 expression 
overing \any possible model of untyped �-
al
ulus".Alternatively, it 
an be given the pre
ise de�nition of �-model in [4℄, or bede�ned as any re
exive obje
t of a 
artesian 
losed 
ategory with enough points,or just be understood as \the union of all the 
on
rete 
lasses of models thereader has in mind". Examples of su
h 
lasses will be re
alled in Se
tions 2.0.77



and 7.1. Ea
h �-model M indu
es a �-theory, denoted here by Th(M) or by=M : Thus: t =M t0 if and only if t = t0 2 Th(M) if and only if t; t0 have thesame interpretation inM:We will 
all proper �-model any �-modelM whi
h isnot a term model. If M is a proper model then Th(M) 6= Top; sin
e otherwiseM would be a singleton model and hen
e the term model of Top: Finally, a�-model is sensible in 
ase Th(M) is.Representability of theories in 
lasses of models.De�nition 1 Given a �-theory T(i) A �-model M is a model of T if T � Th(M):(ii) A �-model M represents T if T = Th(M):(iii) T is representable if it is representable by a proper �-model:De�nition 2 Given a 
lass C of �-models and a theory T:(i) C represents T if there is some M2 C representing T:(ii) C omits T if there is no M2 C representing T:(iii) C is 
omplete for S � �T if C represents all the elements of S.(iv) C is 2!-in
omplete if it omits 2! �-theories.Notation 3 �C is the set of �-theories whi
h are representable in C:�Ce is the set of extensional �-theories whi
h are representable in C:�Cs is the set of sensible �-theories whi
h are representable in C:�T happens to be the instantiation of �C where C 
onsists of all possible termmodels, but from now on C will always denote a 
lass whose de�nition does notrefer to the syntax of �-
al
ulus. We will also assume that C is uniform, in thesense that it should not be de�ned as a union (de�nition by 
ase). Su
h a 
lasshas no reason to 
ontain term models, and in pra
ti
e none does. To be more
on
ise we will adopt the following 
onvention.Claim 4 From now on C denotes a uniform 
lass of proper models.In parti
ular C 
an be any of the 
on
rete 
lasses of models that we willintrodu
e later on.2.0.2 Sets.N denotes the set of positive integers. For every set S; 
ard(S) denotes the
ardinality of S; S� is the set of all �nite subsets of S, P(S) is the powerset ofS; and S<! (resp. S!; S�!) is the set of all �nite (resp. in�nite, resp. �nite orin�nite) sequen
es of elements of S; l(�s) denotes the length of the sequen
e �s:When writing g(�x); where g is a fun
tion, we will always understand that l(�x)is the arity of g: For any fun
tion f : S ! S0 we de�ne f+ : P(S) ! P(S0) byf+(A) = ff(x) : x 2 Ag and f� : P(S0)! P(S) by f�(B) = fx : f(x) 2 Bg:8



2.0.3 Posets.Partially ordered sets are 
alled posets for short. The least (or bottom) elementof a poset, if any, is denoted by ?: Given a set S; the 
at partial order S? isthe poset obtained from S; viewed as a dis
rete ordered set, by adding a bottomelement, ?. The interval notation will have the obvious meaning; for example,given a poset S � (S;v) and s; s0 2 S; we let [s; s0℄ � f s00 2 S = s v s" v s0gand [s; s0[= [s; s0℄ � fs0g:We say that A � S is 
losed downwards in S if l 2 Aand l0 v l imply l0 2 A and the de�nition of 
losed upwards is symmetri
.Given a poset S � (S;v), and S0 � S we re
all that: S0 is a a 
hain of Sif it is totally ordered by v, and S0 is dis
rete in 
ase its elements are pairwisein
omparable for v, whi
h means that, for all s; s0 2 S0; s v s0 implies s = s0: S0is dense in S if 
ard(S0) � 2 and for all distin
t s; s0 2 S0 we have that ℄s; s0[\S0is non empty, and S itself is a dense poset if S is dense in S. Finally, S0 is ananti
hain of S if, whenever we are given s; s0 2 S0; s 6= s0; the top element >;if there is one, is the only possible 
ommon upper bound of s; s0 in S:2.0.4 Latti
es.A latti
e is a poset (S;�) su
h that any two elements s; s0 2 S have a leastupper bound s _ s0 and a greatest lower bound s ^ s0; then � is de�nable from_ or ^. A latti
e is 
omplete if any A � S has a least upper bound (then allA have also a greatest lower bound); in parti
ular a 
omplete latti
e has a topand a bottom element. An interval sublatti
e of the latti
e (S;�) is an intervalwhi
h is 
losed under _ and ^; and, hen
e, is a sublatti
e; in parti
ular ea
h
losed interval [s; s0℄ of a latti
e is a latti
e interval. A latti
e identity is anequation P = Q where P;Q are terms in the language f_;^g; a latti
e identityis trivial if it holds in all latti
es. A well known and useful non trivial latti
eidentity is distributivity: x ^ (y _ z) = (x ^ y) _ (x ^ z); a weaker 
ondition ismodularity, whi
h expresses that distributivity holds whenever y � x:2.0.5 Des
ribing the size of a poset.We introdu
e now the following de�nitions, whi
h will be useful to express howlarge, in some various senses, some subsets of �T 
an be. First we re
all that aposet S = (S;v) embeds a poset S 0 = (S0;v0) if there is an inje
tion f : S0 ! Ssu
h that for all x; y 2 S0 we have: x v0 y if and only if f(x) v f(y):De�nition 5 A poset S is 
-high (resp. 
-wide, 
-broad), where 
 is a 
ardinal,if S has a 
hain (resp. a dis
rete subset, an anti
hain) of 
ardinality 
:Lemma 6 If a 
omplete latti
e embeds a dense poset, then it also embeds thereals (R;<) and hen
e it is 2!-high.Lemma 7 If an ordered set embeds (P(N);�); then it is 2!-high and 2!-wide.Proof. Height follows from Lemma 6, on
e noti
ed that (P1(N);�1) isdense, where P1(N) is the set of in�nite subsets of N and A �1 B if A � B9



and B � A is empty or in�nite. Width 
omes from the fa
t that it is easy tobuild 2! pairwise in
omparable subsets of N; for example fAf = f : P ! Pg,where P is the set of prime numbers and Af � f pf(p) = p 2 Pg:2.0.6 S
ott's semanti
s.Cpos (
omplete partial orders) and (S
ott-) 
ontinuous fun
tions between 
posare de�ned in [4, Chapter I.2℄; all 
omplete latti
es are 
pos. Two 
pos D andD0 are S
ott-isomorphi
 if and only if they are isomorphi
 as posets, namely ifthere is a bije
tion between them su
h that f(x) < f(y) if and only if x < y;and we will denote this by D ' D0. If D;D0 are 
pos then [D ! D0℄ denotesthe 
po of all the 
ontinuous fun
tions from D into D0: A re
exive 
po is atriple (D; A; �) su
h that � 2 [[D ! D℄ ! D℄ and A 2 [D ! [D ! D℄℄ andA Æ � = id: Re
exive 
pos model �-
al
ulus as follows (for more details see [4,Chapter V.5℄).Let EnvD be the set of environments � mapping the set of the variables of�-
al
ulus into D. For � 2 Env and d 2 D let �[x : d℄ be the environment whi
htakes value d on x and agrees with � on the other variables. The interpretationjtj : EnvD ! D of a �-term t whi
h is relative to (D; A; �) is de�ned by indu
tionas follows: (i) jxj� = �(x); (ii)jtuj� = A(jtj�)(juj�) and (iii) j�x:tj� = �(d 2 D 7!jtj�[x:d℄):Graph models are based on 
pos of the form (P(D);�); for some in�nite setD; su
h 
pos are, of 
ourse, 
omplete latti
es. If D is 
ountable then a fun
tiong:P(D)! P(D) is 
ontinuous if and only if it is monotone and 
ommutes withall in
reasing unions.Further 
onventions on sets. When dealing with a graph model basedon P(D), greek letters �; �; ::: will always understand elements of D, small Latinletters a; b; 
 will understand elements of D�; i.e. �nite subsets of D; and �a;�b; �
:::elements of (D�)<!. Also, (a; �) is the usual set-theoreti
al pair, and (�a; �) isde�ned by indu
tion as follows: (�a; �) = � if l(�a) = 0 and (b�
; �) =def (b; (�
; �)):Tra
es of 
ontinuous fun
tions. Produ
ts of 
pos are again 
pos. By\a 
ontinuous fun
tion g of arity n on P(D)" we mean: g 2 [P(D)n ! P(D)℄:A 
ontinuous fun
tion g on P(D), of any arity, is 
ompletely determined byits tra
e, whi
h is de�ned by:tr(g) =def f (�a; �) : � 2 g(�a) g (1)The tra
e 
an be viewed as the relevant part of the graph graph(g) of g:Note however that, in 
ase of arity one, tr(g) � D� � D � P(D) � D; whilegraph(g) � P(D)�P(D)Graph models owe their name to the fa
t that 
ontinuous fun
tions are en-
oded in them via (a suÆ
ient fragment of) their graphs, namely their tra
es.10



2.0.7 Other semanti
s of �-
al
ulus.Besides S
ott's 
ontinuous semanti
s, the key examples are Berry's stable se-manti
s and the Bu

iarelli-Ehrhard strongly stable semanti
s, whi
h are re�ne-ments of S
ott's 
ontinuous semanti
s 
apturing some aspe
ts of the sequential-ity of �-
al
ulus. By the \three main semanti
s" we will understand one of theseand, for brevity, we will respe
tively 
all the �-models living inside: 
ontinuous,stable and strongly stable �-models. These semanti
s are fun
tional, in the sensethat �-terms are interpreted by morphisms whi
h are fun
tions; this is also the
ase for a further family of semanti
s, namely the �-
ontinuous semanti
s, � anyregular 
ardinal (�-
ontinuity is a weakening of S
ott's 
ontinuity). No more de-tails on these semanti
s than what is stated in this subse
tion should be neededto read this paper, and, if ne
essary, [9℄ 
ontains a more detailed presentation.Notation 8 C
ont; Cst Csts will denote respe
tively the 
lasses of 
ontinuous,stable, and strongly stable �-models, respe
tively.Similarly, C��
ont and Cgames will denote the 
lasses of models 
orrespondingto the �-semanti
s and to the game semanti
s, respe
tively.Our main 
on
ern is that of representability problems. In this 
ontext gamesemanti
s (whi
h is not a fun
tional semanti
s) is not relevant, sin
e it wasproved by Fran
o [20℄ that �Cgames (at least in the 
ase of Abramsky & al.games), only 
ontains the theories BT;LT and H� (see Se
tion 3.2 for a def-inition of these theories) while all the fun
tional semanti
s happen to be veryri
h and are also able to represent these theories. Sin
e no systemati
 study of�C��
ont has yet been undertaken, we will nearly only deal here with the threemain semanti
s, with a great emphasis on G (the other sub
lasses of models willonly be treated in Se
tion 7).3 The latti
e of �-theories.3.1 The 
omplete latti
e �T .�T ; ordered by in
lusion, is naturally equipped with a stru
ture of 
ompletelatti
e, where the meet of a family of �-theories is their interse
tion \, and thejoin, written here +; is the least equivalen
e relation 
ontaining their union.Sin
e � is 
ountable 
ard(�T ) � 2!; and we will see soon that �T is in fa
t 2!-high and 2!-broad.Two theories T; T 0 are in
ompatible if T [T 0 is in
onsistent, or equivalentlyif T+T 0 = Top: Hen
e an anti
hain of �T is a set of theories whi
h are pairwisein
ompatible.Notation 9 .(i) �T re denotes the set of re
ursively enumerable �-theories.(ii) �T s is the set of all sensible �-theories.(iii) �T s=2 is the set of all semi-sensible �-theories.11



Notation 10 .Notation 11 (i) Sre = S \ �T re .(ii) Se = S \ �Te will be 
alled the extensional analogue of S � �T :It follows immediately from their de�nitions that �T s, �T s=2 and their ex-tensional analogues, are 
losed under (�nite or in�nite) interse
tion, that �T s,�Te and �T se are 
losed upwards (omitting Top in the sensible 
ase) and that�T s=2 is 
losed downwards. Obviously �T = [�� ; T op℄ while �Te = [��� ; T op℄,and we will see below that �T s, �T s=2 and their extensional analogues are also
losed intervals of �T ; and hen
e 
omplete sublatti
es. Con
erning re
ursivelyenumerable theories, note that they are non sensible (this 
an be inferred from[4, Chapter 17.1℄) but that plenty of them are semi-sensible, to begin with �� :Of 
ourse �T re 
ontains all the �nitely axiomatizable theories.In the next two subse
tions we re
all brie
y the \histori
al" results on �T :Most of them (or their proofs) are purely synta
ti
, and all of them 
an be foundin [4℄.3.2 The roles of H;BT ,H� .Sin
e �T s is 
losed under interse
tions, it has a smallest element, whi
h is theinterse
tion of all the sensible theories, and is traditionally denoted by H:The theories H;BT ,H� were the �rst theories to be isolated, and they hap-pen to play an important role with respe
t to the stru
ture of �T : The theoryBT 
ontains t = t0 if and only if the �-terms t; t0 have the same B�ohm tree;hen
e it is a sensible theory, whi
h is stri
tly bigger than H , and BT is nonextensional; thus no theory below BT 
an be extensional; in parti
ularH is not.The theory H� 
ontains t = t0 if and only if for all 
ontext C[�℄ we have thatC[t℄ is solvable if and only if C[t0℄ is solvable. It follows immediately from thisde�nition that H� is sensible and that every semi-sensible theory is in
luded inH�; hen
e H� is the unique maximal sensible (resp. semi-sensible) theory. Sin
e�T s is 
losed upwards, there is no theory between H� and Top, sin
e �T s=2 is
losed downwards we get �T s=2 = [�� ; H�℄: Finally:�� ( H ( BT ( H� ( Top (2)℄H�; T op[= ; (3)�T s = [H;H�℄ = [H;Top[ (4)�T s=2 = [�� ; H�℄ (5)while, of 
ourse: �T = [�� ; T op℄ (6)It was proved by Hyland [27℄ and Wadsworth [56℄ that H� = Th(D1); wherewe re
all that D1 is S
ott's �rst model; in parti
ular H� is extensional. It isinteresting to note that there is another 
hara
terization of H�; in terms oftrees: H� = NT; where NT equals two terms if and only if they have the same12



Nakajima tree (
f. [4, Exer
ise 19.4.4℄). Finally, it is worth introdu
ing Longo'stheory LT; whi
h is also de�ned in terms of trees. LT is a "lazy" version of BT ,whi
h equates two unsolvable terms u and v if and only if they have the sameorder. We have: LT � BT and 
 = �x:
 2 BT�LT; hen
e LT 2 �T s=2��T s:The extensional 
ase. Given a theory T , let T� denote the smallest ex-tensional theory 
ontaining T and I = ". Sin
e H� is extensional, T� is 
on-sistent for all semi-sensible theory; furthermore H� is the smallest extensionalsensible theory, and H� � BT� � H�. In fa
t these in
lusions are stri
t, so �-nally, in the extensional 
ase we get similar in
lusions and equalities than above,with ���; H� and BT� repla
ing �� ; H and BT:3.3 Size and shape of the key intervals:The following results show in parti
ular that all the intervals mentioned in theprevious subse
tion are as high and wide as possible. The proofs of the theorems
an be found in [4, Chapters 17.1 and 16.3℄ and the proofs of the 
orollaries areimmediate. The proofs of the two propositions are respe
tively re
alled andgiven for allowing 
omparison with the semanti
 proofs that will be given lateron.Theorem 12 (Visser 1980) If T 2 �T re and r = s =2 T; then there exists usu
h that, for all t; T [ fu = tg 0 r = s:Corollary 13 If T is re
ursively enumerable then there is a T -easy term.Corollary 14 If T is re
ursively enumerable then T is non sensible.Proposition 15 �T re is a dense subset of �T ; and the same holds for theirextensional analogues.Proof. Let T; T 0 2 �T re be su
h that T  T 0, let r = s 2 T 0�T and �nally letS = T[fur = usg; where u is given by Theorem 12: It is 
lear that T � TS � T 0,that TS 2 �T re: Sin
e TS [ fu = Ig ` r = s we have Ts 6= T by Theorem 12.If T 0 = TS then T [ fur = usg ` r = s; but T [ fu = �x:Ig ` ur = us; hen
eT [ fu = �x:Ig ` r = s; whi
h 
ontradi
ts Theorem 12. Thus T  TS  T 0:Proposition 16 If T 2 �T re then [T; Top℄ is 2!-high and 2!-broad.Sket
h of proof. The fa
t that [T; Top℄ is 2!-high follows immediately fromProposition 15 and Lemma 6. The fa
t that it is 2!-broad follows from Theorem12, plus a 
ompa
tness argument. Let indeed u be a T -easy term, let n̂ denotethe n-th Chur
h integer. It is enough to prove that for ea
h sequen
e s = (tn)n2!of �-terms, the set Es = [Es;n is 
onsistent with T , where Es;n = fu1̂ =t1; :::; un̂ = tng: Indeed, if s is su
h that tn = tm is 
onsistent only if n = m,for example if s is itself the sequen
e of the Chur
h integers, then the sets E�s;where �s is obtained from s by a
tion of the permutation � of !; will generate13



pairwise in
onsistent theories. Now, to prove that Es is 
onsistent with T it isenough, by 
ompa
tness, to show that ea
h of the T [ Es;n is 
onsistent. But,using usual tri
ks of �-
al
ulus, given the sequen
e s; there is for ea
h n a �-term
ondn su
h that 
ondn|̂ =� tj for all j � n: Now, by Theorem 12, u = 
ondn is
onsistent with T; whi
h implies the 
onsisten
y of Es;n [ T:Corollary 17 �T is 2!-high and 2!-broad, and similarly with �Te:Theorem 18 (Barendregt & al. 1980)(P(N);�) 
an be embedded in ℄H� ; BT�[; and also in ℄H;BT [.Corollary 19 �T s,�T s=2 are 2!-high and 2!-wide, and the same is true fortheir extensional analogues.This 
orollary follows from Theorem 18 and from Lemma 7, sin
e the three\extensional" 
lasses 
ontain ℄H�; BT�[, and the three other ones ℄H;BT [.In the sequel we will see that the 2!-broadness of �T and the 2!-width of�T s and �T s=2 
an also be given semanti
 proofs, via G:We end this se
tion by quoting a very ni
e re
ent result of Statman, that wewill not use in the sequel, but whi
h reminds us (as the existen
e of easy terms)that surprising things 
an very well happen in �T :Theorem 20 (Statman 2001) [54℄. There is an equation e =2 �� whi
h is 
on-sistent with all 
onsistent theory.From Corollary 17 and Zorn's Lemma it follows that the set of maximal
onsistent �-theories is \maximally large", namely 2!-broad; and we also knowthat H� is one of its elements. Now, Statman's Theorem is equivalent to sayingthat there is an equation e =2 �� in the interse
tion of all these theories.3.4 Questioning the latti
e properties of �T:At the end of the nineties, Antonino Salibra [47℄ laun
hed a resear
h program forexploring the latti
e �T using te
hniques of universal algebra. The �rst resultwas obtained in [47℄, where the latti
e of �-theories is shown to be isomorphi
to the latti
e of equational theories of a suitable 
lass of algebras. Then the �rstimportant remark is that not any latti
e 
an be a latti
e of equational theories;examples of su
h 
onstraints are the Zipper 
ondition and the ET 
ondition(
f.[41℄), whi
h are not identities. Salibra proposed the following 
onje
ture,and re
ently proved with Lusin an approximation of it, whi
h involves boundedversions of +; and 
an be found in [41℄.Conje
ture 4 (Salibra 2000) �T satis�es no non trivial latti
e identity.Theorem 21 (Salibra 2001) [48℄ �T is not modular (and hen
e not distribu-tive). 14



Sket
h of proof. The modularity law (see Se
tion 2.0.4) fails for x = H� ;y = H and z = T , where T is generated by the equation 
 = I: Sin
e H 
ontainsthe equation 
 = �x:
 we have T +H = Top; hen
e H� \ (H + T ) = H�: Onthe other hand (H� \H) + (H� \ T ) = H + (H� \ T ): Obviously, " = I 2 H� ;on the other hand " = I =2 H + (H� \ T ) (see [48℄), hen
e H + (H� \ T ) 6= H� :In fa
t the proof works with any sensible extensional theory instead of H�:Obviously, the above theorem is no longer true for sublatti
es, in general.For example the interval latti
es fTopg and [H�; T op℄; whi
h have respe
tivelyone and two elements, satisfy a lot of identities, in
luding distributivity.Problem 5 (Salibra) Are there large intervals of �T whi
h satisfy interestinglatti
e identities?There are good reasons to be interested in intervals of the form [T; Top℄;the �rst one is that [T; Top℄ is isomorphi
 to the latti
e of 
ongruen
es on theterm-algebra �=T , whi
h is a bridge to universal algebra, and a se
ond one isthat we know from Proposition 16 that for all T 2 T re; and in parti
ular for all�nitely axiomatizable T , the interval [T; Top℄ is as large as it 
an be (as we 
anexpress it to be), namely: 2!-high and 2!-broad.Theorem 22 (Berline and Salibra 2004) [10℄ There is a �nitely axiomatizabletheory T su
h that [T; Top℄ is distributive.The proof, whi
h is semanti
, will be given in Se
tion 5.4 as a dire
t appli-
ation of generalized for
ing over graph models. Moreover we will have for freethat [T; Top℄\ �G is 2!-broad, and hen
e that �T ; and also [T; Top℄ for this T;are also 2!-broad.3.5 Representability problems.We already know that Th(D1) = H� and that BT = Th(E) = Th(P!); inparti
ular Th is non inje
tive (where we take as informal domain of de�nitionfor Th the union of all 
on
eivable C0s). In fa
t, as we will see, BT 
an evenbe represented by 2! models of G, and BT and H� 
an also be represented inea
h of the other main semanti
s! The question of the surje
tivity of Th is mu
hmore diÆ
ult; Salibra's Theorem 28 below is a strong, although not yet de�nite,indi
ation that the answer should be negative, and that moreover the range ofTh is 2!-in
omplete.About ��; ��� and H: As mentioned in the introdu
tion, the problemsof the representability of �� ,��� and of H are respe
tively due to Barendregtand Honsell. Both are long-standing questions (nearly as old as the existen
eof S
ott's 
ontinuous semanti
s), even though they were only �rst dis
ussed inprint in Honsell-Ron
hi [26℄.Problem 6 (Barendregt; Honsell) Are ��,���;H representable?15



These questions are still open. The �rst partial answers only 
on
ern ���and date ba
k as re
ently as 1995, and all the other partial results obtained sofar are essentially negative. Nevertheless exploring these questions allowed usto gather interesting information about the diverse �C0s; as we will see in thenext subse
tion. The only positive result is the following one. Note howeverthat the model built in its proof does not really answer Barendregt's problemin spirit, sin
e it is \essentiality synta
ti
", in the sense that its 
onstru
tion isbased on the syntax of �-
al
ulus.Theorem 23 (Di Gianantonio-Honsell-Plotkin 1995) [21℄��� is representable by (a kind of) weakly 
ontinuous model.Hint. Let us say that a fun
tion (between adequate 
pos) is DHP-
ontinuousif it 
ommutes with sups of in
reasing sequen
es indexed by !1; and let us
all CDHP -
ont the 
lass of �-models asso
iated to the 
orresponding semanti
s.Starting from the term model ��� of ���, the authors build an inverse limitM in an adequate 
ategory su
h that: M 2 CDHP -
ont and there is a fun
tionp :M!��� su
h that p(jtjM) is the 
lass of t modulo ���; for all t 2 �0. Then,obviously, Th(M) = ���:About the �C0s: The question of the representability of ��; ���; and Hgenerated a wealth of related questions. In the following, C denotes any uniform
lass of proper models we are interested in. Of 
ourse, the three followingproblems are not independent.Problem 7 Is C 
omplete for �T (or some more adequate subset of �T )?We will see in the next se
tion that all known semanti
s are 2!-in
omplete.Problem 8 Are ��,���, H representable in C ?We will see that, for C = G; the answer is \no" for �� ,���, and is still openfor H:Problem 9 Is there a least element in �C ? if yes, does it admit another (andpreferably ni
e) 
hara
terization?Theorem 24 (Di Gianantonio-Honsell-Plotkin 1995) [21℄�Ce
ont has a least element.Hint. Using the axiom of 
hoi
e, 
hoose one 
ontinuous model MT for ea
htheory T 2 �Ce
ont. Starting from the 
artesian produ
t � of the MT it ispossible to build an inverse limit M in an adequate 
ategory, in su
h a waythat M2 Ce
ont and Th(M) � Th(MT ) for all T . The proof in [21℄ of this lastpoint uses \logi
al relations" between � and M; sin
e logi
al relations do notdistinguish terms having the same appli
ative behaviour, this proof 
an onlywork with extensional models. 16



Problem 10 Compare the shape of �C with that of �T or of a more appropriatesublatti
e.These problems already appear in [9℄, sometimes with a di�erent formula-tion. Sin
e then several results were obtained, that we will survey from Se
tion5 on. In parti
ular the 
ase of C = G has been thoroughly studied; but somekey questions remain open.4 Theories of ordered models.4.1 Omitting �� and ���:De�nition 25 Let us 
all p.o �-model any �-model M su
h that appli
ationis monotone for some non trivial partial order � on the 
arrier set of M; andp.o? �-model any p:o �-model having a bottom element. We will write �M forthe preorder indu
ed by � on �0; thus t �M u if and only if jtjM � jujM :Graph models, and more generally all the proper models that we meet in�-
al
ulus, are p:o? �-models. Not only there are well known 
omputationalmotivations for 
onsidering p:o �-models, but it takes mu
h energy to �nd �-models whi
h are not p.o �-models. The �rst one was built by Plotkin in 1995[46℄, and it is only at the same time that it 
ould be proved that the term modelsof �� and ��� were not orderable. This is a 
orollary of the following beautifultheorem due to Peter Selinger, whi
h also gives a partial answer to Problem 8.Theorem 26 (Selinger 96) [52℄[53℄ Let M be a p:o �-model. If Th(M) = ��or ���; then the order is trivial on the interpretations of 
losed terms.Sket
h of the proof in [52℄. There is a term A 2 �0 su
h that Axxxy =��Axyyy while Axxxy 6=��� Axxyy, for variables x; y. Hen
e, for all 
losed termst; u and variables z; s, t �M u implies A(st)(st)(st)(zu) =M A(st)(st)(zu)(zu).It is then enough to prove that A(st)(st)(st)(zu) 6=T A(st)(st)(zu)(zu) if t 6=T u,where T = �� or ��� . This follows from a non trivial lemma whi
h states thatif t 6=T u then st and zu behave like distin
t variables: for all B;C 2 �0; ifB(st)(zu) =T C(st)(zu) then Bxy =T Cxy:Re
all that the one, and only one, example we have of an M satisfying thehypothesis of the above theorem is the DHP-
ontinuous model built in [21℄ forproving Theorem 23, whi
h furthermore is essentially synta
ti
.Problem 11 Does the above statement hold for H?Remark 27 It follows from the proof of Theorem 26 that, for the above termA, we have: Th(M) � fA(st)(st)(st)(zu) = A(st)(st)(zu)(zu) = t �M ug forall p:o: �-model M. 17



4.2 Omitting dense sets of theories.In [49℄ Antonino Salibra proved that (ex
ept maybe for very exoti
 orders) alluniform 
lasses of ordered models are 2!-in
omplete; the proof mixes tri
kyarguments from topology and universal algebra. The following 
onsequen
e ofthis result, already 
overs all the semanti
s we have met so far, and admits asimpler proof, due to Salibra and Plotkin (see [50℄), whi
h is 
omposed of thenext two lemmas. In parti
ular, Theorem 28 answers positively Question 2 of[9, Se
tion 6.1, p.149 ℄ (
f. Se
tion Con
lusion).Theorem 28 (Salibra 2001) The 
lass of all p:o? �-models omits 2!-high in-tervals of �T :In the following, (V; F ) 
ould be be repla
ed by any pair (t; r) of terms su
hthat t = r is in
onsistent.Let � and �0 be the �-theories respe
tively axiomatized by f
xx = 
g andf
xx = 
 ; 
 = 
(
V F )
g: Clearly, � � �0 � H ; in parti
ular � and �0 are
onsistent.Lemma 29 The interval [�;�0℄ is 2!-high.Sket
h of proof. Thanks to Theorem 15, it is enough to prove that �  �0:It is proved in [50℄ that (u = v) 2 � () (
uv = 
) 2 �; applying twi
e thisresult to the equation 
 = 
(
V F )
 we see that it is not in �; sin
e otherwise� would 
ontain V = F .Lemma 30 The interval [�;�0[ is omitted by all p:o? �-models.Proof. Any p.o. model M of � satis�es 
 = 
?? � 
V F; hen
e it alsosatis�es 
 = 


 � 
(
V F )
 � 
(
V F )(
V F ) = 
; hen
e 
 = 
(
V F )
:Thus Th(M) � � implies Th(M) � �0:Corollary 31 All the known 
lasses C of �-models are 2!-in
omplete.Note that, given a spe
i�
 
lass C, it is in general possible to �nd morenatural intervals (ex: [���; T op℄ for G; sin
e no graph model is extensional). Wewill also see below that for ea
h usual 
lass C, �T � �C is 2!-broad. WhileTheorem 28 and its proof produ
e 2!-high intervals, whi
h are furthermoreindependent of C; and hen
e brings uniformity.5 Graph models.5.1 De�nition.For brevity we will 
onfuse graph models and their webs, hen
e we simply de�ne:De�nition 32 A graph model is a pair (D; i), where D is a non empty set andi : D� �D ! D is a total inje
tive fun
tion.18



Su
h a pair will also be 
alled a total pair. It follows from the de�nition thatD is in�nite. A total pair (D; i) generates a re
exive 
po (P(D); �i; Ai), where�i and Ai are de�ned as follows:�i(g) = f i(a; �) : � 2 g(a) gThe left inverse Ai 2 [P(D)! [P(D)! P(D)℄℄ of �i (whi
h allows to interpretappli
ation in the model) is de�ned by:Ai(d)(d0) = f� 2 D : (9a � d0) i(a; �) 2 dg:where d; d0 are arbitrary subsets of D: When no ambiguity o

urs we write d d0instead of Ai(d)(d0): The interpretation jtji : EnvP(D) ! P(D) of a �-term twith respe
t to (D; i) is hen
e de�ned by indu
tion by:.� jxji� = �(x)� jtuji� = f� : (9a � juji�) i(a; �) 2 jtji�g� j�x:tji� = f i(a; �) : � 2 jtji�[x:a℄gSin
e jtji� only depends on the value of � on the free variables of t; we justwrite jtji if t is 
losed, and jtj if furthermore i is 
lear from the 
ontext.Example 33 .jI ji = j�x:xji = f i(a; �) = � 2 ag ; jKji = f i(a; i(b; �)) =� 2 a gj"ji � j�x�y:xyji = f i(a; i(b; �)) = 9b0 � b (b0; �) 2 a gjÆji � j�x:xxji = fi(a; �) =� 2 aa g.Remark 34 It is easy to 
he
k that for all t 2 �0 and all (D; i) we have:jtji \ range(i) � j"tji � range(i).Re
all that G (resp. Gden) denotes the 
lass of graph models (resp. whoseweb is 
ountable); thus, all the models in Gden have 
ardinality 2!. The elementsof �G will be 
alled graph theories for short.5.2 First equational and inequational properties:Lemma 35 No graph model is extensional.Proof. In all graph models (D; i) we have i(fi(;; �)g; i(f�g ; �)) 2 j"j � jI j.This �rst and old observation happens to be the simplest instan
e of a gen-eral, and mu
h less trivial, re
ent result, that we will state in Se
tion 6.1.Lemma 36 In all (D; i) and for all t 2 �0 we have:(i) jI j � j"j if and only if i is onto.(ii) jtj � j"tj if and only if jtj � range(i).19



Proof. (i) is easy to 
he
k, and left as an exer
ise, and (ii) follows easily fromRemark 34.Lemma 37 (Kerth 1995) In all graph models (D; i) we have:(i) jÆ3j 6= D and,(ii) if � 2 j
3j ; then � = i(�a; �) for some n > 0 and a1; :::; an � jÆ3j.Proof. (i) It is easy to see that jÆ3j 
ontains no element of the form i(;; 
):The proof of (ii), whi
h 
an be found in [33, Example 5.3.7℄, is a non straight-forward, but not diÆ
ult, exer
ise.Corollary 38 (Kerth 1995) No graph model satis�es 
3u = I (for any u 2 �0):Proof. Let (D; i) be a graph model, and let 
 2 D�jÆ3j :We have i(f
g; 
) 2jI j : If i(f
g; 
) 2 j
3uj then there is a � juj su
h that 
0 = i(a; i(f
g; 
)) 2 j
3j :By (ii) of the above lemma and using the inje
tivity of i we get 
 2 jÆ3j ; whi
his a 
ontradi
tion.This 
orollary, whi
h remains true for K (and beyond) shows a 
on
retelimitation of G and K. Indeed 
3I is an easy term; this was proved synta
ti
allyby Ja
opini and Zilli in 1985 [28℄, but was only given re
ently a semanti
 proof,by Honsell & al. [1℄, who built, for ea
h 
losed t, a �lter model of 
3I = t: Now,the above 
orollary shows that there 
an exist no semanti
 proof via graphmodels or models of K, in 
ontrast to the 
ase 
; sin
e 
3I = I is satis�ed inno su
h model. This essentially answers Question 5 of [9, Se
tion 6.3, p.152℄.From Lemma 37 Bu

iarelli and Salibra also derived the following interesting
onsequen
es; the �rst one is immediate, also using Lemma 36.Corollary 39 j
3j � j"
3j is true in all graph models.Combining this property with Theorem 26 we get:Corollary 40 (Bu

iarelli and Salibra 2004) [15℄ G omits ��.Proposition 41 (Bu

iarelli and Salibra 2004) [15℄ Ea
h sensible graph modelinterprets all the 
losed unsolvable terms by the empty set.Proof. It is enough to show that if a graph model (D; i) satis�es v = �x:v andv � 
3 for some 
losed term v, then (D; i) interprets v by ;: Suppose � 2 jvj ;then also i(a; �) 2 jvj � j
3j ; for all a 2 D�. By Lemma 37, i(a; �) = i(b; �)for some b � jÆ3j and some �; hen
e a = b � jÆ3j ; sin
e a is arbitrary we wouldhave D � jÆ3j ; a 
ontradi
tion.The 
lass Glazy of lazy graph models di�ers from G by a small variation in thede�nition of �i; whi
h works only if i is non surje
tive: �x 
 2 D � range(i);then de�ne �0i(f) � �i(f) [ f
g. It is easy to 
he
k that (P(D); �0i,Ai) isstill a re
exive 
po. The �rst and simplest example of a lazy graph model isthe lazy variation Elazy of E introdu
ed by Longo in [40℄; as already noti
edTh(Elazy) = LT; hen
e LT is representable in Glazy :20



5.3 Building graph models.There are only two methods for building graph models, and both 
onsist in
ompleting a partial pair into a total one, either freely or by for
ing. Whenapplied to total pairs both methods leave them un
hanged. There is a also aprodu
t 
onstru
tion, 
alled G-produ
t below, whi
h is a parti
ular 
ase of free
ompletion.All these methods 
an be extended to the other 
lasses of webbed models,with more or less ease (see Se
tion 7). The systemati
 extension of the free
ompletion method to K was written down in [9℄, but some parti
ular 
ases hadbeen previously worked out by several authors, to begin with [38℄ (
f. [9℄).5.3.1 Partial pairs.De�nition 42 A partial pair is a pair (P; j) where P is a non empty set and jis a partial (possibly total) inje
tion from P ��P to P , written j : P ��P * P .The simplest example of a partial pair is (P; ;); and, of 
ourse, any total pairis a partial pair. In the examples j will be des
ribed by its graph (in the usualsense). A 
ru
ial di
hotomy o

urs between the pairs whi
h we 
all positive, andthe other ones. A de�nition of positive pair, in full generality, was proposed in[9, p.125℄, and it was left to the reader to write down alternative formalizations.Su
h a (more intuitive, but possibly less general) formalization is the following.De�nition 43 (P; j) is positive if there exists a fun
tion v : P ! f+;�g su
hthat ((a; �); �) 2 graph(j) implies v(�) = v(�) and implies v(�) = �v(
) forall 
 2 a:5.3.2 The free 
ompletion method.This method, just 
alled \
ompletion" in [9℄, and \
anoni
al 
ompletion" else-where, generalizes the 
onstru
tion of E . It was introdu
ed by Longo in [40℄,who also proved that the graph model P! is isomorphi
 to the free 
ompletion ofthe pair( f0g; f(;; 0); 0g ), in a sense we will not make pre
ise here. It was thenused on a larger s
ale by Kerth (see Se
tions 6.2 and 6.3), who also transferredthe method to other semanti
s [33, 35, 37℄, and it was also used re
ently byBu

iarelli-Salibra in [14, 15℄. Free refers here to the fa
t that the graph model(D; i) is built in an indu
tive and 
anoni
al way from the partial pair (P; j) westart with, as freely as possible.De�nition 44 The free 
ompletion of the partial pair (P; j) is the total pair(D; i) where D is the smallest set su
h thatD = P [ ((D� �D)� dom(j)) :and i is de�ned by i(a; �) = j(a; �) if (a; �) 2 dom(j)i(a; �) = (a; �) otherwise21



Hen
e D is 
ountable and 
ould be de�ned as the union of an in
reasingsequen
e of sets Dn, while i is (globally) de�ned at the end. We now re
all thekey examples (others 
an be found in [9℄).Example 45 (Engeler's model) EP is the free 
ompletion of the (positive) pair(P; ;); in this 
ase i is just in
lusion. Note that ea
h element of EP 
an uniquelybe written as (�a; �) for some � 2 P and �a 2 D�<!.Example 46 The model PP is the free 
ompletion of the (positive) partial pair(P; jP ) where dom(jP ) = f;g � P and jP (;; p) = p for all p 2 P:Example 47 The model P 0P is de�ned as above ex
ept that dom(jP ) = f(fpg; p) :p 2 Pg and jP (fpg; p) = p for all p 2 P:De�nition 48 Let us 
all positive graph theories the theories of graph modelswhi
h 
an be obtained by freely 
ompleting a positive pair.Formally, the de�nition of PP and P 0P are similar, and the web of P 0P is assimple as for PP : However the two families behave quite di�erently, as we willsee soon; in parti
ular all the models PP are sensible, while in P 0P we have:j
j = P and j
tj� = P \jtj� [26℄. The key stru
tural di�eren
e between the twofamilies is that PP is generated by a positive pair, whi
h is not the 
ase for P 0P .Indeed, if a model happens to be the free 
ompletion of a positive pair, thenwe have a (uniform) 
ontrol on its theory. First it 
an be proved that positivegraph theories are sensible (
f. [9, p.125℄); the more dire
t way to prove it isto use a redu
ibility method (in Tait's spirit) dire
tly in the model (as it isdone there). Se
ond, if furthermore one 
an apply the strong approximationtheorem1 in the spirit of Hyland and Wadsworth [27℄[56℄, whi
h is the 
ase forthe EP 0s and the PP 0s (in parti
ular for P!) then Th(D; i) is 
ompletely known,and equal to BT: An open problem, whi
h we raised in [9℄, and for whi
h wehave only partial positive answers yet, is whether this is always true for modelsgenerated by positive pairs. We will return to this point later on.Remark 49 The theory of EP (resp. PP and P 0P ) is independent of P .Remark 50 Viewing P! as Pf0g makes it easier to study Th(P!):The reason why P! and Pf0g 
an be proved to have the same theory is thatwe have a good notion of isomorphism between webs. The de�nition is as follows:let us say that � : D ! D0 is a morphism between (D; i) and (D0; i0) if for all a; �we have that �(i(a; �)) = i0(�+(a); �(�)); by de�nition � is an isomorphism if itis furthermore a bije
tion (then its inverse is also an isomorphism). This notionof isomorphism is good in the sense that isomorphi
 webs generate models withthe same theory; but the mere notion of morphism happens to be disappointing(one would of 
ourse like to indu
e an in
lusion of theories).1The more general but weaker Approximation Theorem that 
an be found in [26℄, althoughhelpful, is not enough. 22



5.3.3 The graph-produ
t 
onstru
tion.De�nition 51 [14℄ The G-produ
t of the family (De; ie)e2E of graph models,where the De are supposed to be disjoint, is the free 
ompletion (DE ; iE) of([De;[ie); and hen
e a graph model.Note that Gden is only 
losed under 
ountable produ
ts (i.e. E should be
ountable). In the sequel it will be 
lear that the families we 
hose 
an besupposed to 
onsist of disjoint sets without loss of generality. Finally, in therest of this subse
tion we use freely the notations of the above de�nition.In order to make 
learer the presentation of the two following propositions,whi
h express the key te
hni
al properties of the G-produ
t, and that of their
onsequen
es, we will state them separately. However they are not independent,in the sense that their only known proof is global and by mutual indu
tion ont, on
e the family (fe)e2E has been exhibited [14℄.Proposition 52 (Bu

iarelli-Salibra 2003) For all t 2 �Æ we have:jtjie = jtjiE \DeCorollary 53 Th(DE; iE) � \e2ETh(De; ie):Corollary 54 Any G-produ
t of semi-sensible graph models is semi-sensible.Proposition 55 (Bu

iarelli-Salibra 2003) There is a family (fe)e2E of fun
-tions fe : DE ! DE su
h that:(i) DE is the (disjoint) union of the f�1e (De); e 2 E;(ii) fe(jtjiE ) � jtjiE .Corollary 56 [15℄ Any G-produ
t of sensible graph models is sensible.Proof. By Proposition 41 we have to prove that all unsolvables v are in-terpreted by ; in the produ
t. Suppose � 2 jvjiE ; by (i) of Proposition 55,there is an e 2 E su
h that fe(�) 2 De, and by (ii) of the same propositionfe(�) 2 jvjiE : Thus fe(�) 2 jvjie by Proposition 52, whi
h 
ontradi
ts thesensibility of (De; ie); using Proposition 41 on
e more.5.3.4 The for
ing 
ompletion method.This method originates in Baeten-Boerboom [3℄, where it is used for proving the\easiness" of 
: In the simpler presentation proposed by Zylberaj
h [57℄ (seee.g. [10℄ for a published proof), one starts from a partial pair (D; ;); where D isan in�nite 
ountable set, and builds by indu
tion a total i : D��D ! D; hen
ea graph model (D; i): Thus, here, D is �xed during the 
onstru
tion. Anotherdi�eren
e is that the indu
tive 
onstru
tion itself depends on the 
onsisten
yproblem we are interested in, and moreover it exploits heavily the fa
t that theinterpretation of 
 
an be quite freely 
onstrained. The method was generalizedto families of terms having a similar behavior as 
 by Zylberaj
h [57℄, and thentransferred by other authors to other 
lasses of models and other semanti
s(
f. Se
tion 7.2). One 
an also have to start from pairs (D; p0); with small
onstraints on p0: 23



5.3.5 Comparing free and for
ing 
ompletions.Besides the di�eren
es mentioned above it is worth noting the following pointswhere the two methods behave di�erently.Control or non 
ontrol over Th(M)? For
ing never gives us 
ontrolon the whole of Th(M); even if we start from a positive partial web. A �rst
onsequen
e is that, even though (D; ;) is a positive web, it is likely that nomodel built by 
ompleting (D; ;) by for
ing will be sensible, and most of themare further
learerly non semi-sensible; thus for
ing 
an't be used to produ
esensible theories and to study �Gs and �T s: A se
ond 
onsequen
e is that for
ing
an't be used to study the height of �G sin
e, given two models M; M0 builtby for
ing, we will never be able to prove that Th(M) �Th(M0):Preserving re
ursivity or not. From a re
ursive partial web, free 
om-pletion builds a re
ursive total web (hen
e a graph model that 
ould be viewedas a reasonable interse
tion type system (
f.[9℄)), while non trivial for
ing always
reate a non re
ursive web.Possible 
ardinalities of the webs. For
ing produ
es models with 
ount-able webs, while free 
ompletion 
an be used for building webs of any in�nite
ardinality.Mass produ
tion of models. Free 
ompletion allows for mass produ
-tion of non isomorphi
 graph models (and might probably allow for 2! nonisomorphi
 sensible graph models), usual for
ing does not. However, and as wewill see in the next subse
tion, it is possible to extend the method so that it be-
omes very easy to 
reate 2! graph models with pairwise in
onsistent theories.Su
h theories are neither semi-sensible nor re
ursively enumerable. As alreadymentioned, this generalization has also other interesting appli
ations to �T .5.3.6 Generalized for
ing.Berline and Salibra [10℄ generalized re
ently the for
ing method in three dire
-tions. First they noti
ed that the method works with other \operators" thanfor
ing (but this is inessential for our 
on
ern here), se
ond that it 
an be ap-plied to terms with parameters in [[P (D)n ! P (D)℄, where the union is takenover n � 0; whi
h opens the way to a lot of potential appli
ations and, third,that it allows us to treat (�nite and) in�nite sequen
es of 
losed terms insteadof a single term t as above. Given a set D we de�ne the set �D of D-generalized�-terms with the same indu
tive de�nition as for �, ex
ept that �D is further-more 
losed under all 
ontinuous fun
tions on P (D) of arbitrary arity n � 0.In other words we add the 
lauses: P (D) � �D and, if f 2 [P (D)n ! P (D)℄;n � 1; and if t1; :::; tn 2 �D then f(t1; :::; tn) 2 �D.As a 
orollary of the main results proved in [10℄ we get:24



Theorem 57 (Berline-Salibra 2004) There is a sequen
e of unsolvable terms(vk)k<! 2 �0 su
h that, for all 
ountable sets D and all sequen
es (rk)k2! 2 �DÆthere is i : D� �D ! D su
h that the graph model (D; i) satis�es vk = rk forall k.The simplest in�nite su
h sequen
e is vk = 
�k;k, where �k;k � �x1:::�xk:xk ;the result is however far from straightforward. Note that the vk 's are, anyway,ne
essarily easy terms.5.4 Appli
ations to �T :We now present two dire
t appli
ations of generalized for
ing to �T , whi
h fur-thermore give eviden
e that the method is very promising, and should produ
emany other interesting 
onsequen
es in the future. First we prove, semanti
ally,that �T is 2!-broad.Proposition 58 (Berline-Salibra 2004) �Gden is 2!-broad, hen
e �T also.Proof. Let s = (tk)k2! be an in�nite sequen
e of 
losed normal terms su
hthat tn = tm is 
onsistent only if m = n; for example s is the sequen
e ofChur
h integers. Thanks to Theorem 57 for ea
h permutation � of ! there is ani� su
h that the graph model G� � (D; i�) satis�es vk = t�(k) for all k: Now, byB�ohm's theorem, tm = tn is in
onsistent if m 6= n, thus Th(G�) and Th(G�0)are in
onsistent if � 6= �0.Proposition 59 There is a �nitely axiomatizable theory T su
h that [T; Top℄is a distributive latti
e.Proof. Given D; interse
tion \ and union [ are two binary 
ontinuousfun
tions on P(D): Let r1; r2 2 �D be de�ned by: r1 � �x�y:(x \ y) andr2 � �x�y:(x [ y): Let G � (D; i) be any graph model satisfying v1 = r1 andv2 = r2, where v1; v2 are as in Theorem 57. Sin
e P(D) is a (distributive) latti
e,G also satis�es the equations between terms of � whi
h express that we havea (distributive) latti
e when v1; v2 play the role of join and meet (for exampledistributivity itself is expressed by the equation v1x(v2yz) = v2(v1xy)(v1xz) ).Let T be the �-theory generated by these equations. We have proved that Tis 
onsistent and that there are two terms whi
h make its term model �=T a(distributive) latti
e. Thus, the latti
e of 
ongruen
es of �=T is the latti
e of
ongruen
es of a latti
e, and hen
e a distributive latti
e, by [42, Theorem 2.50,and the remark following the proof of this theorem℄. Sin
e [T; Top℄ is isomorphi
to this latti
e, it is hen
e also a distributive latti
e.By slightly modifying the proof we have here for free that [T; Top℄ is 2!-broad: just work as in the proof of Proposition 58, but with sequen
es r1; r2; t1; :::; tn; :::where r1 and r2 are as above (and untou
hed by the permutations �): This alsoproves point (i) of the following remark; for proving its point (ii) one just hasto use sequen
es r1; r2; n̂. 25



Remark 60 (i) There exist 2! pairwise in
onsistent theories T su
h that [T; Top℄is a distributive latti
e.(ii) There exist ! pairwise in
onsistent and �nitely axiomatizable theories Tsu
h that [T; Top℄ is a distributive latti
e.Of 
ourse, one may wonder now whether �T is the union of su
h distributivelatti
es.5.5 Graph models and strong surje
tive pairing.A �-model M models surje
tive pairing (SP) if there are 
; p1; p2 2 M su
hthat the equations p1(
xy) = x; p2(
xy) = y and 
(p1z)(p2z) = z are satis�ed inthe model. It is well-known that the term models of �� and ��� do not modelsurje
tive pairing (Klop 1980, 
f.[4, Ex. 15.4.4℄). On the 
ontrary, it is easy tosee that any proper model M = (D; A; �) living, say, in C
ont; and su
h thatD ' D �D models surje
tive pairing, sin
e then one 
an indeed take 
 = �(f);p1 = �(�1) and p2 = �(�2); where f : D � D ! D and (�1; �2) : D ! D � Dare any pair of inverse isomorphisms. Note that all graph models have thisproperty, sin
e for all in�nite set D we have P(D)� P(D)' P(D) ; to see thisnote that 
learly P(D) ' P(D1)� P(D2) for any good partition D = D1 [D2of D; where good means: into two subsets of the same 
ardinality as D.M models strong surje
tive pairing (Strong SP) if M models SP in su
ha way that it furthermore satis�es: p1xy = p1(xy) and p2xy = p2(xy): It wasproved in [38℄ (and redis
overed independently in [19℄) that D1 models StrongSP. Then Jiang proved in her thesis [29℄[30℄ that one 
ould build, by for
ing,extensional models of K whi
h satis�ed furthermore mu
h stronger 
onstraints.We wish to point out here that (a lot of) graph models 
an also modelStrong SP, and that the simplest model of Strong SP is Engeler's model EP ; Pin�nite (the simplest extensional models being D1 or P1; when presented asK-models, and also relative to an in�nite P ). In fa
t the following proof is justthe relevant simpli�
ation of Krivine's proof for D1. Jiang's variants of strongpairing 
ould also have been modelled more simply within graph models, at thepri
e of loosing extensionality.Proposition 61 If P is in�nite then EP models strong surje
tive pairing.Proof. Let P be an in�nite set, let (D;�) the web of EP ; let P = P1 [ P2be a good partition of P , and �nally let Di = f(�a; �) : � 2 Pig for i = 1; 2(thus D = D1 [ D2 is also a good partition of D). Let now 'i:P ! Pi betwo bije
tions, let �'i : D ! D be de�ned by: �'i(�a; �) = (�a; 'i(�)) if � 2 P ,let �i = �'�i : P(D) ! P(D) and let f : P(D) � P(D)! P(D) be de�ned byf(d1; d2) = �'+1 (d1) [ �'+2 (d2): Then it is 
lear that f and (�1; �2) are inverseisomorphisms, and it is furthereasier to 
he
k that pi = �(�i) satis�es, fori = 1; 2; the further 
ondition needed for Strong SP..
26



6 The stru
ture of �G:In order to have a 
learer pi
ture of �G we 
ontinue to feel free of any respe
tto histori
al 
hronology. As announ
ed, we will see that extending some of theresults obtained for G to Gs; and hen
e from �T to �T s ranges, when possible,from straightforward to highly diÆ
ult.The links between �G and �Gden are simpler, in a sense, sin
e all the re-sults proved in this paper for �G also hold for �Gden; and with the same proofs,be
ause one only uses models built by for
ing or free 
ompletion of �nite or
ountable partial webs, and hen
e in Gden: However the following natural ques-tion is still open, as far as we know.Problem 12 Does �G = �Gden ?6.1 Least and largest elements of �G and �Gs:The following lemma is a 
orollary of the proof of Proposition 58, whi
h provides2! pairwise in
onsistent graph theories, but it 
an also be given a dire
t andshorter proof, as below.Lemma 62 �G and �Gden have no greatest element.Proof. Let M 2 Gden satisfying 
 = I (by for
ing). Then Th(E) andTh(M) are in
ompatible, sin
e 
 = �x:
 is in BT = Th(E); and the setf
 = I ; 
 = �x
g is in
onsistent.The situation happens to be di�erent for Gs, as dis
overed by Bu

iarelli andSalibra. The proof of the following theorem, whi
h gives the key to a positiveanswer, and also generalizes the fa
t that no graph model is extensional, is quitete
hni
al and 
an be found in [15℄.Theorem 63 (Bu

iarelli and Salibra 2004)All the equations of H� �BT are false in all graph models.Corollary 64 (Bu

iarelli and Salibra 2004 [15℄)�Gs and �Gs=2 have a greatest element, whi
h is BT in both 
ases.Proof. Let T 2 �Gs: Sin
e T is sensible we have T � H�; then, sin
e T omitsea
h of the equations of H� �BT we have T � BT:Theorem 65 (Bu

iarelli and Salibra 2003) [14℄ If C � G is 
losed under
ountable G-produ
ts, then �C has a least element.First proof. Let E be the (
ountable) set 
onsisting of the equations whi
hfail to hold in some graph model. For ea
h e 2 E let (De; ie) be a model wheree is false, let TE be the theory of the G-produ
t (DE ; iE) of this family, and�nally let Te be the theory of (De; ie). By Theorem 53, TE � \Te: Furthermore,if an equation doesn't belong to TE, i.e. fails in (DE ; iE); whi
h belongs to C27



by hypothesis, then it is one of the e0s and it fails in the 
orresponding (De; ie);hen
e it is not in Te: Thus TE = \Te:Se
ond proof, simpler but assuming that C is 
losed under arbitrary produ
ts.For ea
h T 2 �C take a model (DT ; iT ) whose theory is T: The produ
t(DE ; iE) has theory TE � \�C: Sin
e TE 2 �C we have TE = \�C:Sin
e G,Gs and Gs=2 are 
losed under arbitrary produ
ts (by Corollary 54and Proposition 56), and Gden under 
ountable produ
ts, we get:Corollary 66 �G; �Gs; �Gs=2 and �Gden have least elements:Let Tmin and T smin be the least elements of �G and �Gs: Sin
e Tmin � H;Tmin is semi-sensible and sin
e �� =2 �G (by Corollary 40) we have ��  T .Con
erning �Gs, Bu

iarelli and Salibra 
onje
ture the following:Conje
ture 13 (Bu

iarelli and Salibra 2004) [15℄ T smin = H.6.2 Width and height of �G and �Gden:We have already proved via for
ing that �G is 2!-broad. We now present someearlier results and proofs obtained via free 
ompletion, whi
h are mainly due toKerth (1994-1995). These proofs bring further information on �G and �T ; andalso raise other kinds of questions. Everywhere G 
ould be repla
ed by Gden:Theorem 67 (Kerth 1994). �G is 2!-wide.Sket
h of proof. Kerth produ
ed in [32℄ a family of non-positive pairs(AW ; jW )W2P(N); and sets of equations RW = fY Fn+1 = Y F2 : n 2 Wg;where Fn = �x:�x1:::�xn:x; su
h that (AW ; jW ) satis�es all the equations ofRW and no equation of RN � RW : Sin
e RW � RW 0 if and only if W � W 0and sin
e (P(N);�) 
ontains 2! pairwise in
omparable sets (see the proof ofLemma 7), we dedu
e immediately that there are 2! pairwise in
omparablegraph theories.These models are nonsensible, sin
e all the Y Fn are 
learly unsolvable. Lateron, Kerth produ
ed in [33℄, on the same prin
iples, another family of theories,for whi
h he had the hope (�nally ful�lled) that they 
ould be proved to besensible. In both 
ases, produ
ing the pairs, the equations RW ; and 
he
kingthat the models had distin
t theories, even if not diÆ
ult, required non trivialobservations and some 
omputations. Let us observe that this is not anymorethe 
ase for our proof of Proposition 58.Problem 14 Can we say something about the height of �G ?
28



6.3 Width of �Gs:6.3.1 Produ
ing 2 sensible graph theories is diÆ
ult.From the remarks in Se
tion 5.3.5 it follows that the only method available forprodu
ing sensible graph models is the free 
ompletion method. Completingfreely positive pairs brings sensibility for sure; but how many sensible theories
an we obtain that way? In [9, Question 1 of p. 153℄ we asked whether webbedmodels generated by positive partial webs ne
essarily satisfy the (strong) Ap-proximation Theorem of Hyland and Wadsworth. If this is true then all posi-tive graph theories 
ontain BT . Positive partial results whi
h we obtained withSalibra (arti
le in preparation) argue for a positive answer, but we met hardresistan
e for going further. Anyway, in view of Theorem 63 and of its 
orollary,we 
an now rephrase our question as follows (in the 
ase of graph models).Conje
ture 15 BT is the only positive graph theory.If this 
an be proved, then the same arguments should work for proving thatLT is the only positive lazy graph theory, and it will also have analogues inother 
lasses of webbed models.The state of the art. At the moment, Salibra and the author have provedthe following partial (unpublished) results whi
h rather argue in favour of the
onje
ture. First, all positive graph models give the same interpretation to termst; t0 as soon as they have the same B�ohm tree if this tree is almost hereditarilyhead 
losed (ahh
), whi
h means that all but a �nite number of its nodes areequal to ? or have the form ��x:y with y 2 �x: Se
ond, all positive graph models(D; i) interpret the Curry and Turing �xed point 
ombinators Y and � by theleast �xed point operator Y of the 
omplete latti
e P(D); and hen
e satis�esY = �. Note that all �xed point 
ombinators have the same B�ohm tree, whi
h
onsists in one in�nite bran
h where all nodes, ex
ept the root, are labelled bythe same variable y, the root itself being labelled by �y:y: This tree is hen
e(nearly) the simplest example of a non-ahh
 tree, nevertheless we are yet unableto prove that all positive graph models interpret all the �xed point 
ombinatorsby Y , even if we 
an of 
ourse treat other �xed point 
ombinators than Y and�; moreover our proofs are di�erent in 
ase of Y -like and �-like trees..Thus, for produ
ing sensible graph theories di�erent from BT we are leftwith the free 
ompletion of non positive pairs, whi
h explains retroa
tively whyKerth's task of produ
ing 2!-sensible graph theories was so 
omplex. Indeed,proving sensibility of models generated by non positive webs happens to be verydiÆ
ult.More generally, produ
ing a non extensional sensible proper model whosetheory is di�erent from BT is diÆ
ult. This problem 
on
erns all the 
lasses of�-models, sin
e for
ing 
ompletion and free 
ompletion are the only systemati
ways we know for building models 
on
retely. Even the inverse limit 
onstru
-tion 
an, in pra
ti
e, always be presented as a free 
ompletion.The 
on
eptual interest of G here is that, be
ause its exploration is easier,the problem 
ould be met, isolated, stated, and hen
e understood, more easily.29



6.3.2 But produ
ing 2! sensible graph theories is possible.Theorem 68 (Kerth 1995 plus David 1999) �Gs is 2!-wide.Sket
h of proof. Two very diÆ
ult steps. First Kerth built 2! graph modelsGW as the free 
ompletions of adequate non positive pairs (AW ; iW ); W 2 P(N)[33℄[35℄ Then he redu
ed the proof that the GW were sensible (although the pairwas not positive) to a synta
ti
 
onje
ture on the head-normalization of non-solvable terms, for whi
h he gave mu
h eviden
e. The se
ond step was the proofof this 
onje
ture, four years later, by R. David [17℄[18℄.We 
an be more pre
ise: Kerth's 
reated pairs (AW ; iW ) su
h that GWsatis�es Y Fn = �Fn if and only if n 2 W; where Y and � are the T�uring andCurry �xed point operators, and here Fn � �x:�y1:::�yn:�z:(z)x: In parti
ularGW � Y 6= � for all W 6= ;:Corollary 69 �G \ [H;BT ℄ is 2!-wide.Proof. By Theorem 68 and Corollary 64.Corollary 70 There are 2! theories of proper models in
luded in [H;BT ℄:This 
orollary largely answers positively Question 2 in [9, p. 151℄.However the following questions remain open, sin
e for
ing essentially buildsnon sensible models, and they should be diÆ
ult.Problem 16 Is �Gs 2!-broad?Problem 17 Is there a (large) distributive latti
e of sensible theories?Problem 18 Can we get information about the height of �Gs?7 The other �C 0s.7.1 The other key 
lasses of models.All the 
lasses of models presented below live within one of the three mainsemanti
s (
f. Se
tion 7), and are 
lasses of webbed models (see [9℄ for a moredetailed presentation of ea
h of them). The methods used for building graphmodels or for proving positive results about G 
an be adapted to these other
lasses C, at a 
ost whi
h depends on C.� The simplest sub
lass of C
ont; stri
tly in
luding G; is the 
lass K of K-models, whi
h was isolated in [38℄. The interest of K over G is that it 
on-tains (plenty of) extensional models. In parti
ular, S
ott's D1 and Park'sP1 live in K; and their des
ription as K-models is mu
h simpler thantheir prior des
riptions, e.g. as inverse limits, and 
onsiderably simpli�estheir study. Finally, it is worth noting that D1 and P1 are respe
tivelythe extensional 
ompletion of the graph models PP and P 0P 2 G, a pro
ess30



whi
h is presented in [9, p.130℄. To be a

urate, D1 and P1 are alsobuilt starting from a set P; and hen
e should also be indexed by P: Thisnotation is somewhat misleading but respe
ts the traditional notation forS
ott's and Park's models.More general, and hen
e more 
omplex, 
lasses of webbed models living inC
ont were introdu
ed and used in the literature (ex: �lter-models, infor-mation systems, and p
s-models), whi
h are also surveyed and 
omparedin [9℄. As already noti
ed, even though �C
ont ) �K, it is ex
eptional thatwe have to go beyond K for proving things about �C
ont:� The key sub
lass of Cst is the 
lass G
oh of re
exive 
oherent spa
es, orG-models (\G" for "Girard").� The key sub
lass of Csts is the 
lass Ghy
oh of Ehrard's re
exive hyper
o-heren
es, or H-models (\H" for "hyper
oheren
e").7.1.1 Comparison with G and K:The 
lasses G
oh and Ghy
oh are the analogues of G in their respe
tive semanti
s,in the following sense. First G,G
oh and Ghy
oh are the simplest 
lasses of webbedmodels one 
an respe
tively �nd in C
ont, Cst and Csts. Se
ond, the de�nitionsof G
oh and Ghy
oh 
an be seen as the variants of the de�nition of G adaptedto Cst and Csts. On the other hand, G
oh and Ghy
oh 
an also be viewed asthe analogues of K, sin
e they are ri
h in extensional models, while G 
ontainsnone. A last remark is that the de�nition and study of Ghy
oh is signi�
antlymore 
ompli
ate than the other two ones.7.1.2 Analogues of the key models of G and K in G
oh and Ghy
oh:The 
onstru
tions of E ;PP ;P 0P 2 G and of D1;P1 2 K 
an be mimi
ked inboth G
oh and Ghy
oh.Notation 71 When the 
onstru
tion of a model M of G or K 
an be mimi
kedin G
oh (resp. Ghy
oh) we denote its analogue by Mst (resp. Msts):Note that Mst and Msts need not exist and, when they do, they need nothave the same equational theory asM; although this also 
an happen. Examplesof both situations will be given below.7.2 Transferring the 
ompletion methods.Free and for
ing 
ompletions 
an be extended to K;G
oh; and Ghy
oh: This oftenallows one to extend the positive results whi
h have been proved for �G to thethree other 
lasses, and hen
e to get new information on �T : However, thenotion of web and that of a partial web is more 
omplex than for graph models,for whi
h partial webs are just partial pairs, as de�ned earlier. For example,the web of a K-model has the shape (D;�; i); where � is a preorder on D; and31



i and � have to satisfy some 
ompatibility 
ondition; the notion of partial webis then de�ned a

ordingly (and the 
po is now the 
omplete latti
e S(D) of alldownward 
losed subsets of (D;�); still ordered by in
lusion, instead of P(D)).The free 
ompletion method in K;G
oh; and Ghy
oh: S
ott's modelD1 and Park's model P1 are the extensional 
ompletions of the graph modelsP and P 0 In parti
ular D1 is generated by a positive partial web, while P1is not; hen
e we 
an expe
t di�erent theories, and we will see below that thedi�eren
e between the behaviour of D1 and P1 is still deeper. It was shownin [26℄ that P1 is non sensible, and this is also the 
ase of its graph analogueP 0; for similar reasons.The free 
ompletion method was systemati
ally adapted to G
oh by Kerth[33℄[37℄ and to Ghy
oh by Bastonero [5℄.The for
ing method in K;G
oh; and Ghy
oh: Y. Jiang was the �rst tobuild extensional models (of K) by for
ing [29, 30℄ (the aim was to produ
e mod-els enjoying a strong notion of surje
tive pairing, 
ombined with other proper-ties). Later on Bastonero used for
ing to build an extensional modelM2 C
ont,su
h that Th(M) =2 Cst [ Ghy
oh [5℄.The for
ing method was systemati
ally adapted to G
oh (i.e. to the stable se-manti
s) by Kerth [33, 36℄, and to Ghy
oh (i.e. to the strongly stable semanti
s)by Bastonero and Kerth (unpublished).7.3 Transferring results from G to the C 0s:Of 
ourse, only the positive results are transferable, in the good 
ases.The �rst result shows that BT and H� belong to �C
ont\�Cst\�Csts; whi
hshows in parti
ular that the three main semanti
s are non ex
lusive. This resulthas to be 
ontrasted with the situation for Plotkin's PCF [44℄, whi
h is one ofthe best known typed �-
al
uli. Indeed, the three \standard models" of PCF inthe main semanti
s have di�erent, and even in
omparable, equational theories[31℄[?, Chapter 9℄.Theorem 72 (Bastonero and Gouy 1995-7) [7℄[8℄(i) BT 2 �G \ �G
oh \ �Ghy
oh and(ii) H� 2 �K \ �G
oh \ �Ghy
ohSket
h of proofs. (i) Not only 
an the 
onstru
tion E be mimi
ked in G
oh �Cst and Ghy
oh � Csts; but also the proof that Th(E) = BT , hen
e BT 2�G \ �G
oh \ �Ghy
oh (Bastonero, [5℄ for Cst and unpublished for Csts). (ii) Thesame is true for D1 (Gouy for Cst [23℄[24℄, and with Bastonero for Csts [7℄[8℄),hen
e H� 2 �K \ �G
oh \ �Ghy
oh. Only the results on D1 were published,sin
e at the beginning we were fo
using on extensional theories; the fa
t thatthe same worked for E , of 
ourse with simpler proofs, was only emphasized lateron (see [5℄). 32



Digression: What about LT , whi
h is the third theory represented inCgames? We did not 
he
k details but have a strong feeling that the 
onstru
tionof Elazy in Glazy 
an also be mimi
ked in (possibly slight variations of) G
ohand Ghy
oh; as well as the proof that Th(Elazy) = LT; and hen
e that alsoLT 2 �C
ont \ �Cst \ �Csts:The next theorem and remark show that �Cst and �Csts are as \ri
h" as�C
ont: The proof uses for
ing relative to G
oh (and Ghy
oh):Theorem 73 (Kerth 1995) [33℄[37℄ G
oh is 2!-wide, and hen
e also �Cst:Remark 74 It was later on noti
ed by Bastonero, that for
ing, and hen
e theproof of this theorem 
ould be adapted to Ghy
oh; but this remained unpublished.It is also likely that generalized for
ing 
an be developed, at least for G
oh; andhen
e that we 
an repla
e 2!-wide by 2!-broad.7.4 Relative positions of the �C 0s:.We already know that �C
ont; �Cst and �Csts are: 2!-wide, 2!-in
omplete, andthat their interse
tion 
ontains BT;H� and probably LT ; moreover we knowthat �T � �C is 2!-high, for ea
h of these C. We show now that they are farfrom representing the same theories. First we state the problem we startedfrom, when studying these questions.Conje
ture 19 �C
ont; �Cst and �Csts are pairwise in
omparable (for in
lu-sion).Xavier Gouy and Olivier Bastonero got very 
lose to proving this, sin
e theysu

eeded to prove it for the triple C
ont; Cst and Ghy
oh. We will see below how,using generalized for
ing one 
an improve this result.Theorem 75 (Gouy and Bastonero 1996) [7℄[8℄(i) Th(Pst1) =2 �C
ont [ �Csts(ii) Th(Psts1 ) =2 �C
ont [ �Cst:Theorem 76 (Bastonero 95) [5, 6℄ One 
an build (by for
ing) a �-modelM2 Kesu
h that: Th(M) =2 �Cst [ �Ghy
oh:Hint. Let u = 
�x:
 and v = 
�x�y:
. There is a set F 
onsisting ofseven equations and one inequation, relating 
; u and v; and there is an equation:t1 = t2; su
h that: no model of Cst [ Ghy
oh 
an satisfy F 0 = F [ ft1 = t2g;but one 
an build, by for
ing, a model M2 Ke satisfying F 0: Sin
e Bastonerowas only 
on
erned by extensionality, F 
ontains I = "; and he had to use theextension of for
ing whi
h is adequate for Ke: However the proof 
an easily bemodi�ed/simpli�ed su
h that " = I is removed from F andM is built by usualfor
ing in G: We now give some information on the 
onstru
tion of M in thissimpler setting. A triple (p0; h;D) is exhibited, in this order, su
h that: p0and h are in�nite, D � C; and (D; p0) is a partial pair satisfying the two easy33




onstraints whi
h make for
ing possible from (D; p0); then a pair (D; i); i � p0;is built by for
ing su
h that M = (D; i) satis�es 
 = h; but in fa
t p0 wasfurthermore 
hosen in su
h a way that 
 = h implies F 0 in M, whi
h ends the(sket
h of) the proof.From the above theorem and from the observation thatM 
ould be built inG, we derive immediately the following statements (note that none of them is a
onsequen
e of the other ones).Corollary 77 .(i) C
ont; Cst and Ghy
oh are pairwise in
omparable.(ii) K; Cst and Ghy
oh are pairwise in
omparable.(iii) K; G
oh and Ghy
oh are pairwise in
omparable.(iv) G; G
oh and Ghy
oh are pairwise in
omparable.Thus, to answer positively the initial 
onje
ture there only remains to prove:Conje
ture 20 .(i) �C
ont � �Csts 6= ;; moreover it should be the 
ase that:(ii) Th(M) 2�C
ont � �Csts; with M as in the proof of Theorem 76.The reason why Bastonero 
ould not 
on
lude in his thesis that Th(M) =2�Cstsis that he did not su

eed to prove that a model of Csts satisfying F 
annot sat-isfy t1 = t2; with t1; t2 as in the proof of Theorem 76. Indeed, in the 
ase ofGhy
oh (resp: Cst), he 
ould exhibit a strongly stable fun
tion (resp. a stablefun
tion) g separating t1 and t2 in all models of F ; but his de�nition of g re-lied, in the strongly stable 
ase, on the fa
t that we were dealing with webbedmodels, whi
h is not the 
ase of all the models of Csts (while in the stable 
asethe de�nition of g was not problemati
).A wealth of in
ompleteness proofs for the three main semanti
sSalibra's Theorem 28 was a de�nite and uniform argument proving that ea
h ofmain semanti
s is in
omplete (and even 2!-in
omplete). But, histori
ally, thein
ompleteness of C
ont was �rst proved by Honsell and Ron
hi, by produ
ing anoperational �-theory whi
h 
ould not be the theory of a 
ontinuous model [26℄.The proof, whi
h was already quite te
hni
al, was adapted to the stable 
aseby Gouy [23℄, but the new proof was so 
ompli
ate that it be
ame 
lear thatone had to �nd a di�erent idea for Csts: Su
h other approa
hes were providedby Bastonero and Gouy (
f. Theorems 75 and 76 above), whi
h hen
e providedtwo new in
ompleteness proofs for ea
h of C
ont; Cst and Ghy
oh: To summarize,we have four di�erent proofs for the in
ompleteness of C
ont, also four for Cst;three for the sub
lass Ghy
oh of Csts; and only Salibra's proof for Csts:The last semanti
 problem. To have a more a

urate pi
ture of the rel-ative position of �C
ont; �Cst and �Csts; one should have an idea of the width andheight of �T � �C; and of the width of �C � �C0; for C; C0 any distin
t uniform34




lasses of proper models. By Salibra's in
ompleteness theorem we know thatfor ea
h ordered semanti
s we have that �T � �C is 2!-high, but the questionof the value of the height of �C��C0, for any other C0, is 
ompletely open, sin
ewe already know nothing about that of �C: On the 
ontrary it is likely that thefollowing 
onje
ture (whi
h only 
on
erns uniform 
lasses living in fun
tionalsemanti
s) is true, and that all its instan
es will be a

essible via generalizedfor
ing.Conje
ture 21 For all C; C0, either C � C0 or �C � �C0 is 2!-broad.We 
an already give a positive answer to two instan
es of this 
onje
ture.First we observe that generalized for
ing is extendible to the extensional modelsof K; in the same way usual for
ing is (one just has to mix, in a straightforwardway, the development of [30℄ or [5℄ with the one in [10℄). Hen
e �Ke is 2!-broad.Thus:Proposition 78 �K � �G is 2!-broad.Next we observe that, using Theorem 57 (generalized for
ing), one 
an getfor free 2! versions of the model M of Theorem 76 in �G � (�Cst [ �Ghy
oh)with pairwise in
onsistent theories (�Ke 
ould also repla
e �G). Hen
e:Proposition 79 �G � (�Cst [ �Ghy
oh) is 2!-broad.Proving the 
onje
ture for other 
lasses of the form �C-�C0 supposes that weare able to prove by a for
ing te
hnique that this set is non empty, and that we
an extend generalized for
ing to �C.8 Con
lusion.It is time to sum up the results whi
h have been a
hieved these last four years.Answers to questions raised or quoted in [9, Se
tion 6℄ .1. Salibra's Theorem 28 states that all the known ordered semanti
s are2!-in
omplete, whi
h proves in parti
ular that Csts is in
omplete. This answersvery generously [Question 2 of Se
tion 6.1, p.149℄, whi
h re
alled the 
onje
turewe had with Bastonero that Csts was in
omplete (re
all that Bastonero 
ouldonly prove in his thesis that Ghy
oh was in
omplete). Salibra's proof was original,and initially inspired by universal algebra and general topology.2. Bu

iarelli and Salibra proved that �� 
ould not be the theory of agraph model, whi
h answers the instan
e of [Question 1, Se
tion 6.2, p.149℄
orresponding to G:3. Bu

iarelli and Salibra's de�nition and study of the G-produ
t (
f. Se
-tion 5.3) allowed them to prove that there was a minimal graph-theory and aminimal sensible graph theory, and hen
e gave a positive answer to the instan
eof [Question 2 of Se
tion 6.2, p.149℄ 
orresponding to G (and it also shows the35



way for larger 
lasses of webbed models). But they leave open the question ofwhether the minimal sensible graph theory is H .4. Bu

iarelli and Salibra proved that the set of sensible graph theories hasa greatest element, whi
h furthermore is BT (Theorem 63). This has the twofollowing 
onsequen
es. First, our [Question 1 of Se
tion 6.3, p.151℄ 
an nowbe reformulated as follows: \Is BT the only positive graph theory?". Se
ond,
ombined with Kerth and David's theorem about the existen
e of 2! sensiblegraph theories, it shows that there exists one, and even 2!; theory of sensibleproper models below BT; whi
h answers positively the two items of [Question2 of Se
tion 6.3, p.151℄. Con
erning the �rst question we 
onje
ture in fa
tthat the answer is positive, and proved some partial unpublished results withSalibra.5. Starting from an example of Kerth (see Se
tion 5.2), Alessi, Dezani andHonsell exhibited a result (the easiness of 
3I); whi
h admits a semanti
 proofusing �lter models, but for whi
h there exists no semanti
 proof using G or Kor, more generally, using any 
lass of models whose underlying 
po is a primealgebrai
 domain. This also answers (part of) [Question 5 of Se
tion 6.3, p.152℄sin
e it gives examples of theories represented in the 
ontinuous semanti
s, andvia algebrai
 domains, but not via prime algebrai
 domains.The four other re
ent results. The �rst to be mentioned was Statman'sTheorem about the existen
e of a non trivial equation 
onsistent with any 
on-sistent theory. The following two results answer questions raised by AntoninoSalibra. In parti
ular Salibra 
onje
tured that the 
omplete latti
e �T of all�-theories does not satisfy any non trivial latti
e identity, and proved that it isnot modular, and hen
e not distributive. Then he proved with the author, us-ing graph models, that there was a �nitely axiomatizable �-theory T su
h that[T; Top℄ was a (very large) distributive latti
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