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Abstract. In this paper we present an algorithm that can assign codes
in the Code Division Multiple Access (CDMA) framework for multihop
ad hoc wireless networks. In CDMA framework, collisions are eliminated
by assigning orthogonal codes to the stations such that the spectrum of
frequency can be used by all transmitters of the network at the same
time. In our setting, a large number n of distinguishable stations (e.g.
sensors) are randomly deployed in a given area of size |S|. We propose
an efficient and fully distributed algorithm, which assigns codes to the
nodes of our network so that, for any ℓ > 0, any two stations at distance
at most

p

(1 + ℓ) |S| log n/π n from each other are assigned two distinct
codes.

1 Introduction

Multihop ad hoc wireless networks, such as sensor networks are becoming a more
and more important subject of research [7]. In this paper a network is a collection
of transmitter-receiver devices, referred to as stations (processors or nodes). It is
also assumed that each such station knows only its own identity (Id). Multihop
wireless networks consist in a group of stations that can communicate with each
other by messages over one wireless channel. Besides, messages may go through
intermediate stations before reaching their final destination. At any given time
t, the network may be modeled with its reachability graph: for any station u and
v, there exists one arc u → v iff v can be reached from u.

The time is assumed to be slotted and in each time slot (round) every node
can act either as a transmitter, or as receiver, but not both. At any given time
slot, a station u acting as a receiver gets a message if and only if exactly one of
its neighbors transmits within the same round. If more than two neighbors of u
transmit simultaneously, u is assumed to receive no message (collision). More pre-
cisely, the considered networks has no ability to distinguish between the lack of
message and the occurrence of some collisions or conflicts. Therefore, it is highly
desirable to design protocols working independently of the existence/absence of
any collision detection mechanism. In this paper, we consider that a set of n
stations are initially randomly scattered (following the uniform distribution) in

⋆ Supported by grant 1522/00-0 from CAPES, Ministry of Education, Brazil.



a surface S of size |S|. Typically, a global model for a mobile computing envi-
ronment is a graph Gt = (V,Et) where V is the set of the stations and Et is the
set of links, which are present at time slot t. In our paper, the problem under
consideration consists in minimizing the number of codes of the CDMA (Code
Division Multiple Access), which is equivalent to coloring the graph Gt [2]. In
the CDMA problem, collisions are removed by assigning orthogonal codes to the
stations in such a way that the whole spectrum of frequency can be used by
transmitters in the network at the same time. Each code designs the bit specifi-
cation of each station in the network [1]. To deal with the CDMA, our algorithm
solves the graph coloring problem.

2 Coloring an Euclidean random network

Our algorithm can be split in two steps as described in the following:
• First, each station has to discover its proper neighborhood. This is done us-

ing the randomized algorithm ExchangeID. This protocol needs O
(

(log (n))2
)

steps.
• Next, once the station nodes know their neighboorhood, we run Assign-

Code which is a randomized (greedy) algorithm to assign codes to the current
reachability graph.

2.1 Discovering the neighborhood

Algorithm 1: ExchangeID

begin
for i := 1 to C(ℓ) log (n)2 do

With probability 1
log n

, each node u sends a message containing its
own identity;

end

Theorem 1. For any fixed constant ℓ > 0, there exists a constant C(ℓ) such

that if the transmission radius of each station is set to r2 =
(1 + ℓ) |S|

πn
log n,

then, with probability tending to 1 as n tends to ∞, every node receives all the

identities of all its neighbors after an execution of ExchangeID.

Proof. The proof of Theorem 1 relies on the two following facts, viz., (i) the main
properties of the random Euclidian network, and (ii) the number of iterations
T = C(ℓ)(log (n))2 in the loop of ExchangeID is sufficient for each node to
send its ID at least once to all its neighbors. For (i), we refer to the results of
[8], which can be briefly stated as follows. Denote by r the transmission range of
the n nodes randomly distributed in the surface S of size |S| = O(n). Then, in
the following regimes, the graph is connected with high probability and we have

(a) For fixed values of k, that is k = O(1), if π n
|S|r

2 = log n+k log log n+ω(n),

then the graph has asymptotically almost surely1 a minimum degree δ = k.

1 With probability tending to 1 as n → ∞. For short, a.a.s. Here and throughout this
paper ω(n) is a function tending to ∞ arbitrary slowly.



(b) Let k = k(n), but 1 ≪ k(n) ≪ log n/ log log n.

If π n
|S|r

2 = log n + k(n) log log n, then the minimum degree (resp. maximum

degree) is a.a.s. δ = k(n) (resp. ∆ = e log n).

(c) If π n
|S|r

2 = (1 + ℓ) log n with ℓ > 0, then each node v of the graph has

a.a.s. dv neighbors, with

−
ℓ log n

W−1

(

− ℓ
e (1+ℓ)

) + o (log n) ≤ dv and dv ≤ −
ℓ log n

W0

(

− ℓ
e (1+ℓ)

) + o (log n) , (1)

where W−1 and W0 denote the two branches of the Lambert W function. We
refer here to the paper of Corless et al. [3] for more precision on the Lambert W
function, which is now a special mathematical function of its own (Note that it
is implemented in almost all computer algebra tools such as Maple.)

Therefore, by inequality (1), within the regime considered in the assumptions
of Theorem 1, the maximum degree of the graph is (with high probability)
bounded by cℓ log n (where cℓ satisfies, e.g. cℓ = 2W0 (−ℓ/e (1 + ℓ)) [3].

Using this latter remark, let us complete the proof of our Theorem. For any

distinct pair (i, j) of connected nodes, define X
(t)
i→j as follows: X

(t)
i→j = 1 iff

the node j does not receive the ID of i at time t ∈
[

1, (log (n))2C(ℓ)
]

and 0
otherwise.

In other terms, the set
{

X
(t)
i→j | i, j 6= i, t ∈

[

1, (log (n))2C(ℓ)
]

}

is a set of

random variables that counts the number of arcs i → j, such that j never received
the ID of i.

Denote by X the r.v. X =
∑

i6=j

Xi→j , where Xi→j = 1 iff X
(t)
i→j = 1 for all

t ∈
[

1, (log (n))2C(ℓ)
]

. Now, we have the probability that i does not succeed to
send its ID to j at time t:

Pr
[

X
(t)
i→j = 1

]

=

(

1 −
1

log (n)

)

+
1

log n
×

(

1 −

(

1 −
1

log n

)dj(t)
)

,

where dj(t) denotes the degree of j at time t.

Therefore, considering the whole range
[

1, (log (n))2C(ℓ)
]

, after a bit of alge-

bra we obtain Pr[Xi→j = 1] ≤
(

1 − e−cℓ

log (n)

)log (n)2C(ℓ)

≤ exp (− ln (n)e−cℓC(ℓ)),

which bounds the probability that, for all t ∈
[

1, (log (n))2C(ℓ)
]

, i never sent
its ID to j.

By linearity of expectations and since from (c) the number of edges is of or-
der O(n log n), we then have E[X] ≤ O (n log (n) exp (− ln (n) e−cℓ C(ℓ))). Thus,
E[X] ≪ 1 as n → ∞ for a certain constant C(ℓ) such that, say C(ℓ) ≥ 2ecℓ .
(Note that this constant can be computed for any given ℓ by using, e.g.

cℓ = 2W0

(

− ℓ/e (1 + ℓ)
)

and this completes the proof of Theorem 1.)



Algorithm 2: AssignCode

begin
Each vertex u has an initial palette:

p(u) = {c1, c2, · · · , cdeg(u)+1} ; ∆ := − ℓ log n/W0

“

− ℓ
e (1+ℓ)

”

;

for i := 1 to D(ℓ) log (n)2 do
For each vertex u do
• Pick a color c from p(u) ;
• Send a message contaning c with probability 1

∆+|p(u)|
;

if no collision then
Every station v in Γ (u) gets the message properly ;
One by one (in order) every member of Γ (u) send a message ;
(⋆ This step is synchronized by always allowing ∆ time slots. ⋆)

if u receives all the |Γ (u)| messages then
u send a message of confirmation and goes to sleep ;
every station in Γ (u) removes c from its palette ;

end

2.2 Assigning codes

To assign one code to each node of the network, we use the following protocol
which we call AssignCode. Each vertex u has an initial list of colors (palette)
of size deg(u)+1 and starts uncoloured. It is important to remark here that the
stations know their neighbors (or at least a part of them) by using the previ-
ous algorithm, viz. ExchangeID. Then, the protocol AssignCode proceeds in
rounds. In each round, each uncoloured vertex u, simultaneously and indepen-
dently picks a color, say c, from its list. Next, the station u attempts to send
this information to his neighborhood denoted by Γ (u). Trivially, this attempt
succeeds iff there is no collision. Before its neighbors eventually assign the color
c to u, they has to send one by one a message of reception. Note that this can
be done deterministically in time O(log n), since u can attribute to its active
neighbors in Γ (u) a predefined ranking ranging from 1 to |Γ (u)|. Therefore, u
sends an aknowledgement message, and all its neighbors perform updates of their
proper palettes and of their active neighbors. Hence, at the end of such a round
the new colored vertex u can quit the protocol.
Theorem 2. For any constant ℓ > 0, there exists a constant D(ℓ) such that

if the transmission radius of each station is set to r2 =
(1 + ℓ) |S|

πn
log n, then,

with probability tending to 1 as n tends to ∞, any pair of nodes at distance at

most r from each other receives two different codes after invoking the protocol

AssignCode.

Proof. Although more complicated, the proof of Theorem 2 is very similar to
the one of Theorem 1. For any distinct node u, recall that Γ (u) represents the
set of its neighbors and denote by pu the size of its current palette. Now, define
the random variable Yu as follows: Yu = 1 iff the node u remains uncoloured
after the D(ℓ)(log n)2 steps of AssignCode and 0 otherwise.



Denote by Γ
(t)
u the set of active neighbors of u at any given time t during

the execution of the algorithm. Suppose that we are in such time slot t. Inde-
pendently of its previous attemps, u remains uncoloured with probability

pu,t =

(

1 −
1

(∆ + pu)

)

+
1

(∆ + pu)
×

(

1 −

(

1 −
1

(∆ + pv)

)|Γ (t)
u |
)

.

There is at least a collision due to one neighborv ∈ Γ
(t)
u .

Since ∀t, Γ
(t)
u ≤ ∆ and ∀v, 1 ≤ pv ≤ ∆ + 1, we have

pu,t ≤

(

1 −
1

(∆ + pu)

)

+
1

(∆ + pu)

(

1 −

(

1 −
1

∆

)|Γ (t)
u |
)

≤

(

1 −
1

(∆ + pu)

)

+
1

(∆ + pu)
×

(

1 −

(

1 −
1

∆

)∆
)

≤ 1 −
1

e (∆ + pu)
≤ 1 −

1

2e∆
≤ 1 −

1

6∆
.

Therefore, with probability at most
(

1 − 1
6∆

)D(ℓ) log n2

≤ exp
(

−D(ℓ) log n2

6∆

)

, u

remains uncoloured during the whole algorithm. Thus, the expected number of
uncoloured vertices at the end of the protocol AssignCode is less than E[Y ] =
∑

u E[Yu] ≤ n exp
(

−D(ℓ) log n2

6∆

)

.

Since by (1), we have ∆ = ∆(ℓ) ≤ −2 ℓ log n

W0(− ℓ
e (1+ℓ) )

, it is now easy to choose

a constant D(ℓ) such that D(ℓ) > − 12ℓ
W0(−ℓ/e (1+ℓ)) , and E[Y ] ≪ 1 as n → ∞.

After using the well known Markov’s inequality, the proof of our Theorem is
completed.

2.3 Efficiency of the algorithms

Both protocols use local competitions, which means that the “coin flipping”
games to access the shared wireless channel take place only between neighbors.
First, we note that the lower bound for broadcasting in a network of diameter

D is given by Ω
(

D log (n/D)
)

[5]. A node u in the network needs at least

O
(

|Γ (u)|
)

“local broadcasts”. By “local broadcast” we mean the sending of

information to nodes of distance at most 2r where r is the transmission range.

From the main result of [5], it takes at least Ω
(

log (deg(u))
)

time slots to get all

the IDs of the neighbors of u. By (1), |Γ (u)| = Θ(log n), an algorithm needs at
least Ω(log n×log log n) time slots to exchange the IDs of all the connected nodes.
Therefore, our protocol ExchangeID, which needs O

(

(log n)2
)

time slots, is at
most a O(log n/ log log n) factor away from the optimal, and AssignCode is at
most a O(log n/ log log n) factor away from the optimal.



3 Final remarks

This paper solves the problem of assigning different codes to stations randomly
deployed in any given region S. Our results make sense and can be useful for
many reasons, including:
(i) Our settings is examplified for a large number n of fire sensors dropped by
planes in some large area S. In our paper, the areas where such sensors are
thrown need only be bounded. By contrast with numbers of existing papers, our
results reflect real-life situations where the areas under consideration are far to
be as regular as squares, rectangles or circles.
(ii) Our analysis yields key insights for the coloring problem in a rigorous frame-
work, whereas a majority of results are based on empirical results.
(iii) Assume each deployed node to be “active” with constant probability p
(0 < p ≤ 1). All our results can be extended by taking the intensity of the process
n/|S| as p n/|S| (or by simply using n′ = p n in the analysis). An “active” node
is neither faulty nor asleep. This is especially well suited for “energy efficient”
settings when some node are inative and saving their batteries, which increases
the network’s lifetime.
(iv) We considered herein uniform distributions, which can be approximated by
Poisson point processes [4, pp 39-40]. Since Poisson processes are invariant [6]
if their points are independently translated, the translations being identically
distributed from some bivariate distribution (direction and distance), all our
results remain valid. Therefore, the present results can serve to cope with mobile
networks whenever the mobility model corresponds to the same translation
distribution and whenever the O

(

(log n)3
)

time slots that are needed to achieve
the coloring of the nodes can be neglected. Thus, the results of this paper can
help both researchers and designers to face many realistic situations.
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5. Kushilevitz, E., Mansour, Y.: An Ω(Dlog(N/D)) Lower Bound for Broadcast in

Radio Networks. SIAM Journal on Comput 27(3) (1998) 702–712
6. Miles, R. E.: On the Homogenous Planar Poisson Point Process. Math. Biosciences

6 (1970) 85–127
7. Perkins, C. E.: Ad Hoc Networking. Addison-Wesley (2001)
8. Ravelomanana, V.: Asymptotic Critical Ranges for Coverage Properties in Wireless

Sensor Networks. In submitted, Available upon request (2003)


