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Abstract

The paper surveys the knowledge we have acquired these last ten years
about the lattice AT of all A-theories (= equational extensions of untyped
A-calculus), via the sets AC consisting of the A-theories which are repre-
sentable in a uniform class C of A-models. This includes positive answers
to several questions raised in [9] as well as several independent results,
the state of the art about the long-standing open questions concerning
the representability of Ag, Ag,, and H as theories of models, and 21 open
problems.

We will focus on the class G of graph models since almost all the
existing semantic proofs on A7 have been, or could be, more easily,
obtained via graph models, or slight variations when needed. But in this
paper we will also give some evidence that, for all uniform classes C,C’
of proper A-models living in functional semantics, AC — AC’ should have
cardinality 2“, as soon as C is non included in C'.
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1 Introduction.

In the sequel A-calculus means Church’s untyped A-calculus, and we assume a
basic knowledge of its syntax, which can be found in [4]. For this introduction
A-model only means “model of A-calculus”. In particular A-models interpret A-
terms modulo af-conversion (Ag), and they are eztensional if the interpretation
is modulo afn-conversion (Agy).

The problematic. The main concern of this paper is the study of the
complete lattice AT which consists of all A-theories, ordered by inclusion. A A-
theory is a congruence (with respect to abstraction and application) containing
Ag. Such a congruence usually arises either from syntactical and computational
considerations or as the equational theory Th(M) of a A-model M. The corre-
spondence T'h is far from being injective, and we will also see that the question
of its “surjectivity” is a key one. A A\-model M is called a proper model if it is
not the term model of Th(M). The best known computational theories, besides
Ag and Ag,, are the theories H, H*, BT ,L T, NT, whose definitions are recalled
in Section 3.2. It is here enough to say that BT equates two A-terms iff they
have the same Bohm tree, and that LT and NT are variants of BT, that H* and
NT have been proved to be equal, and finally that BT, H and H* are sensible
theories. Recall that a theory is sensible if it equates all the unsolvable terms.

We are interested in exploring the following generic questions.

Problem 1 What do models tell us about the structure of XT ¢

Given a class C of proper A-models, a A-theory T is representable in C if
there is an M in C such that Th(M) =T. We denote by AC the set of A-
theories representable in C. The following problem is of course intimately linked
to the study of T'h.

Problem 2 What are the links between XT and AC, where C is some class of
proper models.

What should be very clear to the reader is that, even though AT, as well
as the AC's for all interesting C’s, all have cardinality 2, only a few explicitly
definable theories can be proved to be the theory of a proper A-model. Among
these exceptions are BT', LT and NT. Whether Ag, Ag, and H are representable
are long-standing questions, respectively due to Barendregt and Honsell, which
will be discussed all along the paper.

We already surveyed in Section 6 of [9] the state of the art concerning the
three generic problems presented in this introduction, and we listed a number of
related open questions. In the last four years significant progress was brought in
a series of papers, mainly by Antonino Salibra, whether alone or in collaboration
with Bucciarelli, Lusin or the author. This makes it worthwhile to present in
this paper the new state of the art on AT, reorganize the material, update the
list of problems and present new ones, which we consider as very natural in view
of the new picture.



The conclusion of the paper will recapitulate the new results, and will in
particular make precise the questions raised in the previous survey which have
been brought an answer, following the order in which these questions appear
there.

To express the results we are interested in, we found it convenient to in-
troduce the notions of 2¢-high, 2“-wide and 2“-broad (a notion stronger than
2¢¥-wide), which will allow us to make precise three interesting possible ways for
AT and the X\C's of being of cardinality 2.

Models and semantics. As it is well known, it took nearly 40 years to
construct a proper A-model (Scott 1969), and for this Scott had to establish
Scott’s continuous semantics. This first model, named D, was an extensional
model, built as an inverse limit. Soon afterwards, two models admitting a
much simpler construction, P, and £, were proposed: respectively by Scott and
Plotkin (see e.g. [4, p. 469]) and by Engeler [22] and Plokin (cf. [45]). More
generally, the class G of graph models, which are called Engeler-Plotkin-Scott
algebras in [40], was isolated (£ and P, € G). Let us recall that £ is the simplest
of all proper A models, and that all the graph models, and more generally all
the models we call “webbed models” (see below) can be seen as more or less
sophisticated, variants of £. Let us recall also that Th(P,,) = Th(£) =BT, and
Th(Dw) = H* = NT [27][56][40] (cf [4, Chapter 19]).

A graph model is described from a pair (D, i), called its web, where D is
an infinite set and ¢ an injection from D* x D into D, where D* is the set
of all finite subsets of D. Such a model interprets a A-term as a subset of D,
and abstractions as codes in P (D) of Scott’s continuous functions on P(D), the
code being computed using i. Hence all the graph models belong to C.ont, where
Ceont is the class of all the A-models which can be built inside Scott’s semantics.
We let G%" be the class of graph models with countable web; without loss of
generality one can suppose in this case that D = N, nevertheless AG%" is very
rich.

More generally, webbed models can be defined, roughly speaking, as those
A-models which interpret A-terms in some R(D) C P(D), for some set D, and
abstractions by codes in R(D) of functions on R(D) enjoying some specific prop-
erties, including continuity. Graph models form the simplest class of webbed
models.

Section 5 presents graph models, the methods available for building them,
and some of the equational and inequational properties which they all share.
There are two known ways of building graph models: free and forcing comple-
tions of a partial web. Free completion mimics and generalizes the construction
of £. It is, essentially, a recursive procedure, similar in essence to defining in-
tersection type systems [16], although much more general in some sense, but
where redundancies are systematically cleaned. As noticed by Bucciarelli and
Salibra, free completion also allows us to define a notion of product in G [14].
Forcing completion is a non recursive procedure, which allows one, in particular,



to prove the easiness of Q (i.e. the fact that Q = t is consistent with Ag for
all closed term t) via graph models [3]. With Salibra, we recently generalized
this method and used this to prove that AG, and some related sets of A-theories,
are 2“-broad, and that moreover A7 contains an interval sublattice which is
distributive, 2“-high and 2“-broad. Let us define a positive graph model as a
model which can be presented as the free completion of a positive partial pair,
in the sense of [9] or of Section 5.3.1. Positive graph models are sensible (the
converse is false). In contrast, models built by forcing are most of the time non
sensible.

In Section 6 we will study the structure of AG and of AG®, which is the class
of theories of sensible graph models. In particular, we will see that AG, AG®"
and AG® are 2¢-broad; whether AG and AG?*™ are equal is an open question. We
will also see that AG* has a largest element (Bucciarelli and Salibra [15]), which
is not true for AG, and this greatest element happens to be BT. On the other
hand we will see that several results which are true for AG still hold for AG*, but
that transferring the results from A\G to A\G® ranges, when possible, from trivial
to highly difficult (case of the uncountability of AG*). A key question, which we
already raised in [9] and which is still open, concerns the existence of a (strong)
approximation theorem allowing us to manage uniformly all the positive graph
models. Since we now know that AG® admits BT as a top element, this would
imply that BT is the unique positive graph theory.

We focus on the class G of graph models for the following reasons. First,
all the recent positive results on A7 which were proved semantically have been
proved using G, and second, most of the results ever obtained on A7 via other
subclasses of C.,,; could have been obtained using G, at a significantly lower cost.
Of course this has to be taken with some salt, since, for example, G contains
no extensional models. But when dealing with extensional theories the same
philosophy applies to Krivine’s extension K of G (see below and in Section 7.1).
In particular, D, and its variants can be presented as elements of K, which is the
simplest way of getting rid of the inverse limit construction, and the simplest way
of studying these models [38]. In Section 5.2 we will however give an example
of equations which are consistent with Ag but can’t be satisfied by models of
K, and in particular of G (Corollary 38), with the consequence that the easiness
of the A-term Q3] cannot be proved using models of ; however Honsell and
al. [1] have recently shown that this easiness can be proved semantically using
filter models. Except for this example, the interest of classes wider than G or K
only shows up when one needs a model whose underlying domain cannot be a
complete lattice, e.g. because one wishes to model some extension of A-calculus
involving added constants with special behaviours.

Incidentally, let us recall two other classes of problems where using graph
models makes life easier. First, the simplest models of G, to begin with &, can
be used for proving some operational or syntactic properties of lambda-calculus
in a more economical and more fluid way than when using intersection type



systems (cf. [9]). Second, G and K can even prove interesting for showing the
consistency of extensions of A-calculus involving new constants; the example of
the strong surjective pairing [38] is sketched in Section 5.5. To summarize, most
of the time, using G (or K when necessary) brings the same information than
using wider classes of models of C.opy for studying A7, more elegantly and at a
significantly lower cost.

Section 7 deals with IC, and with classes C belonging to other semantics than
Scott’s one. The main variants (or refinements) of Scott’s semantics are Berry
and Girard’s stable semantics, Bucciarelli and Ehrard’s strongly stable seman-
tics, and various weakly continuous semantics (a survey on these semantics and
the diverse classes of models, as well as a complete bibliography can be found
in [9]). What makes these semantics workable is the existence, in each of them,
of classes analogous to G, K (see Section 7); moreover some models of Ce.ont,
like Doy, € and P, have analogues in these classes. Hence, in general, all the
positive results proved for AG and A can be transferred to these other classes,
in particular all are 2¥-large and 2“-incomplete. Thus, the new information
we get on AT using these classes rather arises from the following third generic
question:

Problem 3 What are the relative positions of the diverse AC’s in AT .

The deepest results on Problem 3, which compare AC.on; and its stable
and strongly stable analogues, were obtained in the nineties and were already
surveyed in [9]. The information we add here is, first, that these results still
hold (and more easily) when one replaces C.,n: by G and, second, that one can
largely amplify some of these results for free by using generalized forcing instead
of usual forcing, since this allows us to prove the 2“-broadness of some sets of
the shape AC — A\C', instead of their mere non-emptyness. For discussing this
we also have to go deeper in the presentation of the earlier results than we did
in [9]. We will also see (end of Section 2) that game semantics, although it has
attracted much interest these last ten years in the context of typed A-calculi, is
not really relevant here.

Let us end this introduction by a remark which also open questions. As
we will see, subsets of AT can be proved to be 2¥-wide or 2¥-broad either by
syntactic or by semantic means, but at present it seems we can’t say anything
non trivial on the height of AG, and hence on any interesting AC.

2 Preliminaries.

2.0.1 )\-toys.

A-calculus. A and A° are, respectively, the set of A-terms and of closed A-
terms (also called combinators). Concerning specific A\-terms we set: [ = Az.z,
e = Xxdy.xy, V = Azhy.x, F = Az \y.y, Q@ = 6, where § = Az.zz,.and



Q3 = §303 where 03 = Az.zzz; a more traditional notation for V' is K (when not
viewed as a boolean). We will denote af-conversion by A\g and afin-conversion
by Agy. Finally we recall that the order of a A-term u is the largest integer n > 0
such that u is af-convertible to Az1...Az,.u' for some u’', if there is one, and oo
if this is true for all n.

A-theories. A \-theory is a congruence on A (with respect to the operators
of abstraction and application) which contains Ag; it can also be seen as a
(specific) set of equations between A-terms. The set of all A-theories will be
denoted by AT. We will often drop the ”A” of ”A-theory”, since we will not
use any other kind of theories here. A A-theory is extensional if it contains the
equation I = ¢, and we let A7, be the set of extensional theories. It is clear that
Ag and Ag, are, respectively, the least elements of A7 and AT..

The A-theory generated (or axiomatized) by a set E of equations is the least
A-theory containing it, denoted by Tg. A theory T is finitely axiomatizable if
T = T for some finite F; then it is clear from the existence of a pair constructor
AzAyAz.zzy in A, that T = T'g for some singleton set E. We recall that E Fr = s
means that r = s € T. A set of equations F is inconsistent if Ty, = Top = AXA,;
in particular Top is the unique inconsistent A-theory. For example V = F'is
inconsistent, as well as F' = 1.

We do not ask for consistency in the definition of ” A-theory”, since it will
be convenient to consider T'op as a A-theory (which is obviously extensional).

Sensible A-theories. A A-theory is sensible if it is consistent and all the
unsolvable terms are congruent, and is semi-sensible if it is consistent and no
solvable term is congruent to an unsolvable term; obviously Ag and Ag,, are semi-
sensible and non sensible. It is well known (and easy to prove) that sensible
theories are semi-sensible.

Easiness. Given a A-theory 7', a closed term u is T-easy if for all other
t € AY we have that T'U {u = t} is consistent. It is easy to check that a
T-easy term is necessarily unsolvable. On the other hand, the consistency of
T' =T U{u = I}, implies that u = Az.u ¢ T (otherwise F' = [ is in T"); in
particular, the existence of a T-easy term implies that 7' is non sensible.

A term w is easy if it is Ag-easy, namely if {u = t} is consistent for all
closed term t. The term (Q is the best known easy term, and it enjoys further
properties which make it possible to prove semantically its easiness (via graph
models), using a forcing technique developed by Baeten and Boerbom [3].

A-models. In this paper the word A-model can very well be understood
as a generic expression covering “any possible model of untyped A-calculus”.
Alternatively, it can be given the precise definition of A-model in [4], or be
defined as any reflexive object of a cartesian closed category with enough points,
or just be understood as “the union of all the concrete classes of models the
reader has in mind”. Examples of such classes will be recalled in Sections 2.0.7



and 7.1. Each A-model M induces a A-theory, denoted here by Th(M) or by
=m . Thus: t =5 t' if and only if ¢ = ¢’ € Th(M) if and only if ¢,¢' have the
same interpretation in M. We will call proper A-model any A-model M which is
not a term model. If M is a proper model then Th(M) # Top, since otherwise
M would be a singleton model and hence the term model of Top. Finally, a
A-model is sensible in case Th(M) is.

Representability of theories in classes of models.

Definition 1 Given a A-theory T
(i) A A-model M is a model of T if T C T'h(M).
(i) A X-model M represents T' if T = Th(M).
(i1i) T is representable if it is representable by a proper A-model.

Definition 2 Given a class C of A-models and a theory T.
(i) C represents T if there is some M € C representing T.
(ii) C omits T if there is no M € C representing T.
(iii) C is complete for S C AT if C represents all the elements of S.
(iv) C is 2¢-incomplete if it omits 2“ A-theories.

Notation 3 M\C is the set of A-theories which are representable in C.
ACE® is the set of extensional A-theories which are representable in C.
AC® is the set of sensible \-theories which are representable in C.

AT happens to be the instantiation of AC where C consists of all possible term
models, but from now on C will always denote a class whose definition does not
refer to the syntax of A-calculus. We will also assume that C is uniform, in the
sense that it should not be defined as a union (definition by case). Such a class
has no reason to contain term models, and in practice none does. To be more
concise we will adopt the following convention.

Claim 4 From now on C denotes a uniform class of proper models.

In particular C can be any of the concrete classes of models that we will
introduce later on.

2.0.2 Sets.

N denotes the set of positive integers. For every set S, card(S) denotes the
cardinality of S, S* is the set of all finite subsets of S, P(S) is the powerset of
S, and S<“ (resp. S, S=¥) is the set of all finite (resp. infinite, resp. finite or
infinite) sequences of elements of S; [(s) denotes the length of the sequence .
When writing ¢(Z), where g is a function, we will always understand that I(z)
is the arity of g. For any function f : S — S’ we define f : P(S) — P(S’') by
fTA) ={f(z):z € A} and f~ : P(S") = P(S) by f~(B) = {z: f(z) € B}.



2.0.3 Posets.

Partially ordered sets are called posets for short. The least (or bottom) element
of a poset, if any, is denoted by L. Given a set S, the flat partial order S, is
the poset obtained from S, viewed as a discrete ordered set, by adding a bottom
element, 1. The interval notation will have the obvious meaning; for example,
given a poset S = (S,C) and s,s' € S, we let [s,s'] = {s" € S/sCs” Cs'}
and [s, s'[= [s,s'] — {s'}.We say that A C S is closed downwards in S if | € A
and I’ C ] imply I’ € A and the definition of closed upwards is symmetric.

Given a poset S = (S,C), and S’ C S we recall that: S’ is a a chain of S
if it is totally ordered by C, and S’ is discrete in case its elements are pairwise
incomparable for C, which means that, for all s,s’ € S’, s C s’ implies s = s'. S’
is dense in S if card(S’) > 2 and for all distinct s, s’ € S’ we have that |s, s'[NS’
is non empty, and S itself is a dense poset if S is dense in S. Finally, S’ is an
antichain of S if, whenever we are given s,s' € S’, s # s', the top element T,
if there is one, is the only possible common upper bound of s, s’ in S.

2.0.4 Lattices.

A lattice is a poset (S, <) such that any two elements s,s’ € S have a least
upper bound sV s’ and a greatest lower bound s A s’; then < is definable from
V or A. A lattice is complete if any A C S has a least upper bound (then all
A have also a greatest lower bound); in particular a complete lattice has a top
and a bottom element. An interval sublattice of the lattice (S, <) is an interval
which is closed under V and A, and, hence, is a sublattice; in particular each
closed interval [s,s'] of a lattice is a lattice interval. A lattice identity is an
equation P = ) where P, (@ are terms in the language {V, A}; a lattice identity
is trivial if it holds in all lattices. A well known and useful non trivial lattice
identity is distributivity: x A (y V z) = (£ Ay) V (z A z); a weaker condition is
modularity, which expresses that distributivity holds whenever y < .

2.0.5 Describing the size of a poset.

We introduce now the following definitions, which will be useful to express how
large, in some various senses, some subsets of AT can be. First we recall that a
poset S = (S,C) embeds a poset S' = (S’,C') if there is an injection f : §' — S
such that for all z,y € S" we have: x C' y if and only if f(z) C f(y).

Definition 5 A poset S is c-high (resp. c-wide, c-broad), where ¢ is a cardinal,
if S has a chain (resp. a discrete subset, an antichain) of cardinality c.

Lemma 6 If a complete lattice embeds a dense poset, then it also embeds the
reals (R, <) and hence it is 2% -high.

Lemma 7 If an ordered set embeds (P(N), C), then it is 2*-high and 2*-wide.

Proof. Height follows from Lemma 6, once noticed that (P> (N),Cy) is
dense, where P>°(N) is the set of infinite subsets of N and A C Bif AC B



and B — A is empty or infinite. Width comes from the fact that it is easy to
build 2¢ pairwise incomparable subsets of N, for example {A;/ f : P - P},
where P is the set of prime numbers and A; = {p/P) /p € P}.

2.0.6 Scott’s semantics.

Cpos (complete partial orders) and (Scott-) continuous functions between cpos
are defined in [4, Chapter 1.2]; all complete lattices are cpos. Two cpos D and
D' are Scott-isomorphic if and only if they are isomorphic as posets, namely if
there is a bijection between them such that f(z) < f(y) if and only if = < y,
and we will denote this by D ~ D’. If D, D' are cpos then [D — D'] denotes
the cpo of all the continuous functions from D into D'. A reflexive cpo is a
triple (D, A, A) such that A € [[D - D] - D] and A € [D — [D — D]] and
Ao A =id. Reflexive cpos model A-calculus as follows (for more details see [4,
Chapter V.5]).

Let Envp be the set of environments p mapping the set of the variables of
A-calculus into D. For p € Env and d € D let p[z : d] be the environment which
takes value d on z and agrees with p on the other variables. The interpretation
|t| : Envp — D of a A-term ¢ which is relative to (D, A, \) is defined by induction
as follows: (i) |z|, = p(x), (ii)|tul, = A([t],)(|u|,) and (iii) [\z.t|, = A(d € D —
[t]pjeap)-

Graph models are based on cpos of the form (P (D), C), for some infinite set
D; such cpos are, of course, complete lattices. If D is countable then a function
g:P(D) — P(D) is continuous if and only if it is monotone and commutes with
all increasing unions.

Further conventions on sets. When dealing with a graph model based
on P(D), greek letters a, §, ... will always understand elements of D, small Latin
letters a, b, ¢ will understand elements of D*, i.e. finite subsets of D, and a, b, ¢...
elements of (D*)<“. Also, (a,a) is the usual set-theoretical pair, and (a,a) is
defined by induction as follows: (a,«) = aif i(a) = 0 and (b¢, &) =45 (b, (¢, @)).

Traces of continuous functions. Products of cpos are again cpos. By
“a continuous function g of arity n on P(D)” we mean: g € [P(D)" — P(D)].

A continuous function g on P (D), of any arity, is completely determined by
its trace, which is defined by:

tr(9) =aes {(@,a) : a€g(a)} (1)

The trace can be viewed as the relevant part of the graph graph(g) of g.
Note however that, in case of arity one, tr(g) C D* x D C P(D) x D, while
graph(g) C P(D) x P(D)

Graph models owe their name to the fact that continuous functions are en-
coded in them via (a sufficient fragment of) their graphs, namely their traces.
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2.0.7 Other semantics of \-calculus.

Besides Scott’s continuous semantics, the key examples are Berry’s stable se-
mantics and the Bucciarelli-Ehrhard strongly stable semantics, which are refine-
ments of Scott’s continuous semantics capturing some aspects of the sequential-
ity of A-calculus. By the “three main semantics” we will understand one of these
and, for brevity, we will respectively call the A-models living inside: continuous,
stable and strongly stable A-models. These semantics are functional, in the sense
that A-terms are interpreted by morphisms which are functions; this is also the
case for a further family of semantics, namely the k-continuous semantics, k any
regular cardinal (k-continuity is a weakening of Scott’s continuity). No more de-
tails on these semantics than what is stated in this subsection should be needed
to read this paper, and, if necessary, [9] contains a more detailed presentation.

Notation 8 C.opnt, Cst Csts will denote respectively the classes of continuous,
stable, and strongly stable A-models, respectively.

Similarly, Cy,—cont and Cyqmes will denote the classes of models corresponding
to the k-semantics and to the game semantics, respectively.

Our main concern is that of representability problems. In this context game
semantics (which is not a functional semantics) is not relevant, since it was
proved by Franco [20] that ACgemes (at least in the case of Abramsky & al.
games), only contains the theories BT, LT and H* (see Section 3.2 for a def-
inition of these theories) while all the functional semantics happen to be very
rich and are also able to represent these theories. Since no systematic study of
ACy_cont has yet been undertaken, we will nearly only deal here with the three
main semantics, with a great emphasis on G (the other subclasses of models will

only be treated in Section 7).

3 The lattice of M-theories.

3.1 The complete lattice \7T.

AT, ordered by inclusion, is naturally equipped with a structure of complete
lattice, where the meet of a family of A-theories is their intersection N, and the
join, written here +, is the least equivalence relation containing their union.
Since A is countable card(AT) < 2¢, and we will see soon that A7 is in fact 2“-
high and 2“-broad.

Two theories T, T' are incompatible if T UT' is inconsistent, or equivalently
if T+T' = Top. Hence an antichain of AT is a set of theories which are pairwise
incompatible.

Notation 9 .
(i) AT"¢ denotes the set of recursively enumerable A-theories.
(i) AT ? is the set of all sensible A-theories.
(iii) NT*/? is the set of all semi-sensible \-theories.

11



Notation 10 .

Notation 11 (i) S =SNAT" .
(i) Se = S N AT will be called the extensional analogue of S C AT .

It follows immediately from their definitions that A7, A7*/2 and their ex-
tensional analogues, are closed under (finite or infinite) intersection, that A7*,
AT. and AT} are closed upwards (omitting T'op in the sensible case) and that
AT #/? is closed downwards. Obviously AT = [Ag,Top] while AT, = [Agy, Top],
and we will see below that A7*, A7*/2 and their extensional analogues are also
closed intervals of A7, and hence complete sublattices. Concerning recursively
enumerable theories, note that they are non sensible (this can be inferred from
[4, Chapter 17.1]) but that plenty of them are semi-sensible, to begin with Ag.
Of course AT"¢ contains all the finitely axiomatizable theories.

In the next two subsections we recall briefly the “historical” results on A7 .
Most of them (or their proofs) are purely syntactic, and all of them can be found
in [4].

3.2 The roles of H,BT ,H* .

Since A7 is closed under intersections, it has a smallest element, which is the
intersection of all the sensible theories, and is traditionally denoted by H.

The theories H, BT, H* were the first theories to be isolated, and they hap-
pen to play an important role with respect to the structure of A7. The theory
BT contains t = t' if and only if the A\-terms ¢,¢' have the same Bohm tree;
hence it is a sensible theory, which is strictly bigger than H, and BT is non
extensional; thus no theory below BT can be extensional; in particular H is not.
The theory H* contains ¢ = ¢’ if and only if for all context C[—] we have that
Clt] is solvable if and only if C[t'] is solvable. It follows immediately from this
definition that H* is sensible and that every semi-sensible theory is included in
H*; hence H* is the unique maximal sensible (resp. semi-sensible) theory. Since
AT is closed upwards, there is no theory between H* and Top, since AT*/? is
closed downwards we get AT%/2 = [\g, H*]. Finally:

\s GHG BTG H G Top (2)
|H*, Top[=10 (3)
AT? =[H,H*] = [H,Top| (4)
AT/ = [Xg, H'] (5)
while, of course:
AT = [Ag, Top] (6)

It was proved by Hyland [27] and Wadsworth [56] that H* = T'h(D4,), where
we recall that D, is Scott’s first model; in particular H* is extensional. It is
interesting to note that there is another characterization of H*, in terms of
trees: H* = NT, where NT equals two terms if and only if they have the same

12



Nakajima tree (cf. [4, Exercise 19.4.4]). Finally, it is worth introducing Longo’s
theory LT, which is also defined in terms of trees. LT is a "lazy” version of BT,
which equates two unsolvable terms u and v if and only if they have the same
order. We have: LT C BT and Q = A\z.Q € BT — LT, hence LT € \T%/2 —\T*.

The extensional case. Given a theory 7', let T; denote the smallest ex-
tensional theory containing 7" and I = . Since H* is extensional, 7}, is con-
sistent for all semi-sensible theory; furthermore H, is the smallest extensional
sensible theory, and H, C BT,y C H*. In fact these inclusions are strict, so fi-
nally, in the extensional case we get similar inclusions and equalities than above,
with Ag,, Hy, and BT, replacing Ag, H and BT.

3.3 Size and shape of the key intervals.

The following results show in particular that all the intervals mentioned in the
previous subsection are as high and wide as possible. The proofs of the theorems
can be found in [4, Chapters 17.1 and 16.3] and the proofs of the corollaries are
immediate. The proofs of the two propositions are respectively recalled and
given for allowing comparison with the semantic proofs that will be given later
on.

Theorem 12 (Visser 1980) If T € AT"™ and r = s ¢ T, then there ezists u
such that, for allt, TU{u=1t}Fr =s.

Corollary 13 If T is recursively enumerable then there is a T-easy term.
Corollary 14 If T is recursively enumerable then T is non sensible.

Proposition 15 \77¢ is a dense subset of AT, and the same holds for their
extensional analogues.

Proof. Let T,T" € XT"® besuch that ' G T", let r = s € T'—T and finally let
S = TU{ur = us}, where u is given by Theorem 12. It is clear that ' C T's C T",
that Ts € AT"¢. Since Ts U {u = I} - r = s we have Ty, # T by Theorem 12.
IfT" =Tg then TU{ur =us}+r=s, but TU{u = Az.l} F ur = us, hence
TU{u=Az.I}Fr =s, which contradicts Theorem 12. Thus T' ¢ Ts G T".

Proposition 16 If T € AT then [T, Top) is 2*-high and 2“-broad.

Sketch of proof. The fact that [T, Top] is 2¥-high follows immediately from
Proposition 15 and Lemma 6. The fact that it is 2“-broad follows from Theorem
12, plus a compactness argument. Let indeed u be a T-easy term, let n denote
the n-th Church integer. It is enough to prove that for each sequence s = (t,,)new
of A-terms, the set E;, = UE,, is consistent with 1", where E,, = {ui =
t1,...,un = t,}. Indeed, if s is such that ¢, = ¢,, is consistent only if n = m,
for example if s is itself the sequence of the Church integers, then the sets F,;,
where os is obtained from s by action of the permutation ¢ of w, will generate
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pairwise inconsistent theories. Now, to prove that F, is consistent with T it is
enough, by compactness, to show that each of the T'U E; ,, is consistent. But,
using usual tricks of A-calculus, given the sequence s, there is for each n a A-term
cond,, such that cond,j =g t; for all j <n. Now, by Theorem 12, u = cond,, is
consistent with 7', which implies the consistency of E, , UT.

Corollary 17 AT is 2¥-high and 2% -broad, and similarly with \7T..

Theorem 18 (Barendregt € al. 1980)
(P(N),C) can be embedded in |H,, BT,][, and also in |H, BT.

Corollary 19 AT7* \T*/? are 2“-high and 2¥-wide, and the same is true for
their extensional analogues.

This corollary follows from Theorem 18 and from Lemma 7, since the three
“extensional” classes contain |H,, BT,[, and the three other ones |H, BT].

In the sequel we will see that the 2“-broadness of A7 and the 2¥-width of
AT® and AT*/2 can also be given semantic proofs, via G.

We end this section by quoting a very nice recent result of Statman, that we
will not use in the sequel, but which reminds us (as the existence of easy terms)
that surprising things can very well happen in AT .

Theorem 20 (Statman 2001) [54]. There is an equation e ¢ Ag which is con-
sistent with all consistent theory.

From Corollary 17 and Zorn’s Lemma it follows that the set of maximal
consistent A-theories is “maximally large”, namely 2“-broad; and we also know
that H* is one of its elements. Now, Statman’s Theorem is equivalent to saying
that there is an equation e ¢ Ag in the intersection of all these theories.

3.4 Questioning the lattice properties of \T.

At the end of the nineties, Antonino Salibra [47] launched a research program for
exploring the lattice A7 using techniques of universal algebra. The first result
was obtained in [47], where the lattice of A-theories is shown to be isomorphic
to the lattice of equational theories of a suitable class of algebras. Then the first
important remark is that not any lattice can be a lattice of equational theories;
examples of such constraints are the Zipper condition and the ET condition
(cf.[41]), which are not identities. Salibra proposed the following conjecture,
and recently proved with Lusin an approximation of it, which involves bounded
versions of +, and can be found in [41].

Conjecture 4 (Salibra 2000) \T satisfies no non trivial lattice identity.

Theorem 21 (Salibra 2001) [48] AT is not modular (and hence not distribu-
tive).
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Sketch of proof. The modularity law (see Section 2.0.4) fails for z = H,,
y = H and z = T, where T is generated by the equation 2 = I. Since H contains
the equation Q = Az.Q) we have T'+ H = Top, hence H, N (H +T) = H,. On
the other hand (H, N H) + (H,NT) = H + (H, NT). Obviously, e = I € H,;
on the other hand e = I ¢ H + (H, N T) (see [48]), hence H + (H, NT) # H,.
In fact the proof works with any sensible extensional theory instead of H,,.

Obviously, the above theorem is no longer true for sublattices, in general.
For example the interval lattices {T'op} and [H*,Top], which have respectively
one and two elements, satisfy a lot of identities, including distributivity.

Problem 5 (Salibra) Are there large intervals of XT which satisfy interesting
lattice identities?

There are good reasons to be interested in intervals of the form [T, Top];
the first one is that [T, T'op] is isomorphic to the lattice of congruences on the
term-algebra A /T, which is a bridge to universal algebra, and a second one is
that we know from Proposition 16 that for all 7' € 77¢, and in particular for all
finitely axiomatizable T', the interval [T, Top] is as large as it can be (as we can
express it to be), namely: 2¢-high and 2“-broad.

Theorem 22 (Berline and Salibra 2004) [10] There is a finitely aziomatizable
theory T' such that [T, Top) is distributive.

The proof, which is semantic, will be given in Section 5.4 as a direct appli-
cation of generalized forcing over graph models. Moreover we will have for free
that [T, Top] N AG is 2¥-broad, and hence that AT, and also [T, T'op] for this T,
are also 2“-broad.

3.5 Representability problems.

We already know that Th(Ds) = H* and that BT = Th(£) = Th(P,); in
particular T'h is non injective (where we take as informal domain of definition
for Th the union of all conceivable C's). In fact, as we will see, BT can even
be represented by 2“ models of G, and BT and H* can also be represented in
each of the other main semantics! The question of the surjectivity of T'h is much
more difficult; Salibra’s Theorem 28 below is a strong, although not yet definite,
indication that the answer should be negative, and that moreover the range of
Th is 2“-incomplete.

About Mg, Mg, and H. As mentioned in the introduction, the problems
of the representability of Ag,Ag, and of H are respectively due to Barendregt
and Honsell. Both are long-standing questions (nearly as old as the existence
of Scott’s continuous semantics), even though they were only first discussed in
print in Honsell-Ronchi [26].

Problem 6 (Barendregt; Honsell) Are Az, A, H representable?
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These questions are still open. The first partial answers only concern Ag,
and date back as recently as 1995, and all the other partial results obtained so
far are essentially negative. Nevertheless exploring these questions allowed us
to gather interesting information about the diverse A\C's, as we will see in the
next subsection. The only positive result is the following one. Note however
that the model built in its proof does not really answer Barendregt’s problem
in spirit, since it is “essentiality syntactic”, in the sense that its construction is
based on the syntax of A-calculus.

Theorem 23 (Di Gianantonio-Honsell-Plotkin 1995) [21]
Agn is representable by (a kind of) weakly continuous model.

Hint. Let us say that a function (between adequate cpos) is DHP-continuous
if it commutes with sups of increasing sequences indexed by wq, and let us
call Cpyp_cont the class of A-models associated to the corresponding semantics.
Starting from the term model Ag, of Ag,, the authors build an inverse limit
M in an adequate category such that: M € Cpgp.cont and there is a function
p: M —Ag, such that p(|t\M) is the class of ¢ modulo Ag,,, for all t € A°. Then,
obviously, Th(M) = Ag,.

About the AC's. The question of the representability of \g, Ag,, and H
generated a wealth of related questions. In the following, C denotes any uniform
class of proper models we are interested in. Of course, the three following
problems are not independent.

Problem 7 Is C complete for XT (or some more adequate subset of AT )?
We will see in the next section that all known semantics are 2¥-incomplete.
Problem 8 Are A, Agy, H representable in C?

We will see that, for C = G, the answer is “no” for Ag, Agy, and is still open
for H.

Problem 9 Is there a least element in A\C ? if yes, does it admit another (and
preferably nice) characterization?

Theorem 24 (Di Gianantonio-Honsell-Plotkin 1995) [21]
ACEynt has a least element.

Hint. Using the axiom of choice, choose one continuous model M for each
theory T' € ACE,,;- Starting from the cartesian product II of the M it is
possible to build an inverse limit M in an adequate category, in such a way
that M € C¢,,,; and Th(M) C Th(M..) for all T'. The proof in [21] of this last
point uses “logical relations” between II and M; since logical relations do not
distinguish terms having the same applicative behaviour, this proof can only

work with extensional models.
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Problem 10 Compare the shape of AC with that of XT or of a more appropriate
sublattice.

These problems already appear in [9], sometimes with a different formula-
tion. Since then several results were obtained, that we will survey from Section
5 on. In particular the case of C = G has been thoroughly studied; but some
key questions remain open.

4 Theories of ordered models.

4.1 Omitting \g and \g,.

Definition 25 Let us call p.o A-model any A\-model M such that application
is monotone for some non trivial partial order < on the carrier set of M, and
p.o1 A-model any p.o A-model having a bottom element. We will write <aq for
the preorder induced by < on A°; thus t <aq u if and only if [t \, < |u],, -

Graph models, and more generally all the proper models that we meet in
A-calculus, are p.o; A-models. Not only there are well known computational
motivations for considering p.o A-models, but it takes much energy to find A-
models which are not p.o A-models. The first one was built by Plotkin in 1995
[46], and it is only at the same time that it could be proved that the term models
of Ag and Mg, were not orderable. This is a corollary of the following beautiful
theorem due to Peter Selinger, which also gives a partial answer to Problem 8.

Theorem 26 (Selinger 96) [52][53] Let M be a p.o A-model. If Th(M) = Ag

or gy, then the order is trivial on the interpretations of closed terms.

Sketch of the proof in [52]. There is a term A € A° such that Azzzy =)p
Azyyy while Azzay #xgy, Azayy, for variables z,y. Hence, for all closed terms
t,u and variables z, s, t <aq u implies A(st)(st)(st)(zu) =p A(st)(st)(zu)(zu).
It is then enough to prove that A(st)(st)(st)(zu) #1 A(st)(st)(zu)(zu) if t #r1 u,
where T' = Ag or Ag,. This follows from a non trivial lemma which states that
if ¢ #7 u then st and zu behave like distinct variables: for all B,C € A°, if
B(st)(zu) =7 C(st)(zu) then Bzy =7 Czy.

Recall that the one, and only one, example we have of an M satisfying the
hypothesis of the above theorem is the DHP-continuous model built in [21] for
proving Theorem 23, which furthermore is essentially syntactic.

Problem 11 Does the above statement hold for H?

Remark 27 It follows from the proof of Theorem 26 that, for the above term
A, we have: Th(M) D {A(st)(st)(st)(zu) = A(st)(st)(zu)(zu) [t <y u} for
all p.o. \-model M.
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4.2 Omitting dense sets of theories.

In [49] Antonino Salibra proved that (except maybe for very exotic orders) all
uniform classes of ordered models are 2“-incomplete; the proof mixes tricky
arguments from topology and universal algebra. The following consequence of
this result, already covers all the semantics we have met so far, and admits a
simpler proof, due to Salibra and Plotkin (see [50]), which is composed of the
next two lemmas. In particular, Theorem 28 answers positively Question 2 of
[9, Section 6.1, p.149 ] (cf. Section Conclusion).

Theorem 28 (Salibra 2001) The class of all p.oy. A-models omits 2% -high in-
tervals of AT.

In the following, (V, F') could be be replaced by any pair (¢,7) of terms such
that ¢ = r is inconsistent.

Let IT and II' be the A-theories respectively axiomatized by {Qzz = Q} and
{Qzz=Q, Q=QQVF)Q}. Clearly, Il C I' C H; in particular IT and II' are
consistent.

Lemma 29 The interval [I1,11'] is 2% -high.

Sketch of proof. Thanks to Theorem 15, it is enough to prove that IT ¢ TI'.
It is proved in [50] that (u = v) € II <= (Quv = Q) € II; applying twice this
result to the equation 2 = Q(QV F)Q we see that it is not in II, since otherwise
IT would contain V' = F.

Lemma 30 The interval [I1,II'[ is omitted by all p.o, A-models.

Proof. Any p.o. model M of II satisfies @ = Q1L 1 < QVF, hence it also
satisfies 2 = QOO < QQVF)Q < QQVF)(QVF) = Q, hence Q = Q(QV F)Q.
Thus Th(M) D II implies Th(M) D II'.

Corollary 31 All the known classes C of A-models are 2“-incomplete.

Note that, given a specific class C, it is in general possible to find more
natural intervals (ex: [Agy, T'op] for G, since no graph model is extensional). We
will also see below that for each usual class C, AT — AC is 2“-broad. While
Theorem 28 and its proof produce 2“-high intervals, which are furthermore
independent of C, and hence brings uniformity.

5 Graph models.

5.1 Definition.

For brevity we will confuse graph models and their webs, hence we simply define:

Definition 32 A graph model is a pair (D, i), where D is a non empty set and
i:D*x D — D is a total injective function.
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Such a pair will also be called a total pair. It follows from the definition that
D is infinite. A total pair (D,i) generates a reflexive cpo (P(D), A;, A;), where
X; and A; are defined as follows:

Ai(g) ={i(a, ) : a€gla)}

The left inverse 4; € [P(D) — [P(D) — P(D)]] of A; (which allows to interpret
application in the model) is defined by:

A(d)(d)={aeD:(FaCd)ilaa)ed).

where d, d’ are arbitrary subsets of D. When no ambiguity occurs we write dd’
instead of A;(d)(d’). The interpretation |t|" : Envpp) — P(D) of a A-term ¢
with respect to (D, 1) is hence defined by induction by:.

. \tu|lp ={a:(3aC \u|lp) i(a,a) € \t|lp}

o Dt ={i(a,0) ac€ |t\;[z:a]}
Since |t\2 only depends on the value of p on the free variables of ¢, we just

write |¢|" if ¢ is closed, and |¢] if furthermore i is clear from the context.

Example 33 . .
11" = |Mz.z|" = {i(a,a) | a € a} ; |K|' = {i(a,i(b,a)) Ja €a}
lel' = [AzAy.ay|" = {i(a,i(b,a)) /3 Cb(V,a)€a}
16" = |Az.zz|" = {i(a,a) /a € aa }.

Remark 34 It is easy to check that for all t € A° and all (D, i) we have:
[t|' Nrange(i) C |et|" C range(i).

Recall that G (resp. G%") denotes the class of graph models (resp. whose
web is countable); thus, all the models in G4¢" have cardinality 2*. The elements
of AG will be called graph theories for short.

5.2 First equational and inequational properties.

Lemma 35 No graph model is extensional.

Proof. In all graph models (D, i) we have i({i(0, )}, i({a},a)) € |g| —|I|.

This first and old observation happens to be the simplest instance of a gen-
eral, and much less trivial, recent result, that we will state in Section 6.1.

Lemma 36 In all (D,i) and for all t € A° we have:

(i) |I| C |e| if and only if i is onto.
(ii) [t| C |et| if and only if |t| C range(i).
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Proof. (i) is easy to check, and left as an exercise, and (ii) follows easily from
Remark 34.

Lemma 37 (Kerth 1995) In all graph models (D,i) we have:
(i) 193] # D and,
(ii) if a € |Q3], then a = i(a,a) for somen >0 and a,...,a, C |03].

Proof. (i) It is easy to see that |d3] contains no element of the form i((),~).
The proof of (ii), which can be found in [33, Example 5.3.7], is a non straight-
forward, but not difficult, exercise.

Corollary 38 (Kerth 1995) No graph model satisfies Qau = I (for any u € A°).

Proof. Let (D, i) be a graph model, and let v € D—|d3|. We have i({v},7) €
[I]. I i({v},7) € |Q3u| then thereis a C |u| such that v' = i(a,i({v},7)) € |Qs].
By (ii) of the above lemma and using the injectivity of i we get v € |d3], which
is a contradiction.

This corollary, which remains true for £ (and beyond) shows a concrete
limitation of G and K. Indeed Q31 is an easy term; this was proved syntactically
by Jacopini and Zilli in 1985 [28], but was only given recently a semantic proof,
by Honsell & al. [1], who built, for each closed ¢, a filter model of Q31 = ¢. Now,
the above corollary shows that there can exist no semantic proof via graph
models or models of K, in contrast to the case €2, since Q31 = I is satisfied in
no such model. This essentially answers Question 5 of [9, Section 6.3, p.152].

From Lemma 37 Bucciarelli and Salibra also derived the following interesting
consequences; the first one is immediate, also using Lemma 36.

Corollary 39 Q3| C [eQg] is true in all graph models.
Combining this property with Theorem 26 we get:
Corollary 40 (Bucciarelli and Salibra 2004) [15] G omits Ag.

Proposition 41 (Bucciarelli and Salibra 2004) [15] Fach sensible graph model
interprets all the closed unsolvable terms by the empty set.

Proof. 1t is enough to show that if a graph model (D, i) satisfies v = Az.v and
v C Q3 for some closed term v, then (D,4) interprets v by 0. Suppose a € ||,
then also i(a,a) € |v| C |Qs], for all a € D*. By Lemma 37, i(a,a) = i(b,5)
for some b C |03| and some [3; hence a = b C |J3|; since a is arbitrary we would
have D C |d3], a contradiction.

The class Giq.y of lazy graph models differs from G by a small variation in the
definition of A;, which works only if i is non surjective: fix v € D — range(i),
then define \;(f) = \i(f) U {y}. Tt is easy to check that (P(D),\},4;) is
still a reflexive cpo. The first and simplest example of a lazy graph model is
the lazy variation &4, of £ introduced by Longo in [40]; as already noticed
Th(&asy) = LT, hence LT is representable in Ga.y .

20



5.3 Building graph models.

There are only two methods for building graph models, and both consist in
completing a partial pair into a total one, either freely or by forcing. When
applied to total pairs both methods leave them unchanged. There is a also a
product construction, called G-product below, which is a particular case of free
completion.

All these methods can be extended to the other classes of webbed models,
with more or less ease (see Section 7). The systematic extension of the free
completion method to K was written down in [9], but some particular cases had
been previously worked out by several authors, to begin with [38] (cf. [9]).

5.3.1 Partial pairs.

Definition 42 A partial pair is a pair (P, j) where P is a non empty set and j
is a partial (possibly total) injection from P* x P to P, written j : P* x P — P.

The simplest example of a partial pair is (P, §)), and, of course, any total pair
is a partial pair. In the examples j will be described by its graph (in the usual
sense). A crucial dichotomy occurs between the pairs which we call positive, and
the other ones. A definition of positive pair, in full generality, was proposed in
[9, p.125], and it was left to the reader to write down alternative formalizations.
Such a (more intuitive, but possibly less general) formalization is the following.

Definition 43 (P, j) is positive if there exists a function v: P — {4+, —} such

that ((a,a),B) € graph(j) implies v(8) = v(a) and implies v(B) = —v(y) for
all v € a.

5.3.2 The free completion method.

This method, just called “completion” in [9], and “canonical completion” else-
where, generalizes the construction of £. It was introduced by Longo in [40],
who also proved that the graph model P, is isomorphic to the free completion of
the pair( {0}, {(0,0),0}), in a sense we will not make precise here. It was then
used on a larger scale by Kerth (see Sections 6.2 and 6.3), who also transferred
the method to other semantics [33, 35, 37], and it was also used recently by
Bucciarelli-Salibra in [14, 15]. Free refers here to the fact that the graph model
(D, 1) is built in an inductive and canonical way from the partial pair (P, j) we
start with, as freely as possible.

Definition 44 The free completion of the partial pair (P,j) is the total pair
(D,i) where D is the smallest set such that

D =PU((D* x D) —dom(j)) .
and i is defined by

jla,a) if (a,a) € dom(j)
i(a,a) = (a,a) otherwise

~S.
B

Q

Il
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Hence D is countable and could be defined as the union of an increasing
sequence of sets D,,, while i is (globally) defined at the end. We now recall the
key examples (others can be found in [9]).

Example 45 (Engeler’s model) Ep is the free completion of the (positive) pair
(P,0); in this case i is just inclusion. Note that each element of Ep can uniquely
be written as (a,a) for some o € P and a € D*<%.

Example 46 The model Pp is the free completion of the (positive) partial pair
(P, jp) where dom(jp) = {0} x P and jp(0,p) = p for allp € P.

Example 47 The model Py is defined as above except that dom(jp) = {({p},p) :
p € P} and jp({p},p) = p for allp € P.

Definition 48 Let us call positive graph theories the theories of graph models
which can be obtained by freely completing a positive pair.

Formally, the definition of Pp and P}, are similar, and the web of P}, is as
simple as for Pp. However the two families behave quite differently, as we will
see soon; in particular all the models Pp are sensible, while in Pp we have:
|2l = P and [, = PNJt|, [26]. The key structural difference between the two
families is that Pp is generated by a positive pair, which is not the case for PJ.

Indeed, if a model happens to be the free completion of a positive pair, then
we have a (uniform) control on its theory. First it can be proved that positive
graph theories are sensible (cf. [9, p.125]); the more direct way to prove it is
to use a reducibility method (in Tait’s spirit) directly in the model (as it is
done there). Second, if furthermore one can apply the strong approximation
theorem! in the spirit of Hyland and Wadsworth [27][56], which is the case for
the €p's and the Pp's (in particular for P,) then T'h(D, ) is completely known,
and equal to BT. An open problem, which we raised in [9], and for which we
have only partial positive answers yet, is whether this is always true for models
generated by positive pairs. We will return to this point later on.

Remark 49 The theory of Ep (resp. Pp and Pp) is independent of P.
Remark 50 Viewing P, as Pyoy makes it easier to study Th(P,).

The reason why P, and Pjo, can be proved to have the same theory is that
we have a good notion of isomorphism between webs. The definition is as follows:
let us say that 6§ : D — D' is a morphism between (D, i) and (D’,4') if for all a,
we have that 8(i(a,a)) = i'(8" (a),8(a)); by definition 6 is an isomorphism if it
is furthermore a bijection (then its inverse is also an isomorphism). This notion
of isomorphism is good in the sense that isomorphic webs generate models with
the same theory; but the mere notion of morphism happens to be disappointing

(one would of course like to induce an inclusion of theories).

IThe more general but weaker Approximation Theorem that can be found in [26], although
helpful, is not enough.
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5.3.3 The graph-product construction.

Definition 51 [14] The G-product of the family (D.,i.)ecr of graph models,
where the D, are supposed to be disjoint, is the free completion (Dg,ig) of
(UD,,Ui.), and hence a graph model.

Note that G4 is only closed under countable products (i.e. F should be
countable). In the sequel it will be clear that the families we chose can be
supposed to consist of disjoint sets without loss of generality. Finally, in the
rest of this subsection we use freely the notations of the above definition.

In order to make clearer the presentation of the two following propositions,
which express the key technical properties of the G-product, and that of their
consequences, we will state them separately. However they are not independent,
in the sense that their only known proof is global and by mutual induction on
t, once the family (f,).cr has been exhibited [14].

Proposition 52 (Bucciarelli-Salibra 2003) For all t € A° we have:
t|" = |t|"" N D,

Corollary 53 Th(Dg,ig) C ﬂFTh,(De,ie).
eck

Corollary 54 Any G-product of semi-sensible graph models is semi-sensible.

Proposition 55 (Bucciarelli-Salibra 2003) There is a family (fe)ecr of func-
tions f. : Dp — Dg such that:
(i) Dg is the (disjoint) union of the f. 1(D.), e € E;

(ii) fe(It") S 1™
Corollary 56 [15] Any G-product of sensible graph models is sensible.

Proof. By Proposition 41 we have to prove that all unsolvables v are in-
terpreted by () in the product. Suppose a € |v|""; by (i) of Proposition 55,
there is an e € FE such that f.(a) € D,, and by (ii) of the same proposition
fe(a) € |0/’ . Thus f.(a) € |v|”* by Proposition 52, which contradicts the
sensibility of (D.,,i.), using Proposition 41 once more.

5.3.4 The forcing completion method.

This method originates in Baeten-Boerboom [3], where it is used for proving the
“easiness” of (). In the simpler presentation proposed by Zylberajch [57] (see
e.g. [10] for a published proof), one starts from a partial pair (D, ), where D is
an infinite countable set, and builds by induction a total i : D* x D — D, hence
a graph model (D,4). Thus, here, D is fixed during the construction. Another
difference is that the inductive construction itself depends on the consistency
problem we are interested in, and moreover it exploits heavily the fact that the
interpretation of (2 can be quite freely constrained. The method was generalized
to families of terms having a similar behavior as Q by Zylberajch [57], and then
transferred by other authors to other classes of models and other semantics
(cf. Section 7.2). One can also have to start from pairs (D, pg), with small
constraints on pg.
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5.3.5 Comparing free and forcing completions.

Besides the differences mentioned above it is worth noting the following points
where the two methods behave differently.

Control or non control over Th(M)? Forcing never gives us control
on the whole of Th(M), even if we start from a positive partial web. A first
consequence is that, even though (D, () is a positive web, it is likely that no
model built by completing (D, ) by forcing will be sensible, and most of them
are furtherclearerly non semi-sensible; thus forcing can’t be used to produce
sensible theories and to study AG® and A7 *. A second consequence is that forcing
can’t be used to study the height of A\G since, given two models M, M’ built
by forcing, we will never be able to prove that Th(M) CTh(M").

Preserving recursivity or not. From a recursive partial web, free com-
pletion builds a recursive total web (hence a graph model that could be viewed
as a reasonable intersection type system (cf.[9])), while non trivial forcing always
create a non recursive web.

Possible cardinalities of the webs. Forcing produces models with count-
able webs, while free completion can be used for building webs of any infinite
cardinality.

Mass production of models. Free completion allows for mass produc-
tion of non isomorphic graph models (and might probably allow for 2 non
isomorphic sensible graph models), usual forcing does not. However, and as we
will see in the next subsection, it is possible to extend the method so that it be-
comes very easy to create 2¢ graph models with pairwise inconsistent theories.
Such theories are neither semi-sensible nor recursively enumerable. As already
mentioned, this generalization has also other interesting applications to A7 .

5.3.6 Generalized forcing.

Berline and Salibra [10] generalized recently the forcing method in three direc-
tions. First they noticed that the method works with other “operators” than
forcing (but this is inessential for our concern here), second that it can be ap-
plied to terms with parameters in U[P(D)” — P(D)], where the union is taken
over n > 0, which opens the way to a lot of potential applications and, third,
that it allows us to treat (finite and) infinite sequences of closed terms instead
of a single term t as above. Given a set D we define the set Ap of D-generalized
A-terms with the same inductive definition as for A, except that Ap is further-
more closed under all continuous functions on P(D) of arbitrary arity n > 0.
In other words we add the clauses: P(D) C Ap and, if f € [P(D)" — P(D)],
n>1,and if ¢1,....,t, € Ap then f(t1,...,tn) € Ap.
As a corollary of the main results proved in [10] we get:
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Theorem 57 (Berline-Salibra 2004) There is a sequence of unsolvable terms
(Vi) k<w € A® such that, for all countable sets D and all sequences (1 )rcw € Ap°
there is i : D* x D — D such that the graph model (D,i) satisfies vy, = 1y for
all k.

The simplest infinite such sequence is v, = Qmy i, where 7y = Az, Azp.2g;
the result is however far from straightforward. Note that the vy ’s are, anyway,
necessarily easy terms.

5.4 Applications to \7T.

We now present two direct applications of generalized forcing to AT, which fur-
thermore give evidence that the method is very promising, and should produce
many other interesting consequences in the future. First we prove, semantically,

that A7 is 2“-broad.
Proposition 58 (Berline-Salibra 2004) \G" is 2“-broad, hence \T also.

Proof. Let s = (t§)rew be an infinite sequence of closed normal terms such
that t, = t,, is consistent only if m = n, for example s is the sequence of
Church integers. Thanks to Theorem 57 for each permutation o of w there is an
is such that the graph model G, = (D, i) satisfies vy = t,(, for all k. Now, by
Boéhm’s theorem, t,, = t, is inconsistent if m # n, thus Th(G,) and Th(G,)
are inconsistent if o # o,

Proposition 59 There is a finitely axiomatizable theory T such that [T, Top)
15 a distributive lattice.

Proof. Given D, intersection N and union U are two binary continuous
functions on P(D). Let ri,ro € Ap be defined by: r1 = AzAy.(x N y) and
ro = AzAy.(x Uy). Let G = (D, i) be any graph model satisfying v; = r; and
vg = T2, where vq, vy are as in Theorem 57. Since P (D) is a (distributive) lattice,
G also satisfies the equations between terms of A which express that we have
a (distributive) lattice when vy, v play the role of join and meet (for example
distributivity itself is expressed by the equation vy x(vayz) = v (v12y)(122) ).
Let T be the A-theory generated by these equations. We have proved that T
is consistent and that there are two terms which make its term model A/T a
(distributive) lattice. Thus, the lattice of congruences of A/T is the lattice of
congruences of a lattice, and hence a distributive lattice, by [42, Theorem 2.50,
and the remark following the proof of this theorem]. Since [T, T'op] is isomorphic
to this lattice, it is hence also a distributive lattice.

By slightly modifying the proof we have here for free that [T, Top] is 2¥-

broad: just work as in the proof of Proposition 58, but with sequences 1,79, t1, ..., ty, ...

where 7y and 75 are as above (and untouched by the permutations o). This also
proves point (i) of the following remark; for proving its point (ii) one just has
to use sequences r1,T9,M.
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Remark 60 (i) There exist 2 pairwise inconsistent theories T such that [T, T op)
15 a distributive lattice.

(ii) There exist w pairwise inconsistent and finitely axiomatizable theories T
such that [T, Top) is a distributive lattice.

Of course, one may wonder now whether A7 is the union of such distributive
lattices.

5.5 Graph models and strong surjective pairing.

A A-model M models surjective pairing (SP) if there are ¢,py,ps € M such
that the equations p; (czy) = z, p2(czy) = y and ¢(p12)(p22) = z are satisfied in
the model. It is well-known that the term models of Ag and Ag,, do not model
surjective pairing (Klop 1980, cf.[4, Ex. 15.4.4]). On the contrary, it is easy to
see that any proper model M = (D, A, \) living, say, in C.ont, and such that
D ~ D x D models surjective pairing, since then one can indeed take ¢ = A(f),
p1 = A(m1) and ps = A(ma), where f: D x D — D and (71, 7m) : D > D x D
are any pair of inverse isomorphisms. Note that all graph models have this
property, since for all infinite set D we have P(D) x P(D)~ P(D); to see this
note that clearly P(D) ~ P(D;) x P(D2) for any good partition D = Dy U D,
of D, where good means: into two subsets of the same cardinality as D.

M models strong surjective pairing (Strong SP) if M models SP in such
a way that it furthermore satisfies: p1zy = p1(2y) and pazy = po(zy). It was
proved in [38] (and rediscovered independently in [19]) that D, models Strong
SP. Then Jiang proved in her thesis [29][30] that one could build, by forcing,
extensional models of K which satisfied furthermore much stronger constraints.

We wish to point out here that (a lot of) graph models can also model
Strong SP, and that the simplest model of Strong SP is Engeler’s model Ep, P
infinite (the simplest extensional models being Dy, or P, when presented as
K-models, and also relative to an infinite P). In fact the following proof is just
the relevant simplification of Krivine’s proof for D.,. Jiang’s variants of strong
pairing could also have been modelled more simply within graph models, at the
price of loosing extensionality.

Proposition 61 If P is infinite then Ep models strong surjective pairing.

Proof. Let P be an infinite set, let (D, C) the web of £p, let P = P, U Py
be a good partition of P, and finally let D; = {(a,a) : a« € P;} for i = 1,2
(thus D = D; U D, is also a good partition of D). Let now ¢;:P — P; be
two bijections, let @, : D — D be defined by: @,(a,a) = (a,p;(a)) if a € P,
let 7; = @; : P(D) = P(D) and let f : P(D) x P(D)— P(D) be defined by
f(di,ds) = @ (di) U @5 (d2). Then it is clear that f and (7,,72) are inverse
isomorphisms, and it is furthereasier to check that p; = A(w;) satisfies, for
i = 1,2, the further condition needed for Strong SP..
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6 The structure of \G.

In order to have a clearer picture of AG we continue to feel free of any respect
to historical chronology. As announced, we will see that extending some of the
results obtained for G to G*, and hence from AT to A7 *® ranges, when possible,
from straightforward to highly difficult.

The links between AG and AG?"™ are simpler, in a sense, since all the re-
sults proved in this paper for AG also hold for AG?", and with the same proofs,
because one only uses models built by forcing or free completion of finite or
countable partial webs, and hence in G%*". However the following natural ques-
tion is still open, as far as we know.

Problem 12 Does \G = \G%" ¢

6.1 Least and largest elements of \G and A\G®.

The following lemma is a corollary of the proof of Proposition 58, which provides
2% pairwise inconsistent graph theories, but it can also be given a direct and
shorter proof, as below.

Lemma 62 \G and AG%™ have no greatest element.

Proof. Let M € G%" satisfying Q = I (by forcing). Then Th(£) and
Th(M) are incompatible, since Q@ = Az.Q is in BT = Th(£), and the set
{Q =1, Q = Az} is inconsistent.

The situation happens to be different for G*, as discovered by Bucciarelli and
Salibra. The proof of the following theorem, which gives the key to a positive
answer, and also generalizes the fact that no graph model is extensional, is quite
technical and can be found in [15].

Theorem 63 (Bucciarelli and Salibra 2004)
All the equations of H* — BT are false in all graph models.

Corollary 64 (Bucciarelli and Salibra 2004 [15])
AG* and AG*/? have a greatest element, which is BT in both cases.

Proof. Let T € AG*. Since T is sensible we have T' C H*; then, since T omits
each of the equations of H* — BT we have T' C BT.

Theorem 65 (Bucciarelli and Salibra 2003) [14] If C C G is closed under
countable G-products, then A\C has a least element.

First proof. Let E be the (countable) set consisting of the equations which
fail to hold in some graph model. For each e € E let (D,,i.) be a model where
e is false, let T be the theory of the G-product (Dg,ig) of this family, and
finally let T, be the theory of (D, i.). By Theorem 53, Ty, C NT,. Furthermore,
if an equation doesn’t belong to T, i.e. fails in (Dg,ig), which belongs to C
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by hypothesis, then it is one of the e’s and it fails in the corresponding (D.,i.),
hence it is not in T,. Thus Ty = NT,.
Second proof, simpler but assuming that C is closed under arbitrary products.
For each T' € XC take a model (Dp,ir) whose theory is 7. The product
(Dg,ig) has theory Ty C NAC. Since T € AC we have Ty = NAC.

Since G,G* and G*/? are closed under arbitrary products (by Corollary 54
and Proposition 56), and G%" under countable products, we get:

Corollary 66 \G,\G*, AG*/? and AG%" have least elements.

Let Thin and T7);, be the least elements of AG and AG®. Since Tnin C
Tmin is semi-sensible and since Ag ¢ AG (by Corollary 40) we have Ag G

Concerning AG?®, Bucciarelli and Salibra conjecture the following;:

H,
T.

Conjecture 13 (Bucciarelli and Salibra 2004) [15] TS, = H.

in

6.2 Width and height of A\G and \G%".

We have already proved via forcing that AG is 2¥-broad. We now present some
earlier results and proofs obtained via free completion, which are mainly due to
Kerth (1994-1995). These proofs bring further information on AG and AT, and
also raise other kinds of questions. Everywhere G could be replaced by G#™.

Theorem 67 (Kerth 1994). A\G is 2¥-wide.

Sketch of proof. Kerth produced in [32] a family of non-positive pairs
(Aw, jw)wep(n), and sets of equations Ry = {YF, = YF, : n € W},
where F,, = Ax.\x1...\x,.z, such that (Aw,jw) satisfies all the equations of
Rw and no equation of Ry — Rw. Since Rw C Ry if and only if W C W'
and since (P(N),C) contains 2“ pairwise incomparable sets (see the proof of
Lemma 7), we deduce immediately that there are 2 pairwise incomparable
graph theories.

These models are nonsensible, since all the Y F;, are clearly unsolvable. Later
on, Kerth produced in [33], on the same principles, another family of theories,
for which he had the hope (finally fulfilled) that they could be proved to be
sensible. In both cases, producing the pairs, the equations Ry, and checking
that the models had distinct theories, even if not difficult, required non trivial
observations and some computations. Let us observe that this is not anymore

the case for our proof of Proposition 58.

Problem 14 Can we say something about the height of A\G ¢
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6.3 Width of \G°.
6.3.1 Producing 2 sensible graph theories is difficult.

From the remarks in Section 5.3.5 it follows that the only method available for
producing sensible graph models is the free completion method. Completing
freely positive pairs brings sensibility for sure; but how many sensible theories
can we obtain that way? In [9, Question 1 of p. 153] we asked whether webbed
models generated by positive partial webs necessarily satisfy the (strong) Ap-
proximation Theorem of Hyland and Wadsworth. If this is true then all posi-
tive graph theories contain BT'. Positive partial results which we obtained with
Salibra (article in preparation) argue for a positive answer, but we met hard
resistance for going further. Anyway, in view of Theorem 63 and of its corollary,
we can now rephrase our question as follows (in the case of graph models).

Conjecture 15 BT is the only positive graph theory.

If this can be proved, then the same arguments should work for proving that
LT is the only positive lazy graph theory, and it will also have analogues in
other classes of webbed models.

The state of the art. At the moment, Salibra and the author have proved
the following partial (unpublished) results which rather argue in favour of the
conjecture. First, all positive graph models give the same interpretation to terms
t,t' as soon as they have the same Bohm tree if this tree is almost hereditarily
head closed (ahhc), which means that all but a finite number of its nodes are
equal to L or have the form A\Z.y with y € Z. Second, all positive graph models
(D,1i) interpret the Curry and Turing fixed point combinators Y and © by the
least fixed point operator J of the complete lattice P(D), and hence satisfies
Y = ©. Note that all fixed point combinators have the same Béhm tree, which
consists in one infinite branch where all nodes, except the root, are labelled by
the same variable y, the root itself being labelled by Ay.y. This tree is hence
(nearly) the simplest example of a non-ahhc tree, nevertheless we are yet unable
to prove that all positive graph models interpret all the fixed point combinators
by Y, even if we can of course treat other fixed point combinators than Y and
O; moreover our proofs are different in case of Y-like and ©-like trees..

Thus, for producing sensible graph theories different from BT we are left
with the free completion of non positive pairs, which explains retroactively why
Kerth’s task of producing 2“-sensible graph theories was so complex. Indeed,
proving sensibility of models generated by non positive webs happens to be very
difficult.

More generally, producing a non extensional sensible proper model whose
theory is different from BT is difficult. This problem concerns all the classes of
A-models, since forcing completion and free completion are the only systematic
ways we know for building models concretely. Even the inverse limit construc-
tion can, in practice, always be presented as a free completion.

The conceptual interest of G here is that, because its exploration is easier,
the problem could be met, isolated, stated, and hence understood, more easily.
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6.3.2 But producing 2“ sensible graph theories is possible.
Theorem 68 (Kerth 1995 plus David 1999) A\G*® is 2“ -wide.

Sketch of proof. Two very difficult steps. First Kerth built 2% graph models
Gw as the free completions of adequate non positive pairs (Aw,iw), W € P(N)
[33][35] Then he reduced the proof that the Gy were sensible (although the pair
was not positive) to a syntactic conjecture on the head-normalization of non-
solvable terms, for which he gave much evidence. The second step was the proof
of this conjecture, four years later, by R. David [17][18].

We can be more precise: Kerth’s created pairs (Aw,iw) such that Gy
satisfies Y F,, = OF,, if and only if n € W, where Y and © are the Tiiring and
Curry fixed point operators, and here F,, = Ax.Ay;...Ay,.Az.(2)z. In particular
Gw EY #£ 0 for all W # ().

Corollary 69 \G N [H, BT] is 2¥-wide.
Proof. By Theorem 68 and Corollary 64.
Corollary 70 There are 2¥ theories of proper models included in [H, BT].

This corollary largely answers positively Question 2 in [9, p. 151].
However the following questions remain open, since forcing essentially builds
non sensible models, and they should be difficult.

Problem 16 Is A\G® 2¥-broad?
Problem 17 Is there a (large) distributive lattice of sensible theories?

Problem 18 Can we get information about the height of \G*?

7 The other \C's.

7.1 The other key classes of models.

All the classes of models presented below live within one of the three main
semantics (cf. Section 7), and are classes of webbed models (see [9] for a more
detailed presentation of each of them). The methods used for building graph
models or for proving positive results about G can be adapted to these other

classes C, at a cost which depends on C.

e The simplest subclass of Ceont, strictly including G, is the class K of K-
models, which was isolated in [38]. The interest of K over G is that it con-
tains (plenty of) extensional models. In particular, Scott’s Do, and Park’s
Poo live in K, and their description as K-models is much simpler than
their prior descriptions, e.g. as inverse limits, and considerably simplifies
their study. Finally, it is worth noting that D, and P, are respectively
the extensional completion of the graph models Pp and P}, € G, a process
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which is presented in [9, p.130]. To be accurate, Dy, and P are also
built starting from a set P, and hence should also be indexed by P. This
notation is somewhat misleading but respects the traditional notation for
Scott’s and Park’s models.

More general, and hence more complex, classes of webbed models living in
Ceont were introduced and used in the literature (ex: filter-models, infor-
mation systems, and pcs-models), which are also surveyed and compared
in [9]. As already noticed, even though ACcons 2 AK, it is exceptional that
we have to go beyond K for proving things about AC¢°".

e The key subclass of Cg is the class G, of reflexive coherent spaces, or
G-models (“G” for ”Girard”).

o The key subclass of Css is the class Gpycon of Ehrard’s reflexive hyperco-
herences, or H-models (“H” for ”hypercoherence”).

7.1.1 Comparison with G and K.

The classes Geon and Gpycon are the analogues of G in their respective semantics,
in the following sense. First G,G.on and Gpycon are the simplest classes of webbed
models one can respectively find in C.opnt, Cs¢ and Cgs. Second, the definitions
of Geon and Gpycon can be seen as the variants of the definition of G adapted
to Cet and Cgs. On the other hand, Geon and Grycon can also be viewed as
the analogues of I, since they are rich in extensional models, while G contains
none. A last remark is that the definition and study of Gpycop is significantly
more complicate than the other two ones.

7.1.2 Analogues of the key models of G and K in G.., and Gpycon-

The constructions of £, Pp, Pp € G and of Dy, Pox € K can be mimicked in
both gcoh and ghycoh-

Notation 71 When the construction of a model M of G or K can be mimicked
in Geon (resp. Ghycon) we denote its analogue by M*' (resp. M*'%).

Note that M** and M?*** need not exist and, when they do, they need not
have the same equational theory as M, although this also can happen. Examples
of both situations will be given below.

7.2 Transferring the completion methods.

Free and forcing completions can be extended to K, Geon, and Gpyeon. This often
allows one to extend the positive results which have been proved for AG to the
three other classes, and hence to get new information on A7 . However, the
notion of web and that of a partial web is more complex than for graph models,
for which partial webs are just partial pairs, as defined earlier. For example,
the web of a K-model has the shape (D, <,1), where < is a preorder on D, and
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i and < have to satisfy some compatibility condition; the notion of partial web
is then defined accordingly (and the cpo is now the complete lattice S(D) of all
downward closed subsets of (D, <), still ordered by inclusion, instead of P(D)).

The free completion method in K, G, and Grycon. Scott’s model
Do and Park’s model P, are the extensional completions of the graph models
P and P’ In particular D, is generated by a positive partial web, while Py,
is not; hence we can expect different theories, and we will see below that the
difference between the behaviour of D,, and P, is still deeper. It was shown
in [26] that P. is non sensible, and this is also the case of its graph analogue
P’ for similar reasons.

The free completion method was systematically adapted to G.,, by Kerth
[33][37] and to Ghycon by Bastonero [5].

The forcing method in K, G ., and Gpyeon. Y. Jiang was the first to
build extensional models (of ) by forcing [29, 30] (the aim was to produce mod-
els enjoying a strong notion of surjective pairing, combined with other proper-
ties). Later on Bastonero used forcing to build an extensional model M € C.ont,
such that Th(M) ¢ Cst U Grycon [5]-

The forcing method was systematically adapted to G..p, (i.e. to the stable se-
mantics) by Kerth [33, 36], and to Gpycon (i-€. to the strongly stable semantics)
by Bastonero and Kerth (unpublished).

7.3 Transferring results from G to the C's.

Of course, only the positive results are transferable, in the good cases.

The first result shows that BT and H* belong to ACcont N ACst N ACsts, which
shows in particular that the three main semantics are non exclusive. This result
has to be contrasted with the situation for Plotkin’s PC'F' [44], which is one of
the best known typed A-calculi. Indeed, the three “standard models” of PCF' in
the main semantics have different, and even incomparable, equational theories

[31][?, Chapter 9].

Theorem 72 (Bastonero and Gouy 1995-7) [7][8]
(7) BT e \GNAG.on N )\ghymh and
(77) H* e AKnN )\gcoh N Aghycoh

Sketch of proofs. (i) Not only can the construction £ be mimicked in G.,, C
Cst and Grycon C Casts, but also the proof that Th(€) = BT, hence BT ¢
AG N AGcon N AGhycon (Bastonero, [5] for Cg; and unpublished for Cy,). (ii) The
same is true for Dy, (Gouy for Cy [23][24], and with Bastonero for Cy [7][8]),
hence H* € AKX N AGcon N AGhycon- Only the results on Do, were published,
since at the beginning we were focusing on extensional theories; the fact that
the same worked for &£, of course with simpler proofs, was only emphasized later

on (see [5]).
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Digression. What about LT, which is the third theory represented in
Cgames?! We did not check details but have a strong feeling that the construction
of Eiazy in Giazy can also be mimicked in (possibly slight variations of) Geon
and Ghyeon, as well as the proof that Th(&..y) = LT, and hence that also
LT € XCeont N ACst N ACsis.

The next theorem and remark show that ACs and ACgs are as “rich” as
ACcont. The proof uses forcing relative to Geop (and Gryeon)-

Theorem 73 (Kerth 1995) [33][37] Geon is 2¢-wide, and hence also ACs;.

Remark 74 It was later on noticed by Bastonero, that forcing, and hence the
proof of this theorem could be adapted to Gpycon, but this remained unpublished.
It is also likely that generalized forcing can be developed, at least for G.opn, and
hence that we can replace 2% -wide by 2% -broad.

7.4 Relative positions of the \C's..

We already know that AC.ont, ACst and ACgts are: 2¥-wide, 2“-incomplete, and
that their intersection contains BT, H* and probably LT; moreover we know
that AT — AC is 2¥-high, for each of these C. We show now that they are far
from representing the same theories. First we state the problem we started
from, when studying these questions.

Conjecture 19 AC.ont, ACst and MCgs are pairwise incomparable (for inclu-
sion,).

Xavier Gouy and Olivier Bastonero got very close to proving this, since they
succeeded to prove it for the triple Ceont, Cst and Grycon. We will see below how,
using generalized forcing one can improve this result.

Theorem 75 (Gouy and Bastonero 1996) [7][8]
(i) Th(P2L) & ACeont U ACsts
(i) Th(P#) & ACeont U ACst.

Theorem 76 (Bastonero 95) [5, 6] One can build (by forcing) a A-model M € K°
such that: Th(M) ¢ ACst U AGhycoh-

Hint. Let v = QAz.Q and v = QAzAy.Q. There is a set F' consisting of
seven equations and one inequation, relating €2, » and v, and there is an equation:
t1 = t2, such that: no model of Cgt U Gpyeon can satisfy F' = F U {t; = t2},
but one can build, by forcing, a model M € K¢ satisfying F'. Since Bastonero
was only concerned by extensionality, F' contains I = €, and he had to use the
extension of forcing which is adequate for X°. However the proof can easily be
modified /simplified such that ¢ = I is removed from F' and M is built by usual
forcing in G. We now give some information on the construction of M in this
simpler setting. A triple (pg, h, D) is exhibited, in this order, such that: pg
and h are infinite, D D C, and (D, pg) is a partial pair satisfying the two easy
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constraints which make forcing possible from (D, pg); then a pair (D, i), i D po,
is built by forcing such that M = (D,i) satisfies = h; but in fact py was
furthermore chosen in such a way that = h implies £’ in M, which ends the
(sketch of) the proof.

From the above theorem and from the observation that M could be built in
G, we derive immediately the following statements (note that none of them is a
consequence of the other ones).

Corollary 77 .
(i) Ceont, Cst and Gpycon are pairwise incomparable.
(it) K, Cst and Grycon are pairwise incomparable.
(i) K, Geor and Grycon are pairwise incomparable.
(iv) G, Geon and Grycon are pairwise incomparable.

Thus, to answer positively the initial conjecture there only remains to prove:

Conjecture 20 .
(1) XCceont — ACsts 7 0; moreover it should be the case that:
(i) Th(M) €EXCeont — ACsts, with M as in the proof of Theorem 76.

The reason why Bastonero could not conclude in his thesis that Th(M) ¢ACqs
is that he did not succeed to prove that a model of Cy ¢ satisfying F' cannot sat-
isfy t1 = to, with #1,¢5 as in the proof of Theorem 76. Indeed, in the case of
Ghycon (resp. Cst), he could exhibit a strongly stable function (resp. a stable
function) g separating ¢; and ¢ in all models of F'; but his definition of g re-
lied, in the strongly stable case, on the fact that we were dealing with webbed
models, which is not the case of all the models of Cyss (while in the stable case
the definition of g was not problematic).

A wealth of incompleteness proofs for the three main semantics
Salibra’s Theorem 28 was a definite and uniform argument proving that each of
main semantics is incomplete (and even 2“-incomplete). But, historically, the
incompleteness of C.,p; was first proved by Honsell and Ronchi, by producing an
operational A-theory which could not be the theory of a continuous model [26].
The proof, which was already quite technical, was adapted to the stable case
by Gouy [23], but the new proof was so complicate that it became clear that
one had to find a different idea for Cs,. Such other approaches were provided
by Bastonero and Gouy (cf. Theorems 75 and 76 above), which hence provided
two new incompleteness proofs for each of Ceopnt, Cst and Gpyeon. To summarize,
we have four different proofs for the incompleteness of C.ons, also four for Cgy,
three for the subclass Gpyeon 0f Cots, and only Salibra’s proof for Csy,.

The last semantic problem. To have a more accurate picture of the rel-
ative position of AC.opnt, ACst and ACg;s, one should have an idea of the width and
height of AT — AC, and of the width of A\C — XC', for C,C’ any distinct uniform
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classes of proper models. By Salibra’s incompleteness theorem we know that
for each ordered semantics we have that A7 — AC is 2¥-high, but the question
of the value of the height of A\C — AC’, for any other C’, is completely open, since
we already know nothing about that of AC. On the contrary it is likely that the
following conjecture (which only concerns uniform classes living in functional
semantics) is true, and that all its instances will be accessible via generalized
forcing.

Conjecture 21 For all C,C', either C C C' or AC — XC' is 2¥-broad.

We can already give a positive answer to two instances of this conjecture.
First we observe that generalized forcing is extendible to the extensional models
of K, in the same way usual forcing is (one just has to mix, in a straightforward
way, the development of [30] or [5] with the one in [10]). Hence AK€ is 2¥-broad.
Thus:

Proposition 78 A — A\G is 2¥-broad.

Next we observe that, using Theorem 57 (generalized forcing), one can get
for free 2 versions of the model M of Theorem 76 in AG — (ACs; U AGhycon)
with pairwise inconsistent theories (AKX could also replace A\G). Hence:

Proposition 79 AG — (ACst U AGhycon) is 2% -broad.

Proving the conjecture for other classes of the form AC-AC' supposes that we
are able to prove by a forcing technique that this set is non empty, and that we
can extend generalized forcing to AC.

8 Conclusion.

It is time to sum up the results which have been achieved these last four years.

Answers to questions raised or quoted in [9, Section 6]

1. Salibra’s Theorem 28 states that all the known ordered semantics are
2“-incomplete, which proves in particular that Cg4 is incomplete. This answers
very generously [Question 2 of Section 6.1, p.149], which recalled the conjecture
we had with Bastonero that Cgs s was incomplete (recall that Bastonero could
only prove in his thesis that Gpycon was incomplete). Salibra’s proof was original,
and initially inspired by universal algebra and general topology.

2. Bucciarelli and Salibra proved that Ag could not be the theory of a
graph model, which answers the instance of [Question 1, Section 6.2, p.149]
corresponding to G.

3. Bucciarelli and Salibra’s definition and study of the G-product (cf. Sec-
tion 5.3) allowed them to prove that there was a minimal graph-theory and a
minimal sensible graph theory, and hence gave a positive answer to the instance
of [Question 2 of Section 6.2, p.149] corresponding to G (and it also shows the
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way for larger classes of webbed models). But they leave open the question of
whether the minimal sensible graph theory is H.

4. Bucciarelli and Salibra proved that the set of sensible graph theories has
a greatest element, which furthermore is BT (Theorem 63). This has the two
following consequences. First, our [Question 1 of Section 6.3, p.151] can now
be reformulated as follows: “Is BT the only positive graph theory?”. Second,
combined with Kerth and David’s theorem about the existence of 2¥ sensible
graph theories, it shows that there exists one, and even 2¢, theory of sensible
proper models below BT, which answers positively the two items of [Question
2 of Section 6.3, p.151]. Concerning the first question we conjecture in fact
that the answer is positive, and proved some partial unpublished results with
Salibra.

5. Starting from an example of Kerth (see Section 5.2), Alessi, Dezani and
Honsell exhibited a result (the easiness of {237), which admits a semantic proof
using filter models, but for which there exists no semantic proof using G or K
or, more generally, using any class of models whose underlying cpo is a prime
algebraic domain. This also answers (part of) [Question 5 of Section 6.3, p.152]
since it gives examples of theories represented in the continuous semantics, and
via algebraic domains, but not via prime algebraic domains.

The four other recent results. The first to be mentioned was Statman’s
Theorem about the existence of a non trivial equation consistent with any con-
sistent theory. The following two results answer questions raised by Antonino
Salibra. In particular Salibra conjectured that the complete lattice AT of all
A-theories does not satisfy any non trivial lattice identity, and proved that it is
not modular, and hence not distributive. Then he proved with the author, us-
ing graph models, that there was a finitely axiomatizable A-theory T such that
[T, Top] was a (very large) distributive lattice (see Section 5.3.6). For proving
this, we generalized Baeten-Boerboom method of forcing, in a way which also
allowed us to prove that AG was 2“-broad, as well as various smaller sets of
graph theories. Also we are now in a position where we can conjecture that
“all” the A\C" — AC are 2“-broad, and prove some particular cases.

Partial results concerning the distributivity question had previously been
obtained by Lusin and Salibra in [41] (existence of a lattice with weaker prop-
erties) and Alessi, Dezani and Lusin in [2] (existence of a filter model where Q
acts as union), with different methods.

Some long standing open questions still resist, like the representability of

H, that of A3 and Ag, by reasonable proper models, and the question of the
existence of a positive graph theory different from BT.
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