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ABSTRACT

This article presents a new distributed approach for
generating all prime numbers up to a given limit. From Er-
atosthenes, who elaborated the first prime sieve (more than
2000 years ago), to the advances of the parallel comput-
ers (which have permitted to reach large limits or to ob-
tain the previous results in a shorter time), prime numbers
generation still represents an attractive domain of research.
Nowadays, prime numbers play a central role in cryptogra-
phy and their interest has been increased by the very recent
proof that primality testing is in P. In this work, we propose
a new distributed algorithm which generates all prime num-
bers in a given finite interval[2, ..., n], based on the wheel
sieve. As far as we know, this paper designs the first fully
distributed wheel sieve algorithm.
KEY WORDS
Distributed algorithms, prime numbers generation, wheel
sieve, broadcast and leader election.

1 Introduction

We address the generation of prime numbers smaller than a
given limit n, by using thewheelsieve in a distributed way.
Wheelsieve algorithms can be very efficient to determine
the primality of integers which belong to a given finite in-
terval, for sufficiently large values ofn and when the test
of primality is carried out on all numbers of the interval.

The main purpose of parallelization of such a kind of
algorithms is to increase the limits of the sequential gener-
ation of prime numbers, or to reach the previous limits in
a lower execution time. The first parallelization of a sieve
algorithm was realized in 1987 [1]. In this latter work, the
reason to employ the Eratosthenes’sieve was to test a new
parallel machine (the Flex/32). In fact, this challenging al-
gorithm is relevant as a benchmark to test the performance
of any new proposed architecture, mainly due to its inten-
sive use of resources. This way, the proposed performances
of the new architecture can be validated.

The sieve of Eratosthenes was the first sieve algo-
rithm and it consists in eliminating all non prime numbers
in the interval[2, ..., n]. To start, the algorithm takes the
first number of the interval and generates all its multiples

(by adding its own value to itself), which are eliminated.
The next number (i.e., the first number that has not been
eliminated) is the next prime which will sieve again the
same interval, and so on until obtaining a prime number
>

√
n. We can find another parallelization of this algo-

rithm in [2], that was implemented in a distributed way,
in a “master/slave” framework where each slave executes
in a symmetrical manner (the same code [3]) on an inter-
val of data to be sieved, and where these intervals are dis-
tributed by the master process. The way the parallelization
was made in this case is similar to the implementation of
[1], that was realized on a parallel machine (Flex/32) and
not on a distributed system (distributed memory).

In any case, the main drawback of the practical sieve
of Eratosthenes is clearly the fact that it imposes to go
through all the entries of the multiples of each number dur-
ing the sieving process. For instance, if the current entry
corresponds top, then any entry at locations2p, 3p, 4p is
changed to zero, and so on, until we reach the criterion of
stop, i.e.,p2 > n. The basic sieve of Eratosthenes pro-
ceeds in the same way on any other entry. We can easily
see that some numbers will be generated more than once,
for example6 is “generated” twice (from2 and3), and so
is 12 (from 2 and3). The entries that are already zeros are
left unchanged. Nevertheless, each entry must be checked
throughout the sieving process. Figure 1 illustrates this
flaw.

Thus, the main idea of the algorithm consists in trying
to prevent all numbers from being sieved “too many times”.
Sieving the multiples of any given number more than once
must be avoided, as much as possible. All efficient sieving
algorithms are based on similar techniques. The complex-
ity (in steps)O(n ln lnn) of the sieve of Eratosthenes may
be somewhat reduced exploiting several clever arguments
that are carried out by the above methods. Such sieve algo-
rithms improve the complexity of Eratosthenes and achieve
a linear [4, 5, 6] or even a sublinear (step) complexity [5, 7].
So far, the best algorithm known is the “wheel sieve”, de-
signed in 1981 [7, 8]. It requires onlyO(n/ log log n)
steps to find the set of primes in the interval[2, ..., n] (with
n > 4). Basically, the algorithm relies on the central re-
sult about the number of primes in arithmetic progressions.
More precisely, Dirichlet’s theorem states that ifa, b are co-



prime integers ((a, b) = 1) andb > 0, then the arithmetic
progression{a, a+b, a+2b, . . .} = {a mod (b)} contains
infinite primes (see [9, Thm. 15]). See [10] for more details
on the analysis of the “wheel sieve” algorithm.
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Figure 1. Example of some numbers being eliminated more
than once.

The present paper introduces a new distributed al-
gorithm that finds all primes by sieving a given interval
[1, ..., n], using the properties of thewheelsieve [8]. Some
other distributed algorithms to generate all prime numbers
can be found in [11, 12], which are based on the proper-
ties of the Dirichlet’s theorem. In our work we employ the
wheel sieve, as like in [2], where we proceeded to the first
distribution of thewheel sieve, using a master process in or-
der to coordinate the iterations of the remaining processes.
This first distribution was implemented using a message
passaging interface specificationlam-mpi library [13] and
the results (runtime execution) were compared with a se-
quential implementation of thewheel sieveand with a dis-
tributed and a sequential implementations of the Eratos-
thenes’s sieve [2]. The main contribution of the new dis-
tribution of thewheel sievealgorithm presented here, is
the fact that we elaborated a completely distributed ver-
sion (without coordinator process), using the leader elec-
tion algorithm at each iterations. In [14] we can find an-
other kind of distributed prime numbers generation, based
on the scheduling by multiple edge reverse framework [15],
that is a completely new kind of generation of prime num-
bers and employs just comparisons and reversals of arcs on
the multigraph used by the algorithm.

This article is organized as follows: in the next sec-
tion we introduce thewheelsieve, section 3 is devoted to
the design of our distributed algorithm and the final section
draws a short conclusion and offers some perspectives.

2 Wheel Sieve

Thewheelsieve algorithm was derived from a previous al-
gorithm [7], and consists basically in generating a set of
numbers that are not multiple of the firstk prime numbers,
this is the idea of thewheels[8] and was employed by com-
putational number theorists for some time as in the trial-
division routines [16]. The sieve (applied on the resulting
set from the wheel) eliminates the non prime numbers that
remain in the set.

We define byΠk, the multiplication of the firstk
prime numbers, and byWk the k-th wheel. Wk is de-
fined asR(Πk), whereR(x) = {x | 1 ≤ y ≤ x and gcd
(y, x) = 1}, where gcd stands for greatest common divisor.
The sieve introduced by thewheelsieve consists basically,
after having generated the nextwheelWk+1, in using the
prime numberk + 1 to sieve the newwheel, generating all
its multiples and removing them fromWk+1, for purposes
of clarity we will call this new set asSk+1. It is clear that
after that we obtained theSk+1 we will proceed to another
sieving process, to eliminate the remaining composite num-
bers.

We can see thatwheelsare patterns that are repeated
everyΠk times. In figure 2, we useΠ2 = p1 . p2 = 6,
that corresponds to the multiplication of the two first prime
numbers,2 and3 (Πk is the length of the currentwheel
W2). We can, usingΠ2, generate all “quasi-prime” num-
bers (numbers that are not multiples of the firstk prime
numbers.), between1 and the new limitΠ3. Firstly, we
proceed to obtain the nextΠk, that isΠ3 = Π2 . p3 = 30,
this is the new limit of the new wheel (W3 = R(30), rep-
resented by the big circle in figure 2). The next prime is the
first number obtained after the number1, which belongs to
the interval being sieved. So, in the second wheel (that’s
used to generate the third wheel), the next prime number
(pk+1) has now a value equals to5 [8].
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Figure 2. Example of the generation of awheel(Wk+1)
starting from the precedentwheel. (Wk)

We have Wk+1 = Wk ∪ {x . Πk + y |x ∈



{1, ..., pk+1−1} andy ∈ Wk} [8]. We can see in figure 3,
using the smallwheel, the generation of all “quasi-prime”
numbers of the big wheel, that will result in the new wheel,
a set composed by{1, 5, 7, 11, 13, 17, 19, 23, 25, 29}. In
figure 4 the procedure of generation of the bigwheelgoes
on and the number7 is generated from the number1 of the
small wheel. We can interpret this (in a geometrical ab-
straction) as if we were “rolling” the small circle inside the
big one. Starting from a wheelWk, we can generate the
next one (Wk+1) in a graphical way. The points where the
elements of thewheelWk touch theWk+1 circle are the
new “pseudo-primes”. In figure 4 we can see the moment
where the number7 is included in the newwheelfrom the
number1 of the precedentwheel(W2) [8].
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Figure 3. Generation of the new “quasi-prime” numbers.
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Figure 4. Here we can see another new “quasi-prime” num-
ber (number7 been generated from the precedent wheel).

The figure 5 shows the final phase of the wheel sieve,
where the multiples of the previouspk+1 (in this exam-
ple, the number5) are eliminated fromR(Π3) set. Us-
ing the precedent definition ofWk+1, we defineSk+1 =

Wk ∪ {x . Πk + y |, x ∈ {1, ..., pk+1 − 1} andy ∈ Wk} −
{pk+1.y | y ∈ Wk}. In [8] (using its geometrical abstrac-
tion), the previous wheel (Wk) is put in the middle of the
new wheel (their centers coincide) (Wk+1) – See figure 5.
Afterwards, drawing a radius from the center of the small
circle passing on each “pseudo-prime” number of this cir-
cle, their prolongation will touch the big circle at every
“pseudo-prime” that will be eliminated in the new wheel
Wk+1.
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Figure 5. The sieve being applied on the new wheel
(Wk+1) to generate theSk+1.

In [2] we present the first distributed version of the
wheel sieve, that was implemented using a message pas-
saging interface specification (lam-mpi 7.0.6 library[13]),
the computation times are compared between a sequential
and a distributed implementation of the wheel sieve and
with a sequential and a distributed implementation of the
Eratosthenes’s Sieve. This distributed algorithm is quite
different from the one of the next section, in the sense that
the previous distributed implementation of the wheel sieve
uses a master process which coordinates the activities of
the others processes, this is due (in part), because it was
the solution found to obtain the next prime (pk+1) number
among each process sieving the interval. Each process (or
“slave”), after having generated all its new “quasi-prime”
numbers (employing for that, just additions – with the value
of Πk), sends its lower number to the coordinator, that sorts
the numbers received (in a decreasing order) and generates
all multiples< Πk+1 of pk+1.

In the implementation [2], we start with 8 processes,
each of them being associated with a number of the set
W3 = {1, 7, 11, 13, 17, 19, 23, 29} . In a first step, the mas-
ter process sends theΠk, pk+1 = 7 (for this configuration)
and the new limit (Πk+1 or n) to each slave. Each process
receiving these values, proceeds to the generation of the
next “quasi-primes” numbers (the next wheelWk+1), and
transmits its multiples (ofpk+1 less than or equal to a given
limit n or Πk) to the master process, which is responsible
of the transmission of these numbers to the “slave” pro-



cesses. Each process (apart the master process) proceeds
to the elimination of these multiples of their sets of “quasi-
primes” numbers. Finally, they transmit their first number
of their local list of “quasi-prime” numbers to the “master”
process (except the process which has the value1 which
transmit the second value of his set), which sort all values
to determine the next prime number (pk+1), which is sent
to the remainder processes which generate the next limit of
the new wheel (Πk+1 of theWk+1). The “master process”
is also charged of finalizing the execution of the algorithm.

The research of a completely (fully) distributed ver-
sion of the wheel sieve brings us to a completely new pro-
posal of distribution of this algorithm, that will be intro-
duced in the next section.

3 The Distributed Wheel Sieve Algorithm

To create a fully distributed version of the wheel sieve algo-
rithm, we suppose that the procedure that is introduced be-
low (named Distributed-Wheel-Sieve) is designed for any
process, i.e., it is executed in a symmetrical way [3, 17].
This procedure uses some local variables that are defined
more precisely as follows:

• PseudoPrime denotes the number that the processor
(or process) has been attributed, which is initially set
to an exclusive value in{1, 7, 11, 13, 17, 19, 23, 29},
for example, if we employ the third wheelW3 as first
wheel in the algorithm.

• NeighPseudoPrime denotes the set of neighbors of ev-
ery PseudoPrime, which consists in all others pro-
cesses (if we represent the processes by the nodes of a
graph, this graph would be a complete graph).

• NextPrime is the value in the current set of num-
bers being sieving, which will corresponds to the next
prime. It will be used to generate the value of the
NewLimit variable, which represents the bound of
generation of thePseudoPrime numbers, by each
element (process) of the wheel sieve, its first value at-
tributed is7.

• Every new created process will attribute to theChild
variable, the value of itsPseudoPrime plus the value
of theΠk variable.

• Every member of thewheelsieve generates its multi-
ple (Multiple) and broadcasts its value for each one
of its neighbors (members∈ NeighPseudoPrime set).

We employed in the algorithm described here, two
pseudo-commands (Fork andSelf termination), that con-
sist for the first one in the creation of a new process
with PseudoPrime value = Child + Π and that in-
herits all others values from the father process. The sec-
ond one is used when a process notes that it has as value
(PseudoPrime) the same one that it had received, and
for this reason, it stops its participation in the algorithm.

The other local variables have their functionality self-
explaining in the procedure.

Procedure Distributed-Wheel-Sieve(n)
var

Π = 30;
End: booleaninit false;
NextPrime = 7;
NewLimit = 0;
Child = 0;
Multiple = 0;
PseudoPrimeNeigh = 0;

Begin
While not End

NewLimit = Π × NextPrime;
If NewLimit > n Then

NewLimit = n;
EndIf
GeneratingChildren(Child,NewLimit);
Multiple = PseudoPrime × NextPrime;
If Multiple ≤ NewLimit Then

Broadcast Multiple to
NeighPseudoPrime;

EndIf
receive Multiple from NeighPseudoPrime;
If Multiple = PseudoPrime Then

Self termination;
EndIf
NewPrimeElection(PseudoPrime);
receive PseudoPrime

fromNeighPseudoPrime;
If NextPrime2 > n Then

End = true;
EndIf

EndWhile
end.

GeneratingChildren(Child,NewLimit)
While Child ≤ NewLimit

Fork(Child);
Child = Π + PseudoPrime;

EndWhile

NewPrimeElection(PseudoPrime)
If PseudoPrime 6= 1 Then

Broadcast PseudoPrime to
NeighPseudoPrime;

receive PseudoPrime from NeighPseudoPrime;
If PseudoPrime < (all)PseudoPrimeNeigh Then

NextPrime = PseudoPrime;
Broadcast NextPrime to

NeighPseudoPrime;
EndIf

EndIf

As said above, initially there are eight
processes which have as values the numbers



{1, 7, 11, 13, 17, 19, 23, 29}. These values represent
the “quasi-prime” numbers of the thirdwheel. Beginning
with these values (we consider that at the beginning, each
process knows its identity –PseudoPrime.), each process
generates the new “pseudo-prime” numbers, adding the
value of theΠk variable to itsPseudoPrime variable.
Each new generated “quasi-prime” number is attributed to
a new process, by the commandFork.

The next step consists in generating the multiples
of the “next prime (pk+1)” number, denoted by the vari-
able NextPrime. Each process multiplies its value
(PseudoPrime) by the pk+1, the generated multiple
(which verifiesMultiple ≤ Πk) is broadcasted to the oth-
ers processes, which compare the received value to their
own value (PseudoPrime). If they have the same value,
they stop their participation in the algorithm (what we call
“Self termination”).

The last step of the main loop is a leader election,
where the winner process is the one which has the lower
value greater than one, which will be the “next prime”
(pk+1) number. The process which has this value, broad-
casts the same to all processes participating of thewheel
sieve. To complete, every process will test if the variable
NextPrime >

√
n (this value is received after the leader

election); if the result of this comparison is true, the process
proceeds to its termination, attributing the valuetrue to
its End variable.We can easily verify that at this point, all
processes will finish their participation in thewheelsieve
algorithm.

As an example, suppose that we start with two pro-
cesses, with values equal to{1, 5} (values of the “quasi-
prime” numbers) in the secondwheel). As we can see, the
variableNextPrime will have affected the value5, which
represents the next prime number. TheNewLimit value
will be equal to30 (Πk . pk+1); with these values, each
process can start the generation of its children, by a call
to the procedureGeneratingChildren(). Each new gener-
ated process will inherits all values from its father process,
Πk, NewLimit andpk+1. In figure 6, we can see the val-
ues generated by each process of thewheelW2. In the
next step, each process will generate its multiple (< n) and
broadcast the same for all its neighbors. We can consider
here that if a process doesn’t have a value less thann, it
can broadcast the value equals toNULL, for example and
by this way, we’ll have a synchronization where each pro-
cess will receive a message, and if the element received has
the same value that itsPseudoPrime variable, its partici-
pation to the algorithm will be end.

We suppose that every new process will start its exe-
cution just after its creation; then, the next step is a call of
the procedureNewPrimeElection(), where the least value
(bigger than1) will be the next prime number (pk+1); once
again, if the process has as value the number1, it can send
a message with aNULL value, for example. The process
that has this value will broadcast the same to all elements
∈ NeighPseudoPrime, and test the termination of the al-
gorithm (whenNextPrime2 > n). At this point, all pro-

5

7 13 19 25 11 17 23 29

1

Figure 6. Generation of the children of every process.

cesses will have their participation on the algorithm ended,
and the list with all prime numbers≤ n will be returned as
output.

4 Conclusion

We have presented a new distributed algorithm to sieve a
set of integers, resulting in the set of all prime numbers
less than a given valuen. It is the first fully distribution
of the wheel sieve algorithm, and it uses an election leader
distributed algorithm to this end. The proposed algorithm
was implemented usinglam-mpi[13] on a cluster of com-
puters, and we expect briefly to investigate more experi-
ments to validate the efficiency of this new distributed al-
gorithm, compared to the precedent implementation of the
wheelsieve algorithm (sequential and distributed) [2].

Another fundamental point to be investigated, is the
analysis of this distributed algorithm, with respect to the
number of messages, required memory spaces and steps.
By this way, we will be able to establish, in a theoretical
approach, what are the exact differences between the se-
quential and the proposed algorithms.

One direction in which the research described in this
paper can be extended would be the search of some intrin-
sics properties of prime numbers theory to try to derive a
new prime numbers generator with some refinements.
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