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Abstract

This work proposes an extension of the functional principal com-

ponents analysis, or Karhunen-Loève expansion, which can take into

account non-parametrically the effects of an additional covariate. Such

models can also be interpreted as non-parametric mixed effects models

for functional data. We propose estimators based on kernel smoothers

and a data-driven selection procedure of the smoothing parameters

based on a two-steps cross-validation criterion. The conditional func-

tional principal components analysis is illustrated with the analysis of

a data set consisting of egg laying curves for female fruit flies. Conver-

gence rates are given for estimators of the conditional mean function

and the conditional covariance operator when the entire curves are col-

lected. Almost sure convergence is also proven when one only observes

discretized noisy sample paths. A simulation study allows us to check

the good behavior of the estimators.

Keywords : covariance function, functional mixed effects, Karhunen Loève

expansion, weighted covariance operator, eigenelements, almost sure conver-

gence, smoothing.

1 Introduction

Since the pioneer work by Deville (1974) much attention has been given

to functional data analysis in the statistical community (see e.g Ramsay

and Silverman 2002, 2005 and references therein). Many publications are

devoted to the statistical description of a sample of curves (growth curves,
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temperature curves, spectrometric curves, ...) by means of the functional

principal components analysis (Besse and Ramsay 1986, Castro et al. 1986,

Kirkpatrick and Heckman, 1989, Rice and Silverman 1991, Kneip and Utikal

2001, ...). Performing the spectral decomposition of the empirical covariance

operator, which is the analogous of the covariance matrix in a function

space, allows to get a low dimensional space which exhibits, in a optimal

way according to a variance criterion, the main modes of variation of the

data. Indeed, let us consider a random function Y (t) where index t varies

in a compact interval T of R, with mean µ(t) = IE(Y (t)) and covariance

function γ(s, t) = Cov(Y (s), Y (t)), s ∈ T. Under general conditions (see

e.g. Loève, 1978), the covariance function may be expressed as follows

γ(s, t) =
∑

j≥1

λj vj(s) vj(t) , (1)

where the λj are the ordered eigenvalues, λ1 ≥ λ2 ≥ ... ≥ 0, of the covariance

operator and the functions vj the associated orthonormal eigenfunctions.

Then, the best linear approximation Ỹ q to Y in a function space with finite

dimension q is given by projecting the centered random function Y −µ onto

the space generated by {v1, . . . , vq}

Ỹ q(t) = µ(t) +

q∑

j=1

cj vj(t) . (2)

where the random coordinates cj =
∫
T (Y (t)−µ(t))vj(t)dt, also called princi-

pal components (Dauxois et al., 1982), are centered with variance var(cj) =

λj. This expansion is also known as the Karhunen-Loève expansion of Y

truncated at order q. The reader is referred to Loève (1978), Kirkpatrick &

Heckman (1989) or Chiou et al. (2003b) for a comprehensive introduction

on this topic.

This work aims at deriving a Karhunen-Loève expansion or FPCA which

is able to take into account non-parametrically the effect of a quantitative

covariate X on Y in order to get a decomposition similar to (2) that incor-

porates this additional information. Conditional to X = x, we would like to

get the following optimal decomposition

Ỹ q(x, t) = µ(x, t) +

q∑

j=1

cj(x) vj(x, t) , (3)

allowing the mean function and the basis functions vj(x, t) to depend non-

parametrically on the covariate effect x.
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The introduction of an additional information in such a framework has

not received much attention in the literature whereas it can be very in-

teresting in many situations. For instance, in medicine, when observing

and describing electrocardiogram curves, medics often know the age of their

patients or the concentration of some components in their blood. These

quantitative factors may have a certain impact on the statistical character-

istics of the electrocardiogram curves and consequently one could imagine

that taking into account properly this additional information can lead to a

better representation of this set of curves, adapting for instance the charac-

teristics of the FPCA to the age of the individuals. This can also be a way

to detect outliers taking into account the knowledge of some cofactors.

Silverman (1995) suggested a practical approach that could handle this

kind of problem with parametric models. The estimation procedure is rather

heavy and parametric models are not always adapted when one does not

know in advance what can be the relationship between the dependent func-

tional observations and the covariates. More recently, Chiou et al (2003b)

considered a general approach that incorporates a covariate effect through

a semi-parametric model. The problem was to estimate the number of eggs

laid per day by n = 936 female Mediterranean fruit flies (see Carey et al.

1998 for a description of the experiments and of the data) for a time period

restricted to the first 50 days of egg laying, conditional on the covariate X

which is the total number of eggs laid during the period. The mean function,

that is to say the number of laid eggs per day during the first 50 days of

lifetime, and the Karhunen-Loève basis are estimated on the whole popu-

lation but the coordinates, i.e. the principal components, of an egg laying

curve in this basis are obtained thanks to a single index model which take

into account the covariate effect. A sample of 80 egg laying curves is drawn

in Figure (1,(a)), showing a large variability in their shapes. This example

will serve as an illustration of the proposed methodology.

This paper aims at proposing a simple non-parametric approach that can

be of real interest for such studies when the sample size is sufficiently large.

Such large data sets of functional observations are not unusual nowadays:

there are 936 observations in the egg laying curves data set, sampled at 50

equispaced design points whereas Cardot et al. (2004) deal with n = 1209

coarse resolution pixels observed at thirty different instants during a year

with remote sensing data.

Instead of incorporating directly the covariate effect in the Karhunen-

Loève expansion, we consider non-parametric estimators of the conditional

expectation and the conditional covariance function. Then, we can derive es-
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Figure 1: (a): a sample of 80 smoothed egg laying curves. (b) : A comparison

of the overall mean egg laying curve with conditional mean egg laying curves

estimated for the first (X = 386), second (X = 793) and third (X = 1170)

quartiles of the total number of eggs. Bandwidths values are selected by

minimizing the cross-validation criterion (16).

4



timators of the conditional eigenvalues λj(x) and conditional eigenfunctions

vj(x, t) by means of a spectral decomposition. The estimated conditional

mean egg laying curves are drawn in Figure (1, (b)) for the first quartile,

the median and the third quartile of the total number of laid eggs. It can be

seen that their shapes clearly depend on the total number of eggs and that

is why Chiou et al. (2003a) proposed a model on the mean function based

on a multiplicative effect which seems to be adapted to that problem. Nev-

ertheless, if we display the first eigenfunctions vj estimated by the approach

described below, we also see that the covariance structure varies when the

total number of eggs laid by each fly varies. Thus a more general approach

that can take into account the effect of the covariate on the structure of

the covariance function seems to be even more adapted by expanding the

random functions in low dimension spaces whose basis functions depend on

the values taken by the covariate.

We first present in section 2 a general description of the conditional

principal components analysis and give estimators of the conditional mean

function and conditional covariance operators based on kernel smoothers.

When dealing with real data, one can not assume anymore the curves are

observed on the whole interval but at a finite number of design points and

may be corrupted by noise. We propose to first approximate the discrete

trajectories with non parametric smoothers in order to get curves. This is

a common practice (see e.g. Ramsay and Silverman, 2005) when the design

points are not too sparse, which is often the case with real data. The condi-

tional moments estimators depend on smoothing parameters and we propose

a two steps cross-validation criterion in order to select good values. In sec-

tion 3, convergence rates are given and we obtain the usual non-parametric

rates of convergence when the curves are observed entirely without noise. In

a similar framework of Hilbert-valued dependent variable, Lecoutre (1990)

proposed an estimator of the regression based on statistically equivalent

blocks methods but he did not give any rates of convergence. For noisy and

sampled data, we also show that the estimators remain consistent under

classical hypotheses. In Section 4, a simulation study confirms the good

behavior of the estimators and allows to evaluate the impact of the differ-

ent smoothing parameters on their accuracy. R programs are available on

request to the author. In section 5 we propose a discussion about possible

improvements and extensions. The proofs are gathered in section 6.
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2 Conditional functional principal components anal-

ysis

Consider a sample (Xi, Yi), i = 1, . . . , n of i.i.d. realizations of (X,Y ) where

X is a real random variable and Y is a random variable taking values in

H = L2(T ), the space of square integrable functions defined on the compact

interval T. The inner product in H is denoted by < ., . >H and the induced

norm is denoted by ‖.‖H . We first suppose that the trajectories are observed

entirely , i.e. for every t in T, and are not corrupted by noise.

2.1 The conditional Karhunen-Loève expansion

The Karhunen-Loève expansion (Loève, 1978, Castro et al. 1986), also called

empirical orthogonal functions in climatology (Preisendorfer and Mobley,

1988), is a direct extension of the principal components analysis when the

observations are realizations of a random function. It can be seen as an

optimal linear decomposition, according to a variance criterion, of the ran-

dom function Y in a finite dimension functional space. This finite dimension

space is spanned by the eigenfunctions associated to the largest values of the

covariance operator of Y.

Assuming E(‖Y ‖2 |X = x) < ∞, we can define the conditional expec-

tation µ(x, t) = E(Y (t)|X = x) and the conditional covariance operator

Γx,

Γxf(t) =

∫

T
γ(x, s, t)f(s) ds t ∈ T, (4)

where

γ(x, s, t) = Cov(Y (s), Y (t)|X = x), (s, t) ∈ T × T ,

is the conditional covariance function of Y. Let us denote by vj(x, t) the jth

orthonormal eigenfunction of Γx, associated to the jth largest eigenvalue

λj(x). They satisfy

Γx vj(x, t) = λj(x) vj(x, t) t ∈ T. (5)

with λ1(x) ≥ λ2(x) ≥ · · · ≥ 0, and < vj(x), vj′(x) >= 1 if j = j′ and zero

else. Then one can decompose the covariance function

γ(x, s, t) =
∑

j≥1

λj(x) vj(x, s)vj(x, t), (s, t) ∈ T × T . (6)

which is the analogous of the decomposition (1) of the covariance function

incorporating conditional information. Since Y knowing that X = x is a
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bounded function it is clear that
∑

j λj(x) < ∞ and the eigenvalues tend

rapidly to zero as j goes to infinity.

Then, the best linear representation denoted by Ỹq of Y conditional to

X = x in a q dimensional space is given by

Ỹq(x, t) = µ(x, t) +

q∑

j=1

< Y − µ(x), vj(x) > vj(x, t), t ∈ T (7)

meaning that the vj(x, t)’s give an idea of the main conditional modes of

variation of Y with associated variance

IE
(
< Y − µ(x), vj(x) >2 |X = x

)
= λj(x) .

Furthermore, it can be checked easily that, for every dimension q,

IE
(
‖Y − Ỹq(x)‖2|X = x

)
≤ IE

(
‖Y − Ỹq‖2

)
, (8)

where the overall approximation Ỹq is defined in (2). This expansion can

also be interpreted as a mixed functional effects model (James et al. 2000,

Rice & Wu 2001), the trajectories of Y being expanded in a deterministic

basis (v1(x), . . . , vq(x)) with random components < Y − µ(x), vj(x) >, j =

1, . . . , q, which are also called principal components. The main innovation

proposed here is that we take into account non-parametrically the effect of a

covariate X through the conditional mean function and the spectral decom-

position of the conditional variance. This allows for instance to determine

how the main modes of variation of Y vary according to X by comparing

the shape of the functions vj(x, t) associated to the largest eigenvalues for

different values of x as shown in Figure (2, (c) and (d)).

2.2 Non-parametric estimators of the conditional moments

The conditional mean µ(x, t) and the conditional covariance function are

estimated with kernel smoothers. Let us consider a positive, bounded, sym-

metric around zero and with compact support kernel K. A natural estimator

of µ(x, t) is given by

µ̃(x, t) =

n∑

i=1

wi(x, h1)Yi(t), t ∈ T. (9)

where the weights, which depend on a bandwidth h, are defined by

wi(x, h) =
K ((Xi − x)/h)∑
i K ((Xi − x)/h)

. (10)
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For sake of clarity, the function of t, µ(x, .) will be denoted by µ(x) ∈ L2(T ).

To define the estimator of the covariance function, let us introduce the

following tensor product notation. For two functions (Zi, Yi) ∈ L2(T ) ×
L2(T ), the bivariate function Zi ⊗ Yi belonging to the functional space H =

L2(T ×T ) is defined by Zi⊗Yi(s, t) = Zi(s)Yi(t), for all (s, t) ∈ T ×T. Then,

we can get an estimator of the covariance function as follows

γ̃(x, s, t) =

n∑

i=1

wi(x, h2) (Yi − µ̃(x)) ⊗ (Yi − µ̃(x)) (s, t), (s, t) ∈ T × T .(11)

Estimators of the eigenfunctions and eigenvalues when X = x are ob-

tained by considering the conditional covariance operator Γ̃x,

Γ̃xf(s) =

∫

T
γ̃(x, s, t)f(t) dt . (12)

and performing its spectral decomposition (or eigen-analysis) :

Γ̃x ṽj(x, t) = λ̃j(x) ṽj(x, t) (13)

with λ̃1(x) ≥ λ̃2(x) ≥ ... ≥ 0, and the orthonormality constraints < ṽj(x), ṽj′(x) >=

1 if j = j′ and zero else.

2.3 Discretized curves

With real data we do not observe the whole curves but discretized trajecto-

ries, generally supposed to be noisy,

yiℓ = Yi(tiℓ) + ǫiℓ, ℓ = 1, . . . , pi (14)

at design points ti1 < ti2 < · · · < tipi
which may vary from one trajectory to

another and where ǫi,ℓ is a white noise, IE(ǫiℓ) = 0 and IE(ǫ2
iℓ) = σ2

i . In this

general context, one can consider for instance a B-splines expansion of the

trajectories (Besse et al. 1997, Cardot 2000, James et al. 2000) and then

deals with the coordinates instead of the observed data. Other approaches

based on kernel smoothing (Staniswalis and Lee, 1998) or local polynomials

(Yao et al. 2005) can also be adapted to this situation.

Assuming that the number of design points pi is large enough, we can

get smooth approximations to the discretized observed curves by apply-

ing classical non-parametric estimators based on local polynomials, kernel

smoothers, wavelets, smoothing splines or regression splines. Let us denote

by Ŷi(t) the non-parametric approximation to Yi(t) obtained by regressing

the noisy discretized curves (tiℓ, yiℓ), j = 1, . . . , pi.
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Then, we can build estimators of the conditional mean and covariance

functions as follows,

µ̂(x, t) =
n∑

i=1

wi(x, h)Ŷi(t)

and

γ̂(x, s, t) =

n∑

i=1

wi(x, h2)
(
Ŷi − µ̂(x)

)
⊗

(
Ŷi − µ̂(x)

)
(s, t), (s, t) ∈ T × T .(15)

This pre-smoothing step allows us to sample all curves at the same design

points and then to use quadrature rules in order to approximate integrals

by summations (see e.g. Rice and Silverman, 1991).

2.4 Selecting smoothing parameter values

Then one needs to choose reasonable values for the smoothing parameters

h1 and h2. A natural approach consists in looking for the bandwidth values

that minimize a prediction error. We consider a two-steps cross-validation

criterion similar to the one proposed by Chiou et al. (2003).

We first look for the best bandwidth value for the conditional mean by

minimizing, according to h1,

CVµ(h1) =
1

n

n∑

i=1

1

pi

pi∑

ℓ=1

(
yi(tiℓ) − µ̂−i(xi, tiℓ)

)2
(16)

where µ̂−i(xi, tiℓ) is the estimator of µ(xi) at t = tiℓ obtained by leaving out

the observation (xi,yi) from the initial sample,

µ̂−i(xi, tiℓ) =
∑

k 6=i

wk(xi, h1)∑
k′ 6=i wk′(xi, h1)

Ŷk(tiℓ)

The estimator of the conditional mean associated to the optimal bandwidth

is denoted by µ̂CV .

In a second step, we minimize the prediction error of yi(tiℓ) in a q dimen-

sional space, q being fixed in advance, with the cross-validation criterion

CVγ(h2) =
1

n

n∑

i=1

1

pi

pi∑

ℓ=1

(
yi(tiℓ) − Ŷ q,−i

i (tiℓ))
)2

(17)

where

Ŷ q,−i
i (tiℓ) = µ̂CV (xi, tiℓ) +

q∑

j=1

ĉij v̂−i
j (xi, tiℓ),
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ĉij =
∫

(Ŷi(t)−µ̂CV (xi, t))v̂
−i
j (xi, t)dt and v̂−i

j (xi, tiℓ) is the jth eigenfunction

of

Γ̂−i
xi

=
n∑

k 6=i

wk(xi, h2)∑n
k′ 6=i wk′(xi, h2)

(
Ŷk − µ̂CV (xi)

)
⊗

(
Ŷk − µ̂CV (xi)

)

evaluated at X = xi and t = tiℓ.

2.5 Conditional functional principal components analysis of

the egg laying curves

The data consist of n = 936 egg laying curves of mediterranean fruit flies

observed daily during the first 50 days of egg laying. The issue of determining

how reproductive patterns are associated with overall reproductive success,

measured by the total number of laid eggs during the period, is of real

interest (Chiou et al., 2003b)

The original curves are rather rough and a pre-smoothing step was per-

formed by kernel regression using a Gaussian kernel. As noticed by Kneip

and Utikal (2001) or Chiou et al. (2003b) under-smoothing seems to lead to

better estimation in this framework and we consider, for each curve, three

smoothed functional approximations based on individual smoothing param-

eters hi,cv chosen by minimizing a classical cross-validation criterion as well

as under-smoothed approximations taking the bandwidths hi,cv/2, hi,cv/3

and hi,cv/6.

The covariate X which represents the total number of eggs has been

normalized, without loss of generality, in order to take values in the interval

[0, 1]. Before normalization, the mean number of eggs laid was 801, the first

quartile was 386, the median was 793 and the third quartile 1170. The

minimum value was 2 and the maximum was 2349.

bandwidth h1 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010 0.0005

hi,cv 234.6 230.1 228.7 228.6 229.0 229.9 230.9

hi,cv/2 233.6 229.3 227.9 227.8 228.4 229.3 230.4

hi,cv/3 233.2 228.9 227.6 227.5 228.2 229.1 230.4

hi,cv/6 233.1 228.8 227.5 227.5 228.1 229.1 230.5

no smoothing 232.9 228.7 227.5 227.7 228.6 229.9 231.8

Table 1: Leaving one curve out prediction error of the conditional mean egg

laying curves for different pre-smoothing steps and bandwidth values.

Cross-validated mean square errors using the predictive mean squared

error criterion (16) are given in Table (1). We first notice that even if
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there are no large differences between pre-smoothing approaches, functional

approximations to the discretized curves obtained with small bandwidth

values lead to better predictions and no smoothing should be preferred to

usual smoothing procedures based on cross-validation. It appears that the

most important tuning parameter is the parameter h1 which controls the

dependence of the mean function on the covariate X. Taking h1 around

0.004 leads to a prediction error less than 228 for ”under-smoothed” curves.

If we consider the unconditional mean function, the leave out one curve

criterion gives a prediction error around 352. Let us also remark that our

functional approach performs well compared to those proposed by Chiou et

al. (2003a, 2003b) whose best prediction error is around 315, according to

the same criterion.

The cross-validation procedure (17) was used to determine the value of

h2 and cross-validation scores are given in Table (2). We also remark that

a pre-smoothing step performed with small bandwidth values lead to better

prediction but, as before, the most important tuning parameter seems to be

h2 which controls the effect of the covariate X on the covariance function.

The first and second conditional eigenfunctions are drawn in Figure (2, (c)

and (d)) for three different values (first quartile, median and third quartile)

of the total number of eggs and individual pre-smoothing steps performed

with hi,cv/3. A comparison with the overall eigenfunctions clearly indicates

a kind of ”lag” in the dimension, meaning that the first eigenfunction try

to capture the vertical shift information brought by the covariate which is

already included in the conditional mean function. On the other hand, the

second overall eigenfunction has roughly the same shape than the first con-

ditional eigenfunctions. If we compare now the conditional eigenfunctions,

it clearly appear that their shapes are different, and they take larger values,

for fixed ages greater than 30 days, as the covariate increases. This means

that larger variations occur at the end of the time interval when the number

of laid eggs is large.

We also noticed that the estimated conditional eigenvalues, which give

a measure of the conditional explained variance, also vary with x. The first

eigenfunction explains 48 %, the second 22 % and the third 8 % of the total

variation of Y when x takes values around the first quartile of the total

number of eggs. The first eigenfunction explains 52 %, the second 19 % and

the third 8 % of the total variation for x around the median value of the

total number of eggs. The first eigenfunction explains 56 %, the second 15

% and the third 7 % of the total variation for x close to third quartile of the

total number of eggs.
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Figure 2: (a): A comparison of the overall eigenfunctions and the condi-

tional ones estimated for the first (X = 386), second (X = 793) and third

(X = 1170) quartiles of the total number of eggs. (c) : First overall and

conditional eigenfunctions. (d): Second overall and conditional eigenfunc-

tions. Bandwidths values are selected by minimizing the cross-validation

criterions (16) and (17).
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bandwidth h1 0.0156 0.0078 0.0039 0.0020 0.0010

hi,cv 120.2 119.2 119.2 119.7 120.6

hi,cv/2 118.1 117.4 118.2 119.2 120.4

hi,cv/3 117.1 116.5 116.8 117.6 118.7

hi,cv/6 117.4 116.9 117.2 118.2 119.4

no smoothing 117.5 116.9 117.2 118.5 120.2

Table 2: Leaving one curve out prediction error of the approximated egg

laying curves in a q = 2 dimensional space for different pre-smoothing steps

and bandwidth values.

3 Some consistency properties

We assume that the conditional expectation µ(x, t) satisfies some Lipschitz

condition and that ‖Y ‖H is bounded. Conditions (H.3) and (H.4) are clas-

sical assumptions in non-parametric regression.

(H.1) ‖µ(x) − µ(z)‖H ≤ c1 |x − z|β for some β > 0.

(H.2) ‖Y ‖H ≤ c2 < ∞ .

(H.3) X has strictly positive density defined on a compact interval and

satisfies a Lipschitz condition with coefficient β.

(H.4) The kernel K is positive, symmetric around zero, with compact sup-

port and integrates to one.

We also assume that the second order moment conditional function

r2(x, s, t) = IE(Y (s)Y (t)|X = x) satisfies a Lipschitz condition

(H.5) ‖r2(x) − r2(z)‖H ≤ C|x − z|α for some α > 0.

This assumptions means that a small variation of x implies a small vari-

ation of the covariance function and does not seem to be very restrictive.

Let us consider the usual norm in H = L2(T ×T ) as a criterion error for

the estimation of the covariance operator. It is defined by

‖γ(x)‖2
H =

∫

T
γ(x, s, t)2 ds dt (18)

Next proposition shows that we get consistent estimators of the con-

ditional mean and covariance operator, for each fixed value x of the real

covariate X.

Theorem 3.1 Under assumptions (H.1) to (H.5), if sup(h1, h2) → 0,
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(log n)/(n min(h1, h2)) → 0 as n tends to infinity,

‖µ̃(x) − µ(x)‖H = O(hβ
1
) + O

(
log n

nh1

)1/2

, a.s

and

‖γ̃(x) − γ(x)‖H = O(hβ
1
) + O(hα

2 ) + O

(
log n

n min(h1, h2)

)1/2

, a.s .

In order to obtain consistent estimators for the eigenelements of the

conditional covariance operator, we need to assume that the conditional

eigenvalues are distinct and strictly positive for the eigenfunctions to be

identifiable.

(H.6) λ1(x) > λ2(x) > · · · > 0 .

Since the eigenfunctions are uniquely determined up to a sign change, we

choose, without loss of generality, to consider ṽj(x) such that < ṽj(x), vj(x) >≥
0.

Corollary 3.1 Under assumptions (H.1) to (H.6), if sup(h1, h2) → 0,

(log n)/(n min(h1, h2)) → 0 as n tends to infinity,

sup
j

|λ̃j(x) − λj(x)| = O(hβ
1
) + O(hα

2 ) + O

(
log n

n min(h1, h2)

)1/2

, a.s.

and there exists a strictly positive constant C such that for each j,

‖ṽj(x) − vj(x)‖H ≤ Cδj

[
hβ

1
+ hα

2 +

(
log n

n min(h1, h2)

)1/2
]

a.s.

where δ1 = 2
√

2(λ1(x) − λ2(x))−1

and for j ≥ 2, δj = 2
√

2 max
[
(λj−1(x) − λj(x))−1, (λj(x) − λj+1(x))−1

]
.

Let us remark that, for a fixed sample size n, the estimation of the eigen-

functions are getting poorer and poorer as j increases since δj is generally

an increasing sequence.

Next proposition shows that even when the curves are corrupted by noise

at the design points, one can still get consistent approximations to the condi-

tional functional principal components analysis. Nevertheless, convergence

rates are harder to obtain and are not given here since they will depend

on many ingredients such as the regularity of the trajectories, the design of

the discretization points and the way the conditional mean and covariance
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function are estimated. We only suppose here that the following hypothesis

is fulfilled

(H.7) maxi

∥∥∥Yi − Ŷi

∥∥∥
H

→ 0 a.s.

Such an assumption is satisfied under general conditions for classical

non-parametric smoothers such as kernels, local polynomials or smoothing

splines. It assumes implicitly that the the grid of the design points gets finer

and finer and the trajectories are regular enough.

Theorem 3.2 Under assumptions (H.1) to (H.7), if sup(h1, h2) → 0,

(log n)/(n min(h1, h2)) → 0 as n tends to infinity,

‖µ̂(x) − µ(x)‖H → 0 a.s

and

‖γ̂(x) − γ(x)‖H → 0 a.s .

Thus, for each j ∣∣∣λ̂j − λj

∣∣∣ → 0 a.s

and

‖v̂j(x) − vj(x)‖H → 0 a.s .

4 A simulation study

We propose now to perform a simulation study in order to evaluate the abil-

ity of our estimators to get accurate estimations of the conditional mean

and the conditional covariance function. This allows us to see how the esti-

mators are sensitive to the bandwidths values and the sample size. We also

generate discretized noisy sample paths in order to evaluate what amount of

smoothing should be preferred when performing non-parametric regression

of the trajectories.

We consider a real random variable X, drawn from a uniform distribution

in [0, 1] and a random function Y defined a follows:

Y (t) = X Z1(t) + (1 − X) Z2(t) , (19)

where t ∈ T = [0, 1] and Z1 and Z2 are independent random functions such

that

• Z1 is a Brownian motion with mean function µ1(t) = sin(4πt), t ∈
[0, 1] and covariance function γ1(s, t) = min(s, t).

15



• Z2 is a Gaussian process with mean function µ2(t) = cos(4πt), t ∈
[0, 1] and covariance function γ2(s, t) = min(1 − s, 1 − t).

It is easy to see that, for all (s, t) ∈ T × T,

{
µ(x, t) = x sin(4πt) + (1 − x) cos(4πt)

γ(x, s, t) = x2 γ1(s, t) + (1 − x)2γ2(s, t)

We make 100 replications of model (19) considering two different sample

sizes, n = 100 and n = 500. In the implementation, the realizations of the

random function Y are discretized at p = 50 equispaced design points in

[0, 1], denoted by t1, t2, . . . , tp and we use a quadrature rule to approximate

integrals by summations. The following normalized quadratic criterions are

used to measure the estimation error for the estimator (9) of the mean

function

MSE(µ̂x
h1

) =

∑p
ℓ=1

(
IE(Y (tℓ)|X = x) − µ̂x

h1
(tℓ)

)2

∑p
ℓ=1

(IE(Y (tℓ)|X = x))2
(20)

and for the estimator (11) of the covariance function

MSE(γ̂x
h2

) =

∑p
ℓ,ℓ′=1

(
Cov(Y (tℓ), Y (tℓ′)|X = x) − γ̂x

h2
(tℓ, tℓ′)

)2

∑p
ℓ,ℓ′=1

(Cov(Y (tℓ), Y (tℓ′)|X = x))2
. (21)

The mean values of the MSE criterions are gathered in Tables 3, 4 and 5

for different values of the bandwidths h1 and h2. The results are presented

for X taking the value x = 0.6 but as a matter of fact they do not vary

much provided x is not too close to the edges of the interval [0, 1].

bandwidth values for h1

sample size 1 0.5 0.25 0.54 0.55 0.56 0.57

100 0.045 0.036 0.026 0.019 0.019 0.025 0.035

500 0.032 0.024 0.013 0.006 0.004 0.005 0.006

Table 3: Estimation error for the mean function of Y conditional to x = 0.6

for different sample sizes and different bandwidth values.

Let us first note that even for moderate sample sizes, i.e. when n = 100,

the estimators perform well for the mean function (see Table 3) and the

covariance function (see Table 4) provided that the bandwidth values are

reasonable.
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bandwidth values bandwidth values for h1

for h2 0.52 0.53 0.54 0.55 0.56 0.57 0.58

0.5 0.211 0.144 0.102 0.094 0.112 0.146 0.197

0.52 0.209 0.139 0.097 0.090 0.108 0.142 0.192

0.53 0.212 0.137 0.093 0.087 0.105 0.139 0.188

0.54 0.219 0.138 0.092 0.086 0.104 0.136 0.184

0.55 0.225 0.141 0.093 0.085 0.102 0.134 0.181

0.56 0.233 0.147 0.096 0.086 0.101 0.132 0.177

0.57 0.246 0.157 0.103 0.089 0.102 0.131 0.175

0.58 0.267 0.174 0.115 0.097 0.107 0.132 0.174

0.59 0.297 0.199 0.135 0.112 0.117 0.138 0.175

Table 4: Mean estimation error for the covariance function of Y conditional

to x = 0.6 for a sample size n = 100 and different bandwidth values.

Another important remark is that one may choose different values for

the bandwidth h1 associated to the estimator of the mean function. A kind

of diagonal structure appears in Table 4 meaning that the choice of h1 has

an impact on the best value for h2. The best values of h1 for estimating the

mean function seem to be also the best values for the mean when estimating

the covariance function. They must have, in this example, the same order

of magnitude.

One can also notice in Table 5 that when the sample size is large enough,

the choice of a value for h2 seems to be of second importance, particularly

if h1 is well chosen, since the criterion error does not vary much according

to h2.

Figure 3 shows that the estimators are very close to the true conditional

mean function and not too far from the true conditional covariance func-

tion. A smoothing procedure of the eigenfunctions described in Rice and

Silverman (1991) has also been introduced in order to get better estima-

tions. Even if not presented here, we have remarked that the conditional

eigenvalues are also well estimated.

4.1 Discretized noisy data

A second aim of this simulation study is to evaluate the impact of pre-

smoothing noisy sampled trajectories on the accuracy of estimators. We

now generate 100 replications of n sampled curves each corrupted by noise
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Figure 3: An example when the sample size is n = 500, with x = 0.6 for

h1 = 0.56 and h2 = 0.57 . Estimation of the mean function is drawn in (a)

with dotted lines and the first eigenfunction and the second eigenfunction

in (b). The true conditional covariance function and its estimate are drawn

in (c) and (d).
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bandwidth values bandwidth values for h1

for h2 0.52 0.53 0.54 0.55 0.56 0.57 0.58

0.5 0.166 0.104 0.056 0.032 0.027 0.030 0.037

0.52 0.164 0.096 0.048 0.027 0.023 0.027 0.034

0.53 0.167 0.094 0.045 0.025 0.022 0.026 0.033

0.54 0.172 0.095 0.044 0.024 0.021 0.025 0.033

0.55 0.174 0.096 0.044 0.024 0.021 0.025 0.033

0.56 0.175 0.097 0.045 0.024 0.021 0.025 0.033

0.57 0.177 0.098 0.045 0.024 0.021 0.025 0.033

0.58 0.179 0.100 0.046 0.025 0.021 0.025 0.033

0.59 0.183 0.102 0.048 0.026 0.022 0.026 0.034

Table 5: Mean estimation error for the covariance function of Y conditional

to x = 0.6 for a sample size n = 500 and different bandwidth values.

at p equispaced design points in [0, 1],

yi(tℓ) = Yi(tℓ) + ǫiℓ, ℓ = 1, . . . , p, i = 1, . . . n,

where ǫiℓ are i.i.d. realizations of a centered gaussian variable with variance

σ2 = 0.05 .

We compare the effect of different pre-smoothing steps of the noisy curves

on the estimation of the conditional mean as well as the approximation er-

ror of Y at the design points in a q = 3 dimensional space. The estimators

obtained when observing Yi without noise serve as a benchmark. For each

noisy discrete trajectory yi, pre-smoothing is done with kernel smoothers

and we consider three different individual bandwidth values, hi,cv those ob-

tained by minimizing a classical cross-validation criterion, hi,cv/2 and hi,cv/6

which lead to ”under-smoothing”.

The following criterion error

MSE(µ̂) =
1

np

n∑

i=1

p∑

ℓ=1

(µ(xi, tℓ) − µ̂(xi, tℓ)))
2 (22)

allows us to measure a global estimation error of the conditional mean func-

tion.

The mean squared errors according to criterion (22) when the bandwidth

value h1 is chosen by cross-validation are given in Table (6). We compare

estimators built with the discrete non noisy trajectories Y , the noisy trajec-

tories y and the pre-smoothed trajectories. It first appears that even if the
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data are noisy, estimation errors are close to those obtained with estimators

built with non noisy data. We can also remark that under-smoothing in the

pre-smoothing step, i.e. by choosing the individual bandwidths hi,cv/6, can

lead to a slight improvement of the estimators compared to no smoothing

at all, that is to say by performing the estimation using directly the noisy

data.

sample size y hi,cv hi,cv/2 hi,cv/6 Y

100 1.43 1.63 1.47 1.40 1.33

500 0.40 0.57 0.45 0.39 0.37

Table 6: Mean squared error (×100) for the conditional mean function of

Y for different sample sizes and different pre-smoothing steps. y stands for

no smoothing at all the noisy data and Y denotes estimations based on non

noisy curves. Bandwidth values for h1 are selected by cross-validation (eq.

16).

We also compute the following criterion

MSE(Ŷ q) =
1

np

n∑

i=1

p∑

ℓ=1

(
Yi(tℓ) − Ŷ q

i (xi, tℓ))
)2

(23)

to measure the approximation error of the true discrete trajectories in a q

dimension space. Approximation errors according to criterion (23) for q = 3

when the bandwidths h1 and h2 are selected by the cross-validation crite-

rions (16) and (17) are gathered in Table (7). We first notice that now

the presmoothing steps can lead to a moderate improvement of the estima-

tion, specially when the sample size is small, meaning that we get better

estimations of the conditional eigenfunctions by incorporating a smoothing

procedure. When the sample size is large (n = 500), all the estimation er-

rors have similar mean values and are close to those obtained with non noisy

data.

It appears in this simulation study that even if there is no real gain

in performing a pre-smoothing step when one is interesting by the estima-

tion of the conditional mean function, there can be a non negligible gain

by performing a presmoothing step when one is interesting in estimating

the conditional eigenfunctions. Furthermore, when the design points vary

from one curve to another, presmoothing allows to use quadrature rules to

estimate the eigenfunctions by sampling all the curves at the same design

points.
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sample size y hi,cv hi,cv/2 hi,cv/6 Y

100 3.85 3.64 3.60 3.69 3.10

500 0.31 0.31 0.30 0.30 0.26

Table 7: Mean squared error (×100) for the conditional estimation of Y

in a 3-dimensional space (q = 3) for different sample sizes and different

presmoothing steps. y stands for no smoothing at all the noisy data and

Y denotes estimations based on non noisy curves. Bandwidth values for h1

and h2 are selected by cross-validation.

At last, even if no smoothing generally gives rather good approximations

to the true signal, one should be aware that it can lead to overestimated

eigenvalues since it incorporates in the conditional covariance function a

”diagonal” term due to the noise variance. Then, adding a presmoothing

step must always be preferred when one is interesting in measuring the

conditional variance associated to the eigenfunctions.

5 Concluding remarks

We have proposed in this work a simple and powerful tool to analyze func-

tional data when auxiliary information is available. This approach can be

used in many practical studies since nowadays it is frequent to have large

data sets.

This short paper is first step to conditional FPCA and one can imagine

many extensions. For instance it is immediate to extend this approach to

multivariate conditional information and one can consider additive models

to manage with the curse of dimensionality. One can also extend the con-

ditional FPCA to functional auxiliary information by adapting the kernel

methods proposed by Ferraty and Vieu (2002, 2004). Such an approach

could also be employed to improve the prediction skill of autoregressive

functional processes (Besse et al. 2000, Damon and Guillas 2002) by incor-

porating simultaneously functional and real covariates effects.

Another interesting issue is to determine if there exists a dependence

between Y and the covariate X. Test statistics based on permutation ap-

proaches which break down artificially the correlation by resampling can be

used successfully in this functional context (Cardot et al. 2006).

We also remarked in the simulation study that the smoothness of the ap-

proximation to noisy sampled curves has no real impact on the estimation of

the conditional mean whereas it can induce a certain gain when considering

21



the covariance function. The consistency proof proposed in Section 6 relies

on rough inequalities and should be dealt with a more precise and care-

ful asymptotic study on the effect of presmoothing borrowing for instance

ideas from a recent work by Benko et al. (2006). Indeed, estimation of

the covariance function could certainly be improved by considering a mod-

ified estimator which takes into account the fact that a bias term due to

the noise variance may appear. More precisely, suppose the pre-smoothing

step is performed by linear smoothers, such as kernels, local polynomials or

regression splines. Then,

Ŷi(t) =

pi∑

ℓ=1

si(t, tℓ, hi)yiℓ,

where the weights si(t, tℓ, hi) depends on some smoothing parameter hi, and

one can consider the following modified estimator of the covariance function:

γ̂(x, s, t) =

n∑

i=1

wi(x, h2)

pi∑

ℓ=1

∑

k 6=ℓ

si(t, tℓ, hi)si(s, tk, hi)yiℓyik − µ̂(x, t)µ̂(x, s).

in order to eliminate the variance terms due to the noise. I believe that

this direct approach can provide consistent estimates to the true covariance

function even when the number of sampling points is finite, provided their

location is random. This issue certainly deserves further attention but is

beyond the scope of this paper.

6 Proofs

Proof of Theorem 3.1.

We first prove the consistency of the conditional mean function estima-

tor. Defining g̃(x) = 1

nh

∑
i K ((Xi − x)/h) Yi and f̃(x) = 1

nh

∑
i K ((Xi − x)/h) ,

we have

µ̃(x) =
g̃(x)

f̃(x)
.

and we can write

µ(x) − µ̃(x) =
g(x) − g̃(x)

f̃(x)
+

(
f̃(x) − f(x)

) r(x)

f̃(x)
. (24)

The beginning of the proof is rather classical and we get under previous

assumptions that (see e.g Sarda and Vieu 2000) :

f̃(x) − f(x) = O(hβ) + O(
√

log n/(nh)), a.s (25)
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On the other hand, since g = µf also satisfies the Lipschitz condition in

H and considering z = (u − x)/h, we get under (H.1) and (H.4) :

IEg̃(x) − g(x) =
1

h

∫
(K ((u − x)/h) Y − g(x)) f(u) du

=

∫

R

(g(x − zh) − g(x)) K(z)dz

= O(hβ) . (26)

The variance term g̃(x) − IEg̃(x) is dealt with exponential inequalities

for separable Hilbert space valued random variables. Defining

∆i =
1

h
(K ((Xi − x)/h) Yi − IEK ((X − x)/h) Y )

it is easy to check that ‖∆i‖ ≤ C/h and IE‖∆i‖2 ≤ C
h under assumptions

(H.1) to (H.3). Applying Yurinskii’s Lemma (Yurinskii, 1976), we obtain

P [‖g̃(x) − IEg̃(x)‖H > ǫ] ≤ 2 exp

(
− nǫ2h

4C

)

which is a convergent sequence if we take ǫ = ǫ0 (log n/(nh))1/2. Thus, by

the Borel-Cantelli Lemma, we get that

‖g̃(x) − IEg̃(x)‖H = O

(
log n

nh

)1/2

a.s. (27)

Combining (25), (26) and (27) in (24), we get under previous assumptions

‖µ̃(x) − µ(x)‖H = O(hβ
1
) + O

(
log n

nh1

)1/2

, a.s . (28)

Let us introduce now the empirical counterpart

r̃2(x, s, t) =

n∑

i=1

wi(x, h2)Yi(s)Yi(t) ,

of the second order moment function, r2(x, s, t) = IE(Y (s)Y (t) | X = x),

and decompose the covariance function estimator as follows:

γ̃(x) = r̃2(x) − µ̆(x) ⊗ µ̃(x) − µ̃(x) ⊗ µ̆(x) + µ̃(x) ⊗ µ̃(x) (29)

where

µ̆x =

n∑

i=1

wi(x, h2)Yi .
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Considering the same decomposition as in (24), we can show under assump-

tions on the bandwidth h2 that

‖µ̆(x) − µ(x)‖H = O(hβ
2
) + O

(
log n

nh2

)1/2

, a.s . (30)

Looking now at the difference

γ(x) − γ̃(x) = r2(x) − µ(x) ⊗ µ(x) − r̃2(x) + µ̆(x) ⊗ µ̃(x) + µ̃(x) ⊗ (µ̆(x) − µ̃(x))

= r2(x) − r̃2(x) − µ(x) ⊗ µ(x) + µ̆(x) ⊗ µ̃(x) + µ̃(x) ⊗ (µ̆(x) − µ̃(x))(31)

we get that

‖γ(x) − γ̃(x)‖H ≤ ‖r2(x) − r̃2(x)‖H + ‖µ̆(x) ⊗ µ̃(x) − µ(x) ⊗ µ(x)‖H
+‖µ̃x ⊗ (µ̆x − µ̃x) ‖H (32)

Considering again the decomposition (24) for the functional observations

Zi(s, t) = Yi(s)Yi(t) we get directly that

‖r̃2(x) − r2(x)‖H = O(hα
2 ) + O

(
log n

nh2

)1/2

a.s. . (33)

On the other hand, expanding

µ̆(x) ⊗ µ̃(x) − µ(x) ⊗ µ(x) = (µ̆(x) − µ(x)) ⊗ µ̃(x) − µ(x) ⊗ (µ̃(x) − µ(x))

we get by (28) and (30)

‖µ̆(x) ⊗ µ̃(x) − µ(x) ⊗ µ(x)‖H ≤ ‖µ̆(x) − µ(x)‖H‖µ̃(x)‖H + ‖µ(x)‖H‖µ̃(x) − µ(x)‖H

= O(hβ
1
) + O(hα

2 ) + O

(
log n

n min(h1, h2)

)1/2

, a.s. ,(34)

since ‖µ̃(x)‖H is bounded by a positive constant under assumption (H.2).

Remarking now that µ̆(x) − µ̃(x) = µ̆(x) − µ(x) + µ(x) − µ̃(x) we get

directly that

‖µ̃(x) ⊗ (µ̆(x) − µ̃(x)) ‖H ≤ ‖µ̃(x)‖H (‖µ̆(x) − µ(x)‖H + ‖µ̃(x) − µ(x)‖H)

= O(hβ
1
) + O(hα

2 ) + O

(
log n

n min(h1, h2)

)1/2

, a.s. ,(35)

which concludes the proof combining (33), (34) and (35) in (32).

Proof of Corollary 3.1.
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The proof of the first part of the Corollary is an immediate consequence

of classical properties of the eigenelements of covariance operators. The

eigenvalues (see e.g Dauxois et al. 1982) satisfy:

|λ̃j(x) − λj(x)| ≤
∥∥∥Γ̃x − Γx

∥∥∥ (36)

where the norm ‖.‖ for operator is the Hilbert-Schmidt norm which is equiv-

alent to the norm in H for integral operators

‖Γx‖2 =

∫

T
γ(x, s, t)2 ds dt

= ‖γ(x)‖2

H .

On the other hand, Lemma 4.3 by Bosq (2000) tells us that

‖ṽj(x) − vj(x)‖H ≤ Cδj

∥∥∥Γx − Γ̃x
∥∥∥ , (37)

which concludes the proof.

Proof of Theorem 3.2.

By assumption (H.7), we can bound

‖µ̃(x) − µ̂(x)‖H ≤
n∑

i=1

wi(x, h1)
∥∥∥Yi − Ŷi

∥∥∥
H

(38)

≤ max
i

∥∥∥Yi − Ŷi

∥∥∥
H

n∑

i=1

wi(x, h1) → 0 a.s (39)

Dealing now with the covariance operator, let us study

Γ̃ − Γ̂ =
n∑

i=1

wi(x, h2)
{

(Yi − µ̃(x)) ⊗ (Yi − µ̃(x)) −
(
Ŷi − µ̂(x)

)
⊗

(
Ŷi − µ̂(x)

)}

We have

(Yi − µ̃(x)) ⊗ (Yi − µ̃(x)) −
(
Ŷi − µ̂(x)

)
⊗

(
Ŷi − µ̂(x)

)

=
(
Yi − Ŷi + µ̂(x) − µ̃(x)

)
⊗ (Yi − µ̃(x)) −

(
Ŷi − µ̂(x)

)
⊗

(
Ŷi − Yi + µ̃(x) − µ̂(x)

)

and we get with (H.7),
∥∥∥Yi − Ŷi + µ̂(x) − µ̃(x)

∥∥∥
H

≤
∥∥∥Yi − Ŷi

∥∥∥
H

+ ‖µ̂(x) − µ̃(x)‖H → 0 a.s.(40)

Then
∥∥∥Γx − Γ̂x

∥∥∥ ≤
∥∥∥Γx − Γ̃x

∥∥∥ +
∥∥∥Γ̃x − Γ̂x

∥∥∥ → 0 a.s. (41)
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Applying again (36) and (37) the proof is complete.
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