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Abstract

This work proposes a nonparametric estimator of the regression

function when the predictor is real and the dependent variable is a

curve. The estimator is based on kernel smoothing. This approach

is motivated by an extension of the functional principal components

analysis, or Karhunen-Loève expansion, which can take into account

nonparametrically the effects of an additional covariate. Such a model

can also be interpreted as a nonparametric mixed effects model for

functional data. Convergence rates are given for the regression func-

tion estimator and for the estimator of the conditional covariance op-

erator. The good behaviour of the estimator for functional principal

components analysis is illustrated on a simulation study.

Keywords : covariance function, functional mixed effects, Karhunen Loève

expansion, weighted covariance operator, eigenelements, almost sure conver-

gence.

1 Introduction

Since the pioneer work by Deville (1974) much attention has been given to

the analysis of functional data in the statistical community (see e.g Ramsay

and Silverman, 1997, 2002 and references therein). Many studies are devoted
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to the statistical description of a sample of curves (growth curves, tempera-

ture curves, spectrometric curves, ...) by means of the functional principal

components analysis (Besse and Ramsay 1986, Castro et al. 1986, Rice and

Silverman 1991, Kneip and Utikal 2001, ...). Performing the spectral decom-

position of the empirical covariance operator, which is the analogous of a

covariance matrix in a function space, allows to get a small dimension space

which exhibits, in a optimal way according to a variance criterion, the main

modes of variation of the data. Indeed, let us consider a random function

Y (t) where t varies in a compact interval T of R, with mean µ(t) = IE(Y (t))

and covariance function γ(s, t) = Cov(Y (s), Y (t)), s ∈ T. Under general

conditions, the covariance function may be expressed as follows

γ(s, t) =
∑

j≥1

λj vj(s) vj(t) , (1)

where the λj are the ordered eigenvalues, λ1 ≥ λ2 ≥ ... ≥ 0, of the covari-

ance operator and the functions vj the associated orthonormal eigenfunc-

tions. Then, the best linear approximation to Y in a function space with

finite dimension q is given by projecting Y − µ onto the space generated by

{v1, . . . , vq}. This expansion is obtained by means of the functional princi-

pal components analysis (FPCA) and is also known as the Karhunen-Loève

expansion of Y truncated at order q. The reader is referred to Loève (1978)

or Chiou et al. (2003b) for a comprehensive introduction to this topic.

This work aims at deriving a Karhunen-Loève expansion or FPCA which

is able to take into account nonparametrically the effect of a quantitative

covariate X in order to get a decomposition similar to (1) that incoporates

this additional information. The introduction of an additional information in

such a framework has not received much attention in the litterature whereas

it can be very interesting in many situations. For instance, in medicine,

when observing and describing electrocardiogram curves, the medic often

knows the age of his patients or the concentration of some components in

their blood. These quantitative factors may have a certain impact on the

statistical characteristics of the electrocardiogram curves and consequently

one could imagine that taking into account properly this additional infor-

mation can lead to a better representation of this set of curves, adapting for

instance the characteristics of the FPCA to the age of the individuals. This

can also be a way to detect outliers taking into account the knowledge of

some cofactors.

Silverman (1995) suggested a practical approach that could handle this

kind of problem with parametric models. The estimation procedure is rather
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heavy and parametric models are not always adapted when one does not

know in advance what can be the relationship between the dependent func-

tional observations and the covariates. More recently, Chiou et al (2003b)

considered a general approach that incorporates a covariate effect through

a semi-parametric model. The problem was to estimate the number of eggs

laid per day by n = 936 female Mediterranean fruit flies (see Carey et al.

1998 for a description of the experiments and of the data) for a time period

restricted to the first 50 days of eggs laying. The mean function, that is to

say the number of laid eggs per day during the first 50 days of lifetime, and

the Karhunen-Loève basis are estimated on the whole population but the

coordinates of a functional observation (an eggs laying curve) in this basis

are obtained thanks to a single index model which take into account the

covariate effect.

This paper aims at proposing a very simple nonparametric approach that

can be of real interest for such studies when the sample size is sufficiently

large. Such large data sets of functional observations are not unusual nowa-

days. For instance the sample size is n = 936 for the Mediterranean egg

laying curves with 50 equispaced discretization points whereas Cardot et al.

(2004) look for estimators of the temporal responses of different crops when

observing n = 1209 pixels at thirty different instants during a year with

remote sensing.

Instead of incorporating directly the covariate effect in the Karhunen-

Loève expansion, we consider a nonparametric estimator of the conditional

expectation and the conditional covariance function. Once the estimators of

the conditional expectation and the conditional covariance function are ob-

tained, we can derive directly estimators of the conditional eigenvalues λj(x)

and conditional eigenfunctions vj(x, t) by means of a spectral decomposition.

Thus the basis functions vj(x, s) are allowed to depend nonparametrically on

the covariate effect x. That gives a small dimension functional space which

can represent Y in an optimal way knowing that X takes the value x. The

estimated conditional mean eggs laying curves are drawn in Figure (1) for

the fist quartile, the median and the third quartile of the total number of

eggs. It can be seen that their shapes clearly depend on the total number

of eggs and that is why Chiou et al. (2003a) proposed a model based on a

multiplicative effect on the mean function which seems to be adapted to that

problem. Nevertheless, if we display the first eigenfunctions vj estimated by

the approach described below, we clearly see that the covariance structure

also varies when the total number of eggs varies. Thus a more general ap-

proach that can into account the effect of the covariate on the structure of
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Figure 1: Mean egg laying curves and first, second and third eigenfunctions

for the first (· · ·), second (− −) and third (—) quartiles of the total number

of eggs. Bandwidths values are selected by minimizing a cross-validation

criterion (see (7) and (17)).
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the covariance function seems to be even more adapted by expanding the

random functions in low dimension spaces depending on the value taken by

the covariate.

We first present in section 2 a general estimation procedure of the re-

gression function based on kernel smoothing when the response is functional

and the covariate is real. In this framework, Lecoutre (1990) proposed an

estimator based on statistically equivalent blocks methods but he did not

give any rates of convergence. More recently, Ferré and Yao (2004) proposed

an estimator of the covariance function of the conditional expectation, which

is not what we are looking for in this paper, in the framework of sliced in-

verse regression for functional data. Convergence rates for the regression

function estimator derived with our kernel smoothing approach are given

and we obtain the usual nonparametric rates of convergence. In section 3,

we show how this procedure can be adapted to the estimation of the condi-

tional FPCA whereas Section 4 illustrates with a brief simulation study the

good behaviour of the estimator. R programs are available on request to

the author. In section 5 we propose a discussion about possible extensions.

The proofs are gathered in section 6.

2 Nonparametric regression with functional response

Consider a sample (Xi, Yi), i = 1, . . . , n of i.i.d. realizations of (X, Y ) where

the Xi’s take values in a compact interval of R and the Yi’s belong to

H = L2(T ), the space of square integrable functions defined on the compact

interval T. The inner product in H is denoted by < ., . >H and the induced

norm is denoted ‖.‖H .

We want to estimate the regression function defined by

r(x, t) = IE (Y (t) | X = x) t ∈ T. (2)

For that purpose we consider the following kernel smoother :

r̂(x, t) =
n∑

i=1

wi(x, h)Yi(t) t ∈ T, (3)

where

wi(x, h) =
K ((Xi − x)/h)∑
i K ((Xi − x)/h)

, (4)

the kernel K is a positive, symmetric around zero and bounded function

with compact support and h is the bandwidth. Let us notice that when t
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varies in T , r(x, .) and r̂(x, .) are functions taking values in H. For sake of

clarity, the function of t, r(x, .) will be denoted by r(x).

We assume that the conditional expectation satisfies some Lipschitz con-

dition and that ‖Y ‖H is bounded. Conditions (H.3) and (H.4) are classical

assumptions in nonparametric regression (see e.g. Sarda and Vieu 2000).

(H.1) ‖r(x) − r(z)‖H ≤ c1 |x − z|β for some β > 0.

(H.2) ‖Y ‖H ≤ c2 < ∞ .

(H.3) X has strictly positive density defined on a compact interval. More-

over, it also satisfies a Lipschitz condition with coefficient β.

(H.4) The kernel K is positive, symmetric around zero, with compact sup-

port and integrates to one.

The following theorem means that our estimator is consistent, for each

fixed value x of the real covariate X.

Theorem 2.1 Under assumptions (H.1) to (H.4), if h → 0, (log n)/(nh) →
0 as n tends to infinity,

‖r(x) − r̂(x)‖H = O

(
log n

nh

)1/2

+ O(hβ) a.s.

Let us notice that assumptions (H.1) to (H.4) are not as general as they

could be but they have the advantage to lead to a short and simple proof.

Indeed, assumption H.1 could be replaced by a differentiability hypothesis of

function r which would lead to better rates of convergence. Assumption H.2

could be replaced by an hypothesis on the existence of all the moments of

Y and then truncation methods would lead to the same rate of convergence.

Finally, let us remark that Theorem 2.1 remains true when H is a general

separable Hilbert space such as a Sobolev space.

2.1 Discretized data

In pratice one observes discretized data, that is to say a sample of n vectors

Yi = (Yi(t1), Yi(t2), . . . , Yi(tp)) , i = 1, . . . , n, (5)

where the discretization points t1 < t2 < · · · < tp are supposed in the

following to be the same for each curve which is a rather frequent situation.

If it is not the case, one can consider for instance a B-splines expansion of

the trajectories (Besse et al. 1997, James et al. 2000) and then deals with

the coordinates instead of the observed data. Other approaches based on
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kernel smoothing (Staniswalis and Lee, 1998) or local polynomials (Yao et

al. 2005) can also be adapted to this situation. Assuming the discretization

points are the same for each observed curve, it is easy to build estimators

for the conditional mean r(x) = IE(Y|X = x),

µ̂(x) =
n∑

i=1

wi(x, h1)Yi ∈ R
p , (6)

at discretization the points t1, t2, . . . tp.

Then one needs to choose a reasonable value for the smoothing parameter

h1. A natural approach is to minimize a cross-validation criterion,

CV(h) =
1

np

n∑

i=1

p∑

`=1

(
Yi(t`) − µ̂

−i(xi)(t`)
)2

(7)

where µ̂
−i(xi)(t`) is the estimator of µ(xi) at t = t` obtained by leaving out

the observation (xi,Yi) from the initial sample.

Conditional eggs laying curves

This cross-validation criterion has been used for estimating the conditional

mean function of the eggs laying curves with a Gaussian kernel. The covari-

ate X which represents the total number of eggs has been normalized, with-

out loss of generality, in order to belong to the interval [0, 1]. Cross-validated

mean square errors are given in Table (1) and show that our functional ap-

proach performs well compared to those proposed by Chiou et al. (2003a,

2003b). Indeed their best predictions, according to the same criterion, have

an error taking values around 315.

bandwidths 0.0625 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010 0.0005

CV(h) 243.6 232.9 228.7 227.5 227.7 228.6 229.9 231.8

Table 1: Cross validation scores for estimating the conditional mean egg

laying curves.

3 Conditional functional principal components anal-

ysis

This section shows how we can derive a conditional functional PCA or con-

ditional Karhunen Loève expansion applying the estimator defined in (3) to
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get estimators of the first and the second conditional moment of the variable

Y.

3.1 The conditional Karhunen-Loève expansion

The Karhunen-Loève expansion (Castro et al. 1986, Cardot et al. 1999),

also called empirical orthogonal functions in climatology (Preisendorfer and

Mobley, 1988), is a direct generalization of the principal components analysis

when the observations are realizations of a random function. It can be seen

as an optimal linear decomposition, according to a variance criterion, of

the random function Y in a finite dimension functional space. This finite

dimension space is span by the eigenfunctions associated to the largest values

of the covariance operator of Y.

Let us consider the conditional expectation µ(x, t) = E(Y (t)|X = x)

and the conditional covariance function of Y, denoted by

γ(x, s, t) = Cov(Y (s), Y (t)|X = x), (s, t) ∈ T × T .

Then its conditional covariance operator is the integral operator satisfying

Γxf(t) =

∫

T
γ(x, s, t)f(s) ds t ∈ T. (8)

Let us denote by vj(x, t) the jth orthonormal eigenfunction of Γx, asso-

ciated to the jth largest eigenvalue λj(x). They satisfy

Γx vj(x, t) = λj(x) vj(x, t) t ∈ T. (9)

with λ1(x) ≥ λ2(x) ≥ · · · ≥ 0, and < vj(x), vj′(x) >= 1 if j = j ′ and zero

else. Then one can decompose the covariance function

γ(x, s, t) =
∑

j≥1

λj(x) vj(x, s)vj(x, t), (s, t) ∈ T × T . (10)

which is the analogous of the decomposition (1) of the covariance function

incorporating conditional information. Since Y knowing that X = x is a

bounded function it is clear that
∑

j λj(x) < ∞ and the eigenvalues tend

rapidly to zero as j goes to infinity. This means that a small dimensional

space can generally represent well the main conditional modes of variation

of Y.

Indeed, the best linear representation denoted by Ỹq of Y knowing that

X = x in a q dimensional space is given by

Ỹq(t | X = x) = µ(x, t) +

q∑

j=1

< Y − µ(x), vj(x) > vj(x, t), t ∈ T(11)
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meaning that the vj(x, t)’s give an idea of the main conditional modes of

variation of Y with associated variance

IE
(
< Y − µ(x), vj(x) >2 |X = x

)
= λj(x) .

This expansion can also be interpreted as a mixed functional effects model

(James et al. 2000, Rice & Wu 2001), the trajectories of Y being expanded

in a deterministic basis (v1(x), . . . , vq(x)) with random components < Y −
µ(x), vj(x) >, j = 1, . . . , q, which are also called principal components. The

main innovation being here that we take into account nonparametrically

the effect of the covariate X through the spectral decomposition of the

conditional variance. This allows for instance to determine how the main

modes of variation of Y vary according to X by comparing the shape of the

functions vj(x, t) associated to the largest eigenvalues for different values of

x as shown in Figure (1).

It is easy to build estimators of the conditional mean and conditional co-

variance function. The estimator of the conditional mean function is defined

as before

µ̂(x, t) =

n∑

i=1

wi(x, h1)Yi(t), t ∈ T. (12)

To define the estimator of the covariance function, let us introduce the

tensor product notation. For two functions (Zi, Yi) ∈ L2(T )×L2(T ), it is the

bivariate function Zi ⊗ Yi belonging to the functional space H = L2(T × T )

such that Zi ⊗ Yi(s, t) = Zi(s)Yi(t), for all (s, t) ∈ T × T. Then, we get can

build an estimator of the covariance function as follows

γ̂(x, s, t) =
n∑

i=1

wi(x, h2) (Yi − µ̂(x)) ⊗ (Yi − µ̂(x)) (s, t), (s, t) ∈ T × T .(13)

This being done, we can deduce estimators of the eigenfunctions and

eigenvalues when X = x by considering the conditional covariance operator

Γ̂x,

Γ̂xf(s) =

∫

T
γ̂(x, s, t)f(t) dt . (14)

and performing its spectral decomposition (or eigen-analysis) :

Γ̂x v̂j(x, t) = λ̂j(x) v̂j(x, t) (15)

with λ̂1(x) ≥ λ̂2(x) ≥ ... ≥ 0, and the orthonormality constraints < v̂j(x), v̂j′(x) >=

1 if j = j′ and zero else.
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3.2 Discretized data

When we have discrete observations, which is always the case for real data

sets, the discretized mean function is estimated by (6) whereas the dis-

cretized covariance operator can be approximated as follows

Γ̂
x

=

n∑

i=1

wi(x, h2) (Yi − µ̂
x) (Yi − µ̂

x)′ . (16)

We need to introduce a quadrature rule in order to estimate the eigenele-

ments of the covariance operator with discrete data (Rice and Silverman,

1991, Staniswalis and Lee, 1998). Let us consider some quadradure weights

m1, . . . , mp such that

∫

T
f(t) dt ≈

p∑

`=1

m` f(t`) .

Define M to be the diagonal matrix with diagonal elements [M]`,` = m`.

The discretized eigenfunctions v̂j(x) are obtained by performing the eigen-

analysis of the matrix Γ̂
x

with metric M :

Γ̂
x

M v̂j(x) = λ̂j(x) v̂j(x) ,

where (v̂j(x))′Mv̂j(x) = 1 if j = j ′ and zero else.

Considering Ẑi = Yi − µ̂(xi), where the value of the bandwidth h1 in

µ̂(xi) has been chosen by cross-validation (see (7)), we can define a cross-

validation criterion for the covariance function

CV (h) =
1

np2

n∑

i=1

p∑

`,`′

{
Zi(t`)Zi(t

′
`) − Γ̂

xi,−i
(t`, t

′
`)
)2

(17)

to choose values for the bandwidth h2 where Γ̂
xi,−i

is the estimated covari-

ance matrix by leaving-out the observation (xi,Yi) from the initial sample.

Covariance structure of the eggs laying curves

This cross-validation procedure was used to determine the value of h2 in the

estimation of the conditional covariance function of the eggs laying curves.

The first, second and third eigenfunctions are drawn in Figure (1) for three

different values (first quartile, median and third quartile) of the total number

of eggs. They appear to be different and it seems that there is a kind of

translation of the eigenfunctions to the right as x increases. We also notice
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that the estimated conditional eigenvalues, that is to say a measure of the

explained variance, also vary with x. The first eigenfunction explains 31 %,

the second 17 % and the third 8 % of the total variation of Y when x is the

first quartile of the total number of eggs. The first eigenfunction explains

35 %, the second 14 % and the third 7 % of the total variation when x is

the median of the total number of eggs. The first eigenfunction explains 37

%, the second 12 % and the third 7 % of the total variation when x is the

third quartile of the total number of eggs.

To end this section, let us also notice that adding a smoothing step, in

the estimation procedure of the mean function and the eigenelements can

lead to better estimates (Rice and Silverman 1991, Silverman 1996, Cardot

2000).

3.3 Some consistency properties

Let us consider the usual norm in H = L2(T × T ) as a criterion error. It is

defined by

‖γ(x)‖2
H =

∫

T
γ(x, s, t)2 ds dt (18)

We assume now that the second order moment conditional function

r2(x, s, t) = IE(Y (s)Y (t)|X = x) satisfies a Lipschitz condition

(H.5) ‖r2(x) − r2(z)‖H ≤ C|x − z|α for some α > 0.

This assumptions means that a small variation of x implies a small vari-

ation of the covariance function and does not seem to be very restrictive.

The following proposition shows that we get a consistent estimator of

the true conditional covariance operator.

Theorem 3.1 Under asumptions (H.1) to (H.5), if sup(h1, h2) → 0,

(log n)/(n min(h1, h2)) → 0 as n tends to infinity,

‖µ(x) − µ̂(x)‖H = O(hβ
1
) + O

(
log n

nh1

)1/2

, a.s

and

‖γ(x) − γ̂(x)‖H = O(hβ
1
) + O(hα

2 ) + O

(
log n

n min(h1, h2)

)1/2

, a.s .

Thus, we can deduce that we obtain consistent estimators for the eigenele-

ments of the conditional covariance operator. We need to assume that the
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conditional eigenvalues are distincts and strictly positive for the eigenfunc-

tions to be identifiable.

(H.6) λ1(x) > λ2(x) > · · · > 0 .

Since the eigenfunctions are uniquely determined up to a sign change, we

choose, without loss of generality, to consider v̂j(x) such that < v̂j(x), vj(x) >≥
0.

Corollary 3.1 Under assumptions (H.1) to (H.6), if sup(h1, h2) → 0,

(log n)/(n min(h1, h2)) → 0 as n tends to infinity,

sup
j

|λ̂j(x) − λj(x)| = O(hβ
1
) + O(hα

2 ) + O

(
log n

n min(h1, h2)

)1/2

, a.s.

and there exists a strictly positive constant C such that for each j,

‖v̂j(x) − vj(x)‖H ≤ Cδj

[
hβ

1
+ hα

2 +

(
log n

n min(h1, h2)

)1/2
]

a.s.

where δ1 = 2
√

2(λ1(x) − λ2(x))−1

and for j ≥ 2, δj = 2
√

2 max
[
(λj−1(x) − λj(x))−1, (λj(x) − λj+1(x))−1

]
.

Let us remarks that, for a fixed sample size n, the estimation of the eigen-

functions are getting poorer and poorer as j increases since δj is generally

an increasing sequence.

4 A simulation study

We perform a small simulation study to evaluate the capacity of our estima-

tors to get accurate estimations of the conditional mean and the conditional

covariance function. This also allows us to see how the estimators are sen-

sitive to the bandwiths values and the sample size.

We considered a real random variable X, drawn from an uniform disti-

bution in [0, 1] and a random function Y defined a follows :

Y (t) = X Z1(t) + (1 − X) Z2(t) ,

where t ∈ T = [0, 1] and Z1 and Z2 are independent random functions such

that

• Z1 is a brownian motion with mean function µ1(t) = sin(4πt), t ∈ [0, 1]

and covariance function γ1(s, t) = min(s, t).

12



• Z2 is a Gaussian process with mean function µ2(t) = cos(4πt), t ∈
[0, 1] and covariance function γ2(s, t) = min(1 − s, 1 − t).

It is easy to see that, for all (s, t) ∈ T × T,

{
µ(x, t) = x sin(4πt) + (1 − x) cos(4πt)

γ(x, s, t) = x2 γ1(s, t) + (1 − x)2γ2(s, t)

We considered samples of n independent realizations of (X, Y ). The re-

alizations of the random function Y are discretized in p = 50 equispaced

sampling points in [0, 1], denoted by t1, t2, . . . , tp.

The following normalized quadratic criterions are used to measure the

estimation error for the estimator (6) of the mean function

MSE(µ̂x
h1

) =

∑p
`=1

(
IE(Y (t`)|X = x) − µ̂x

h1
(t`)

)2
∑p

`=1
(IE(Y (t`)|X = x))2

and for the estimator (16) of the covariance function

MSE(γ̂x
h2

) =

∑p
`,`′=1

(
Cov(Y (t`), Y (t`′)|X = x) − γ̂x

h2
(t`, t`′)

)2
∑p

`,`′=1
(Cov(Y (t`), Y (t`′)|X = x))2

.

We performed a hundred of simulations for two different sample sizes,

n = 100 and n = 500. The mean values of the MSE criterions are gathered

in Tables 2, 3 and 4 for different values of the bandwidths h1 and h2. The

results are presented for X taking the value x = 0.6 but as a matter of fact

they do not vary much provided x is not to close to the edges of the interval

[0, 1].

bandwidth values for h1

sample size 1 0.5 0.25 0.54 0.55 0.56 0.57

100 0.045 0.036 0.026 0.019 0.019 0.025 0.035

500 0.032 0.024 0.013 0.006 0.004 0.005 0.006

Table 2: Estimation error for the mean function of Y conditional to x = 0.6

for different sample sizes and differents bandwidth values.

Let us first notice that even for moderate sample size, i.e. when n = 100,

the estimators perform well for the mean function (see Table 2) and the

covariance function (seeTable 3) provided that the bandwidths values are

reasonable.
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bandwidth values bandwidth values for h1

for h2 0.52 0.53 0.54 0.55 0.56 0.57 0.58

0.5 0.211 0.144 0.102 0.094 0.112 0.146 0.197

0.52 0.209 0.139 0.097 0.090 0.108 0.142 0.192

0.53 0.212 0.137 0.093 0.087 0.105 0.139 0.188

0.54 0.219 0.138 0.092 0.086 0.104 0.136 0.184

0.55 0.225 0.141 0.093 0.085 0.102 0.134 0.181

0.56 0.233 0.147 0.096 0.086 0.101 0.132 0.177

0.57 0.246 0.157 0.103 0.089 0.102 0.131 0.175

0.58 0.267 0.174 0.115 0.097 0.107 0.132 0.174

0.59 0.297 0.199 0.135 0.112 0.117 0.138 0.175

Table 3: Estimation error for the covariance fonction of Y conditional to

x = 0.6 for a sample size n = 100 and differents bandwidth values.

Another important conclusion of this simulation study is that one may

choose different values for the bandwidth h1 associated to the estimator of

the mean function. A kind of diagonal structure appears in Table 3 meaning

that the choice of h1 has an impact on the best value for h2. The best values

of h1 for estimating the mean function seem to be also the best values for

the mean when estimating the covariance function. They must have, in this

example, the same order of magnitude.

One can also notice in Table 4 that when the sample size is large enough,

the choice of a value for h2 seems to be of second importance, particularly

if h1 is well chosen, since the values of the criterion error do not vary much

according to h2.

Figure 2 shows that the estimators are very close to the true conditional

mean function and not too far from the true condtional covariance func-

tion. As said before, a smoothing procedure of the eigenfunctions has been

introduced in order to get better estimations.

5 Concluding remarks

We have proposed in this work a simple and powerful tool to analyse func-

tional data when auxiliary information is available. This approach can be

used in many practical studies since nowadays it is frequent to have a huge

amount of data.

This short paper is first step to conditional FPCA and one can imag-
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Figure 2: An example when the sample size n = 500, with x = 0.6 for

h1 = 0.56 and h2 = 0.57 . Estimation of the mean function is drawn in (a)

with dotted lines and the first eigevector and second eigenvector in (b). The

true covariance function and its conditional estimation are drawn in (c) and

(d).
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bandwidth values bandwidth values for h1

for h2 0.52 0.53 0.54 0.55 0.56 0.57 0.58

0.5 0.166 0.104 0.056 0.032 0.0.027 0.030 0.037

0.52 0.164 0.096 0.048 0.027 0.0.023 0.027 0.034

0.53 0.167 0.094 0.045 0.025 0.0.022 0.026 0.033

0.54 0.172 0.095 0.044 0.024 0.021 0.025 0.033

0.55 0.174 0.096 0.044 0.024 0.021 0.025 0.033

0.56 0.175 0.097 0.045 0.024 0.021 0.025 0.033

0.57 0.177 0.098 0.045 0.024 0.021 0.025 0.033

0.58 0.179 0.100 0.046 0.025 0.021 0.025 0.033

0.59 0.183 0.102 0.048 0.026 0.022 0.026 0.034

Table 4: Estimation error for the covariance fonction of Y conditional to

x = 0.6 for a sample size n = 500 and differents bandwidth values.

ine many extensions. For instance it is immediate to extend this approach

to multivariate conditional information and one can consider additive mod-

els to manage with the curse of dimensionality. One can also extend the

conditional FPCA to functional auxiliary information by adapting the ker-

nel methods proposed by Ferraty and Vieu (2002, 2004). Such an approach

could also be used for prediction of autoregressive functional processes (Besse

et al. 2000, Damon and Guillas 2002) allowing to incorporate at the same

time a functional and real covariate effects.

It remains for the method to be effective in practice to define data driven

criterions that allow to choose reasonable values for the bandwidths h1 and

h2. Cross-validation seems to be a good candidate but a detailed study of

its theoretical performances is beyond the scope of this paper and deserves

further attention.

6 Proofs

Proof of Theorem 2.1.

Let us define ĝ(x) = 1

nh

∑
i K ((Xi − x)/h) Yi and f̂(x) = 1

nh

∑
i K ((Xi − x)/h) ,

then

r̂(x) =
ĝ(x)

f̂(x)
.

We can write

r(x) − r̂(x) =
g(x) − ĝ(x)

f̂(x)
+
(
f̂(x) − f(x)

) r(x)

f̂(x)
. (19)
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The beginning of the proof is rather classical and we get under previous

assumptions that (see e.g Sarda and Vieu 2000) :

f̂(x) − f(x) = O(hβ) + O(
√

log n/(nh)), a.s (20)

On the other hand, reminding that g = rf also satisfies the Lipschitz

condition in H and considering z = (u − x)/h we get directly for the bias,

under (H.1) and (H.4) :

IEĝ(x) − g(x) =
1

h

∫
(K ((u − x)/h) Y − g(x)) f(u) du

=

∫

R

(g(x − zh) − g(x)) K(z)dz

= O(hβ) . (21)

The variance term ĝ(x) − IEĝ(x) is dealt with exponential inequalities

for separable Hilbert space valued ramdom variables. Defining

∆i =
1

h
(K ((Xi − x)/h) Yi − IEK ((X − x)/h) Y )

it is easy to see that ‖∆i‖ ≤ C/h and IE‖∆i‖2 ≤ C
h under assumptions (H.1)

to (H.3). Applying Yurinskii’s Lemma (Yurinskii, 1976), we obtain

P [‖ĝ(x) − IEĝ(x)‖H > ε] ≤ 2 exp

(
− nε2h

4C

)

which is a convergent sequence if we take ε = ε0 (log n/(nh))1/2, and thus

by the Borel-Cantelli Lemma, we get that

‖ĝ(x) − IEĝ(x)‖H = O

(
log n

nh

)1/2

a.s. (22)

which concludes the proof combining (20), (21) and (22) in (19).

Proof of Theorem 3.1.

Under previous assumptions we get directly by Theorem 2.1

‖µ̂(x) − µ(x)‖H = O(hβ
1
) + O

(
log n

nh1

)1/2

, a.s . (23)

Let us introduce now the empirical counterpart

r̂2(x, s, t) =
n∑

i=1

wi(x, h2)Yi(s)Yi(t) ,

17



of the second order moment function r2(x, s, t) = IE(Y (s)Y (t) | X = x). Let

us decompose the estimator of the covariance function as follows

γ̂(x) = r̂2(x) − µ̃(x) ⊗ µ̂(x) − µ̂(x) ⊗ µ̃(x) + µ̂(x) ⊗ µ̂(x) (24)

where

µ̃x =
n∑

i=1

wi(x, h2)Yi .

Let us notice, that under assumptions on the bandwidth h2 we have by

Theorem 2.1,

‖µ̃(x) − µ(x)‖H = O(hβ
2
) + O

(
log n

nh2

)1/2

, a.s . (25)

Looking now at the difference

γ(x) − γ̂(x) = r2(x) − µ(x) ⊗ µ(x) − r̂2(x) + µ̃(x) ⊗ µ̂(x) + µ̂(x) ⊗ (µ̃(x) − µ̂(x))

= r2(x) − r̂2(x) − µ(x) ⊗ µ(x) + µ̃(x) ⊗ µ̂(x) + µ̂(x) ⊗ (µ̃(x) − µ̂(x))(26)

we get that

‖γ(x) − γ̂(x)‖H ≤ ‖r2(x) − r̂2(x)‖H + ‖µ̃(x) ⊗ µ̂(x) − µ(x) ⊗ µ(x)‖H
+‖µ̂x ⊗ (µ̃x − µ̂x) ‖H (27)

Applying Theorem 2.1 to the new functional observations Zi(s, t) =

Yi(s)Yi(t) we get directly that

‖r̂2(x) − r2(x)‖H = O(hα
2 ) + O

(
log n

nh2

)1/2

a.s. . (28)

On the other hand, expanding

µ̃(x) ⊗ µ̂(x) − µ(x) ⊗ µ(x) = (µ̃(x) − µ(x)) ⊗ µ̂(x) − µ(x) ⊗ (µ̂(x) − µ(x))

we get by (23) and (25)

‖µ̃(x) ⊗ µ̂(x) − µ(x) ⊗ µ(x)‖H ≤ ‖µ̃(x) − µ(x)‖H‖µ̂(x)‖H + ‖µ(x)‖H‖µ̂(x) − µ(x)‖H

= O(hβ
1
) + O(hα

2 ) + O

(
log n

n min(h1, h2)

)1/2

, a.s. ,(29)

since ‖µ̂(x)‖H is bounded by a positive constant under assumption (H.2).

Noticing finally that µ̃(x) − µ̂(x) = µ̃(x) − µ(x) + µ(x) − µ̂(x) we get

directly that

‖µ̂(x) ⊗ (µ̃(x) − µ̂(x)) ‖H ≤ ‖µ̂(x)‖H (‖µ̃(x) − µ(x)‖H + ‖µ̂(x) − µ(x)‖H)

= O(hβ
1
) + O(hα

2 ) + O

(
log n

n min(h1, h2)

)1/2

, a.s. ,(30)
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which concludes the proof combining (28), (29) and (30) in (27).

Proof of Corollary 3.1.

The proof of the first part of the Corollary is an immediate consequence

of classical properties of the eigenelements of covariance operators. The

eigenvalues (see e.g Dauxois et al. 1982) satisfy:

|λ̂j(x) − λj(x)| ≤ ‖Γ̂x − Γx‖

where the norm ‖.‖ for operator is the Hilbert-Schmidt norm which is equiv-

alent to the norm in H for integral operators

‖Γx‖2 =

∫

T
γ(x, s, t)2 ds dt

= ‖γ(x)‖2
H .

On the other hand, Lemma 4.3 by Bosq (2000) tells us that

‖v̂j(x) − vj(x)‖H ≤ Cδj‖Γx − Γ̂x‖ ,

which concludes the proof.
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