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__________________________________________________________________________________________ 

Abstract. Several mathematical formulae are used nowadays in order to compute a magnetic torque. We demonstrate 

that its more general expression is the vectorial product of the current density with the vector potential. We associate this 

Larmor’s torque with Ampère’s force and more specifically with Helmholtz  mechanical tension, which is at the origin 

of the longitudinal stresses in “open” circuits carrying current. We show that Ampère’s force enters into the realm of 

Newtonian Electrodynamics and we explain the absence of contradiction with special relativity. Hence, we provide for 

the first time a theoretical basis for the numerous experiments, which claimed to have demonstrated the existence of the 

longitudinal mechanical tension starting with the historical Ampère’s hairpin demonstration and the more modern ones 

of the Graneaus and of Saumont. 

__________________________________________________________________________________________ 

 

Pacs Number : 03.50.De ; 41.20.-q. 

 

It is true that Ampère’s formula is no more admissible today, because it is based on the 

Newtonian idea of instantaneous action at a distance and it leads notably to the strange 

consequence that two consecutive elements of the same current should repel each other. Ampère 

presumed to have demonstrated experimentally this repulsion force, but on this point he was wrong. 

The modern method, the more rational in order to establish the existence of electrodynamics forces 

and to determine their value consists in starting from the electrostatic interaction law of Coulomb 

between two charges (two electrons), whose one of them is at rest in the adopted frame of reference 

and studying how the interaction forces transform when one goes, thanks to the Lorentz-Einstein 

relations, to a system of coordinates in which both charges are in motion. One sees the appearance 

of additional forces proportional to e
2
/c

2
, e being the electrostatic charge and c the light velocity, 

hence one sees that not only the spin but also the magnetic moment of the electron are of relativistic 

origin – as Dirac has shown – but that the whole of electromagnetic forces has such an origin. 

 

Alfred Kastler, 1977. 

 Introduction 

 

The forces on conductors are usually described by the Maxwell stress tensor, which leads to a 

useful interpretation of the forces in terms of the tension along magnetic and electric field lines and 

the pressure across them. 

The mechanical torque exerted by a magnetic induction on a coil carrying a steady or a quasi-

static current can be calculated by taking the vectorial product of the equivalent magnetic moment of 

the coil with the magnetic induction of say, a magnet [1, 2]. Other expressions appear in the 

literature as for example the vectorial product of the position vector with the Lorentz force. We will 

show that all these expressions derived from a general one depending on the vectorial product of the 

current density with the vector potential. 



As the subject is an old one, we have been forced to recall its historical development. However, 

our findings will give a theoretical basis for the interpretation of modern experiments displaying 

effects outside the scope of the current understanding/interpretation of electrodynamics. The so-

called Larmor torque will allow us to introduce easily the so-called Helmholtz mechanical tension 

which is closely related to the Ampère force and which explains the appearance of longitudinal 

stresses in circuits carrying currents whose existence is the subject of a long-standing debate since 

the original Hairpin experiment designed by Ampère was carried out almost two centuries ago. In 

addition, we will underline the absence of contradiction between Ampère’s law and special relativity 

suggested by the above quotation of Alfred Kastler thanks to the formalism of Galilean 

Electromagnetism. Usefulness of this concept for light angular momentum and 

magnetohydrodynamic dynamo is outlined. 

 

The Magnetic Torque 

 

A- The Amperian formulation according to Neumann 

 

How do we compute a magnetic torque? The classical interpretation [1, 2] relies on the use 

of the Laplace/Lorentz/Grassmann force (denoted only by Lorentz in the following) 



F  j  Bd

D

 , which can be written for a closed circuit as 



F  Id l  B

C

 . The magnetic 

induction is calculated with the Biot-Savart formula in the quasi-static limit: 



B 

0

4

j  r

r
3
d '

D '

  

This leads to an interaction force between two closed circuits a and b: 



F
ab
 


0

4
I
a
I
b

r
ab

dl
a
.dl

b

r
ab

3

b


a

  
a
P
ab

 

This force is equal to the gradient of the so-called « interaction potential » introduced by 

F.E. Neumann [3]. The potential is the product of the current inside the b circuit with the flux of 

the magnetic induction coming from a and going through b: 



P
ab
 I

a
I
b


0

4

dl
a
.dl

b

r
b


a

  
ab
I
b
  

We introduce now the mutual inductance, which is a function of the magnetic permeability and of 

the geometries of both circuits:  



M
ab


0

4

dl
a
.dl

b

r
b


a

  M
ba

 

Hence, the interaction force between two circuits can be expressed in the following way: 



F
ab
 

a
P
ab
 

b
P
ab
 

b
(M

ab
I
a
I
b
)  

b
(

ab
I
b
)  


0

4
I
a
I
b

r
ab

dl
a
.dl

b

r
ab

3

b


a

  

with: 



r
ab

2
 (x

b
 x

a
)
2
 (y

b
 y

a
)
2
 (z

b
 z

a
)
2 and 




a
r
ab

 
b
r
ab . 

Moreover, by a dimensional argument:



energy  force  length  torque  angle . 

One deduces the existence of an interaction magnetic torque, which is a function of the 

magnetic flux: 



C
ab





(P

ab
) 




(

ab
I
b
)  with 




ab

 B
a
S
b
cos   

such that :



C
ab

  I
b
B
a
S
b
sin  . 



 

A more direct manner is to assess the torque with the Lorentz force: 



C  r  j  B d
D

  

The last formula corresponds to the modern habit. 

 

B- The Lagrangian formulation according to Maxwell 

 

Maxwell showed that the Neumann’s interaction potential can be expressed as a function of 

the vector potential instead of the magnetic induction [4, 5, 6]: 



A 

0

4

j

r
d

D '

  '  or for a closed circuit 



A 

0

4

Id l'

r
C '

  with 



B    A  

Hence, the Neumann’s potential is, as a consequence, the product of the current inside the 

circuit b with the circulation of the vector potential of the circuit a within the circuit b:  




ab
 A

a
.dl

b
 M

ab
I
a

b

 . 

Starting with the expression of the interaction potential, Maxwell introduced the following 

expression for the magnetic energy of the whole system, which is analogous to a mechanical 

kinetic energy:  

  



E
m

1

2
j.A d

D

 
1

2
L
aa
I
a

2
 M

ab
I
a
I
b

1

2
L
bb
I
b

2
 L

m


1

2
p
k

k 1

n

 q
k



 

with the “generalized velocities” 



q
k



 I
k
, which Maxwell identified to the current intensities and 

the generalized momenta (“electrokinetic momenta “) 

  



p
k

dL

m

d q
k


 L

kl

l 1

n

 q
l



, which Maxwell 

associated to the vector potentials circulations (the vector potential is interpreted as a linear density 

of generalized electromagnetic momentum). Following Maxwell [4, 5, 6], 



L
kk

 is called an “inertia 

moment” that is an auto-inductance and 



L
kl

, an “inertia product” that is a mutual inductance. These 

moments are function of the vacuum permeability, which is a kind of electromagnetic mass or 

inertia [7]. Maxwell distinguishes the electric variables 



q
k
 and the position variables 



x
k
 (a length or 

an angle). The inertia moments



L
kk
 f ( x

k
)  and the inertia products 



L
kl
 g ( x

k
, x

l
)  are functions 

only of the latter. 

 From the electrokinetic Lagrangian   



L
m

, one deduces, by applying the Euler-Lagrange 

formula (the prime signifies that the force is furnished from the exterior to the system) either: 

  



X
i
'
d

dt

dL
ab

d x
i



dL

ab

dx
i

 
dL

ab

dx
i

  X
i
  i.e.   



F
ab

 L
ab

 P
ab

 

the electromagnetic force (when the generalized coordinate is a position variable) because the 

interaction Lagrangian does not depend on the velocity;  or the electromotive force [3, 4, 5]: 

  



Y '
dp

dt

dL

dy

dp

dt
 Y  

if the generalized coordinate is an electric variable: 



Y  e  
dp

dt
 

d

dt
A .dl

C

  
d

dt
 

as the Lagrangian does not depend explicitly on the charges 



y  q
k
 q

k



dt  I
k
dt . 



Rare are the authors who have used the Lagrangian formulation of Electrodynamics 

introduced by Maxwell [8, 9, 10, 11, 12]. According to Henri Poincaré : “We touch here, as I 

believe, to the very thinking of Maxwell” [8].  It seems that Louis De Broglie discovered 

independently this formulation without reference to Maxwell previous investigations [10, 11].  

 

C- The Tensorial formulation following Henriot, Costa de Beauregard and Reulos 

 

Émile Henriot then René Reulos introduced what they called a “potential-current”  

interaction tensor in order to describe the radiation torque experimentally observed by Richard 

Beth operating with circularly polarized light [13, 14]. 

 

1. The “field-polarization” interaction tensor  

 

We recall in this part the very elegant and straightforward demonstration of Reulos [14]. 

The interaction between an electric dipole and an electric field leads to the existence of not only an 

energy but also a torque: 



dE
p

d
 P .E  and 



dC
p

d
 P  E  

Reulos noticed that one can condense these two equations by introducing the so-called 

“field-polarization” interaction tensor whose expression is the product of an antisymmetric tensor 

built with the electric field by another antisymmetric tensor built with the electric polarization [14] 

: 


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p
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d  

The interaction between a magnetic moment and a magnetic field is similar: 



dE
a

d
 M .B  and 



dC
a

d
 M  B  

and one can use now the tensorial notation of Reulos: 



d
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a

1
C
a
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1
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3
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1
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a
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3
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2. The “potential-current” interaction tensor 

 

René Reulos based his reasoning on the fact that the four-potential and the four-current 

interact in a similar way with respect to energy [14]: 



dE
ch arg e

d
 V   j

4
A
4
 and 



dE
courant

d
  j.A   j

k
A
k

k 1

3

  

that is for the total energy: 



dE  (V  j
1
A
1
 j

2
A
2
 j

3
A
3
)d   j


A


d  dC

4
 



Hence, Reulos built potentials and currents tensor whose product (as a matrix product) is by 

definition the “potential-current” interaction tensor: 



d

E C
3

C
2

C
1

C
3

E C
1

C
2

C
2

C
1

E C
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E
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A
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A
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A
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3
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
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3

 j
2

j
1

 j
3
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1

j
2

j
2

 j
1

i j
3

 j
1

 j
2

 j
3
i

d  

and whose spatial components define a density of magnetic torque per unit volume: 



dC
1
 ( j

2
A
3
 j

3
A
2
)d

dC
2
 ( j

3
A
1
 j

1
A
3
)d

dC
3
 ( j

1
A
2
 j

2
A
1
)d









 that is 



dC  j  A d  

 However, Beth’s experiments with the dielectrics are explained thanks to the torque 



dC
p
 P  Ed . Nevertheless, Reulos noticed the role played by the vector 



dC  j  A d  in order 

to demonstrate the origin of the torque, which appears on a “Hertzian polarizer/analyzer” 

constituted with vertical metallic rods suspended to a frame and submitted to an electromagnetic 

wave [14]. Besides, by expressing the torque density on a length element in function of the current 

and by introducing the integral expression of the vector potential in function of the current, Reulos 

has shown that the integral torque vector exerted by a circuit a on another circuit b can rearrange in 

the following form [15, 16] : 



C
ab
  I

b
A

a
 dl

b

b

   I
a
I
b

dl
a
 dl

b

r
b


a

  

Starting from the infinitesimal expression of the magnetic energy 



W  I , Olivier Costa de 

Beauregard noticed that it could be reorganized (



dW  IA .dl  T.dl ) in order to display the 

Ampère’s tension (as he called it) 



T  IA , which is at the origin of an infinitesimal  

torque



dC  dl  T  Id l  A  and, which is nothing but the expression given by Reulos [17]. 

 

3. The electromagnetic stress tensor of Reulos and Costa de Beauregard 

 

Besides, O. Costa de Beauregard introduced the “elastic” tensor 



N
kl
 A

k
J
l

1

2
A
i
J
i

kl , 

which constitutes an alternative to the use of the Minkowski’s tensor (function of the fields) in 

order to express the Lorentz force 



K
i
 F

ik
J
k
 

k
(F

il
F
il
 1/2F

rs
F
rs

i

k
)  (where F

ik
 

i
A
k
 

k
A
i
 is 

the Faraday/Maxwell/Minkowski tensor) in a four-dimensional manner and only in terms of the 

four-potentials [18]. The spatial part of the Costa De Beauregard tensor 




kl
 N

lk
 N

kl
 is equal to 

the opposite of the density per unit volume of the magnetic torque 



dC  j  A d . Finally, R. 

Reulos proposed, following Costa de Beauregard, a variational method in order to explain the 

origin of the energy tensor [16, 19]. 

 

D-The thermodynamic formulation according to Laue and De Haas 

 

 Max Von Laue was the doctoral student of Max Planck who was a specialist of 

thermodynamics. Indeed, Planck was the first to treat the extension of relativity to 

thermodynamics. Hence, it is not surprising that his student used thermodynamics in order to 

tackle the problem of formulating an electromagnetic stress-energy tensor with the goal to deduce 

the expression for the magnetic torque [20, 21].  



As a matter of fact, the first principle of thermodynamics can be expressed in the following 

form for a constant number of particles and volume:



d
0
 T

0
ds . A Galilean change of frame of 

reference modifies the rest energy density by adding a kinetic energy density 



  
0

1

2
v

2
 

0

g
2

2
 where we defined the impulsion density: 



g  v . From it, we deduce the 

expression of the first principle in a moving frame of reference: 



d  Tds  v .dg  with 



T  T
0
. 

Hence, we can define a generalized thermodynamic potential, which is a minimum at equilibrium: 

such that 



df  Tds  g .dv . The product 



v.g  appears as the kinetic contribution to the energy 

density. Besides, we know that the generalized “impulsion” of a massive charge particle in 

presence of a vector potential writes: 



p  mv  qA . Following Maxwell, one can define an 

“electro-tonic impulsion” density 



G  
e
A , which is the product of the electric charge density with 

the vector potential, which physically is an electromagnetic momentum per unit charge. Now, the 

product of the charges velocity by the “electro-tonic” momentum is an energy: 



T
em

 v
e
.G  

e
v
e
.A  j.A  [20, 21]. The quadri-dimensional generalization is straightforward: 



T
Laue


 V


G


 j


A


 T

ja

 . We are willing to construct an “impulsion-torque tensor” from the 

stress-energy tensor 



T
ja


 j


A

  attributed to Gustav Mie (1912-1913) by De Haas [21]. We recall 

that in hydrodynamics, one can construct a rotation tensor from the velocity tensor with indicial 

components 



u
i

x
j

 thanks to anti-symmetrisation : 




ij


u
i

x
j


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j
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i











. We suppose that the 

impulsion-torque tensor has the following antisymmetric form: 



N
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
 j


A


 j


A

  whose spatial 

components correspond to the volume density of the magnetic torque: 



n  j  A  [21]. Paul De 

Haas has recently re-examined the problem of energy conservation in relativity by following the 

path of Von Laue by exploring the conservation equation 





( j


A


)  0 , which according to him, 

leads to the removal of several paradoxical problems in Electrodynamics [21]. 

 

E-Larmor’s precession 

 

  The Lorentz force can be rewritten as a function of the potentials: 



d

dt
(mv  qA )  q (V  v .A )  

with : 



dA

dt

A

 t
 v . A  

where 



  applies only to 



A (r , t )  and not to 



v 
dr

dt
. 

   The generalized impulsion is by definition 



P  mv  qA . The angular momentum 

associated to it writes 



L  r  P  r  mv  qA   l  r  qA . One deduces the balance for the 

angular momentum : 



dL

dt
 qv  A  qr   (v .A  V )  

 If 



V  V (r)  as for an electron in an atom submitted to a uniform magnetic field whose 

vector potential is 



A 
1

2
B  r  (



.A  0 ), then we get: 





dL

dt
 qv  A 

q

2m
l  B  

Usually, the diamagnetic contribution 



qA  is negligible in 



L , so we end up with: 



d l

dt
 qv  A 

q

2m
l  B 

e

2m
B  l    l  

where 



 
e

2m
B  is the well-known Larmor angular velocity.  

 As a partial conclusion, the famous Lamor precession is a direct consequence of the existence 

of the magnetic torque :  



qv  A  
e
dv  A  

e
v  Ad  J  Ad . 

 

Links between the different formulations 

 

If we extend Maxwell’s reasoning, a torque is a generalized force that one can obtain by 

using the Euler-Lagrange equation when applied to an angle from the interaction Lagrangian [6] : 

  



C
ab





(L

ab
) 




(

ab
I
b
)   

with 




ab
 A

a
.dl

b

b

  B
a
 S

b
 B

a
S
b
cos  . We find the torque derived previously from the 

Amperian procedure (here, 



n  S
b
/ S

b
 denotes the unit vector perpendicular to the coil b): 



C
ab
  I

b
B
a
S
b
sin n   I

b
n A

a
.dl

b

b


sin 

cos 
 I

b
dl

b
 A

a

b

  j
b
 A

a
d

b

  

which displays, after some modifications, the following magnetic torque density: 



dC
ab

d
 j

b
 A

a
 

As an example of the equivalence between all formulations, we will calculate the magnetic 

torque for the well-known Pellat electrodynamometer. Given a fixed horizontal solenoid of 

whatever section and characterised by ns coils per unit length. We put a coil constituted with 

several enrolments of section Sb inside the solenoid. This one is carrying a current Is whereas the 

intensity in the coil is Ib. The calculus of the force and the torque exerted by the solenoid on the 

inner coil implies the evaluation of the mutual inductance Msb. Besides, the mechanical action 

reduces to a torque as the variation of the mutual inductance for a horizontal translation is null as 

one assumes the solenoid to be infinite. Due to symmetry, the torque’s axis is perpendicular to the 

plane enclosing the coil surfaces. One has : 



M
sb



sb

I
s


1

I
s

A
s
.dl

b

 
B
s
S
b
cos 

I
s

 
0
n
s
S
b
cos   

The inner coil is submitted to the following torque, following Neumann: 



C
sb
 I

s
I
b

M
sb


  I

s
I
b

0
n
s
S
b
sin   m

b
B
s
sin( )  

However, the inner coil is equivalent to a magnet whose magnetic moment is 



m
b
 SI

b  and is 

submitted to the usual magnetic induction created by a solenoid 



B
s
 

0
n
s
I
s . Hence, the inner coil 

is submitted to the well-known torque: 



C
sb
 m

b
 B

s . If the coil is placed outside the solenoid, no 

torque is detected as the product of the current by the magnetic flux is constant. 

 



The Longitudinal Tension 

 

H. von Helmholtz introduced in 1870 the concept of “longitudinal tension” between two 

successive current elements [4 Chapter 4, 4.1 to 4.3] : an “open” linear current element is 

submitted to two forces 



 IA (r
1
)  and 



IA (r
2
)  between its two ends 



r
1
 and 



r
2
 due to the presence of 

a space-dependent vector potential. Maxwell in 1873 derives independently in his Treatise the 

mathematical expression for the Helmholtz mechanical tension but without discussing its physical 

implication as Helmholtz [6]. We sketched here the simpler derivation of Maxwell. One recalls 

first that the product of the current with the circulation of the vector potential stands for the 

magnetic energy. Maxwell used variational calculus in order to derive the force on a current 

element by differentiating with respect to a virtual displacement 



 l  the magnetic energy: 



df .l   I A .dl   I A .dl  I A .dl  I l. A .dl  I A . l  I l . dl. A  

The first and third term lead to the Lorentz force whereas the second term is the Helmholtz tension 

and  integrates to zero if the circuit is closed. 

 

Joseph Larmor provides in 1897 several mathematical demonstrations for the existence of a 

longitudinal tension but with no references to Maxwell and Helmholtz’s previous demonstrations. 

We reproduce Larmor’s main reasoning for two demonstrations with his own words and some 

comments [4 Appendix 9, 22 III, 23 p. 223-226, 24, 25]: 

 

« [For linear conductors,] the total electrokinetic energy is : 



Midsi ' ds '  where 



M 
1

r
cos( ds , ds ' ) 

1

2


2
r

ss'
 

If the currents are uniform all along the linear conductors, the second term in M integrates to 

nothing when the circuit are complete, and we are thus left with the Ampère-Neumann expression 

for the total energy of the complete current, from which the Amperan law of force may be derived 

in the known manner by the method of variations. But it must be observed that, as the localization 

of the energy is in that process neglected, the legitimate result is that the forcive of Ampère, 

together with internal stress as yet undetermined between contiguous parts of the conductors, 

constitute the total electromagnetic forcive : it would not be justifiable to calculate the 

circumstances of internal mechanical equilibrium from the Amperean forcive alone, unless the 

circuits are rigid. For example, if we suppose that the circuits are perfectly flexible, we may 

calculate the tension in each, in the manner of Lagrange, by introducing into the equation of 

variation the condition of inextensibility. We arrive at a tension 



i Mi ' ds '  where i is the current at 

the place considered; whereas the tension as calculated from Ampère’s formula for the forcive 

would in fact be constant, the forcive on each element of the conductor being wholly at right 

angles to it. » 

 

« Consider [now] a current system to be built up of physical current elements of the form 



j
x
, j

y
, j

z d , the energy associated with an element of volume 



d , as existing in the surrounding 

field and controlled by the element, is : 



T
L
 j.A d  

The ponderomotive force acting on the element will be derived from a potential energy function –



T
L
, by varying the coordinate of the material framework: it must in fact consist, per unit volume of 

a force : 
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j
x

A
x

x
 j

y

A
y

x
 j

z

A
z

x
, j

x

A
x

y
 j

y

A
y

y
 j

z

A
z

y
, j
x

A
x

z
 j

y

A
y

z
 j

z

A
z

z









 

and a couple : 



j  A  

The former being derived from a translational, the latter from a rotational virtual displacement of 

the element. » 

 

« The traction in the direction of the current would introduce an additional tension, equal to the 

current multiplied by the component of the vector potential in its direction, which is not usually 

constant along the circuit, and so may be made the subject of experimental test with liquid 

conductors, as it would introduce differences of fluid pressure. There will also be an additional 

transverse shearing stress, which should reveal itself in experiments on solid conductors with 

sliding contacts. » 

 

Darrigol has pointed out correctly that the derivation of the Larmor’s force was flawed [4 

Appendix 9]. Indeed, Larmor treated wrongly the current density as a “force” and not a “density” 

according to Maxwell terminology [6]. Darrigol did not comment on the torque calculation. Hence, 

Larmor derived one tension, one force and a torque. We believe the tension to be the one of 

Helmholtz and the torque will be called by us the Larmor torque because its expression as a cross-

product was first derived by him before Reulos, Costa De Beauregard, Carpenter and De Haas. 

Finally, Larmor points out that the use of mercury will certainly reveals the longitudinal stresses… 

 

The Force of Ampère 

 

 As recalled beautifully by Kastler, the main scientific achievement of Ampère was to derive 

the force between two current elements 



I
a
d l

a
 and 



I
b
d l

b
 separated by a distance r [26, 27, 28]: 



d
2
F
A
 


0

4
I
a
I
b

1

r
2
2
r

r
dl

a
.dl

b  3
r

r
3
dl

a
.r  dl b .r 









 

Its differs from Laplace/Lorentz/Grassmann’s law used in modern textbooks according 

to [29]: 



d
2
F
A
 I

a
d l

a



0

4

I
b
d l

b
 r

r
3

 d l
b
.

b


0

4

I
a
I
b
r . r .d l

b 

r
3









 

For closed circuits, both forces give the same predictions. However, Moon and Spencer 

have examined very deeply in a series of articles [30, 31, 32] the various possible force laws in 

accordance with Ampère’s experiments. As a conclusion, they rejected forcefully Grassmann’s 

law, which for instance is not in agreement with Newton’s third law… 

 

The forces on infinitesimal circuit elements are usually given by the Lorentz force law, 

given the local field due to the entire circuit. However, while the fields given by the Biot-Savart 

law are written as the sum over individual infinitesimal elements, only the sum is assumed to be 

correct. Moreover,  an individual infinitesimal circuit element is interpreted as a moving charge, or 

a current that is not divergence-free and therefore not steady, so the fields are not correctly given 

by magnetostatics or magnetoquasistatic. 

 

 



 We insist on the fact that the law of Ampère is experimental so it cannot be questionable 

(contrary to A. Kastler’s introducing quotation) as soon as the conditions of the experimental 

realizations are known. From its basic expression, it appears clearly that the law could be 

(wrongly) interpreted as an action at distance since it features the two current elements and the 

separation between them. However, the Ampère’s force can be rewritten in such a way that one 

current element interacts with the vector potential (or alternatively the magnetic field) created by 

the other current element [33]. So action at distance is replaced by the interaction between a source 

and a field created by a distant source, which propagates instantaneously. Now, the Ampère’s force 

satisfies to Newton’s third law. Moreover, the equality of action and reaction is only compatible 

with instantaneous interactions otherwise the simultaneity will be relative as demonstrated by H. 

Poincaré [34, 35]. This last fact is one of the major arguments used by the opponents of the 

longitudinal stresses as implied by Ampère’s law because it is in contradiction with special 

relativity. Indeed, special relativity and hence the full set of Maxwell equations cannot be made 

compatible with Ampère’s law. However, what has not been noticed before is the fact that 

Ampère’s law is compatible with the so-called Galilean magnetic limit of Maxwell equations as 

one deals with divergenceless currents in the quasi-stationary approximation [36, 37]. We 

underline strongly that a current, which is divergence-free (magnetic limit), is not necessarily 

steady as often assumed. Hence, Ampère’s law (so longitudinal stresses) as an approximation is 

completely compatible with Galilean electromagnetism and so with the principle of relativity [36, 

37]. Of course, for rapid oscillations of the currents, Ampère’s law will break down (waves will 

propagate) and is indeed incompatible with special relativity and more precisely with the light 

velocity postulate but still not with the relativity postulate. That’s why we think that the Graneaus 

(father and son) were particularly right to call their book Newtonian Electrodynamics [38] as 

Ampère’s law is strictly valid only in the realm of Galilean Physics… 

 

Following Cornille, Ampère’s force for volume elements 



d
3
  becomes [33]: 



d
6
F
A
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
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When 



J
a  and 



J
b  are co-linear, Ampère predicted the existence of a repulsion: 



d
6
F
A



0

4

J
a
J
b

r
2
d
3

a
d
3

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which is in contradiction with Laplace/Lorentz/Grassmann law, which predicts a zero force 

between both current elements. Hence, one recovers roughly the mechanical tension introduced by 

Helmholtz from Ampère’s force in the longitudinal direction: 



T
H



0

4

J
a

r
d
3

a
.
J
b
d
3

b

r
 dA

a
.I
b
 

where 



dA
a  is the vector potential created by the current density 



J
a  interacting with the current 

intensity 



I
b . 

 

With the help of the Swiss physicist De La Rive, Ampère performed the well-known 

hairpin experiment to confirm his prediction. It consists in connecting two parallel troughs filled 

with mercury to a battery and completing the circuit by a bridge perpendicular to the two wires 

forming the hairpin and floating on the mercury. The hairpin is isolated except at its extremities 

where the repulsion forces act and propel the system away from the battery whatever is the sign of 

the current [26, 27]. Several reproductions have confirmed the existence of the effect whereas the 



theoretical explanation given by Ampère is still the subject of an intense controversy in the recent 

literature [38, 39, 40, 41]. 

 

H. Helmholtz, his Russian student N. Schiller, the Maxwellians G. F. Fitzgerald and O. J. 

Lodge have made several attempts to discover experimentally the additional longitudinal stresses 

derived independently by Maxwell, Helmholtz and Larmor. All the experiments were negative [4 

Chapter 6, 22 III, 23 p. 223-226, 24 Two and Three]. Concerning Helmholtz’s ones, he expected 

charges effect to occur sine he wrote the new forcives in function of the time derivative of the 

charge density thanks to charge conservation: he was wrong (Larmor made the same 

physical/mathematical error [42]) as the current density is divergenceless within the Galilean 

magnetic limit [36, 37]. However, none of these authors made the link between the tension 



T  IA  

and the Hairpin experiment of Ampère… 

 

It seems that Costa de Beauregard was the first to envisage the mathematical relationship 

more than one century and half after Ampère’s experiments [17, 43]. According to us, one of the 

most striking experimental results concerning the Helmholtz tension is the experiment of Rémi 

Saumont [44, 45]. Indeed, as we have seen Larmor suggested that liquid metal conductors would 

certainly reveals differences of fluid pressure due to the predicted mechanical tension. Saumont, 

without knowing Larmor suggestion, designed a very clever weighing method in order to measure 

the apparent lightening or increase in weight of a horizontal metallic circuit connected to a balance 

pan, carrying an electric current and whose vertical ends were plunged in two separate beakers of 

mercury related to a battery. For example, lightening is obtained when the ends are directed 

downwards. He has shown by a careful study that the difference in weight is proportional to the 

square of the current intensity as predicted by the Helmholtz tension/Ampère force [44, 45]. 

 

Other experiments have been carried out in order to demonstrate the existence of the 

Ampère’s force. For example, the behaviour of electromagnetic railguns is thougth to be explained 

by the Helmholtz tension/Ampère force as well as the wire exploding phenomena [38, 45, 46]. We 

hope that our study will close the debate with respect to the existence of the longitudinal stresses 

[47, 48, 49, 50, 51, 52]. 

 

Conclusions 

 

As a conclusion, we have shown that the expression of Larmor is the more general 

expression for a magnetic torque whose existence is confirmed by everyday experiments. It is then 

straightforward to deduce the existence of a Helmholtz mechanical tension, which is closely 

related to Ampère’s force. Much more studies are needed now in order to compute directly the 

Helmholtz tension for particular case as for Saumont experiments. In addition, we have recalled 

Reulos reasoning for introducing the Larmor torque. Present days studies of the light angular 

momentum should make the link with the thought experiment of Reulos with metallic rods where 

one should observe a rotation of the frame carrying the rods when submitted to an electromagnetic 

wave [52]. As foreseen by Larmor, the use of liquid metal like in Magnetohydrodynamics is a 

perfect field of testing for the Helmholtz tension. By the way, it is strange that the long-standing 

problem of earth dynamo was systematically approached through the use of Lorentz force at the 

notable exception of the mechanical model of Rikitake who precisely used a formulation in terms 

of the magnetic torque [53]. Hence, maybe Larmor’s torque could give some clues for the 

generation of motion by a liquid metal carrying induced currents… 
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