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Fractal first order partial differential

equations

Jérôme Droniou, Cyril Imbert

Abstract

The present paper is concerned with semilinear partial differential equa-
tions involving a particular pseudo-differential operator. It investigates both
fractal conservation laws and non-local Hamilton-Jacobi equations. The idea
is to combine an integral representation of the operator and Duhamel’s for-
mula to prove, on the one side, the key a priori estimates for the scalar
conservation law and the Hamilton-Jacobi equation and, on the other side,
the smoothing effect of the operator. As far as Hamilton-Jacobi equations
are concerned, a non-local vanishing viscosity method is used to construct
a (viscosity) solution when existence of regular solutions fails, and a rate of
convergence is provided. Turning to conservation laws, global-in-time exis-
tence and uniqueness are established. We also show that our formula allows
to obtain entropy inequalities for the non-local conservation law, and thus
to prove the convergence of the solution, as the non-local term vanishes,
toward the entropy solution of the pure conservation law.

Mathematical subject classifications: 35B45, 35B65, 35A35, 35S30
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ciple – non-local Hamilton-Jacobi equations – smoothing effect – a priori
estimates – global-in-time existence – rate of convergence.

1. Introduction

In this paper, we are interested in solving semilinear partial differential
equations involving the fractal operator, also called Lévy operator, defined
on the Schwartz class S(RN ) by

gλ[ϕ] = F−1
(
| · |λF(ϕ)

)
with 0 < λ < 2 (1)
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where F is the Fourier transform. The study of PDEs involving gλ is mo-
tivated by a number of physical problems, such as overdriven detonations
in gases [9] or anomalous diffusion in semiconductor growth [27], and by
mathematical models in finance (see below for references). We consider per-
turbations by gλ of Hamilton-Jacobi equations or scalar conservation laws,
that is to say





∂tu(t, x) + gλ[u(t, ·)](x)
= F (t, x, u(t, x),∇u(t, x)) t > 0 , x ∈ RN ,

u(0, x) = u0(x) x ∈ RN

(2)

or





∂tu(t, x) + div(f(t, x, u(t, x))) + gλ[u(t, ·)](x)
= h(t, x, u(t, x))

t > 0 , x ∈ RN ,

u(0, x) = u0(x) x ∈ RN .

(3)

These kinds of equations have already been studied. As far as scalar
conservation laws are concerned, some recent papers have investigated them.
One of the first works on this subject is probably [4], which deals with (3)
when h = 0 and f(t, x, u) = f(u); using energy estimates, it states some
local-in-time existence and uniqueness results of weak solutions if f has
a polynomial growth. This result is strengthened in [15], where a splitting
method is used to prove global-in-time existence and uniqueness of a regular
solution if λ > 1.

To our best knowledge, Hamilton-Jacobi equations of type (2) first ap-
peared in the context of mathematical finance as Bellman equations of op-
timal control of jump diffusion processes [24]. See also [25,23,1] and more
recently [6–8]. A general theory for non-linear integro-partial differential
equations is developed by Jakobsen and Karlsen [19,20]. Some of the ideas
of [15] are adapted in [18] to prove that (2) has regular solutions if λ > 1.
It adapts previous viscosity solution theories to the equation (2) (existence
via Perron’s method, comparison results, stability) and use techniques of
[15] to obtain further regularity.

The preceding methods to handle (2) and (3) are somewhat incompati-
ble: the splitting method for Hamilton-Jacobi equation (2) is less direct than
Perron’s one and it is well known that the notion of viscosity solution is in-
adequate to conservation laws such as (3). However, a scalar conservation
law can always be formally written as a Hamilton-Jacobi equation (write
div (f(u)) = f ′(u) · ∇u). In this paper, we present a way to simultaneously
solve (2) and (3) by using this simple fact and the construction of regular
solutions to the Hamilton-Jacobi equations under weak assumptions (that
are satisfied by both (2) and (3)). The key estimate is given by Proposi-
tion 2. As we notice in the course of the proofs, the method we use is also
valid for more general operators than gλ.
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The starting point of this work is the use of an equivalent definition of
the fractal operator, namely an integral formula for gλ similar to the ones
appearing in [11] and [18]. This formula permits to extend the operator from
Schwartz functions to C2

b ones and is moreover used to establish what we
call a “reverse maximum principle” that says, freely speaking, that gλ[φ](x)
is nonnegative if x is a maximum point of φ. This principle is the key point
when proving the estimates for the regular solutions of (2). Thanks to the
Fourier definition of gλ, we are also able to give properties of the kernel
associated to gλ and thus to write a Duhamel formula for the solutions of
the PDEs.

The main novelty of this paper is to combine the “reverse maximum
principle” (coming from the integral formula for gλ) and the Duhamel for-
mula in order to prove existence and uniqueness of global smooth solutions
to our PDEs.

As far as Hamilton-Jacobi equations are concerned, the study of (2)
in [18] is made for λ > 1 and by using Perron’s method. We generalize
here the results of this paper to the case λ ∈]0, 2[ and we weaken the hy-
potheses on the Hamiltonian. We first prove that the fractal operator has a
smoothing effect for λ ∈]1, 2[ under very general (and natural) hypotheses
on F ; the idea to obtain a global solution is, roughly speaking, to study how
sup

RN |u(t, ·)| evolves. We next treat the case λ ∈]0, 2[ (recall that, contrary
to the formula in [18], ours is valid for such λ) by solving (2) in the sense
of viscosity solutions; as expected in this context (see (1)), these solutions
are no more regular but only bounded and uniformly continuous. We use a
non-local vanishing viscosity method (though we could have used Perron’s
method, see Remark 8): precisely, we add a vanishing fractal operator εgµ

with µ > 1 and we pass to the limit ε→ 0. We also provide, for all µ ∈]0, 2[,
a rate of convergence that is in some respect surprising, compared with
the case µ > 1 treated in [18]. Let us also mention that the reverse maxi-
mum principle and its main consequence, namely the key estimate given by
Proposition 2, can be generalized to the framework of viscosity solutions:
nonsmooth versions of both results are stated and proved in Appendix. We
have chosen not to use these versions because, anywhere we can, we search
for regular solutions and we turn to the notion of viscosity solution only if
mandatory (that is if λ ≤ 1; see Subsection 3.2).

The case of scalar hyperbolic equations (3) with λ > 1 is treated next.
The a priori estimates on the solution follow from Proposition 2, the same
proposition that gives the a priori estimates for (2), and the existence of a
regular solution is as straightforward. The splitting method of [15] can be
adapted to some cases where f and h depend on (t, x) (see [14]), but this is
awfully technical; the technique we use here therefore presents a noticeable
simplification in the study of (3) in the general case. The question of non-
local vanishing viscosity regularization (multiplying gλ[u] by ε and letting
ε → 0) is treated in [13], still using the splitting method (and for h = 0,
f(t, x, u) = f(u)); at the end of the present paper, we quickly indicate how
the formula for gλ allows to significantly simplify the corresponding proofs
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for general f and h, in particular the proof of the entropy inequalities for
(3).

The paper is organised as follows. Section 2 is devoted to give an ana-
lytical proof of the integral formula for gλ (Theorem 1). It also contains the
“reverse maximum principle” (Theorem 2) we presented above. In Section 3,
we study Hamilton-Jacobi equations. We first present the smoothing effect
of the fractal operator on (2) for λ ∈]1, 2[ (Theorem 3); next, we construct
viscosity solutions for λ ∈]0, 2[ by a non-local vanishing viscosity method
(Theorem 5) and we prove a rate of convergence (Theorem 6). Section 4
contains the resolution of (3) and the (short) proof of the entropy inequali-
ties associated with the perturbed conservation law (Subsection 4.2). Some
appendixes in Section 5 conclude the paper. In particular, the reader can
find there a generalization of the “reverse maximum principle” and of the
key estimate to the viscosity framework.

Notations. Throughout the paper, Br (resp. Br(x)) denotes the ball of
RN centered at the origin (resp. at x) and of radius r. Euler’s function is
denoted by Γ .

2. Integral representation of gλ

The main result of this section is the integral representation of gλ, which
generalizes Lemma 1 in [18]. As a consequence of this formula, we extend
the definition of gλ from Schwartz functions to C2

b functions and we prove
what we call a “reverse maximum principle”: roughly speaking, it says that
at a maximum point of a C2

b function ϕ, we have gλ[ϕ] ≥ 0. This result is
the crucial argument when proving the key estimate stated in Proposition 2.

Theorem 1. If λ ∈]0, 2[, then, for all ϕ ∈ S(RN ), all x ∈ RN and all r > 0,

gλ[ϕ](x) = −cN (λ)

(∫

Br

ϕ(x + z) − ϕ(x) −∇ϕ(x) · z
|z|N+λ

dz

+

∫

RN\Br

ϕ(x + z) − ϕ(x)

|z|N+λ
dz

) (4)

where cN (λ) =
λΓ ( N+λ

2
)

2π
N
2

+λΓ (1−λ
2
)
. We can generalize this formula in two cases:

i) If λ ∈]0, 1[, we can take r = 0:

gλ[ϕ](x) = −cN(λ)

∫

RN

ϕ(x+ z) − ϕ(x)

|z|N+λ
dz.

ii) If λ ∈]1, 2[, we can take r = +∞:

gλ[ϕ](x) = −cN (λ)

∫

RN

ϕ(x+ z) − ϕ(x) −∇ϕ(x) · z
|z|N+λ

dz.
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Before proving these formulae, let us state some of their consequences.
We first notice that (4) allows to define gλ[ϕ] ∈ Cb(R

N ) for ϕ ∈ C2
b (RN ).

In fact, this gives a continuous extension of gλ in the following sense.

Proposition 1. Let λ ∈]0, 2[ and ϕ ∈ C2
b (RN ). If (ϕn)n≥1 ∈ C2

b (RN )
is bounded in L∞(RN ) and D2ϕn → D2ϕ locally uniformly on RN , then
gλ[ϕn] → gλ[ϕ] locally uniformly on RN .

Remark 1. We could also define gλ on Hölder spaces of functions (depend-
ing on λ), and state an equivalent of Proposition 1 in this framework.

Proof (of Proposition 1).
The operator gλ being linear, we can assume that ϕ = 0. Since (ϕn)n≥1

is bounded in L∞(RN ), the second integral term of (4) applied to ϕ =
ϕn is small, uniformly for n ≥ 1 and x ∈ RN , if r is large. By Taylor’s
formula, for |z| ≤ r and |x| ≤ R we have |ϕn(x + z) − ϕn(x) − ∇ϕn(x) ·
z| ≤ ||D2ϕn||L∞(Br+R)|z|2; hence, with r fixed, the first integral term of (4)
applied to ϕ = ϕn is small, uniformly for x ∈ BR, if n is large. ⊓⊔

From (4) it is obvious that, if x is a global maximum of ϕ, then gλ[ϕ](x) ≥
0, with equality if and only if ϕ is constant (notice that cN(λ) > 0 for
λ ∈]0, 2[). We have a generalization of this property, which will be the key
argument to study first order perturbations of ∂t + gλ.

Theorem 2. Let λ ∈]0, 2[ and ϕ ∈ C2
b (RN ). If (xn)n≥1 is a sequence of

RN such that ϕ(xn) → sup
RN ϕ as n → ∞, then limn→∞ ∇ϕ(xn) = 0 and

lim infn→∞ gλ[ϕ](xn) ≥ 0.

Proof (of Theorem 2).
Since the second derivative of ϕ is bounded, there exists C such that,

for all n ≥ 1 and all z ∈ RN ,

sup
RN ϕ ≥ ϕ(xn + z) ≥ ϕ(xn) + ∇ϕ(xn) · z − C|z|2. (5)

Up to a subsequence, we can assume that ∇ϕ(xn) → p (this sequence is
bounded). Passing to the limit n→ ∞ in (5) gives 0 ≥ p ·z−C|z|2; choosing
then z = tp and letting t → 0+ shows that p = 0, which proves that
limn→∞ ∇ϕ(xn) = 0 (the only adherence value of the bounded sequence
(∇ϕ(xn))n≥1 is 0).

Since ϕ(xn + z)−ϕ(xn) ≤ sup
RN ϕ−ϕ(xn) → 0, we deduce that, for all

z ∈ RN ,

lim supn→∞ (ϕ(xn + z) − ϕ(xn)) ≤ 0

lim supn→∞ (ϕ(xn + z) − ϕ(xn) −∇ϕ(xn) · z) ≤ 0.
(6)

We also have

|ϕ(xn + z) − ϕ(xn)|
|z|N+λ

≤
2||ϕ||L∞(RN )

|z|N+λ
∈ L1(RN\Br)
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and

|ϕ(xn + z) − ϕ(xn) −∇ϕ(xn) · z|
|z|N+λ

≤
||D2ϕ||L∞(RN )|z|2

|z|N+λ
∈ L1(Br).

Hence, by (6) and Fatou’s Lemma,

0 ≥
∫

RN\Br

lim sup
n→∞

ϕ(xn + z) − ϕ(xn)

|z|N+λ
dz

≥ lim sup
n→∞

∫

RN\Br

ϕ(xn + z) − ϕ(xn)

|z|N+λ
dz

and

0 ≥
∫

Br

lim sup
n→∞

ϕ(xn + z) − ϕ(xn) −∇ϕ(xn) · z
|z|N+λ

dz

≥ lim sup
n→∞

∫

Br

ϕ(xn + z) − ϕ(xn) −∇ϕ(xn) · z
|z|N+λ

dz.

Combining these inequalities and (4) permits to achieve the proof of the
theorem. ⊓⊔

Remark 2. This theorem is also true for λ = 2, that is to say g2 = −4π2∆,
provided that ϕ ∈ C3

b (RN ).

We now conclude this section by proving the formula given for gλ.

Proof (of Theorem 1).
Step 1: a preliminary formula.
We first assume that λ ∈]1, 2[. We have gλ[ϕ] = F−1(| · |λF(ϕ)); but

F(∆ϕ) = −4π2| · |2F(ϕ) and therefore, for ϕ ∈ S(RN ),

gλ[ϕ] =
1

−4π2
F−1(| · |λ−2F(∆ϕ)). (7)

Since λ ∈]1, 2[, we have λ−2 ∈]−N, 0[; hence | · |λ−2 is locally integrable
and is in S′(RN ). The inverse Fourier transform of | · |λ−2 is a distribution
with radial symmetry and homogeneity of order −N − (λ − 2); we deduce
that there exists CN (λ) such that

F−1(| · |λ−2) = CN (λ)| · |−N−(λ−2) (8)

in D′(RN\{0}); since | · |−N−(λ−2) is locally integrable, it is quite easy to
see that (8) also holds in S′(RN ). We compute CN (λ) by taking the test

function γ(x) = e−π|x|2 , which is its own inverse Fourier transform:
∫

RN

|x|λ−2e−π|x|2 dx = 〈F−1(| · |λ−2), γ〉S′(RN ),S(RN )

= CN (λ)

∫

RN

|x|−N−(λ−2)e−π|x|2 dx.
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Using polar coordinates, we deduce

∫ ∞

0

rN+λ−4e−πr2

rdr = CN (λ)

∫ ∞

0

r−λe−πr2

rdr

and the change of variable τ = πr2 implies

π−(N+λ−4)/2

∫ ∞

0

τ (N+λ−4)/2e−τ dτ

2π
= CN (λ)πλ/2

∫ ∞

0

τ−λ/2e−τ dτ

2π
,

that is to say CN (λ) = Γ (N+λ
2 − 1)/[π

N
2

+λ−2Γ (1 − λ
2 )]. With this value of

CN (λ), (7) and (8) give, for all ϕ ∈ S(RN ),

gλ[ϕ] = − Γ
(

N+λ
2 − 1

)

4π
N
2

+λΓ
(
1 − λ

2

) | · |−N−(λ−2) ∗∆ϕ. (9)

Step 2: proof of (4) for λ ∈]1, 2[.
Let r > 0, ϕ ∈ S(RN ), x ∈ RN and define φx(z) = ϕ(x + z) − ϕ(x) −

∇ϕ(x) · z θ(z), where θ ∈ C∞
c (RN ) is even and equal to 1 on Br. We have

∆φx(z) = ∆ϕ(x+z)−∇ϕ(x) ·∆(z θ(z)), and thus, with β = −N−(λ−2) ∈
] −N, 0[,

| · |−N−(λ−2) ∗∆ϕ(x) =

∫

RN

|z|β∆ϕ(x+ z) dz

=

∫

RN

|z|β∆φx(z) dz + ∇ϕ(x) ·
∫

RN

|z|β∆(z θ(z)) dz

(all these functions are integrable since ∆ϕ(x + z) and ∆(z θ(z)) are both
Schwartz functions). But z 7→ z θ(z) is odd, so z 7→ |z|β∆(z θ(z)) is also odd
and its integral on RN vanishes. Hence,

| · |−N−(λ−2) ∗∆ϕ(x) =

∫

RN

|z|β∆φx(z) dz = lim
ε→0

∫

Cε

|z|β∆φx(z) dz (10)

where Cε = {ε ≤ |z| ≤ 1/ε}. By Green’s formula,

∫

Cε

|z|β∆φx(z) dz

=

∫

Cε

∆(|z|β)φx(z) dz

+

∫

∂Cε

[
|z|β∇φx(z) · n(z) − φx(z)∇(|z|β) · n(z)

]
dσε(z) (11)

where σε is the (N − 1)-dimensional measure on ∂Cε = Sε ∪ S1/ε (with
Sa = {|z| = a}) and n is the outer unit normal to Cε. On a neighbourhood
of 0, we have φx(z) = ϕ(x+z)−ϕ(x)−∇ϕ(x) ·z, and thus φx(z) = O(|z|2),
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∇φx(z) = O(|z|); using |∇(|z|β)| = |β| |z|β−1, we deduce, since N + β =
2 − λ > 0,

∣∣∣∣
∫

Sε

(
|z|β∇φx(z) · n(z) −φx(z)∇(|z|β) · n(z)

)
dσε(z)

∣∣∣∣

≤ CεN−1εβ+1 → 0 as ε→ 0. (12)

Since −(N − 1) − (β − 1) = 2 − (N + β) = λ > 0 and, at infinity, φx(z) =
ϕ(x+ z)−ϕ(x) is bounded and ∇φx(z) = ∇ϕ(x+ z) is rapidly decreasing,
we obtain

∣∣∣∣∣

∫

S1/ε

(
|z|β∇φx(z) · n(z) − φx(z)∇(|z|β) · n(z)

)
dσε(z)

∣∣∣∣∣

≤ C

(
1

ε

)N−1+β

sup
S1/ε

|∇ϕ(x + ·)| + Cε−(N−1)ε−(β−1) → 0 as ε→ 0.(13)

An easy computation gives

∆(|z|β) = div(β|z|β−2z)

= β

(
N |z|β−2 + (β − 2)|z|β−3 z

|z| · z
)

= β(N + β − 2)|z|β−2

and therefore
∫

Cε

∆(|z|β)φx(z) dz = (N + λ− 2)λ

∫

Cε

|z|−N−λφx(z) dz. (14)

Since φx(z) = O(|z|2) on a neighbourhood of 0 and φx is bounded on RN ,
the function | · |−N−λφx is integrable on RN and we can pass to the limit
as ε→ 0 in the right-hand side of (14).

Combining (10), (11), (12), (13) and (14) yields

| · |−N−(λ−2)∗∆ϕ(x)

= λ(N + λ− 2)

∫

RN

ϕ(x+ z) − ϕ(x) −∇ϕ(x) · z θ(z)
|z|N+λ

dz.

Since θ = 1 on Br, this gives

| · |−N−(λ−2) ∗∆ϕ(x)

= λ(N + λ− 2)

∫

Br

ϕ(x+ z) − ϕ(x) −∇ϕ(x) · z
|z|N+λ

dz

+λ(N + λ− 2)

∫

RN\Br

ϕ(x + z) − ϕ(x) −∇ϕ(x) · z θ(z)
|z|N+λ

dz.
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But |z|−N−λ(ϕ(x+ z)−ϕ(x)) and |z|−N−λz θ(z) are integrable on RN\Br,
and thus∫

RN\Br

ϕ(x+ z) − ϕ(x) −∇ϕ(x) · z θ(z)
|z|N+λ

dz

=

∫

RN\Br

ϕ(x + z) − ϕ(x)

|z|N+λ
dz −∇ϕ(x) ·

∫

RN\Br

z θ(z)

|z|N+λ
dz.

Since z 7→ |z|−N−λz θ(z) is odd, this last integral vanishes and we deduce

| · |−N−(λ−2) ∗∆ϕ(x) = λ(N + λ− 2)

∫

Br

ϕ(x+ z) − ϕ(x) −∇ϕ(x) · z
|z|N+λ

dz

+λ(N + λ− 2)

∫

RN\Br

ϕ(x + z) − ϕ(x)

|z|N+λ
dz.

Using this formula in (9) and taking into account (N +λ−2)Γ (N+λ
2 −1) =

2(N+λ
2 − 1)Γ (N+λ

2 − 1) = 2Γ (N+λ
2 ), we obtain (4) if λ ∈]1, 2[.

Notice that, up to now, the reasoning is also valid for any λ ∈]0, 2[
if N ≥ 2. To prove (4) in the general case, we must use a holomorphy
argument.

Step 3: conclusion.
We now obtain (4) in the case λ ∈]0, 1]. Let ϕ ∈ S(RN ) and x ∈ RN .

Since F(ϕ) ∈ S(RN ), we have, for all λ in the strip E = {λ ∈ C | 0 <
Re(λ) < 2},

| | · |λF(ϕ) | = | · |Re(λ)|F(ϕ)| ≤ (1 + | · |2)|F(ϕ)| ∈ L1(RN ).

Hence, by holomorphy under the integral sign, the function

λ 7→ gλ[ϕ](x) =

∫

RN

e2iπx·ξ|ξ|λF(ϕ)(ξ) dξ

is holomorphic on E. For all 0 < a ≤ Re(λ) ≤ b < 2, the integrands in
(4) are bounded by integrable functions which only depend on a and b: if
z ∈ Br, we have | |z|λ | = |z|Re(λ) ≥ rRe(λ)−b|z|b ≥ cr,b|z|b and, if z 6∈ Br,
then | |z|λ| ≥ rRe(λ)−a|z|a ≥ c′r,a|z|a; hence, the two integral terms in this
formula are also holomorphic with respect to λ ∈ E. Since λ 7→ cN(λ) is
holomorphic on E (Γ is holomorphic in the half-plane {Re > 0} and has no
zero), all the functions of λ in (4) are holomorphic on E; this equality being
satisfied for all real λ in ]1, 2[, it holds in fact for any λ ∈ E. In particular,
this proves (4) if λ ∈]0, 2[.

The special cases i) and ii) of the theorem are easy consequences of (4).
Indeed, ϕ(x + z) − ϕ(x) = O(|z|) on a neighbourhood of 0; thus, if λ < 1,
|z|−N−λ(ϕ(x+ z)− ϕ(x)) is integrable on RN and we can pass to the limit
r → 0 in (4). The function z 7→ ϕ(x + z) − ϕ(x) − ∇ϕ(x) · z has a linear
growth at infinity; therefore, if λ > 1, |z|−N−λ(ϕ(x+ z)−ϕ(x)−∇ϕ(x) · z)
is integrable on RN and we conclude by letting r → ∞ in (4). ⊓⊔
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3. Fractal Hamilton-Jacobi equations

3.1. A smoothing effect for λ ∈]1, 2[

We assume here that λ ∈]1, 2[ and we consider the Cauchy problem





∂tu(t, x) + gλ[u(t, ·)](x)
= F (t, x, u(t, x),∇u(t, x)) t > 0 , x ∈ RN ,

u(0, x) = u0(x) x ∈ RN ,

(15)

where u0 ∈W 1,∞(RN ) and F ∈ C∞([0,∞[×RN × R × RN ) satisfies

∀T > 0 , ∀R > 0 , ∀k ∈ N , ∃CT,R,k such that,

for all (t, x, s, ξ) ∈ [0, T ]× R
N × [−R,R]×BR

and all α ∈ N2N+2 satisfying |α| ≤ k, |∂αF (t, x, s, ξ)| ≤ CT,R,k.

(16)

We also assume that

∀T > 0, there exists ΛT : [0,+∞[7→]0,+∞[ continuous

nondecreasing such that
∫∞

0
1

ΛT (a) da = +∞ and,

for all (t, x, s) ∈ [0, T ]× R
N × R, sgn(s)F (t, x, s, 0) ≤ ΛT (|s|) ,

(17)

∀T > 0, ∀R > 0, there exists ΓT,R : [0,+∞[7→]0,+∞[ continuous

nondecreasing such that
∫∞

0
1

ΓT,R(a) da = +∞ and,

for all (t, x, s, ξ) ∈ [0, T ]× RN × [−R,R] × RN ,

|ξ|∂sF (t, x, s, ξ) ≤ ΓT,R(|ξ|) , |∇xF (t, x, s, ξ)| ≤ ΓT,R(|ξ|)

(18)

and we define

LT (a) =

∫ a

0

1

ΛT (b)
db and GT,R(a) =

∫ a

0

1

2NΓT,R(b)
db. (19)

By the assumptions on ΛT and ΓT,R, the functions LT and GT,R are non-
decreasing C1-diffeomorphisms from [0,∞[ to [0,∞[. Our main result con-
cerning (15) is the following.

Theorem 3. Let λ ∈]1, 2[, u0 ∈ W 1,∞(RN ) and F satisfy (16), (17) and
(18). There exists a unique solution u to (15) in the following sense: for all
T > 0,

u ∈ Cb(]0, T [×RN) , ∇u ∈ Cb(]0, T [×RN)N and,

for all a ∈]0, T [ , u ∈ C∞
b (]a, T [×RN) ,

(20)

u satisfies the PDE of (15) on ]0, T [×RN , (21)

u(t, ·) → u0 uniformly on RN , as t→ 0. (22)
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We also have the following estimates on the solution: for all 0 < t < T <∞,

||u(t, ·)||L∞(RN ) ≤ (LT )−1
(
t+ LT (||u0||L∞(RN ))

)
, (23)

||Du(t, ·)||L∞(RN ) ≤ (GT,R)−1
(
t+ GT,R(||Du0||L∞(RN ))

)
, (24)

where LT and GT,R are defined by (19),

||Du(t, ·)||L∞(RN ) =

N∑

i=1

||∂iu(t, ·)||L∞(RN )

and R is any upper bound of ||u||L∞(]0,T [×RN ).

Remark 3. The uniqueness holds under weaker assumptions (see Corollary
1) and, with the technique used in Section 4, it can also be proved if the
uniform convergence in (22) is replaced by a L∞ weak-∗ convergence.

3.1.1. Discussion of the assumptions We assume that F is regular
because we look here for regular solutions to (15) (we relax this in Sub-
section 3.2); in this framework, (16) is restricting only in the sense that
it imposes bounds which are uniform with respect to x ∈ RN , but this is
natural since we want solutions that also satisfy such global bounds.

Assumption (17) is used to bound the solution, and (18) to bound its
gradient. As a simple particular case of these assumptions, we can take
ΛT (a) = KT (1+a) and ΓT,R(a) = MT,R(1+a) with KT andMT,R constants
(see (34), (35) and Remark 6). With these choices, (23) and (24) read

||u(t, ·)||L∞(RN ) ≤ (1 + ||u0||L∞(RN ))e
KT t − 1

||Du(t, ·)||L∞(RN ) ≤ (1 + ||Du0||L∞(RN ))e
2NMT,Rt − 1 ,

which are quite classical estimates. Note that if this choice of ΓT,R in (18)
is usual (see [12] for λ = 2, [18] for λ ∈]1, 2[ and [3] for the pure Hamilton-
Jacobi equation — i.e. without gλ), Assumption (17) is, even with the
preceding choice of ΛT , less usual in the framework of Hamilton-Jacobi
equations. To ensure global existence, this hypothesis is in general replaced
by a bound on F (t, x, 0, 0) and by the assumption that F is nonincreas-
ing with respect to s (see the preceding references). Assumption (17) with
ΛT (a) = KT (1+a) however appears in [16] in the case of parabolic equations
(i.e. λ = 2).

In their general form, Assumptions (17) and (18) do not seem common
in the literature; however, they are completely natural with respect to the
technique we use here. They allow to consider, for example, F (t, x, u,∇u) =
u2 ln(1 + |∇u|2).

We now turn to the proof of Theorem 3.
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3.1.2. L∞ estimates and uniqueness The following proposition gives
the key estimate, both for Hamilton-Jacobi equations and for scalar conser-
vation laws; it relies on Theorem 2 in an essential way. This estimate still
holds true in a more general case (precisely, in the framework of viscosity
solution, with less regular solutions; see Subsection 3.2 for a definition): see
Proposition 4 in Appendix. We choose to present below the estimate in the
smooth case because we look here for regular solutions.

Proposition 2. Let λ ∈]0, 2[, T > 0 and G ∈ C(]0, T [×RN × R × RN ) be
such that, for all R > 0, ∇ξG is bounded on ]0, T [×RN × [−R,R]×BR. We
also assume that

there exists h : [0,∞[7→]0,∞[ continuous nondecreasing

such that
∫∞

0
1

h(a) da = +∞ and, for all (t, x, s) ∈]0, T [×RN × R,

sgn(s)G(t, x, s, 0) ≤ h(|s|).
(25)

If u ∈ C2
b (]a, T [×RN) for all a ∈]0, T [ and satisfies

∂tu(t, x) + gλ[u(t, ·)](x) = G(t, x, u(t, x),∇u(t, x)) on ]0, T [×R
N , (26)

then, defining H(a) =
∫ a

0
1

h(b) db, we have, for all 0 < t′ < t < T ,

||u(t, ·)||L∞(RN ) ≤ H−1
(
t− t′ + H(||u(t′, ·)||L∞(RN ))

)
. (27)

Proof (of Proposition 2).
Let a ∈]0, T [. Since ∂2

t u is bounded on ]a/2, T [×RN (say by Ca), we
have, for all t ∈]a, T [, all 0 < τ < a/2 and all x ∈ RN ,

u(t, x) ≤ u(t− τ, x) + τ∂tu(t, x) + Caτ
2

≤ sup
RN u(t− τ, ·) + τG(t, x, u(t, x),∇u(t, x))

−τgλ[u(t, ·)](x) + Caτ
2. (28)

Fix t > a and assume that sup
RN u(t, ·) > 0. Let (xn)n≥1 ∈ RN be a

sequence such that u(t, xn) → sup
RN u(t, ·). We have

G(t, xn, u(t, xn),∇u(t, xn)) ≤ G(t, xn, u(t, xn), 0) +Mt|∇u(t, xn)|

where Mt = sup{|∇ξG(t, x, s, ξ)| , (x, s, ξ) ∈ RN × [−Rt, Rt] × BRt} with
Rt an upper bound of u(t, ·) and ∇u(t, ·). For n large enough, u(t, xn) > 0
and thus, by (25),

G(t, xn, u(t, xn),∇u(t, xn)) ≤ h(u(t, xn)) +Mt|∇u(t, xn)|
≤ h (sup

RN u(t, ·)) +Mt|∇u(t, xn)|.

Injected in (28), this gives, for all t ∈]a, T [ and all 0 < τ < a/2,

u(t, xn) ≤ sup
RN u(t− τ, ·) + τh (sup

RN u(t, ·)) + τMt|∇u(t, xn)|
−τgλ[u(t, ·)](xn) + Caτ

2.
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By Theorem 2, we have lim infn→∞ gλ[u(t, ·)](xn) ≥ 0 and ∇u(t, xn) → 0
as n→ ∞. Hence, taking the lim supn→∞ of the preceding inequality leads
to

sup
RN u(t, ·) ≤ sup

RN u(t− τ, ·) + τh (sup
RN u(t, ·)) + Caτ

2.

This has been obtained under the condition that sup
RN u(t, ·) > 0; defining

Φ(t) = max(sup
RN u(t, ·), 0), we deduce, whatever the sign of sup

RN u(t, ·)
is, that Φ(t) ≤ Φ(t − τ) + τh(Φ(t)) + Caτ

2, that is to say, for t ∈]a, T [ and
0 < τ < a/2,

Φ(t) − Φ(t− τ)

τ
≤ h(Φ(t)) + Caτ.

As ∂tu is bounded on ]a, T [×RN , it is easy to see that Φ is Lipschitz con-
tinuous on ]a, T [ and this inequality therefore implies Φ′ ≤ h(Φ) almost
everywhere on ]0, T [. Hence, the derivative of the locally Lipschitz continu-
ous function t ∈]0, T [7→ H(Φ(t)) (notice that H is C1 on [0,∞[) is bounded
from above by 1 and, for all 0 < t′ < t < T , H(Φ(t)) ≤ t − t′ + H(Φ(t′)).
Since H is a nondecreasing bijection [0,∞[7→ [0,∞[, we deduce

sup
RN u(t, ·) ≤ Φ(t)

≤ H−1 (t− t′ + H(Φ(t′)))

≤ H−1
(
t− t′ + H(||u(t′, ·)||L∞(RN ))

)
.

The same reasoning applied to −u (solution to (26) with (t, x, s, ξ) 7→
−G(t, x,−s,−ξ), which also satisfies (25), instead of G) gives an upper
bound on sup

RN (−u(t, ·)) = − infRN u(t, ·) and concludes the proof. ⊓⊔

We deduce from this proposition the following corollary, which implies
the uniqueness stated in Theorem 3.

Corollary 1. Let λ ∈]0, 2[, T > 0 and u0 ∈W 1,∞(RN ). If F satisfies (16),
then there exists at most one function defined on ]0, T [×R

N which satisfies
(20), (21) and (22).

Proof (of Corollary 1).
Assume that u and v are two such functions. The difference w = u − v

is in C2
b (]a, T [×RN) for all a ∈]0, T [ and satisfies

∂tw(t, x) + gλ[w(t, ·)](x) = G(t, x, w(t, x),∇w(t, x)) on ]0, T [×R
N

with

G(t, x, s, ξ) =

(∫ 1

0

∂sF (t, x, τu(t, x) + (1 − τ)v(t, x),∇u(t, x)) dτ
)
s

+

(∫ 1

0

∇ξF (t, x, v(t, x), τ∇u(t, x) + (1 − τ)∇v(t, x)) dτ
)
· ξ.

By (16) and the hypotheses on u and v, G is continuous on ]0, T [×RN ×
R × RN and ∇ξG is bounded on ]0, T [×RN × [−R,R] × BR for all R > 0.



14 Jérôme Droniou, Cyril Imbert

Moreover, G satisfies (25) with h(a) = C(κ + a) where κ is any positive
number (added so that h > 0 on R+) and C only depends on u, v and the
constants in (16). For this h, we have H(a) = 1

C (ln(κ + a) − ln(κ)) and
H−1(a) = κeCa − κ; hence, by Proposition 2 we find, for 0 < t′ < t < T ,
||w(t, ·)||L∞(RN ) ≤ eC(t−t′)(κ + ||w(t′, ·)||L∞(RN )) − κ. Since u(t′, ·) → u0

and v(t′, ·) → u0 uniformly on RN as t′ → 0, we have ||w(t′, ·)||L∞(RN ) → 0
as t′ → 0 and we conclude, letting t′ → 0 and κ → 0 in the preceding
inequality, that w(t, ·) = 0 for all t ∈]0, T [. ⊓⊔

3.1.3. W 1,∞ estimates and existence To prove the existence of a solu-
tion to (15), we first introduce another definition of solution, in the spirit
of [26, chapter 15] or [15].

Definition 1. Let λ ∈]1, 2[, u0 ∈ W 1,∞(RN ), T > 0 and F satisfy (16). A
weak solution to (15) on [0, T ] is a function u ∈ L∞(]0, T [×RN) such that
∇u ∈ L∞(]0, T [×RN)N and, for a.e. (t, x) ∈]0, T [×RN ,

u(t, x) = Kλ(t, ·) ∗ u0(x)

+

∫ t

0

Kλ(t− s, ·) ∗ F (s, ·, u(s, ·),∇u(s, ·))(x) ds , (29)

where Kλ is the kernel associated with gλ.

The kernel associated with gλ is Kλ(t, x) = F−1(ξ 7→ e−t|ξ|λ)(x). It
is defined so that the solution to ∂tv + gλ[v] = 0 is given by v(t, x) =
Kλ(t, ·) ∗ v(0, ·)(x) and (29) is simply Duhamel’s formula on (15). Let us
recall the main properties ofKλ (valid for λ ∈]0, 2[) which allow in particular
to see that each term in (29) is well-defined.

Kλ ∈ C∞(]0,∞[×RN ) and (Kλ(t, ·))t→0 is an approximate unit
(in particular, Kλ ≥ 0 and, for all t > 0, ||Kλ(t, ·)||L1(RN ) = 1),

∀t > 0 , ∀t′ > 0 , Kλ(t+ t′, ·) = Kλ(t, ·) ∗Kλ(t′, ·) ,
∃K > 0 , ∀t > 0 , ||∇Kλ(t, ·)||L1(RN ) ≤ Kt−1/λ

(30)

(notice that the nonnegativity ofKλ can be proved from Theorem 2 by using
the same technique as in the proof of Proposition 2). Using the Banach
fixed point theorem, it is quite simple to prove the local existence (and
uniqueness) of a weak solution to (15); its regularity is obtained by the same
means. We give in Appendix ideas for the proof of the following theorem
and let the reader check the details (see, for example, [15] and [18]).

Theorem 4. Let λ ∈]1, 2[, u0 ∈W 1,∞(RN ) and F satisfy (16).

i) For all T > 0, there exists at most one weak solution to (15) on [0, T ].
ii) A weak solution to (15) on [0, T ] satisfies (20), (21) and (22).
iii) Let M ≥ ||u0||W 1,∞(RN ). There exists T > 0, only depending on M and

the constants in Hypothesis (16), such that (15) has a weak solution on
[0, T ].
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We now obtain estimates on the gradient of the weak solution, and
conclude the proof of Theorem 3.

Proposition 3. Let λ ∈]1, 2[ and u0 ∈ W 1,∞(RN ). Assume that F sat-
isfies (16) and (18). If u is a weak solution to (15) on [0, T ] and R ≥
||u||L∞(]0,T [×RN ) then (24) holds for all t ∈]0, T [.

Proof (of Proposition 3).
The proof is very similar to the proof of Proposition 2. If ϕ ∈ C3

b (RN ),
then a derivation under the integral sign on (4) shows that ∂igλ[ϕ] = gλ[∂iϕ].
Since u satisfies (20) and (21) (Theorem 4), we deduce that

∂t(∂iu)(t, x) + gλ[∂iu(t, ·)](x)
= ∂xiF (t, x, u(t, x),∇u(t, x)) + ∂sF (t, x, u(t, x),∇u(t, x))∂iu(t, x)

+∇ξF (t, x, u(t, x),∇u(t, x)) · ∇(∂iu)(t, x).

Let a ∈]0, T [; the function ∂2
t ∂iu is bounded on ]a/2, T [×R

N (say by
Ca,i) and thus, for t ∈]a, T [, 0 < τ < a/2 and x ∈ RN ,

∂iu(t, x) ≤ ∂iu(t− τ, x) + τ∂t∂iu(t, x) + Ca,iτ
2

≤ sup
RN ∂iu(t− τ, ·) + τ∂xiF (t, x, u(t, x),∇u(t, x))

+τ∂sF (t, x, u(t, x),∇u(t, x))∂iu(t, x)

+τ∇ξF (t, x, u(t, x),∇u(t, x)) · ∇(∂iu)(t, x)

−τgλ[∂iu(t, ·)](x) + Ca,iτ
2. (31)

Assume that sup
RN ∂iu(t, ·) > 0 and take a sequence (xn)n≥1 ∈ R

N such
that ∂iu(t, xn) → sup

RN ∂iu(t, ·). Since ∂iu(t, ·) ∈ C2
b (RN ), Theorem 2 gives

lim infn→∞ gλ[∂iu(t, ·)](xn) ≥ 0 and limn→∞ ∇(∂iu)(t, xn) = 0. For n large
enough, ∂iu(t, xn) > 0 and we can apply (31) to x = xn, use (18) and (16) to
bound the terms involving F and then take the lim supn→∞ of the resulting
inequality; we find

sup
RN ∂iu(t, ·) ≤ sup

RN ∂iu(t− τ, ·) + 2τΓT,R (sup
RN |∇u(t, ·)|) + Ca,iτ

2

(recall that R is an upper bound of ||u||L∞(]0,T [×RN)). As in the proof of
Proposition 2, to obtain an inequality which holds whatever the sign of
sup

RN ∂iu(t, ·) is, we define wi,+(t) = max(sup
RN ∂iu(t, ·), 0) and we have,

for all t ∈]a, T [ and all 0 < τ < a/2,

wi,+(t) ≤ wi,+(t− τ) + 2τΓT,R

(
||Du(t, ·)||L∞(RN )

)
+ Ca,iτ

2.

This reasoning applied to −u (the function −F (·, ·,−·,−·) satisfies (16) and
(18)) leads to the same inequality for wi,−(t) = max(sup

RN (−∂iu(t, ·)), 0) =
max(− infRN ∂iu(t, ·), 0). This inequality is therefore also satisfied by

max(wi,+(t), wi,−(t)) = ||∂iu(t, ·)||L∞(RN )
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and, summing on i = 1, . . . , N , we deduce that, for all t ∈]a, T [ and all
0 < τ < a/2,

||Du(t, ·)||L∞(RN ) ≤ ||Du(t− τ, ·)||L∞(RN ) + 2NτΓT,R

(
||Du(t, ·)||L∞(RN )

)

+
∑N

i=1
Ca,iτ

2.

Since t 7→ ||Du(t, ·)||L∞(RN ) is locally Lipschitz continuous (because ∂t∂iu

is bounded on ]a, T [×RN for all a ∈]0, T [), we infer as in the proof of
Proposition 2 that, for 0 < t′ < t < T ,

||Du(t, ·)||L∞(RN ) ≤ (GT,R)−1
(
t− t′ + GT,R(||Du(t′, ·)||L∞(RN ))

)
. (32)

The function u0 being Lipschitz continuous, the definition of the deriva-
tive and the dominated convergence theorem show that ∂i(K(t′, ·) ∗ u0) =
K(t′, ·)∗∂iu0. Thanks to Lemma 2 in Appendix and (30), we have ∂i[Kλ(t′−
s, ·)∗F (s, ·, u(s, ·),∇u(s, ·))] = ∂iKλ(t′−s, ·)∗F (s, ·, u(s, ·),∇u(s, ·)), which
is bounded independently of x ∈ RN by an integrable function of s ∈]0, t′[;
we can therefore derivate (29) under the integral sign to find

∂iu(t
′, x) = Kλ(t′, ·) ∗ ∂iu0(x)

+

∫ t′

0

∂iKλ(t′ − s, ·) ∗ F (s, ·, u(s, ·),∇u(s, ·))(x) ds (33)

and, still using (30), we obtain

||∂iu(t
′, ·)||L∞(RN ) ≤ ||∂iu0||L∞(RN ) + ||F (·, ·, u,∇u)||∞

Kt′1−
1
λ

1 − 1
λ

.

This shows that lim supt′→0 ||Du(t′, ·)||L∞(RN ) ≤ ||Du0||L∞(RN ) and we con-
clude the proof by letting t′ → 0 in (32). ⊓⊔

The proof of the existence and estimates in Theorem 3 is then straight-
forward. Indeed, take u a weak solution to (15) on [0, T ] given by Theo-
rem 4. By (17), F satisfies (25) with h = ΛT ; since u satisfies (20) and
(21), Proposition 2 shows that, for 0 < t′ < t < T , ||u(t, ·)||L∞(RN ) ≤
(LT )−1(t − t′ + LT (||u(t′, ·)||L∞(RN ))); but (22) holds for u, and we can
therefore let t′ → 0 to deduce that (23) is valid. We have (24) by Proposi-
tion 3. These estimates (23) and (24) show that the W 1,∞ norm of u(t, ·)
does not explode in finite time; item iii) in Theorem 4 then allows to indef-
initely extend u (1), which gives a global weak solution to (15), and thus a
global solution in the sense of Theorem 3.

1 It is the semi-group property of Kλ in (30) which tells that, if we glue to u| [0,t0]

a weak solution with initial time t0 and initial data u(t0, ·), then we construct
another weak solution.
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Remark 4. As a by-product of this proof of existence, we see that the
solution to (15) given by Theorem 3 also satisfies (29), which was not obvious
from (20)—(22).

Remark 5. The preceding technique also works if gλ is replaced by a more
general operator, provided that it satisfies Theorem 2 (in fact, this theorem
is only needed for ϕ ∈ C∞

b (RN )) and that its kernel satisfies (30) (for small
t and some λ > 1 in the estimate of the gradient) and (59) in Appendix. As
interesting and simple examples of such operators, we can mention:

1) The laplace operator −∆ (which corresponds, up to a multiplicative
constant, to g2). Or course, the preceding results are known for semi-
linear parabolic equations (at least for classical choices of ΛT and ΓT,R).

2) Multifractal operators such as in [5], that is to say
∑l

j=1 αjgλj with αj >
0, λj ∈]0, 2] and λ1 ∈]1, 2]. The kernel of this operator is Kλ1

(α1t, ·) ∗
· · · ∗Kλl

(αlt, ·), and it satisfies (30) with λ = λ1.

3) Anisotropic operators of the kind A[ϕ] = F−1(
∑N

j=1 |ξj |γjF(ϕ)(ξ)) with
γj ∈]1, 2] (it comes to take a “γj-th derivative” in the j-th direction).
This operator is the sum of 1-dimensional operators gγj acting on each
variable, and thus a formula of the kind of (4) can be established, which

proves that Theorem 2 holds. The kernel of A is
∏N

j=1 kγj (t, xj), where
kγj is the kernel of gγj in dimension N = 1, and it thus satisfies (30)
with λ = infj(γj).

We refer the reader to [17] for the kernel properties of other pseudo-differen-
tial operators.

3.2. Existence and uniqueness results for λ ∈]0, 2[

We show here that, under weaker regularity (but stronger behaviour)
assumptions on F and for λ ∈]0, 2[, we can still solve (15), albeit in the
viscosity sense. We assume, in the following, that the Hamiltonian F is con-
tinuous with respect to (t, x, s, ξ), locally Lipschitz continuous with respect
to (x, s, ξ) and satisfies (17). We replace (18) by

∀T > 0 , ∀R > 0 , ∃ΘT,R > 0 such that,

for all (t, x, s, ξ) ∈ [0, T ]× R
N × [−R,R] × R

N ,

∂sF (t, x, s, ξ) ≤ ΘT,R

(34)

∀T > 0 , ∀R > 0 , ∃ΞT,R > 0 such that,

for all (t, x, s, ξ) ∈ [0, T ]× RN × [−R,R] × RN ,

|∇xF (t, x, s, ξ)| ≤ ΞT,R(1 + |ξ|).
(35)

and (16) is relaxed to

∀T > 0, ∀R > 0, ∃CT,R > 0 such that,

for all (t, x, s, ξ) ∈ [0, T ]× RN × [−R,R]×BR,

|F (t, x, s, ξ)| ≤ CT,R , |∂sF (t, x, s, ξ)| ≤ CT,R ,
|∇ξF (t, x, s, ξ)| ≤ CT,R.

(36)
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In all the preceding inequalities, the derivatives of F are to be understood
as the a.e. derivatives of a Lipschitz continuous function; these hypotheses
therefore state bounds on F and its Lipschitz constants.

Remark 6. Assumptions (34) and (35) are stronger than (18); they imply
this last assumption with, for example, ΓT,R(a) = (ΘT,R +ΞT,R)(1 + a).

Let us first briefly recall the definition of a viscosity solution to (15) (an
immediate generalization of the definition given in [18] in the case λ > 1).

Definition 2. Let λ ∈]0, 2[, u0 ∈ Cb(R
N ) and F : [0, T [×RN ×R×RN 7→ R

be continuous. A function u : [0, T [×RN 7→ R is a viscosity subsolution to
(15) if it is bounded upper semi-continuous, if u(0, ·) ≤ u0 and if, for all
(t, x) ∈]0, T [×RN and all (α, p) ∈ R × RN such that there exists σ > 0 and
r0 > 0 satisfying

u(s, y) ≤ u(t, x) + α(s− t) + p · (y − x) + σ|y − x|2 + o(s− t)
for y ∈ Br0

(x) and s ∈ [0, T [,
(37)

we have, for all r > 0,

α− cN (λ)

∫

Br

u(t, x+ z) − u(t, x) − p · z
|z|N+λ

dz

−cN(λ)

∫

RN\Br

u(t, x+ z) − u(t, x)

|z|N+λ
dz ≤ F (t, x, u(t, x), p). (38)

We similarly define the notion of supersolution for bounded lower semi-
continuous functions by reversing the inequalities (and the sign of σ). A
function is a viscosity solution of (15) if it is both a sub- and a supersolution
of (15).

Remark 7. 1. Since u(t, x+z)−u(t, x)−p·z ≤ σ|z|2 on a neighbourhood of
0, the first integral term of (38) is defined in [−∞,+∞[ (the inequality in
fact forbids the case where this term is −∞); the second integral term is
defined in R, because u is bounded. Moreover, since

∫
Ba\Bb

p·z
|z|N+λ dz = 0

for all a > b > 0, the quantities in (38) in fact do not depend on r > 0;
in particular, if λ < 1 or λ > 1, we can take r = 0 or r = +∞.

2. In [18], a couple (α, p) ∈ R×RN satisfying (37) is called a supergradient.
The set of all such couples is denoted ∂Pu(t, x) and is referred to as
the superdifferential of u at (t, x). It is the projection on R ×RN of the
upper jet of u at (t, x) (see [12] for a definition of semi-jets).

We can now state our existence and uniqueness result for Lipschitz con-
tinuous Hamiltonians and λ ∈]0, 2[.

Theorem 5. Let λ ∈]0, 2[ and F be continuous and such that (17), (34),
(35) and (36) hold true. If u0 ∈ W 1,∞(RN ), then there exists a unique



Fractal first order partial differential equations 19

viscosity solution of (15). Moreover, this solution is Lipschitz continuous
with respect to x and satisfies, for 0 < t < T <∞, (23) and

||Du(t, ·)||L∞(RN ) ≤ (1 + ||Du0||L∞(RN ))e
2N(ΘT,R+ΞT,R)t − 1 (39)

for any R ≥ ||u||L∞(]0,T [×RN ).

Remark 8. 1. This result can be extended to initial conditions that are
merely bounded and uniformly continuous. It suffices to adapt the clas-
sical method used for instance in [12]. Notice that, in this case, the
Lipschitz continuity of the solution is no longer true.

2. As in Remark 5, this theorem also holds for more general operators gλ.
3. Estimate (39) is exactly (24) when we take, as in Remark 6, ΓT,R(a) =

(ΘT,R +ΞT,R)(1 + a).
4. The conclusions of this theorem are the same as the ones of Theorem 3

and Lemma 2 in [18], but the assumptions are more general; see the dis-
cussion following Theorem 3. Moreover, the W 1,∞ estimate (39) involves
a norm that is slightly different from the one used in [18].

5. Perron’s method. As mentioned in the introduction, Theorem 5 can be
proved by using Perron’s method. In this case, “natural” barriers are to
be considered for large time, namely t 7→ ±(LT )−1(t+LT (‖u0‖L∞(RN ))).
For small time, in order to ensure that the initial condition is fulfilled,
classical barriers of the form t 7→ u0(x) ± Ct can be used for C large
enough.

Proof (of Theorem 5).
We prove the existence result by regularizing F and using a vanishing

viscosity method based on the solution given by Theorem 3.

Step 1: regularization of F .
Let hε : Rd → Rd be defined by hε(z) = max(1 − ε

|z| , 0)z. hε is at

distance ε of the identity function, null on Bε and |hε| ≤ | · | − ε on Rd\Bε;
in particular,

for all z ∈ Rd and |z′| ≤ ε, |hε(z − z′)| ≤ |z|. (40)

We define Fε : R
2N+2 → R by Fε(t, x, s, ξ) = F (hε(t)

+, x, h2ε(s), hε(ξ));
let (t, x, s, ξ) 7→ ρε(t, x, s, ξ) be a classical regularizing kernel such that

supp(ρε) ⊂ Bε and define F̃ε = Fε ∗ ρε. In dimension d = 1, h′2ε takes

its values in [0, 1], and thus F̃ε satisfies (34) and (35) with the same con-
stants as F (thanks to (40)). It therefore satisfies (18) with ΓT,R(a) =

(ΘT,R+ΞT,R)(1+a) (see Remark 6). We also have (16) for F̃ε with C̃T,R,k =
sup|α|≤k ||∂αρε||L1 sup[0,T ]×RN×[−R,R]×BR

|F | (this quantity, which depends
on ε, is finite thanks to (36)).

Property (17) for F̃ε is slightly less obvious. Let (t, x, s) ∈ [0, T ]×RN×R

and |t′| ≤ ε, |x′| ≤ ε, |s′| ≤ ε, |ξ′| ≤ ε. In the case |s| ≥ ε, we have
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sgn(s) = sgn(s− s′) = sgn(h2ε(s− s′)) since |s′| ≤ ε, and thus, by (17) and
(40),

sgn(s)Fε(t− t′, x− x′, s− s′, 0 − ξ′)

= sgn(h2ε(s− s′))F (hε(t− t′)+, x− x′, h2ε(s− s′), 0)

≤ ΛT (|h2ε(s− s′)|)
≤ ΛT (|s|).

In the case |s| ≤ ε, (36) gives

|Fε(t− t′, x− x′, s− s′, 0 − ξ′) − F (hε(t− t′)+, x− x′, s, 0)|
= |F (hε(t− t′)+, x− x′, 0, 0) − F (hε(t− t′)+, x− x′, s, 0)|
≤ εCT,1

and therefore

sgn(s)Fε(t− t′, x− x′, s− s′, 0 − ξ′)

≤ sgn(s)F (hε(t− t′)+, x− x′, s, 0) + εCT,1

≤ ΛT (|s|) + εCT,1.

In any cases, we have sgn(s)Fε(t− t′, x−x′, s− s′, 0− ξ′) ≤ ΛT (|s|)+ εCT,1.
Multiplying this inequality by ρε(t

′, x′, s′, ξ′) and integrating on (t′, x′, s′, ξ′)

shows that (17) holds for F̃ε with ΛT (a) + εCT,1 instead of ΛT (a).

To sum up this step, we have found a regularization F̃ε of F which
converges locally uniformly to F and satisfies (16), (18) with ΓT,R(a) =
(ΘT,R + ΞT,R)(1 + a) (independent of ε) and (17) with a function Λε

T =
ΛT + εCT,1 which uniformly converges, as ε→ 0, to ΛT .

Step 2: passing to the limit.
We take λ ∈]0, 2[ and µ ∈]1, 2[. Applying Theorem 3 and Remark 5, we

find a smooth solution uε of





∂tu
ε(t, x) + gλ[uε(t, ·)](x) + εgµ[uε(t, ·)](x)

= F̃ε(t, x, u
ε(t, x),∇uε(t, x))

t > 0 , x ∈ RN ,

uε(0, x) = u0(x) x ∈ RN

(41)

in the sense of (20), (21) and (22) (notice that, if λ > 1, there is no need to

introduce the term εgµ in this equation). Since, for 0 < ε ≤ 1, F̃ε satisfies
(17) with ΛT (a)+CT,1 instead of ΛT (a), the theorem gives estimates on uε

and ∇uε which do not depend on ε.
These estimates and (36) show that the function F̃ε(·, ·, uε,∇uε) is boun-

ded on ]0, T [×RN independently of ε. The integral representation (29) reads
here (see Remark 5)

uε(t, x) = Kλ(t, ·) ∗Kµ(εt, ·) ∗ u0(x)

+

∫ t

0

Kλ(t− s, ·) ∗Kµ(ε(t− s), ·) ∗ F̃ε(s, ·, uε(s, ·),∇uε(s, ·))(x) ds ,
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and (30) thus gives ||uε(t, ·)−Kλ(t, ·)∗Kµ(εt, ·)∗u0||L∞(RN ) ≤ Ct with C not
depending on ε. Since (Kλ(t, ·))t→0 and (Kµ(t, ·))t→0 are approximate units
and u0 ∈W 1,∞(RN ), we easily see that Kλ(t, ·) ∗Kµ(εt, ·) ∗ u0(x) → u0(x)
as t → 0, uniformly with respect to x ∈ RN and ε ∈]0, 1]. Hence, uε(t, x) →
u0(x) as t→ 0, uniformly with respect to (x, ε) ∈ RN×]0, 1], and the relaxed
upper limit lim sup∗ uε(t, x) = lim supε→0,(s,y)→(t,x) u

ε(s, y) coincides with
u0 at t = 0. So does the relaxed lower limit lim inf∗ u

ε = − lim sup∗(−uε).

Remark that uε is a viscosity solution of (41). Since F̃ε → F locally
uniformly, an easy adaptation of the stability theorem of [18] shows that
lim sup∗ uε is a viscosity subsolution of (15) and that lim inf∗ u

ε is a vis-
cosity supersolution of (15). The assumptions ensure that the comparison
principle holds true for (15) (still a straightforward generalization of [18]
to the case λ ∈]0, 2[). Thus, lim sup∗ uε(0, x) = u0(x) = lim inf∗ u

ε(0, x)
implies lim sup∗ uε ≤ lim inf∗ u

ε and we conclude that uε locally uniformly
converges to u = lim sup∗ uε = lim inf∗ u

ε, a viscosity solution to (15); the
estimates on u stated in the theorem are obtained by passing to the limit in
the estimates on uε. To finish with, we recall that the comparison principle
ensures that the solution we have just constructed is unique in the class of
viscosity solutions which satisfy u(0, ·) = u0. ⊓⊔

Since we have proved in Step 2 that a vanishing regularization gives a
solution to (15), we can now wonder if it is possible to obtain a rate of
convergence. The next theorem answers this question.

Theorem 6. Let (λ, µ) ∈]0, 2[ and F be continuous and such that (17),
(34), (35) and (36) hold true. Let u0 ∈ W 1,∞(RN ), u be the viscosity solu-
tion of (15) and, for ε > 0, uε be the viscosity solution of





∂tu
ε(t, x) + gλ[uε(t, ·)](x) + εgµ[uε(t, ·)](x)

= F (t, x, uε(t, x),∇uε(t, x))
t > 0 , x ∈ RN ,

uε(0, x) = u0(x) x ∈ RN .

(42)

Then, for all T > 0,

||uε − u||Cb([0,T ]×RN) =





O(ε) if µ < 1 ,
O(ε| ln(ε)|) if µ = 1 ,

O(ε1/µ) if µ > 1.

Remark 9. 1. As the preceding results, this theorem is valid for more gen-
eral operators gλ, and also for µ = 2. Moreover, the conclusion still
holds if we remove gλ from both equations (in this case, (15) is a pure
Hamilton-Jacobi equation).

2. These rates of convergence are optimal for any µ ∈]0, 2[ (take F = 0, re-
move gλ, choose u0(x) = max(1−|x|, 0) and compare uε(1, 0)−u(1, 0) =
Kµ(ε, ·)∗u0(0)−1 thanks to the formulaKµ(ε, x) = ε−N/µKµ(1, ε−1/µx)
and to the property Kµ(1, x) ∼ C|x|−N−µ as |x| → ∞).
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Proof (of Theorem 6).
The proof relies on the same technique as in [18], with modifications due

to the presence of gλ and to the fact that µ can be equal to or less than 1.
By a classical change of unknown function, (34) allows to reduce to the

case where F is nonincreasing with respect to s. Let

M = sup
[0,T [×(RN )2

{u(t, x)− uε(t, y)− |x− y|2/2α− β|x|2/2− ηt− γ/(T − t)},

where α, β, η are positive and γ ∈]0, 1]. We want to prove that, for appro-
priate choices of η and γ, M is attained at t = 0.

Let ν > 0 and Mν = sup[0,T [2×(RN )2{u(t, x)−uε(s, y)−|x−y|2/2α−|t−
s|2/2ν−β|x|2/2−ηt−γ/(T− t)}. It is classical that Mν is attained at some
(tν , sν , xν , yν) such that, up to a subsequence, (tν , sν , xν , yν) → (t, t, x, y)
as ν → 0, where (t, x, y) realizes M . We now assume that t > 0 and, with
good choices of η and γ, we show that this leads to a contradiction.

If t > 0 then, for ν small enough, tν > 0 and sν > 0. Let pν = (xν−yν)/α;
by definition ofMν , (γ/(T−tν)2+(tν−sν)/ν+η, pν+βxν) is a supergradient
of u at (tν , xν); since u is a subsolution of (15), we obtain

γ

(T − tν)2
+
tν − sν

ν
+ η

−cN(λ)

∫

Br

u(tν , xν + z) − u(tν , xν) − (pν + βxν) · z
|z|N+λ

dz

−cN(λ)

∫

RN\Br

u(tν , xν + z) − u(tν , xν)

|z|N+λ
dz

≤ F (tν , xν , u(tν , xν), pν + βxν). (43)

Similarly, by definition of Mν we can use ((tν − sν)/ν, pν) in the equation
at (t, x) = (sν , yν) which states that uε is a supersolution of (42) and we
obtain

tν − sν

ν
− cN (λ)

∫

Br

uε(sν , yν + z) − uε(sν , yν) − pν · z
|z|N+λ

dz

−cN (λ)

∫

RN\Br

uε(sν , yν + z) − uε(sν , yν)

|z|N+λ
dz

−εcN(µ)

∫

BR

uε(sν , yν + z) − uε(sν , yν) − pν · z
|z|N+µ

dz

−εcN(µ)

∫

RN\BR

uε(sν , yν + z) − uε(sν , yν)

|z|N+µ
dz

≥ F (sν , yν , u
ε(sν , yν), pν). (44)

We also have, still using the definition of Mν,

uε(sν , yν + z) − uε(sν , yν) + u(tν , xν) − u(tν , xν + z)

≥ β|xν |2
2

− β|xν + z|2
2

= −βxν · z − β|z|2
2
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and, by the estimate on ∇uε, |uε(sν , yν + z) − uε(sν , yν)| ≤ C|z| (here and
after, C stands for a positive real number which can change from one line to
another but does not depend on ε, r, R, ν, α, β, η or γ). Hence, subtracting
(43) from (44) and using the bounds we have on u and uε, we find (for
R ≤ 1)

− γ

(T − tν)2
− η + cN (λ)

β

2

∫

Br

|z|2
|z|N+λ

dz

+C

∫

RN\Br

1

|z|N+λ
dz − εcN(µ)

∫

BR

uε(sν , yν + z) − uε(sν , yν) − pν · z
|z|N+µ

dz

+Cε

∫

B1\BR

|z|
|z|N+µ

dz + Cε

∫

RN\B1

1

|z|N+µ
dz

≥ F (sν , yν , u
ε(sν , yν), pν) − F (tν , xν , u(tν , xν), pν + βxν). (45)

Using once again the definition of Mν , we write

uε(sν , yν + z) − uε(sν , yν) − pν · z

≥ |xν − yν |2 − |xν − yν − z|2
2α

− 2(xν − yν) · z
2α

= −|z|2
2α

.

We can therefore bound the integral term containing uε in (45) and pass to
the limit ν → 0 to obtain

− γ

(T − t)2
− η + Cβ

∫

Br

|z|2
|z|N+λ

dz + C

∫

RN\Br

1

|z|N+λ
dz

+C
ε

α

∫

BR

|z|2
|z|N+µ

dz + Cε

∫

B1\BR

|z|
|z|N+µ

dz + Cε

≥ F (t, y, uε(t, y), p) − F (t, x, u(t, x), p+ βx)

where p = (x − y)/α. Putting t = 0 and x = y = 0 in the definition of M ,
which is attained at (t, x, y), we have u(t, x) − uε(t, y) − γ/(T − t) ≥ M ≥
−γ/T , and thus u(t, x) ≥ uε(t, y)+ γ/(T − t)− γ/T ≥ uε(t, y); the function
F being nonincreasing with respect to its third variable, we deduce

− γ

T 2
− η + Cβr2−λ + Cr−λ + C

ε

α
R2−µ + Cε

∫

B1\BR

|z|
|z|N+µ

dz + Cε

≥ F (t, y, u(t, x), p) − F (t, x, u(t, x), p+ βx). (46)

Using once again the definition of Mν, we have β|xν |2 ≤ C (because
Mν ≥ M ≥ −γ/T ≥ −1/T ), so that β|x| ≤ C

√
β. Moreover, since pν

satisfies the reverse inequality of (37) with uε instead of u, and since we
have a bound on the spatial Lipschitz constant of uε, we find |pν | ≤ C and
thus |p| ≤ C and |x− y| ≤ Cα. Assumptions (35) and (36) therefore give

− γ

T 2
− η + Cβr2−λ + Cr−λ +

Cε

α
R2−µ + Cε

∫

B1\BR

|z|
|z|N+µ

dz + Cε

≥ −Cα− C
√
β
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(we take β ≤ 1). Choosing γ = (C
√
β + Cβr2−λ + Cr−λ + β)T 2 (which is

in ]0, 1] if r is large and β is small) and

η = Cα+
Cε

α
R2−µ + Cε

∫

B1\BR

|z|
|z|N+µ

dz + Cε

leads to −β ≥ 0, which is the contradiction we sought.

With these choices of γ and η, M is attained at (0, x, y) and, for all
(t, x) ∈ [0, T [×RN ,

u(t, x) − uε(t, x) − β
|x|2
2

− ηt− γ

T − t
≤ u0(x) − u0(y) −

|x− y|2
2α

≤ Cα

(we use the fact that u0 is Lipschitz continuous). Thus,

u(t, x) ≤ uε(t, x) + β
|x|2
2

+

(
Cα+

Cε

α
R2−µ + Cε

∫

B1\BR

|z|
|z|N+µ

dz + Cε

)
T

+
(C

√
β + Cβr2−λ + Cr−λ + β)T 2

T − t
+ Cα.

We now let β → 0 and then r → +∞:

u(t, x) ≤ uε(t, x) + Cα+
Cε

α
R2−µ + Cε

∫

B1\BR

|z|
|z|N+µ

dz + Cε.

If µ < 1 (respectively µ = 1, respectively µ > 1), then
∫

B1\BR

|z|
|z|N+µ dz

is bounded by C (respectively C| ln(R)|, respectively CR1−µ). A simple
optimization with respect to R and then α leads to

u(t, x) ≤ uε(t, x) + C






ε if µ < 1
ε| ln(ε)| if µ = 1

ε1/µ if µ > 1

and we obtain the reverse inequality by exchanging, from the beginning, the
roles of u and uε. ⊓⊔

4. Fractal scalar hyperbolic equations

4.1. Existence and uniqueness of a smooth solution

In this section, we come back to the case λ ∈]1, 2[ and we handle






∂tu(t, x) + div(f(t, x, u(t, x))) + gλ[u(t, ·)](x)
= h(t, x, u(t, x))

t > 0 , x ∈ RN ,

u(0, x) = u0(x) x ∈ RN ,

(47)
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where u0 ∈ L∞(RN ), f ∈ C∞([0,∞[×RN × R)N , h ∈ C∞([0,∞[×RN × R)
and

∀T > 0 , ∀R > 0 , ∀k ∈ N , ∃CT,R,k such that,

for all (t, x, s) ∈ [0, T ]× RN × [−R,R]

and all α ∈ NN+2 satisfying |α| ≤ k,

|∂αf(t, x, s)| + |∂αh(t, x, s)| ≤ CT,R,k ,

(48)

∀T > 0, there exists ΛT : [0,+∞[→]0,+∞[ continuous

nondecreasing such that
∫∞

0
1

ΛT (a) da = +∞ and,

for all (t, x, s) ∈ [0, T ]× RN × R,

sgn(s)
(
h(t, x, s) −

∑N
i=1 ∂xifi(t, x, s)

)
≤ ΛT (|s|).

(49)

The term h−
∑N

i=1 ∂xifi represents a source for (47), and an assumption
on this source is not unexpected if we want global solutions; this hypothesis
with ΛT (a) = KT (1 + a) (and KT constant), as well as uniform spatial
bounds such as in (48), also appear in [21] when dealing with the pure
scalar conservation law (i.e. without gλ). Here, we prove the following.

Theorem 7. Let λ ∈]1, 2[ and u0 ∈ L∞(RN ); assume that f and h satisfy
(48) and (49). Then there exists a unique solution u to (47) in the sense:
for all T > 0,

u ∈ Cb(]0, T [×R
N) and, for all a ∈]0, T [ , u ∈ C∞

b (]a, T [×R
N) , (50)

u satisfies the PDE of (47) on ]0, T [×RN , (51)

u(t, ·) → u0 in L∞(RN ) weak-∗, as t→ 0. (52)

We also have Estimate (23) on the solution, that is to say: for all 0 < t <
T <∞,

||u(t, ·)||L∞(RN ) ≤ (LT )−1
(
t+ LT (||u0||L∞(RN ))

)

with LT (a) =
∫ a

0
1

ΛT (b) db.

Remark 10. The proof of uniqueness shows that the solution to (47) also
satisfies (53) below. As a consequence, the convergence in (52) also holds in
Lp

loc(R
N ) for all p <∞.

As for (15), the existence of a solution to (47) is obtained via a weak
formulation based on Duhamel’s formula.

Definition 3. Let λ ∈]1, 2[, u0 ∈ L∞(RN ), T > 0 and (f, h) satisfy (48). A
weak solution to (47) on [0, T ] is a function u ∈ L∞(]0, T [×RN) such that,
for a.e. (t, x) ∈]0, T [×RN ,

u(t, x) = Kλ(t, ·) ∗ u0(x) −
∫ t

0

∇Kλ(t− s, ·) ∗ f(s, ·, u(s, ·))(x) ds

+

∫ t

0

Kλ(t− s, ·) ∗ h(s, ·, u(s, ·))(x) ds. (53)
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Thanks to (30), each term in (53) is well-defined. As before, a fixed point
technique (see [15]) allows to prove the theorem stated below (Theorem 8);
we leave the details to the interested reader (notice that once it has been
proved that weak solutions to (47) have one continuous spatial derivative
— which is a consequence of a result similar to Proposition 5 —, the full
regularity of these weak solutions can be seen as a consequence of Theorem
4).

Theorem 8. Let λ ∈]1, 2[, u0 ∈ L∞(RN ) and (f, h) satisfy (48).

i) For all T > 0, there exists at most one weak solution to (47) on [0, T ].
ii) A weak solution to (47) on [0, T ] satisfies (50), (51) and (52).
iii) Let M ≥ ||u0||L∞(RN ). There exists T > 0, only depending on M and

the constants in (48), such that (47) has a weak solution on [0, T ].

We can now prove the existence and uniqueness result for (47).

Proof (of Theorem 7).

Let u be a weak solution to (47) on [0, T ] in the sense of Definition 3. By
Theorem 8, such a solution exists and satisfies (50), (51); hence, it satisfies
(26) with

G(t, x, s, ξ) = h(t, x, s) −
N∑

i=1

∂xifi(t, x, s) − ∂sf(t, x, s) · ξ.

Since (25) holds for G with h = ΛT given by Hypothesis (49), we deduce
from Proposition 2 that, for all 0 < t′ < t < T ,

||u(t, ·)||L∞(RN ) ≤ (LT )−1
(
t− t′ + LT (||u(t′, ·)||L∞(RN ))

)
. (54)

From (53) it is easy to see that lim supt′→0 ||u(t′, ·)||L∞(RN ) ≤ ||u0||L∞(RN )

(the last two terms of (53) tend to 0 in L∞(RN ) as t→ 0, thanks to (30));
hence, letting t′ → 0 in (54) shows that u satisfies (23). In particular, the
L∞ norm of u(t, ·) does not explode in finite time and, by iii) in Theorem 8,
we can indefinitely extend u; this proves the existence part of Theorem 7.

It remains to prove the uniqueness of the solution. Let u satisfy (50), (51)
and (52) for all T > 0; take t0 > 0. The function u(t0 + ·, ·) belongs, for all
T > 0, to C∞

b ([0, T [×RN); hence, it satifies (20) and (22) with u0 = u(t0, ·).
Moreover, if we define

F (t, x, s, ξ) = h(t0 + t, x, u(t0 + t, x)) − div(f(t0 + t, x, u(t0 + t, x)))

(in fact, F does not depend on s or ξ), the function u(t0 + ·, ·) also satisfies
(21). It is clear that this F satisfies (16), (17) and (18) (with ΛT and ΓT,R
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constants) and, therefore, u(t0 + ·, ·) is the unique solution to (15) given by
Theorem 3; in particular, by Remark 4 we have, for all t > 0,

u(t0 + t, x) = Kλ(t, ·) ∗ u(t0, ·)(x)

+

∫ t

0

Kλ(t− s, ·) ∗
[
h(t0 + s, ·, u(t0 + s, ·))

−div(f(t0 + s, ·, u(t0 + s, ·)))
]
(x) ds

= Kλ(t, ·) ∗ u(t0, ·)(x)

−
∫ t

0

∇Kλ(t− s, ·) ∗ f(t0 + s, ·, u(t0 + s, ·))(x) ds

+

∫ t

0

Kλ(t− s, ·) ∗ h(t0 + s, ·, u(t0 + s, ·))(x) ds. (55)

For t > 0 and x ∈ RN fixed, by (52) we haveKλ(t, ·)∗u(t0, ·)(x) → Kλ(t, ·)∗
u0(x) as t0 → 0; using (50) and the dominated convergence theorem, we can
let t0 → 0 in the last two terms of (55) to see that u satisfies (53). Hence,
u is a weak solution to (47) and, by i) in Theorem 8, is unique. ⊓⊔

Remark 11. Equation (47) can also be solved with more general operators
gλ, see Remark 5.

4.2. About the vanishing regularization

Let us say a few things on the behaviour, as ε→ 0+, of the solution to





∂tu
ε(t, x) + div(f(t, x, uε(t, x)))

+εgλ[uε(t, ·)](x) = h(t, x, uε(t, x))
t > 0 , x ∈ RN ,

uε(0, x) = u0(x) x ∈ RN ,

(56)

where we still take λ ∈]1, 2[, u0 ∈ L∞(RN ) and (f, h) satisfying (48) and
(49). It has been proved in [13] that, if h = 0 and f does not depend on
(t, x), the solution uε to (56) converges, as ε→ 0, to the entropy solution u
of





∂tu(t, x) + div(f(t, x, u(t, x)))
= h(t, x, u(t, x))

t > 0 , x ∈ RN ,

u(0, x) = u0(x) x ∈ RN .

(57)

The key argument is the obtention, via a splitting method, of entropy in-
equalities for (56); this method can be generalized to some cases where f
and h depend on (t, x) (see [14]) but, in any cases, it is quite technical.

Thanks to formula (4), we have a trivial proof of these entropy inequal-
ities, via the following lemma.

Lemma 1. Let λ ∈]0, 2[, ϕ ∈ C2
b (RN ) and η ∈ C2(R) be a convex function.

Then gλ[η(ϕ)] ≤ η′(ϕ)gλ[ϕ].
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Proof (of Lemma 1).

Since η is convex, we have η(b) − η(a) ≥ η′(a)(b − a). Hence,

η(ϕ(x + z)) − η(ϕ(x)) ≥ η′(ϕ(x))(ϕ(x + z) − ϕ(x))

and

η(ϕ(x + z)) − η(ϕ(x)) −∇(η(ϕ))(x) · z
≥ η′(ϕ(x))(ϕ(x + z) − ϕ(x) −∇ϕ(x) · z).

The conclusion follows from these inequalities and (4). ⊓⊔

Thus, if η ∈ C2(R) is a convex function and φ is such that ∂sφ(t, x, s) =
η′(s)∂sf(t, x, s), multiplying the PDE of (56) by η′(uε(t, x)) gives (recall
that all the functions, including uε, are regular)

∂t(η(u
ε))(t, x) + εgλ[η(uε(t, ·))](x)

≤ η′(uε(t, x))

(
h(t, x, uε(t, x)) −

N∑

i=1

∂xifi(t, x, u
ε(t, x))

)

−div(φ(t, x, uε(t, x))) +

N∑

i=1

∂xiφi(t, x, u
ε(t, x)) , (58)

which is exactly the entropy inequality for (56). Once this inequality is
established, the doubling variable technique of [21] (used in [13]) shows
that, for all T > 0 and as ε→ 0, uε → u in C([0, T ];L1

loc(R
N )).

It is also possible, if the initial condition u0 is in L∞(RN ) ∩ L1(RN ) ∩
BV (RN ), to obtain a rate of convergence: O(ε1/λ) in C([0, T ];L1(RN )); this
is well-known for λ = 2 (see [22]) and has been done for λ ∈]1, 2[, h = 0 and
f(t, x, u) = f(u) in [13]. However, to obtain such a rate of convergence we
must first establish L1 and BV estimates on uε, which demands additional
hypotheses on f and h (some integrability properties with respect to x); we
refer the reader to [14] for a set of suitable hypotheses. Once these estimates
are established, the proof of the rate of convergence is made as in [22] or
[13] by using (58).

5. Appendix

5.1. A technical Lemma

Lemma 2. If f ∈ C1(RN ) ∩ W 1,1(RN ) and g ∈ L∞(RN ), then f ∗ g ∈
C1(RN ) and ∇(f ∗ g) = ∇f ∗ g.
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Proof (of Lemma 2).
We have not assumed that ∇f(x− y) is bounded locally uniformly in x

by some integrable function of y; hence, we cannot directly use a theorem
of derivation under the integral sign.

Let n ≥ 1 and define gn = g1Bn ; for all x ∈ RN , f ∗ gn(x) =
∫

Bn
f(x−

y)g(y) dy → f ∗ g(x) as n → ∞. Since f ∈ C1(RN ), a derivation under the
integral sign shows that f ∗ gn ∈ C1(RN ) with ∇(f ∗ gn) = ∇f ∗ gn. But,
for all |x| ≤ R,

|∇f ∗ gn(x) −∇f ∗ g(x)| ≤ ||g||L∞(RN )

∫

{|y|≥n}

|∇f(x− y)| dy

≤ ||g||L∞(RN )

∫

{|z|≥n−R}

|∇f(z)| dz

(if |x| ≤ R and |y| ≥ n, then |x − y| ≥ |y| − |x| ≥ n − R); hence, since
∇f ∈ L1(RN ), we have ∇(f ∗ gn) = ∇f ∗ gn → ∇f ∗ g locally uniformly on
RN , which concludes the proof of the lemma. ⊓⊔

5.2. Generalizations of Theorem 2 and Proposition 2

In this subsection, we state and prove generalizations of Theorem 2 and
Proposition 2. Roughly speaking, we show that u needs not be in C2

b but only
in Cb; in this case, the operator gλ and Equation (26) must be understood
in the viscosity sense.

For usc functions φ :]0, T [→ R, the notion of viscosity supergradient is
used in order to define viscosity subsolutions of φ′ = h(φ). The notion of
upper semi-continuous envelope of locally bounded functions is also used in
the following. The definitions of viscosity supergradient, viscosity solution
of φ′ = h(φ) and upper semi-continuous envelope can be found in [12].

Theorem 9. Let λ ∈]0, 2[ and v ∈ Cb(]0, T [×RN). Let φ denote the upper
semi-continuous envelope of the function supx∈RN v(·, x). Then for any vis-
cosity supergradient α of φ at t ∈]0, T [, there exist tn → t, αn → α, and
xn, pn ∈ RN such that

v(tn, xn) → φ(t) and (αn, pn) ∈ ∂P v(tn, xn)

and pn → 0 and lim inf
n→∞

gλ[v(tn, ·)](xn) ≥ 0.

Proof (of Theorem 9).
By definition of viscosity supergradient, there exists ψ ∈ C1(]0, T [) such

that φ − ψ attains a global maximum at t and α = ψ′(t). Then for any
(s, x) ∈]0, T [×RN , we have:

v(s, x) − ψ(s) ≤ φ(s) − ψ(s) ≤ φ(t) − ψ(t).
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Next, for any ε > 0, consider (tε, xε) ∈]0, T [×RN such that φ(t) < v(tε, xε)+
ε/2 and tε → t as ε → 0. We can also ensure that ψ(t) ≥ ψ(tε) − ε/2.
Combining these facts yields:

sup
(s,x)∈]0,T [×RN

(v(s, x) − ψ(s)) < v(tε, xε) − ψ(tε) + ε.

We then apply Borwein and Preiss’ minimization principle (see for instance
[10]) and get (sε, yε) and (rε, zε) such that

|(rε, zε) − (tε, xε)| < ε1/4 and |(sε, yε) − (rε, zε)| < ε1/4

and sup
(s,x)∈]0,T [×RN

(v(s, x) − ψ(s)) ≤ v(sε, yε) − ψ(sε) + ε

and such that (sε, yε) is the unique point realizing the maximum of the
perturbed function (t, x) 7→ v(t, x)− ψ(t)−√

ε(t− rε)
2 −√

ε|x− zε|2. This
implies that (ψ′(sε) + 2

√
ε(sε − rε), 2

√
ε(yε − zε)) ∈ ∂P v(sε, yε). Define

αε = ψ′(sε) +2
√
ε(sε − rε) and pε = 2

√
ε(yε − zε). They verify αε → α and

pε → 0 as ε → 0. Moreover, v(sε, yε) → φ(t) and sε → t. It only remains
to prove that lim infε→0 gλ[v(sε, ·)](yε) ≥ 0 by using Fatou’s Lemma. First,
notice that

v(sε, yε + z) − v(sε, yε) ≤ φ(sε) − v(sε, yε)

and since φ is upper semi-continuous and v(sε, yε) → φ(t), the upper limit
of the right-hand side is nonpositive. Secondly,

v(sε, yε + z) − v(sε, yε)

|z|N+λ
≤ 2‖v‖∞

|z|N+λ
∈ L1(RN \B1),

v(sε, yε + z) − v(sε, yε) − pε · z
|z|N+λ

≤
√
ε

|z|N+λ−2
∈ L1(B1).

Now choose ε = 1/n and (tn, αn, xn, pn) = (sεn , αεn , yεn , pεn) satisfies the
desired properties. ⊓⊔

Proposition 4. Let λ ∈]0, 2[, T > 0 and G ∈ C(]0, T [×RN × R × RN )
be such that (25) is satisfied and G is locally Lipschitz continuous w.r.t.
ξ, locally in (t, s) and uniformly in x. Then any viscosity solution of (26)
satisfies for any 0 < t′ < t < T :

||u(t, ·)||∗L∞(RN ) ≤ H−1
(
t− t′ + H

(
||u(t′, ·)||∗L∞(RN )

))

where ||u(s, ·)||∗L∞(RN ) = lim supτ→s ||u(τ, ·)||L∞(RN ).

Proof (of Proposition 4).
Let us denote φ(t) = ||u(t, ·)||∗L∞(RN ). Suppose we have proved that φ is

a viscosity subsolution of w′ = h(w) on ]0, T [. Then the function H(φ(t))− t
is a viscosity subsolution of w′ = 0 (recall that H is C1 and nondecreasing).
This implies that H(φ(t))−t is nonincreasing and, since H is a nondecreasing
bijection [0,+∞[→ [0,+∞[, we get the desired a priori estimate on u.
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It remains to prove that φ is a viscosity subsolution of w′ = h(w) on
]0, T [. It is a consequence of Theorem 9 applied to v = |u|. Let α be a
viscosity supergradient of φ and consider tn → t, αn → α, and xn, pn ∈ R

N

given by Theorem 9. We have to prove that α ≤ h(φ(t)). We distinguish
two cases. Suppose first that there exists a sequence nk → ∞ such that
v(tnk

, xnk
) = u(tnk

, xnk
). Then (αnk

, pnk
) ∈ ∂Pu(tnk

, xnk
) and, since u is a

viscosity subsolution of (26), we get:

αnk
+ gλ[u(tnk

, ·)](xnk
) ≤ G(tnk

, xnk
, u(tnk

, xnk
), pnk

).

As k → ∞, we have u(tnk
, xnk

) → φ(t) and pnk
→ 0. We can use the local

Lipschitz continuity of G with respect to ξ and find:

αnk
+ gλ[u(tnk

, ·)](xnk
) ≤ h(u(tnk

, xnk
)) +M |pnk

|

for M independent of k. As k goes to +∞, we conclude in the first case
that α ≤ h(φ(t)) by using the fact that u(tnk

, xnk
) → φ(t) and that

gλ[u(tnk
, ·)](xnk

) ≥ gλ[v(tnk
, ·)](xnk

) (because v(tnk
, xnk

) = u(tnk
, xnk

) and
v(tnk

, xnk
+ z) ≥ u(tnk

, xnk
+ z)), so that lim infk→∞ gλ[u(tnk

, ·)](xnk
) ≥

0. In the second case, for n large enough, v(tn, xn) = −u(tn, xn). Then
(−αn,−pn) ∈ ∂Pu(tn, xn) and we can argue similarly, by using the fact
that u is a viscosity supersolution of (26), to conclude that we also have
α ≤ h(φ(t)). ⊓⊔

5.3. Ideas for the proof of Theorem 4

We need the following additional property on Kλ:

t ∈]0,∞[7→ Kλ(t, ·) ∈ L1(RN ) is continuous. (59)

This continuity is a consequence of the regularity of Kλ and of the homo-
geneity property Kλ(t, x) = t−N/λKλ(1, t−1/λx) which shows that, if A is
a compact subset of ]0,∞[, then (Kλ(t, ·))t∈A is equi-integrable at infinity
(that is to say, for all ε > 0, there exists R > 0 such that, for all t ∈ A,∫

RN\BR
|Kλ(t, x)| dx ≤ ε).

The most difficult task in the proof of Theorem 4 is the regularity of
the weak solutions. The key result to prove this regularity is the following
proposition.

Proposition 5. Let λ ∈]1, 2[, S > 0 and G : (t, x, ζ) ∈]0, S[×RN × RN →
G(t, x, ζ) ∈ R be continuous; we suppose that ∂xG, ∂ζG, ∂ζ∂xG and ∂ζ∂ζG
exist and are continuous on ]0, S[×RN × RN ; we also suppose that there
exists ω :]0,∞[→ R+ such that, for all L > 0, G and these derivatives are
bounded on ]0, S[×RN ×BL by ω(L).

Let R0 > 0 and R = (2 + K)R0 where K is given by (30). Then there
exists T0 > 0 only depending on (λ,R0, ω) such that, if T = inf(S, T0)
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and V0 ∈ L∞(RN )N satisfies ||V0||L∞(RN )N ≤ R0, there exists a unique

V ∈ Cb(]0, T [×RN)N bounded by R and such that

V (t, x) = Kλ(t, ·) ∗ V0(x) +

∫ t

0

∇Kλ(t− s, ·) ∗G(s, ·, V (s, ·))(x) ds. (60)

Moreover, ∂xV ∈ C(]0, T [×RN)N2

and ||∂xV ||Cb(]a,T [×RN)N2 ≤ Ra−1/λ (for

all a ∈]0, T [).

Sketch of the proof of Proposition 5
We define ET = {V ∈ Cb(]0, T [×RN)N | t1/λ∂xV ∈ Cb(]0, T [×RN)N2}

and, for V ∈ ET , ΦT (V ) as the right-hand side of (60).
Thanks to (59), the first term Kλ(t, ·)∗V0(x) of ΦT (V ) is continuous in t

uniformly with respect to x; since, for t fixed, it is also continuous in x (it is
the convolution product of an integrable function and a bounded function),
it is continuous in (t, x). The second term of ΦT (V ) is the convolution
product in R × RN of the integrable function ∇Kλ(t, x)1]0,T [(t) and the
bounded function G(t, x, V (t, x))1]0,T [(t): it is therefore continuous in (t, x).
By Lemma 2 and (30), we have ∂x(Kλ(t, ·) ∗ V0)(x) = ∂xKλ(t, ·) ∗ V0(x);
since V ∈ ET , we can differentiate the second term of ΦT (V ) under the
integral sign to obtain

∂xΦT (V )(t, x) = ∂xKλ(t, ·) ∗ V0(x)

+

∫ t

0

∇Kλ(t− s, ·) ∗
[
∂xG(s, ·, V (s, ·))

+∂ζG(s, ·, V (s, ·))∂xV (s, ·)
]
(x) ds.

For t0 > 0 and t > 0, we have ∂x(Kλ(t0 + t, ·) ∗ V0)(x) = Kλ(t, ·) ∗
(∂xKλ(t0, ·) ∗ V0)(x), which is continuous in (t, x) (same proof as the con-
tinuity of Kλ(t, ·) ∗ V0(x)); hence, the first term of ∂xΦT (V ) is continuous
on ]0, T [×RN . The continuity the second term is proved first by replacing
∂xV (s, ·) with ∂xV (s, ·)1[δ,T [(s) (since this function is bounded, the conti-
nuity is obtained as for the last term of (60)), and then by letting δ → 0
(the convergence is uniform in (t, x) ∈ [t0, T [×RN for all t0 > 0).

A simple application of (30) then allows to prove that, for T small
enough, ΦT is contracting from the ball in ET of radius R into itself, which
proves the existence of a solution to (60) in ET . The uniqueness of the
bounded solution comes from the fact that, if T is small, ΦT is contracting
on the ball in L∞(]0, T [×RN) of radius R. ⊓⊔

The spatial regularity of any weak solution u to (15) is then quite easy.
Indeed, from (29) and the fact that u and ∇u are bounded, we see as in the
proof above that u is continuous on ]0, T [×RN ; moreover, the gradient of u
satisfies (33) which proves, still using the same technique, that it is contin-
uous. Since (u,∇u) ∈ Cb(]0, T [×RN), these equations (33) can be written
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in the form of (60) (with G taking into account u); hence, Proposition 5
says that the second spatial derivative of u is continuous on ]0, T [×RN and
bounded far from t = 0. We can also write an integral equation satisfied
by this second derivative, provided that we begin at an initial time t0 > 0
instead of 0; this equation is of the kind (60). An induction process, using
Proposition 5 on the successive equations satisfied by the spatial derivatives
of u, then proves that (20) holds for spatial derivatives (all the regularities
and bounds we obtain are local in time, but since the time span on which
they hold is controlled, we also obtain global bounds).

To prove that u is differentiable w.r.t. t, we first notice that, if ϕ ∈
C2

b (RN ), then t 7→ Kλ(t, ·) ∗ ϕ(x) is derivable and d
dt(Kλ(t, ·) ∗ ϕ(x)) =

−gλ[Kλ(t, ·) ∗ ϕ](x); this is quite obvious on (1) if ϕ ∈ S(RN ) and can be
deduced for general ϕ by a density argument (same technique as in the proof
of Proposition 1). With this result, it is possible to derivate (29), written at
an initial time t0 > 0 and with initial data u(t0, ·) ∈ C2

b (RN ), with respect

to t (to derivate the integral term, we first replace it by
∫ t−δ

0 and then let
δ → 0); this proves that u satisfies (21). The spatial regularity of u and (4)
then show that u is also regular in time.

The proof of (22) is immediate on (29) (the integral term tends to 0 in
L∞(RN ) as t → 0, and since u0 is bounded and uniformly continuous and
(Kλ(t, ·))t→0 is an approximate unit, Kλ(t, ·) ∗ u0 → u0 uniformly on RN

as t→ 0).

The uniqueness i) and existence iii) in Theorem 4 are straightforward
applications of a contracting fixed point on (29) in the space

{u ∈ L∞(]0, T [×R
N) | ∇u ∈ L∞(]0, T [×R

N)N}

(the uniqueness is first local in time, and can then be extented to any time
interval in the same way global uniqueness for ODEs is proved).
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Mathématiques et applications, Springer-Verlag, 1994.

4. Biler P., Funaki T., Woyczynski W., Fractal Burgers Equations, J. Diff.
Eq., 148 (1998), 9–46.

5. Biler P., Karch G., Woyczynski W., Asymptotics for multifractal con-
servation laws, Studia Math., 135 (1999), no. 3, 231–252.

6. Benth F.E., Karlsen K.H., and Reikvam K., Optimal portfolio selection
with consumption and nonlinear integro-differential equations with gradient
constraint: a viscosity solution approach, Finance Stoch., 5 (2001), no. 3,
275–303.
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11. Córdoba A., Córdoba D., A maximum principle applied to quasi-geo-
strophic equations, Comm. Math. Phys., 249 (2004), no. 3, 511–528.

12. Crandall M.G., Ishii H., Lions P.-L., User’s guide to viscosity solutions
of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.),
27 (1992), no. 1, 1–67.

13. Droniou J., Vanishing non-local regularization of a scalar conservation law,
Electron. J. Differential Equations, 2003 (2003), no. 117, 1-20.
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Université Montpellier II, Place Eugène Bataillon,
34095 Montpellier cedex 5, France.

e-mail: imbert@math.univ-montp2.fr


