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Some explicit Krein representations of certain
subordinators, including the Gamma process

C. Donati-Martin and M. Yor ∗

Abstract

We give a representation of the Gamma subordinator as a Krein
functional of Brownian motion, using the known representations for
stable subordinators and Esscher transforms. In particular, we have
obtained Krein representations of the subordinators which govern the
two parameter Poisson-Dirichlet family of distributions [23].

Mathematics Subject Classification (2000): 60G51, 60J55

1 Introduction

(1.a) The aim of this paper is to represent explicitly a particular class of sub-
ordinators (St; t ≥ 0), i.e. increasing R+-valued Lévy processes, as inverse
local times of R+-valued diffusions. This problem was raised in Itô-Mc Kean
[8], and completely solved, in a theoretical manner, thanks to Krein’s repre-
sentation of strings, by Knight [10] and Kotani-Watanabe [11] independently
and simultaneously in 1981-1982.
Roughly, if the Lévy measure ν of (St; t ≥ 0) admits a density h with respect
to the Lebesgue measure: ν(dy) = h(y)dy and if h(y) =

∫ ∞

0
µ(dx) exp(−yx)

for some positive measure µ, then the above mentioned problem, which we
shall call the Krein representation problem, is solved in the affirmative. See,
besides [10] and [11], a number of other papers dealing with this question,
e.g. Bertoin ([1], [2]), Küchler [12], Küchler and Salminen [13].
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(1.b) In this paper, rather than discussing this problem in general, we solve
it for the two parameter family of subordinators (Sα,β

t ; t ≥ 0) whose Lévy
measures are

να,β(dy) = C
exp(−βy)
yα+1

dy, 0 ≤ α < 1, β ≥ 0

(for α = 0, β is assumed > 0).
The constant C plays a simple role and might, a priori, be suppressed from
our discussion; however, it is in fact very helpful to keep this further degree
of freedom in order to consider the most convenient local time at 0 (for
the underlying diffusion), which, as is well known, may be chosen up to a
multiplicative constant.

(1.c) It goes back at least to Molchanov-Ostrovski [20] that for 0 < α < 1,
Sα,0

t , the stable subordinator of index α, may be realized as the inverse local
time of a Bessel process (which we shall denote as BES(−α)) of dimen-
sion δ = 2(1 − α). Since, by inspection of the Lévy measures: να,β(dy) =

exp(−βy)να,0(dy), S
α,β
t may be obtained as an Esscher transform of Sα,0

t , it
is natural to look for a Girsanov transform of BES(−α) whose inverse local
time is distributed as Sα,β

t . As we show below, this is indeed the case with
BES(−α, β ↓) the downwards BES(−α) process with ”drift” β, following
the terminology of Watanabe [31], [32] and Pitman-Yor [21].
Finally, the case α = 0, β > 0, which corresponds to the Gamma process
(S0,β

t ; t ≥ 0) is obtained from the case α > 0 by letting α−→ 0 in a suitable
manner.

(1.d) It is also natural to look for some representation of these subordina-
tors as continuous additive functionals of a Brownian motion (Bs; s ≥ 0)
taken at the inverse local time (τ ∗t ; t ≥ 0) of that Brownian motion. This is
done expressing the Bessel processes with drift in terms of their Feller rep-
resentations, using scale functions and speed measures. For example, it was
remarked in Biane-Yor [3] that:

(1.1) (

∫ τ∗

t

0

|Bu|
1
α
−2 du, t ≥ 0)

(law)
= (Sα,0

t ; t ≥ 0),

and that all symmetric stable Lévy processes may be obtained in this man-
ner, replacing the even power |x| 1

α
−2 by ”symmetric” powers i.e.: σ(x) =

sgn(x)|x| 1
α
−2. For example, ( 1

π

∫ τ∗

t

0
ds
Bs

; t ≥ 0) is a standard Cauchy process.
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More generally, every asymmetric stable Lévy process may be represented in
a similar manner from Brownian motion. Although in the sequel, we shall
also extend (1.1) to present in general (Sα,β

t ; t ≥ 0) in terms of Brownian ad-
ditive functionals taken at (τ ∗t ; t ≥ 0), these presentations are not so simple,
and we prefer to those the Krein representations evoked in (1.c).

(1.e) The rest of the paper is organized as follows. Our main Krein rep-
resentation results are presented in Section 2. The full proofs are given in
Section 3. The Brownian additive functional representations are discussed
in Section 4. Finally, in Section 5, we also give some Krein representations
of the symmetric Lévy processes on R (without Gaussian component) whose
Lévy measures are given by:

ν̃α,β(dy) =
exp(−β|y|)

|y|α+1
dy

(0 ≤ α < 2, β > 0).

(1.f) As an end to this introduction, let us point out that, the subordinators
Sα,β we represent here, and their symmetric counterparts, are arguably the
most studied and used among Lévy processes, and this, for the following rea-
sons: for α > 0, Sα,β is obtained by Esscher transform (see [7, 26]) from the
fundamental stable (α) subordinator, hence it ”retains” some scaling prop-
erty, while the Gamma process ([6], [27], [28], [29], [30]) and the variance-
gamma processes ([17], [16], [15]) have some fundamental quasi-invariance
properties, which make them comparable, in some respect, to Brownian mo-
tion with drift.

(1.g) Finally, we refer the reader to a systematic compendium [5] of constants
Cα related to various choices found in the literature of local times with respect
to BES(−α). We also intend in [4] to study a number of properties of the
symmetrized BES(α, β ↓) processes with a view towards a discussion of Krein
representations for the variance-gamma processes.

2 Definition of the BES(−α, β ↓) processes and

main Krein representation results

(2.1) We first recall that for 0 < α < 1, BES(−α), which we call the Bessel
process of index −α, (or dimension d = 2(1 − α)) is the R+-valued diffusion
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with infinitesimal generator

1

2

d2

dx2
+

1 − 2α

2x

d

dx
,

which is instantaneously reflecting at 0. We denote by P
(−α)
x its distribution

on C(R+,R+), where Rt(ω) = ω(t), Rt = σ{Rs; s ≤ t} and R0 = x.
For the sequel, it will be convenient to introduce the parameter θ =

√
2β for

β > 0. We may now define BES(−α, β ↓) as the diffusion with law (P
(−α),β↓
x ),

obtained by Girsanov1 transform from BES(−α):

(2.1) P (−α),β↓
x |Rt =

K̂α(θRt)

K̂α(θx)
exp(Cα(2β)αlt − βt)P (−α)

x |Rt

where K̂α(x) = xαKα(x), x ≥ 0, which satisfies K̂α(0) = 2α−1Γ(α) and
(lt; t ≥ 0) is a choice of the local time at level 0 of R made so that the
following holds:
Itô’s excursion measure nβ↓

α (de) associated with BES(−α, β ↓) together with
this choice of local time may be described as follows:

a) nβ↓
α (V (e) ∈ dv) = 2αΓ(α+1)

vα+1 exp(−βv)dv, where V (e) denotes the lifetime
of the generic excursion e.

b) Conditionally on V = v, the process (e(u), u ≤ v) is distributed as a
Bessel bridge of index α, and length v.

Note that this description is valid, in particular, for β = 0.
The conditioned diffusions BES(−α, β ↓), started at x > 0 and killed at T0

are described in [21]. See also Watanabe [31, 32, 33].
We now discuss some immediate consequences of these choices: from (a),

it follows that:

E
(−α),β↓
0 (exp(−λτu)) = exp

(

−u2αΓ(α + 1)

∫ ∞

0

dv

vα+1
(1 − e−λv)e−βv

)

and elementary computations yield:

E
(−α),β↓
0 (exp(−λτu)) = exp

(

−u2αΓ(α + 1)
Γ(α− 1)

α
{(λ+ β)α − βα}

)

= exp

(

−u2α π

sin(πα)
{(λ+ β)α − βα}

)

1We shall also use the well-known general fact that such an absolute continuity rela-
tionship extends with t replaced by any stopping time T on the set (T < ∞).
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As a consequence of these computations, it follows that, on one hand:

(2.2) E
(−α)
0 (exp(−λτu)) = exp

(

−u2α π

sin(πα)
λα

)

and from (2.1) taken at x = 0 and t = τu, we can determine the constant Cα:

Cα =
π

sin(πα)
.

On the other hand,

lim
α−→ 0

E
(−α),β↓
0 (exp(−λτu)) = exp (−u{ln(λ+ β) − ln(β)})

=
1

(1 + λ/β)u
(2.3)

Thus, assuming that we may represent the LHS of (2.3) as E0,β↓
0 (exp(−λτu))

for the law P 0,β↓
0 of some diffusion BES(0, β ↓), instantaneously reflecting at

0, we will thus have obtained a Krein representation of the Gamma process
with parameter β, i.e. the subordinator whose Laplace transform in λ, at
time u, is given by (2.3).

Theorem 2.1 1) For every β > 0, there exists a diffusion BES(0, β ↓) on
R+, which is instantaneously reflecting at 0, and whose infinitesimal gener-
ator on (0,∞) is given by:

1

2

d2

dx2
+

(

1

2x
+

√

2β
K ′

0

K0

(
√

2βx)

)

d

dx
.

2) For some choice of the local time at 0 of BES(0, β ↓), the corresponding
Itô measure of excursions may be described as:

a) nβ↓
0 (V (e) ∈ dv) = 1

v
exp(−βv)dv

b) Conditionally on V = v, the process (e(u), u ≤ v) is distributed as a
Bessel bridge of dimension 2, and length v.

3) Let x > 0, the following relation holds:

(2.4) P (0),β↓
x |Rt∩(t<T0) =

K0(θRt)

K0(θx)
exp(−βt)P (0)

x |Rt .
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Note: The following relation, where we have extended (1/K0) to [0,∞[, with
(1/K0)(0) = 0, is equivalent to (2.4):

(2.5) P (0)
x |Rt =

K0(θx)

K0(θRt∧T0)
exp(βt)P (0),β↓

x |Rt .

The following theorem exhibits an absolute continuity relationship between
the laws P

(0),(β+γ)↓
x and P

(0),β↓
x from which several important Laplace trans-

forms may be immediately obtained.

Theorem 2.2 Let β, γ > 0, and x > 0; then, there is the relationship:
(2.6)

P (0),(β+γ)↓
x |Rt =

K0(
√

2(β + γ)Rt)

K0(
√

2βRt)

K0(
√

2βx)

K0(
√

2(β + γ)x)
(1+

γ

β
)lt exp(−γt)P (0),β↓

x |Rt .

In particular, for x = 0 and t being replaced by τl, formula (2.6) simplifies
as:

(2.7) P
(0),(β+γ)↓
0 |Rt =

K0(
√

2(β + γ)Rt)

K0(
√

2βRt)
(1 +

γ

β
)lt exp(−γt)P (0),β↓

0 |Rt .

and

(2.8) P
(0),(β+γ)↓
0 |Rτl

= (1 +
γ

β
)l exp(−γτl)P (0),β↓

x |Rτl
.

Note, also from (2.6), that the measure:

K0(
√

2βx)

K0(
√

2βRt)
β−lt exp(βt)P (0),β↓

x |Rt

does not depend on β.

Here are some consequences of (2.6), (2.7), (2.8):

- As a consequence of (2.6), one obtains the Laplace transform of

T0 = inf{t;Rt = 0} under P
(0),β↓
x :

(2.9) E(0),β↓
x (exp(−γT0)) =

K0(
√

2(β + γ)x)

K0(
√

2βx)
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In fact, T0 is distributed2 as a GIG(0; x,
√

2β) variable, i.e. with den-
sity:

1

2K0(x
√

2β)
exp(−1

2
(x2/t+ 2βt))dt.

As a consequence of (2.8), we obtain our main result:

Corollary 2.3 (τl; l ≥ 0) is, under P
(0),β↓
0 , a gamma process with parameter

β, i.e. (βτl : l ≥ 0) is a standard Gamma process:

(2.10) E
(0),β↓
0 (exp(−γτl)) =

1

(1 + γ
β
)l

for γ ≥ 0.

3 Esscher and Girsanov transforms

This section is devoted to the proofs of the assertions contained in Section 2.

(3.1) To begin with, we explain how, once we have obtained a Krein repre-
sentation for a subordinator (St), we can obtain a related one for a second
subordinator (S̃t) whose law is an Esscher transform of that of (St). We
consider a positive diffusion (Xt; t ≥ 0) with 0 as an instantaneous reflecting
boundary. We denote by Lt a choice of its local time at 0 and (τl : l ≥ 0)
the corresponding inverse local time. We are looking for a diffusion X̃ on R+

with laws P̃x such that:

(3.1) P̃0|Fτu
= exp(ψ(a)u− aτu)P0|Fτu

for a > 0, where ψ denotes the Laplace exponent of the subordinator (τu; u ≥
0). From (3.1), the inverse local time τ̃ of X̃ is the Esscher transform τ (a) of
τ defined by:

(3.2) E0[exp(−λτ (a)
u )] =

E0[exp(−(λ + a)τu)]

E0[exp(−aτu)]
.

The Lévy measure m(a)(dx) of τ (a) is related to the Lévy measure m(dx) of
τ by m(a)(dx) = exp(−ax)m(dx) (see [7], [26], Chapter VII, Section 3c).
To define P̃x, we need to compute the martingale

Ms = E[exp(−aτt)|Fs], s ≤ τt
2For many references to, and applications of, GIG variables, see Matsumoto-Yor [18]
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Ms = exp(−as)EXs(ω)

[

exp(−aτt−Ls(ω))
]

Now, we have:

Ex [exp(−aτv)] = Ex [exp(−aT0)]E0 [exp(−aτv)]

and therefore:
Ms

M0
= ϕa↓(Xs) exp(ψ(a)Ls − as)

where ϕa↓ denotes the function defined by

(3.3) ϕa↓(x) = Ex[exp(−aT0(X))] (ϕa↓(0) = 1)

where T0(X) is the first hitting time of 0 by X. More generally, for x ≥ 0,
we define the law P̃x via the absolute continuity relation:

(3.4) P̃x|Ft =
ϕa↓(Xt)

ϕa↓(x)
exp(ψ(a)Lt − at)Px|Ft .

The generators L and L̃ of X and X̃ respectively are linked by:

L̃ = L+
ϕ′

a↓(x)

ϕa↓(x)

d

dx
.

(3.2) Examples:

1. Px = P
(−α)
x , 0 < α < 1. Then,

ϕa↓(x) = cαK̂α(
√

2ax), ψ(a) =
π

sin(πα)
(2a)α

and P̃x = P
(−α),a↓
x .

2. Px = P
(−α),β↓
x , 0 < α < 1, β > 0. Then,

ϕa↓(x) = c′α
K̂α(

√

2(β + a)x)

K̂α(
√

2βx)
; ψ(a) =

π

sin(πα)
{(2a+ 2β)α − (2β)α}

and P̃x = P
(−α),(β+a)↓
x .
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From [3] and [20], we know that the inverse local time of BES(−α) is a stable
subordinator of index α. It follows from subsection (3.1) and Example 1
above that the inverse local time of BES(−α, β ↓) is a subordinator Sα,β.
The description of Itô’s excursion measure of BES(−α, β ↓) follows from
the description of the excursion measure for BES(−α) given in [3] and the
Esscher transform. Note that we have not chosen the same normalisation for
the local time as in [3]; we have the following relation between the two local
time processes (from (2.2) and subsection 3.2 in [3]):

lBY
t =

(2αΓ(α))2

2(1 − α)
lDY
t

where lBY
t denotes the local time considered in [3]. Note that there is a

mistake in [3] after (3.i) due to the identification of τ
(−1/2)
t (the inverse local

time of the reflected Brownian motion) with τt (for the Brownian motion)
instead of τt/2 and the correct formula (see p.45, after (3.i)) is

E[exp(−kτ (−ν)
tc(1/2,2ν))] = exp(−tcν2ν−1kν).

(3.3) Proof of Theorems 2.1 and 2.2
1) We consider the diffusion X on [0,∞[ with generator

1

2

d2

dx2
+

(

1

2x
+

√

2β
K ′

0

K0
(
√

2βx)

)

d

dx
.

A pair (s(x), m(dx)) of scale function and speed measure is given by:

s(x) =

∫ x

0

dy

yK2
0(
√

2βy)
, m(dx) = 2xK2

0 (
√

2βx)dx.

Note thatK0(y) ∼0 ln(2/y), thus
1

yK2
0(
√

2βy)
is integrable in 0 and s(0) = 0.

In order to obtain the behavior of X at the boundary point 0, we shall apply
the criterium of Rogers-Williams [25, V.51] to the diffusion in natural scale
Y = s(X). The speed measure of Y is given by:

mY (dx) =
2

(s′ ◦ s−1(x))2
dx.

Then,
∫

0+
xmY (dx) < ∞ implying that T0(Y ) < ∞ Px p.s. for all x > 0,

and
∫

0+
m(dx) <∞ ensuring that 0 is reflecting.

9



The description of the Itô measure follows from that of BES(−α, β ↓) letting
α−→ 0.
The absolute continuity relation (2.4) is given in Pitman-Yor [21]. We can
also obtain it from (2.1) and:

P (+α)
x |Rt =

(

Rt∧T0

x

)2α

P (−α)
x |Rt , x > 0.

Thus,
(

Rt∧T0

x

)2α

P (−α),β↓
x |Rt =

K̂α(θRt)

K̂α(θx)
exp(−βt)P (+α)

x |Rt

and letting α−→ 0,

1(t<T0).P
(0),β↓
x |Rt =

K0(θRt)

K0(θx)
exp(−βt)P (0)

x |Rt . �

The absolute continuity relation (2.6) follows from the example (3.2) 2. with
α = 0. In this case,

ϕa↓(x) = C
K0(

√

2(β + a)x)

K0(
√

2βx)
; ψ(a) = ln(1 +

a

β
).

The other formulas follow easily. �

4 Brownian representations of the subordi-

nators Sα,β

We keep the same normalisation as in Section 2, i.e. the Laplace transform
of a stable process is given by (2.2)

Proposition 4.1 1. The stable subordinator Sα can be represented by the
Brownian additive functional (see [3])

Sα
t = Aα(τ Γ(α)2t

α2α−1

)

where

(4.1) Aα(s) :=

∫ s

0

|Bu|
1
α
−2 du, s ≥ 0,

and τt is the inverse local time of B.
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2. The subordinator Sα,1 can be represented as:

(4.2)

∫ τt

0

hα(|Br|) dr.

where hα(x) = 2(s−1
α (2x))2K4

α(s−1
α (2x)) and

(4.3) sα(x) =

∫ x

0

dy

yK2
α(y)

3. The Gamma process S0,1 has the following representation:

(4.4)

(
∫ τt

0

h(|βu|) du ; t ≥ 0

)

with

(4.5) h(x) = 2(G−1(2x))2K4
0(G

−1(2x)),

where G−1 is the inverse of the increasing function G given by:

(4.6) G(z) =

∫ z

0

dx

xK2
0 (x)

Sketch of Proof:
1)The first point has been obtained in [3]. More precisely,

(4.7) E[exp(−λ
2
Aα(τt))] = exp(−tcαλα), λ ≥ 0,

where

cα =
π

α sin(πα)

(

αα

Γ(α)

)2

.

2) By a Girsanov transform, we can find a diffusion X such that the subor-
dinator

AX
α (τt) :=

∫ τt(X)

0

|Xu|
1
α
−2 du

is a Esscher transform of the stable subordinator Aα(τt) and thus is dis-
tributed as Sα,1(up to a constant). Then, we write the diffusion in natural
scale sα(X) as a time change Brownian motion. We can also start from
BES(α, 1 ↓) and use a time change method.

11



3) By an application of Itô’s formula, we can prove that:

G−1(2|Bt|) = Y

(
∫ t

0

2h(|Bs|)ds
)

where Y is a BES(0, 1↓) process from which we can deduce that τt(Y )
(law)
=

∫ τt(B)

0
2h(|Bs|)ds where τt(Y ) is the inverse diffusion local time of Y , defined

with the speed measure mY (dy) = 2yK2
0(y)dy.

5 Some complements

5.1 The case α = 1/2

Let us go back to the representation (4.2) for the subordinator with Lévy
measure k′α exp(−y

2
) dy

y1+α . In the case α = 1/2, (4.2) becomes:

(5.1)

∫ τt

0

dr

(1 + 2|βr|)2
.

We now explain how this representation may be reduced to the more classical
one, as given in (5.2) below. For this purpose, we recall that the stable
subordinator of index 1/2 can also be realized as the distribution of (Tt; t ≥ 0)
where Tt denotes the first hitting time of t by a Brownian motion, starting
from 0. We have the same interpretation for its Esscher transform. Indeed,

ln(1 + 2|Bt|) = 2

[
∫ t

0

sgn(Bs)dBs

(1 + 2|Bs|)
−

∫ t

0

ds

(1 + 2|Bs|)2
+ Lt

]

= 2

[

−β(1)

(
∫ t

0

ds

(1 + 2|Bs|)2

)

+ Lt

]

where (β(1)(u); u ≥ 0) is a Brownian motion with drift 1.
From Skorokhod’s lemma, we derive:

Lt = sup

{

β(1)
s ; s ≤

∫ t

0

dr

(1 + 2|Br|)2

}

Therefore, we obtain:

(5.2)

∫ τl

0

dr

(1 + 2|Br|)2
= inf{u; β(1)

u = l} := T
(1)
l .
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Thus, from (5.1), (T
(1)
l , l ≥ 0) is a subordinator with Lévy measure C exp(−y

2
) dy

y3/2

and Laplace transform

E

(

exp(−λ
2

2
T

(1)
l )

)

= exp(−l(
√
λ2 + 1 − 1)).

Of course, the above Laplace transform could also have been computed from
the Laplace transform of Tl and the Cameron-Martin formula.

5.2 Symmetric Lévy processes

From the Brownian representation of the Gamma process, we can give a
Brownian representation for the symmetric Gamma process (or variance
gamma process) distributed as (γ1(t) − γ2(t); t ≥ 0) where γ1 and γ2 are
two independent gamma processes. More generally, we have:

Proposition 5.1 Let S1 and S2 be two independent subordinators with Brow-
nian representations:

(Si(t); t ≥ 0)
(law)
=

(
∫ τt

0

dsϕi(|Bs|); t ≥ 0

)

, i = 1, 2.

Then, we have the Brownian representation for (S1(t) − S2(t); t ≥ 0) as
follows:

(5.3) (S1(t) − S2(t); t ≥ 0)
(law)
=

(
∫ τ2t

0

dsϕ(Bs); t ≥ 0

)

where ϕ(x) =

{

ϕ1(x), x > 0
−ϕ2(−x), x < 0

.

Proof: It suffices to write
∫ τt

0

dsϕ(Bs) =

∫ τt

0

ds1(Bs>0)ϕ1(Bs) −
∫ τt

0

ds1(Bs<0)ϕ2(−Bs).

Then, we use the representation

(5.4) B+
s = |β(+)|∫ s

0 1(Bu>0)du, B
−
s = |β(−)|∫ s

0 1(Bu<0)du

13



where β(+) and β(−) are (as a consequence of Knight’ s theorem) two indepen-
dent Brownian motions3 ; see, e.g., proofs of the arc sine law for Brownian
motion, inspired from D. Williams [34] (see [9], [19]).
Then, we can write

∫ τt

0

dsϕ(Bs) =

∫ A
(+)
τt

0

dhϕ1(|β(+)
h |) −

∫ A
(−)
τt

0

dhϕ2(|β(−)
h |)

where

A(+)
τt

=

∫ τt

0

ds1(Bs>0)ds; A(−)
τt

=

∫ τt

0

ds1(Bs<0)ds,

and moreover, from (5.4), we also learn that:

A(+)
τt

= τt/2(β
(+)), A(−)

τt
= τt/2(β

(−)).

Finally, we have obtained the result. �

5.3 The Itô measure of BES(−α, β ↓)
The description of the Itô measure given in Section 2 relies upon one of the
descriptions of the Itô measure nα of BES(−α) given in [3]. There is a
second description of n conditionally to the maximum of the excursion.

Proposition 5.2 a) Under nβ↓
α , the distribution of M satisfies:

(5.5) nβ↓
α (M ≥ x) = 2(2β)αKα(

√
2βx)

Iα(
√

2βx)

b) Conditionally on M = x, the maximum is attained at a unique time R and
the processes (et; 0 ≤ t ≤ R) and (eV −t, 0 ≤ t ≤ V −R) are two independent
BES(α, β ↑) processes, starting from 0, stopped at their first hitting time Tx

of x.

Proof: a) From the description of nβ↓
α given in section 2, we have:

nβ↓
α [f(M2)] = 2αΓ(α+ 1)

∫ ∞

0

exp(−βv)
vα+1

Π(α)
v [f(M2)]dv

3However, we emphasize that, knowing B, only the reflected Brownian motions |β(+)
h

|
and |β(−)

h
| are accessible, and not β(+) and β(−).

14



where Π
(α)
v is the distribution of a Bessel bridge of index α and length v.

nβ↓
α [f(M2)] = 2αΓ(α + 1)

∫ ∞

0

exp(−βv)
vα+1

Π
(α)
1 [f(vM2)]dv

Now, from [22, Theorem 3.1]

Π
(α)
1 [φ(r)] = cαE[φ(R̃)(M̃)−2α]

where the process R̃ is defined by

R̃t = (T + T̂ )−1/2Yt(T+T̂ ), 0 ≤ t ≤ 1

and Y is the process connecting the paths of two independent BES(2 + 2α)
processes R on [0, T ] (first hitting time of 1) and R̂ on [0, T̂ ] back to back,
i.e.

Yt =

{

Rt t ≤ T

R̂T+T̂−t T ≤ t ≤ T + T̂

Then,
M̃ := sup

s≤1
R̃s = (T + T̂ )−1/2

and cα = 2αΓ(α + 1).
It follows that:

Π
(α)
1 [f(vM2)] = cαE

[

f

(

v

T + T̂

)

(T + T̂ )α

]

.

Thus,

nβ↓
α [f(M2)] = 2αΓ(α + 1)cαE

[

∫ ∞

0

exp(−βw(T + T̂ ))

wα+1
f(w)dw

]

= 2αΓ(α + 1)cα

∫ ∞

0

f(w)

wα+1
E

[

exp(−βw(T + T̂ ))
]

dw

= [2αΓ(α + 1)]−1cα

∫ ∞

0

f(w)

wα+1

(

(
√

2βw)α

Iα(
√

2βw)

)2

dw

= (2β)α

∫ ∞

0

f(w)

wI2
α(
√

2βw)
dw

= 2(2β)α

∫ ∞

0

f(y2)

yI2
α(
√

2βy)
dy

15



Therefore, we obtain

nβ↓
α (M ∈ dy) = 2(2β)α 1

yI2
α(
√

2βy)
dy

hence:

nβ↓
α (M ≥ x) = 2(2β)α

∫ ∞

x

1

yI2
α(
√

2βy)
dy

= 2(2β)αKα(
√

2βx)

Iα(
√

2βx)
.

We also refer to [24] for related computations.
As a verification, we can let β−→ 0 to obtain:

nα(M ≥ x) = 22αΓ(α)Γ(α+ 1)
1

x2α
.

This agrees with the description of the distribution of M under n̂α given in
Biane-Yor [3]:

n̂α(M ≥ x) =
1

x2α

and from our normalisation given in Section 2,

nα = 22αΓ(α)Γ(α+ 1)n̂α.

b) We refer to [21] for the definition of Bessel processes with driftBES(α, β↑).
The description of nβ↓

α , conditionally to M , follows from the description of
nα (see [3]), the relation nβ↓

α (de) = exp(−βV (e))nα(de) and

P
(α),β↑
0 |FTx

= Cαx
−αIα(θx) exp(−βTx)P

(α)
0 |FTx

(see Proposition 3.1 in [21]). �
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