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Abstract

This paper is devoted to continuity results of the time derivative of the solution to the one-dimensional parabolic

obstacle problem with variable coefficients. Under regularity assumptions on the obstacle and on the coefficients,

we prove that the time derivative of the solution is continuous for almost every time. When the solution is

nondecreasing in time this result holds for every time. We also give an energy criterion which characterizes the

continuity of the time derivative of the solution at a point of the free boundary. Such a problem arises in the pricing

of american options in generalized Black-Scholes models of finance. Our results apply in financial mathematics.

AMS Classification: 35R35.
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1. Introduction

Let α ∈ (0, 1) and consider a domain D of R
2. We denote by Hα the Banach space of Hölder functions

Hα(D) :=
{

f ∈ C0 ∩ L∞(D) : ‖f‖α;D <∞
}

where ‖f‖α;D = ‖ · ‖L∞(D) + [f ]α;D,

[f ]α;D := sup
(x,t),(y,s)∈D
(x,t)6=(y,s)

|f(x, t) − f(y, s)|
( |x− y|2 + |t− s| )α/2
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(see [12], Chap. 3, Sec. 2). For all q ∈ [1,∞] we also define the Sobolev space

W 2,1;q
x,t (D) :=

{

u ∈ Lq(D) :
(∂u

∂x
,
∂2u

∂x2
,
∂u

∂t

)

∈ (Lq(D))3
}

.

To P0 = (x0, t0) ∈ R
2 and R ∈ (0,∞), we associate the open parabolic cylinder

QR(P0) := { (x, t) ∈ R
2 : |x− x0| < R and |t− t0| < R2 } ,

and the lower half parabolic cylinder

Q−
R(P0) := { (x, t) ∈ R

2 : |x− x0| < R and 0 < t0 − t < R2 } .
Such notations for parabolic problems are standard. See [20,12,18] for more details. On W 2,1;q(QR(P0)),
consider now the parabolic operator

Lu := a(x, t)
∂2u

∂x2
+ b(x, t)

∂u

∂x
+ c(x, t)u− ∂u

∂t
,

where a, b and c are variable coefficients which depend on x and t.

This paper is devoted to regularity properties of the solutions to the one-dimensional parabolic obstacle
problem











Lu(x, t) = f(x, t) 1l{u>0}(x, t)

u(x, t) ≥ 0

(x, t) ∈ QR(P0) a.e. (1.1)

The function 1l{u>0} denotes the characteristic function of the set {u > 0} := {(x, t)∈QR(P0) : u(x, t)>0}:

1l{u>0}(x, t) =







1 if u(x, t) > 0 ,

0 if u(x, t) = 0 .

Our main assumption is the following assumption on uniform parabolicity and non degeneracy and reg-
ularity of the coefficients and of the function f :










a, b, c and f belong to Hα(QR(P0)) for some α ∈ (0, 1) ,

there exists a constant δ0 > 0 such that for any (x, t) ∈ QR(P0) , a(x, t) ≥ δ0 and f(x, t) ≥ δ0 .

(1.2)

By [14], under Assumption (1.2), (1.1) has a unique solution for suitable initial datum and boundary
conditions. From standard regularity theory for parabolic equations, [20,12,18], it is known that any solu-
tion u belongs to W 2,1;q

x,t (Qr(P0)) for any r < R and q < +∞. As a consequence of Sobolev’s embeddings,
u is continuous. The set {u = 0} is then closed in QR(P0).

Definition The sets {u = 0} and Γ := QR(P0) ∩ ∂{u = 0} are respectively called the coincidence set
and the free boundary of the parabolic obstacle problem (1.1).

Notations. We will use ut, ux and uxx respectively for ∂u
∂t , ∂u

∂x and ∂2u
∂x2 . By |A| we denote the volume of the

set A ⊂ R
2 with respect to the Lebesgue measure, and by D(R) the set of smooth functions with compact

support. For any domain D ⊂ R
2, we will write u ∈ W 2,1;q

x,t;loc(D) if and only if u ∈ W 2,1;q
x,t (K) for all

compact K ⊂⊂ D. The heat operator will be abbreviated to H , Hu := uxx−ut. The parabolic boundary

of Q−
r (P0) is the set ∂pQ−

r (P0) := [x0−r, x0+r]×{t0−r2}∪{x0−r, x0+r}×[t0−r2, t0]. We define the parabolic
distance distp between two points P = (x, t) and P ′ = (x′, t′) by distp(P, P

′) :=
√

(x− x′)2 + |t− t′|.
By standard parabolic estimates ut is continuous in a neighborhood of any point P such that u(P ) > 0.

If P is in the interior of the region {u = 0}, ut is obviously continuous. The key issue is therefore the
regularity of ut on the free boundary Γ. Our first result states that u is almost never discontinuous.
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Theorem 1.1 (Continuity of ut for almost every t) Let u be a solution of (1.1) and assume (1.2).
For almost any t1 ∈ (t0 −R, t0 +R), if P1 = (x1, t1) is a point on the free boundary Γ, then

lim
P→P1

∂u

∂t
(P ) = 0 .

As far as the authors know, this result is new, even in the case of constant coefficients. The continuity of
ut cannot be obtained everywhere in t, as shown by the following example. Let u(x, t) = max{0,−t}. It
satisfies uxx − ut = 1l{u>0} and its time derivative is obviously discontinuous at t = 0. If we additionally
assume that ut ≥ 0, we achieve a more precise result:

Theorem 1.2 (Continuity of ut for all t when ut ≥ 0) Under the assumptions of Theorem 1.1, if ut

is nonnegative, then ut is continuous everywhere, and satisfies

∂u

∂t
= 0 on Γ .

The assumption that ut is nonnegative can be established in some special cases (special initial conditions,
boundary conditions, and time independent coefficients). See for example the results of Friedman [13],
for further results on the one-dimensional parabolic obstacle problem with particular initial conditions.

When we are not assuming that u is nondecreasing in time, it is useful to have some criteria to determine
the points where the time derivative of the solution is continuous. We begin with a density criterion based
on the density θ(P1) of the coincidence set {u = 0} at the point P1 ∈ QR(P0):

θ(P1) := lim inf
r→0

|{u = 0} ∩Qr(P1)|
|Qr(P1)|

and on the lower density θ−(P1) of {u = 0} at P1:

θ−(P1) := lim inf
r→0

|{u = 0} ∩Q−
r (P1)|

|Q−
r (P1)|

.

Theorem 1.3 (Density criterion: continuity of ut) Let u be a solution of (1.1), assume (1.2) and
consider a point P1 ∈ QR(P0). If either θ(P1) = 0, or θ(P1) 6= 0 and θ−(P1) 6= 0, then we have

lim
P→P1 P∈QR(P0)\Γ

∂u

∂t
(P ) = 0 .

Otherwise, if θ(P1) 6= 0 and θ−(P1) = 0, then ut is not continuous at P1.

The second criterion is an energy criterion based on a monotonicity formula. Consider a nonnegative

cut-off function ψ ∈ D(R) such that ψ ≡ 1 on
(

− r
2

√

f(P1)

a(P1)
, r

2

√

f(P1)

a(P1)

)

and ψ ≡ 0 on
(

−∞,−r
√

f(P1)

a(P1)

]

∪
[

r
√

f(P1)

a(P1)
,∞
)

. Let Qr(P1) ⊂ QR(P0) ⊂ R
2. With P1 = (x1, t1), and a, f the functions involved respect-

ively in the definition of the operator L and in Equation (1.1), define the function vP1 for all (x, t) ∈
R × (−r2 f(P1), r

2 f(P1)) by

vP1(x, t) := u

(

x1 + x
√

a(P1)

f(P1)
, t1 +

t

f(P1)

)

· ψ(x) if |x| ≤ r
√

f(P1)

a(P1)
, vP1 ≡ 0 otherwise . (1.3)

For all t ∈ (−r2 f(P1), 0), let

E(t; v) :=

∫

R

{[

1

−t

( ∣

∣

∣

∣

∂v

∂x

∣

∣

∣

∣

2

+ 2 v

)

− v2

t2

]

G

}

(x, t) dx −
∫ 0

t

1

s2

∫

R

{(Hv − 1) (Lv)G} (x, s) dx ds ,
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with Hv := vxx − vt, Lv := −2 v + x · vx + 2 t vt and G(x, t) := (2π(−t))−1/2 exp
(

−x2/(−4t)
)

.

Theorem 1.4 (Energy criterion: continuity of ut) Under the assumptions of Theorem 1.1,
(i) either limt→0, t<0 E(t; vP1) =

√
2,

(ii) or there exists some t ∈ (−r2 f(P1), 0) such that E(t; vP1 ) <
√

2. In that case, limt→0, t<0 E(t; vP1) =√
2/2 and ut is continuous in a neighborhood of P1.

The one-dimensional parabolic obstacle problem for differential operators with variable coefficients is
a generalisation to the case of an operator with variable coefficients of Stefan’s problem (case where
the parabolic operator is Lu = uxx − ut). Stefan’s problem describes the interface of ice and water (see
[17,25,14]). The problem with variable coefficients arises in the pricing of american options in mathematical
finance (see [5,3,26,19,16,27,1,4,22,23]). The regularity of ut is a natural question to apply the “smooth-fit
principle” which amounts to require the C1 continuity of the solution at the free boundary. This principle
is often assumed in numerical methods (see for instance [10]).

In [26] Van Moerbeke studied a special case where he proved that ut is continuous except at one point
and gave some asymptotics of the free boundary at this point. In [13], Friedman specifically studied
the case of an american option and proved that ut is continuous on some subsets of the free boundary.
Using the maximum principle, he also proved for a special class of initial data that the free boundary is
piecewise monotone. Then until recently the theory of the obstacle problem has essentially been studied
in the stationary case (see [17,25,14] and references therein). Variational inequalities have been related
to probabilistic methods in [3,16,19], and also to viscosity solutions methods [27,24]. Also see [1] for a
recent paper revisiting variational inequalities and raising questions on the regularity of the solution and
of the free boundary.

Recently in [7], Caffarelli, Petrosyan and Shahgholian considered the case with constant coefficients in
any dimension and without any sign assumptions on the solution. They developed a nice theory of the
regularity of the free boundary, based on Liouville type results and monotonicity formulas, like the one
introduced by Weiss in [29]. As we shall see below, such tools are extremely useful for our purpose.

This paper is organized as follows. In Section 2 we obtain W 2,1;∞
x,t a priori estimates on the solution and

prove a non-degeneracy lemma. As a consequence the free boundary is a closed subset of zero measure.
In Section 3 we introduce the notion of blow-up sequences which are a kind of zooming at a point of
the free boundary. We will use them to study the regularity of the solution. These sequences converge,
up to the extraction of sub-sequences, to the blow-up limit which is a solution in the whole space of the
obstacle problem with constant coefficients. Using a monotonicity formula we prove in Section 3 that
the blow-up limit is scale-invariant. This allows us to classify all possible blow-up limits in a Liouville
theorem. The energy also gives a criterion to distinguish regular and singular points of the free boundary,
see Section 4. In Section 5 we prove the uniqueness of the blow-up limit at each singular point. The last
section is devoted to the completion of the proofs of all results stated in Section 1 and some additional
results on the time derivative of the solution.

2. Regularity estimates and properties of the free boundary

2.1. A priori regularity estimates

Assume that (1.2) holds and consider a solution u of (1.1). By a bootstrap argument, u is bounded
in W 2,1;q

x,t (QR/2(P0)) for all q ∈ (1,∞). In particular, by Sobolev imbeddings, u is continuous. Further
regularity estimates require more sophisticated methods. To this end, let us consider a function u ∈
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W 2,1;1
x,t;loc(QR(P0)) ∩ C(QR(P0)) solution of



















Lu ≤ f a.e. QR(P0) ,

Lu = f a.e {u > 0} ,

u ≥ 0 a.e. QR(P0) .

(2.1)

Theorem 2.1 (A priori regularity estimates) Assume (1.2) and consider a solution u of (2.1). For
all R′ < R, u is bounded in W 2,1;∞

x,t (QR′(P0)).

The W 2,1;∞
x,t regularity is essentially optimal. Consider indeed in the case a ≡ 1, b ≡ 0 and c ≡ 0 the

function

u(x, t) = θ (−t)+ +
1

2
(1 − θ)x2

+

where x+ := max{0, x}. For θ = 0 or 1, u is a solution in W 2,1;∞
x,t;loc(R

2) to uxx − ut = 1l{u>0}, but it is

neither in W 2,2;1
x,t;loc(R

2) for θ = 1, nor in W 3,1;1
x,t;loc(R

2) for θ = 0.
Theorem 2.1 is an adaptation of a result by Alt and Philips [2]. Its proof relies on the two following

Lemmata 2.2 and 2.3. In [20], Theorems 7.21 and 7.22 (pp. 180-181), we can read the following statement.

Lemma 2.2 (De Giorgi-Nash-Moser-Harnack inequality) Let P ∈R
2, r∈ (0, 1) and g = g(x, t) ∈

L2(Q−
4r(P )). Under Assumption (1.2), if u ∈W 2,1;1

x,t (Q−
4r(P )) satisfies

a uxx + b ux − ut ≤ g , u ≥ 0 , (x, t) ∈ Q−
4r(P ) a.e. ,

then there exists a positive constant CH , which depends on a and b but is independent of r, such that

sup
Q−

r (P )

u ≤ CH

[ √
r ‖g‖L2(Q−

4r(P )) + inf
Q−

4 r(P )
u
]

.

In R
d, d > 1, the term

√
r ‖g‖L2(Q−

4r(P )) would be replaced by rd/(d+1) ‖g‖Ld+1(Q−
4r(P )). In the above

expression we use the notation CH is order to remind that this inequality is of Harnack type.

We can deduce from [20], Theorem 4.9 (p. 59) and Exercise 4.5 (p. 84), the following result. The original
result was proved by Ciliberto in [9].

Lemma 2.3 (Schauder interior estimates) Let P ∈ R
2, r ∈ (0, 1) and f = f(x, t) ∈ Hα(Q−

r (P )),
α ∈ (0, 1). Under Assumption (1.2), if u ∈ W 2,1;1

x,t (Q−
r (P )) is a solution of

Lu = f a.e. in ∈ Q−
r (P ) ,

then uxx is in Hα, ut is in Hα and there exists a positive constant CS, which depends on L = a ∂xx +
b ∂x + c − ∂t but is independent of r, such that

sup
Q−

r/2
(P )

∣

∣

∣

∣

∂2u

∂x2

∣

∣

∣

∣

+ sup
Q−

r/2
(P )

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

+
1

r
sup

Q−
r/2

(P )

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

≤ CS

r2

(

sup
Q−

r (P )

|u| + r2 sup
Q−

r (P )

|f | + r2+α[f ]α;Q−
r (P )

)

.

Proof. A classical density argument reduces the question to the case uxx in Hα, and ut in Hα in The-
orem 4.9 (p. 59) from [20]. According to Exercise 4.5 (p. 84) in [20] applied to v with k = 0 the result
holds for u in the domain Q−

1 (P ) with v(x, t) := r−2u(r x, r2 t). �

Proof of Theorem 2.1. Let δ ∈ (0, 3R/2) and define (see Figure 1)

ωδ :=
{

P ∈ {u > 0} ∩QR/2(P0) : distp(P, {u = 0} ∩Q3R/4(P0)) < δ
}

.
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We recall that the parabolic distance distp between two points P = (x, t) and P ′ = (x′, t′) is defined by

distp(P, P
′) :=

√

(x− x′)2 + |t− t′|. (1) Consider first the case P ∈ QR/2(P0) ∩ ωδ. For any r > 0 such

{u > 0} {u = 0}

ωδ

QR/2(P0)

QR(P0)

Figure 1. Construction of the set ωδ .

that Q−
4 r(P ) ⊂ Q3R/4(P0), if

M := max
{

1, 8
√

2
(

‖f‖L∞(QR(P0)) + ‖c‖L∞(QR(P0))‖u‖L∞(Q3R/4(P0))

)}

,

then
‖f − c u‖L2(Q−

4 r(P0)) ≤M r3/2 (2.2)

where c = c(x, t) is the zeroth order coefficient of L. Define

r :=

(

u(P )

2CH M

)1/2

.

By continuity of u, limδ→0 supP∈ωδ
|u(P )| = 0. If δ is sufficiently small, r ≤ 1, and Q−

4r(P ) is contained

in Q3R/4(P0). Applying Lemma 2.2 to u with g = f − c u in Q−
4r(P ), we get

sup
Q−

r (P )

u ≤ CH

(

√
r ‖f − c u‖L2(Q−

4r(P0))
+ inf

Q−
4r(P )

u

)

.

Using (2.2) and M ≥ 1, this gives

‖u‖L∞(Q−
r (P )) = sup

Q−
r (P )

u ≤M CH

(

inf
Q−

4r(P )
u+ r2

)

.

By definition (2.1) of r,

sup
Q−

r (P )

u ≤M CH inf
Q−

4r(P )
u+

1

2
u(P ) ≤

(

M CH +
1

2

)

u(P ) .

Hence from the inequalities 0 < u(P ) ≤ supQ−
r (P ) u, we obtain

0 <
1

2
u(P ) ≤M CH inf

Q−
4r(P )

u .

So in Q−
4r(P ), the function u is positive and Lu = f in Q−

4r(P ).
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Applying Lemma 2.3 to u in Q−
r (P ) we get then

sup
Q−

r/2
(P )

∣

∣

∣

∣

∂2u

∂x2

∣

∣

∣

∣

+ sup
Q−

r/2
(P )

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

+
1

r
sup

Q−
r/2

(P )

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

≤ CS

r2

[

(M CH + 1
2 )u(P ) + r2 sup

Q−
r (P )

|f | + r2+α[f ]α;Q−
r (P )

]

.

By definition of r, we conclude that

sup
Q−

r/2
(P )

∣

∣

∣

∣

∂2u

∂x2

∣

∣

∣

∣

+ sup
Q−

r/2
(P )

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

≤ C1 also we have sup
Q−

r/2
(P )

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

≤ C1 r (2.3)

with C1 := CS

(

2M CH

(

M CH + 1
2

)

+ ‖f‖L∞(QR(P0)) + [f ]α;QR(P0)

)

.

(2) Consider now the much simpler case P ∈ QR/2(P0) \ ωδ. By definition of δ and of ωδ, for δ small
enough, we have Q−

r (P ) ⊂ Q3R/4(P0) and Q−
r (P ) ⊂ {u > 0}, with

r :=
δ√
2
.

Consequently we can apply Lemma 2.3 to u in Q−
r (P ):

sup
Q−

r/2
(P )

∣

∣

∣

∣

∂2u

∂x2

∣

∣

∣

∣

+ sup
Q−

r/2
(P )

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

+
1

r
sup

Q−

r/2
(P )

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

≤ C2 (2.4)

with C2 := CS

(

r−2‖u‖L∞(Q−
r (Pa)) + ‖f‖L∞(Q−

r (P )) + rα[f ]α;Q−
r (P )

)

.

(3) Putting all together (2.3) and (2.4) we get

sup
Q−

R/2
(P )

∣

∣

∣

∣

∂2u

∂x2

∣

∣

∣

∣

+ sup
Q−

R/2
(P )

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

+ sup
Q−

R/2
(P )

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

≤ C3

with C3 := max(C1, C2). The Theorem 2.1 is proved for R′ = R/2. Extending the result to any QR′ with
R′ ∈ (R/2, R) is classical by a covering argument. Hence there exists a positive constant CR′ such that

sup
QR′ (P )

∣

∣

∣

∣

∂2u

∂x2

∣

∣

∣

∣

+ sup
QR′ (P )

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

+ sup
QR′ (P )

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

≤ CR′ . (2.5)

�

As a direct consequence of (2.5), we obtain an estimate of u close to Γ. And (2.3) gives a better result
estimate on ux. Recall first that ux = 0 on Γ, because u is nonnegative everywhere and u = 0 on Γ.

Corollary 2.4 Under Assumption (1.2), consider a solution u of (2.1) in QR(P0). Let R′ ∈ (0, R),
P1 ∈ Γ be such that Qρ(P1) ⊂ QR′(P0) for some ρ > 0 small enough. Then there exists C̃ such that for
all P ∈ Qρ(P1),

u(P ) ≤ C̃ ρ2,

∣

∣

∣

∣

∂u

∂x
(P )

∣

∣

∣

∣

≤ C̃ ρ and |uxx(P )| , |ut(P )| ≤ C̃.

Proof. Let P = (x, t), P1 = (x1, t1), P1,t = (x1, t) and Taylor expand around P1 ∈ Γ, using the fact that
ux(P1) = 0:

|u(P )| ≤ |u(P )−u(P1,t)| + |u(P1,t)−u(P1)| |

≤
∫ 1

0

ds

∫ s

0

dα uxx(x1 + α(x− x1))(x − x1)
2 + sup

Q−
R/2

(P )

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

· |t− t1| ≤
5

2
CR′ ρ2 .
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Now with the notations of the proof of Theorem 2.1(1), (2.3) gives if P ∈ ωδ ∩QR/2(P0)

sup
Q−

r/2(P )

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

≤ C1 r ≤ C1

(

u(P )

2CH M

)1/2

so

sup
ωδ

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

≤ C1
5CR′

4CH M
ρ .

In QR/2(P0) \ ωδ (2.4) gives the result with ρ = δ/
√

2. Finally when P ∈ QR′(P0)\QR/2(P0), we get the
result by a covering argument, which ends the proof. �

2.2. Non-degeneracy lemma

The non-degeneracy lemma is an important tool which has first been introduced by Caffarelli in [8] for
the elliptic obstacle problem. It can be interpreted as the fact that the free boundary can not appear or
disappear suddenly, or is not “blurred”. It has been for instance proved for the parabolic problem with
constant coefficient in [7]. Here we extend it to the case of variable coefficients.

Lemma 2.5 (Non-degeneracy lemma) Under Assumption (1.2), consider a solution u of (2.1) in
QR(P0). Let R′ ∈ (0, R), P1 ∈ {u > 0} be such that Q−

r (P1) ⊂ QR′(P0) for some r > 0 small enough.
There exist two positive constants C̄ and r̄ > 0 such that if Qr̄(P1) ∩ {u = 0} 6= ∅:

r ≤ r̄ =⇒ sup
Q−

r (P1)

u ≥ C̄ r2 .

The constants C̄ and r̄ only depend on R′ and L.

Proof. Consider first P ′ = (x′, t′) ∈ {u > 0} ∩Qr(P1). For some positive constant C̄ to be fixed later, we
set for all (x, t) ∈ Qr(P

′) ⊂ QR′(P0)

w(x, t) := u(x, t) − u(P ′) − C̄
(

(x− x′)2 + |t− t′|
)

.

By Assumption (1.2), Lu = f ≥ δ0 in {u > 0}. For all (x, t) ∈ Qr(P
′) ∩ {u > 0}, we have

Lw(x, t) − c(x, t)w(x, t) ≥ Lu(x, t) − c(x, t)u(x, t) − C̄(2 a(x, t) + 1) − 2 C̄ b(x, t) · (x − x′)

≥ δ0 − C̃ |c(x, t)| (2r)2 − C̄ (2 a(x, t) + 1) − 2 C̄ |b(x, t)| (2r)

according to Corollary 2.4. With C̄ := δ0

4

(

2 ‖a‖L∞(QR(P0)) + 1
)−1

and

r̄ :=
δ0
8

min

{

(

4 C̄ ‖b‖L∞(QR(P0))

)−1
,
(

4 C̃ ‖c‖L∞(QR(P0))

)−1/2
}

,

we obtain

Lw(x, t) − c(x, t)w(x, t) ≥ 0 in Qr̄(P
′) ∩ {u > 0} .

Notice that w(P ′) = 0. Applying the parabolic maximum principle in Q−
ρ (P ′) ∩ {u > 0} for ρ ≤ r̄ (cf.

[20] Theorem 2.9 (p. 13), or [12] Theorem 1, Chap. 2, Sec. 1 (p. 34)) we get that the maximum of w is

nonnegative and achieved in {(x, t) ∈ Q−
ρ (P ′) : u(x, t) > 0, t < t′}. On ∂{u = 0}∩Q−

ρ (P ′), u = 0 implies
that w is negative then there exists P2 = (x2, t2) ∈ ∂pQ−

ρ (P ′) ∩ {u > 0} such that

sup
Q−

ρ (P ′)∩{u>0}
w = w(P2) = u(P2) − u(P ′) − C̄

(

(x2 − x′)2 + |t2 − t′|
)

≥ 0 .
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This means that when there exists P1 ∈ Γ such that P ′ ∈ Qr̄(P1) ∩ {u > 0}, then for ρ ≤ r̄ we have

sup
Q−

ρ (P ′)

u ≥ u(P2) ≥ u(P ′) + C̄ ρ2 ≥ C̄ ρ2

and by continuity of u, the estimate remains true when P ′ tends to P1 ∈ Γ. �

2.3. Properties of the free boundary

Theorem 2.6 Under Assumption (1.2), the free boundary Γ associated to a solution u of (2.1) is a closed
set of zero Lebesgue measure.

The proof is a based on several results which are consequences of Corollary 2.4 and Lemma 2.5.

Lemma 2.7 (Cube property of the free boundary) Under Assumption (1.2), consider a solution u
of (2.1) in QR(P0). There exists a constant λ ∈ (0, 1

2 ) such that for any r > 0 small enough, for any

P1 ∈ Γ ∩ Q3R/4(P0) such that Qr(P1) ⊂ Q3R/4(P0), there exists P2 ∈ Q−
r/2(P1) such that Qλr(P2) ⊂

{u > 0} ∩Qr(P1).

Proof. By Lemma 2.5, there exists P2 = (x2, t2) ∈ Q−
r/2(P1) such that

u(P2) ≥
1

4
C̄ r2 .

On the other hand, according to Corollary 2.4 applied to ρ = r, there exists a positive constant C̃ such
that for all P = (x, t) ∈ Qλr(P2),

|u(P )−u(P2)| ≤ |u(x, t)−u(x2, t)|+|u(x2, t)−u(x2, t2)| ≤
1

2
C̃ r |x−x2|+C̃ |t−t2| ≤ (λ C̃+λ2 C̃) r2. (2.6)

Collecting these two estimates, we obtain

u(P ) ≥ 1

4
C̄ r2 − (λ C̃ + λ2 C̃) r2 ,

which is positive if λ is chosen small enough. �

Recall now the following result on measurable sets.

Lemma 2.8 (Density in a point of a measurable set) Let A be a measurable subset in R
2. If A has

non-zero Lebesgue measure, then for almost every P1 = (x1, t1) ∈ A, we have

lim sup
n→∞

|A ∩ Cn(P1)|
|Cn(P1)|

= 1 ,

where Cn(P1) :=
[

x1 − 1
n , x1 + 1

n

]

×
[

t1 − 1
n , t1 + 1

n

]

.

See [11], Theorem 2.9.11 (p. 158), Remark 2.9.12 (p. 158), Theorem 2.8.18 (p. 152) and Remark 2.8.9 (p.
145).

Proof of Theorem 2.6. For the convenience of the reader, we recall here a proof that can be found in [7].
Let us suppose by contradiction that the measure of Γ is non-zero. By Lemma 2.8 there exists at least
one point P1 such that

lim sup
n→∞

|Γ ∩ Cn(P1)|
|Cn(P1)|

= 1 .

Divide the euclidean cylinder Cn(P1) into n parabolic cylinders Qi,n := Q 1
n
(x1, ti), ti := t1 − 1

n + 2 i+1
n2 ,

i ∈ {0, . . . , n − 1}. If Qi,n ∩ Γ = ∅, we set Ei,n := Qi,n. Otherwise, by Lemma 2.7 there exists Ei,n in
Qi,n ∩ {u > 0} with |Ei,n| ≥ λ3 |Qi,n|.
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Figure 2. Construction of the sets Ei,n.

Let us set En := ∪n−1
i=0 Ei,n. We have

lim sup
n→∞

|Γ ∩ Cn(P1)|
|Cn(P1)|

≤ 1 − lim inf
n→∞

|En|
|Cn(P1)|

≤ 1 − λ3 < 1

which contradicts Lemma 2.8. �

A straightforward consequence of Theorems 2.1 and 2.6 is the following result:

Proposition 2.9 Let D be a domain of R
2 × R. If U0 ∈W 2,1;∞

x,t;loc(D) is a fonction satisfying


















U0
xx − U0

t ≤ 1 a.e. D

U0
xx − U0

t = 1 a.e.
{

U0 > 0
}

U0 ≥ 0 a.e. D

then
|∂
{

U0 > 0
}

| = 0 and U0
xx − U0

t = 1l{U0>0} .

3. Properties of blow-up limits

3.1. Reduction to the constant coefficient case

The reduction of a general operator L to the heat operator H is done by a classical transformation
which goes as follows. Assume (1.2) and consider a solution of (1.1). Let P1 = (x1, t1) ∈ Γ and take r > 0
such that Qr(P1) ⊂⊂ QR(P0). For all P = (x, t) ∈ Qr(P1) ∩ {u > 0}, Equation (1.1) can be rewritten as

a(P1)
∂2u

∂x2
(P ) − ∂u

∂t
(P ) = f(P1) + (f(P ) − f(P1)) − (a(P ) − a(P1))

∂2u

∂x2
(P ) − b(P )

∂u

∂x
(P )− c(P )u(P ) .

Consider the affine change of variables

(x, t) 7→
(

X :=
√

f(P1)

a(P1)
(x − x1), T := f(P1) (t − t1)

)

(3.1)

and define

U(X,T ) := u(x, t) ,

g(X,T ) :=
1

f(P1)

(

(f(P )−f(P1)) − (a(P )−a(P1))
∂2u

∂x2
(P ) − b(P )

∂u

∂x
(P ) − c(P )u(P )

)

.
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In the (X,T ) variables, the function U is a solution in W 2,1;1
x,t (Q) of the parabolic obstacle problem

∂2U

∂X2
− ∂U

∂T
= (1 + g) 1l{U>0} , U ≥ 0 a.e. in Q (3.2)

such that ∂{U = 0} 3 0 where

Q :=

(

−r
√

f(P1)

a(P1)
, r

√

f(P1)

a(P1)

)

×
(

−r2f(P1), r
2f(P1)

)

.

By construction, g(0) = 1.

Important remark To avoid further tedious notations and up to make a previous reduction of the
problem, we will assume (except when we will have to move the point P1) from now on and in the whole
paper that f(P1) = a(P1) = 1 and r = 1.Then U satisfies

∂2U

∂X2
− ∂U

∂T
= (1 + g) 1l{U>0} , U ≥ 0 a.e. in Q1(0) (3.3)

From Assumption (1.2) and Theorem 2.1, we deduce that there exist an α ∈ (0, 1) and a positive
constant C such that for r > 0, small enough,

1

2
≤ |g(X,T )| ≤ C(X2 + |T |)α/2 ∀ (X,T ) ∈ Q1(0) . (3.4)

Proposition 3.1 Under Assumption (1.2), consider a solution u of (1.1). With the above notations,
U ∈W 2,1;∞

x,t (Q1(0)) and there exist a positive constant C̄ such that for any P ∈ {U > 0} ∩Q1(0),

Qr(P ) ⊂ Q1(0) =⇒ sup
Q−

r (0)

U ≥ C̄ r2 .

Moreover, ∂{U = 0} has zero Lebesgue measure.
Proof. This result is a straightforward consequence of Lemma 2.5 and Theorem 2.6 using the change of
variables (3.1). �

3.2. Localization, localized energy

Let us first rephrase in terms of U the energy which has been introduced in Section 1. We need to
localize the solution first.

To a nonnegative cut-off function ψ ∈ D(R) such that ψ ≡ 1 on (−1/2, 1/2) and ψ ≡ 0 on (−∞,−1]∪
[1,∞), we associate the function

v(x, t) = vP1(x, t) := U(x, t)ψ(x) , (x, t) ∈ R × (−1, 0) .

To simplify the notations, we shall drop the index P1 whenever there is no ambiguity. The energy now
takes the form:

E(v; t) :=

∫

R

{[

1

−t

(
∣

∣

∣

∣

∂v

∂x

∣

∣

∣

∣

2

+ 2 v

)

− v2

t2

]

G

}

(x, t) dx −
∫ 0

t

1

s2

∫

R

{(Hv − 1)Lv G} (x, s) dx ds , (3.5)

with

Hv := vxx − vt ,

Lv := −2 v + x · vx + 2 t vt ,

G(x, t) :=
e−

|x|2

(−4t)

√

2π(−t)
.
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The function G satisfies the backward heat equation:

Gxx +Gt = 0 in R × (∞, 0) .

The kernel of L is spanned by the space of scale-invariant functions:

Lv ≡ 0 ⇐⇒ v(x, t) = λ−2 v(λx, λ2 t) =: vλ(x, t) , ∀ (x, t) ∈ R × (−∞, 0) , ∀ λ > 0 . (3.6)

This is easily proved by writing vλ(x, t) − v(x, t) =
∫ λ

1 µ
−3(Lv)(µx, µ2 t) dµ.

3.3. Notion of blow-up

In [8] Caffarelli introduces the notion of blow-up sequences in order to study the free boundary of
the elliptic obstacle problem. Such a tool is convenient as long as only a priori W 2,1;∞

x,t;loc estimates of the
solution is known. Here we adapt such a notion of blow-up sequences to the parabolic obstacle problem.

Definition (Blow-up sequence) Let (εn)n∈N be a sequence which converges to 0. The blow-up se-
quence (U εn)n∈N associated to a function U : Q1(0) −→ R around 0 is the sequence defined by

U εn(x, t) := ε−2
n U

(

εn x, ε
2
n t
)

∀ (x, t) ∈ Q1/εn
(0) , ∀ n ∈ N .

The parabolic scaling (x, t) 7→ (εx, ε2t) transforms the parabolic cylinder Qε(0) into the parabolic cylinder
Q1(0) and preserves the heat operator H , in the sense that, for any ε > 0,

(HU ε) (x, t) = (HU) (ε x, ε2 t) ∀ (x, t) ∈ Q1/ε(0) .

Proposition 3.2 (Blow-up limit) Assume (3.4) and consider a blow-up sequence (U εn)n∈N associated
to a solution U of (3.3). There exist a subsequence (εnk

)k∈N and a function U0 ∈W 2,1;∞
x,t;loc(R

2) such that

(i) For any compact set K in R
2, limk→∞ ‖U εnk − U0‖L∞(K) = 0,

(ii) The limit U0 is nonnegative almost everywhere and it is a solution of

∂2U0

∂x2
− ∂U0

∂t
= 1l{U0>0} ,

(iii) 0 belongs to the free boundary of the limit, ∂{U 0 = 0}.
Proof. By Proposition 3.1 and Ascoli-Arzela theorem (see for instance [6], Theorem IV.24 p. 72), up
to the extraction of a subsequence that we still denote by (εn)n∈N, (U εn)n∈N uniformly converges to a
nonnegative function U0 ∈ W 2,1;∞

x,t;loc(R
2) in any compact set K ⊂⊂ R

2. Let P ′ ∈ {U0 > 0}. There exists

r > 0 such that U0 > U0(P ′)/2 in Qr(P
′). Because of the uniform convergence, there exists N ∈ N such

that for all n ∈ N, n > N implies

U εn(P ) ≥ 1

4
U0(P ) > 0 ∀ P ∈ Qr(P

′) .

In other words, Qr(P
′) ⊂ {U εn > 0} for n > N and we can pass to the limit in the equation:

∂2U0

∂x2
− ∂U0

∂t
= 1 in Qr(P

′) .

The equation U0
xx − U0

t = 1l{U0>0} holds both in {U0 > 0} and in the interior of {U0 = 0}. Moreover
U0

xx − U0
t ≤ 1 in R

2. Then from Proposition 2.9, we deduce that ∂{U 0 = 0} has zero Lebesgue measure
which proves Assertion (ii).
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To prove that 0 ∈ ∂{U0 = 0} we first notice that U 0(0) = 0 by uniform convergence. Because of
Proposition 3.1 there exists a positive constant C̄ such that for all r > 0 small enough,

C̄ r2 ≤ sup
(x,t)∈Q−

r (0)

U(x, t) = sup
(x,t)∈Q−

r (0)

ε2n U
εn

(

x

εn
,
t

ε2n

)

,

C̄

(

r

εn

)2

≤ sup
(x,t)∈Q−

r/εn
(0)

U εn(x, t) .

Replacing εn r by r̃, we obtain

C̄ r̃2 ≤ sup
Q−

r̃
(0)

U εn → sup
Q−

r̃
(0)

U0 as n→ ∞ ,

which proves that 0 ∈ ∂{U 0 = 0}. �

Lemma 2.5 gives a much more detailed result than the statement of Proposition 3.2, (iii).

Proposition 3.3 Under the assumptions of Proposition 3.2,

1l{Uεn >0} → 1l{U0>0} in R
2 a.e. as n→ ∞ ,

where (U εn)n∈N is a convergent blow-up sequence associated to U , with blow-up limit U 0.

Proof. From the proof of Proposition 3.2 if P ∈ {U 0 > 0} there exists N such that, if N 3 n > N , then
P ∈ {U εn > 0}. Assume now by contradiction that P ∈ Int{U 0 = 0} is such that P ∈ {U εn > 0} for all
n ∈ N. By Proposition 3.1, supQ−

r (P ) U
0 ≥ C̄ r2, which means that P ∈ ∂{U0 = 0}, and is a contradiction.

To conclude we apply Proposition 2.9 to U 0. �

3.4. A monotonicity formula and application to blow-up limits

Some monotonicity formulas have been introduced by G. Weiss in [28] to study the elliptic obstacle
problem and also by Giga and Kohn in [15], in a different context.

Proposition 3.4 (Local monotonicity formula) Under Assumption (3.4), if U is a solution of (3.3),
then the function t 7→ E(t; v) is a nonincreasing function, which is bounded from below and bounded in
W 1,∞(−1, 0), and such that for almost every t ∈ (−1, 0)

d

dt
E(t; v) = − 1

2 (−t)3
∫

R

|Lv(x, t)|2G(x, t) dx .

Before to prove Proposition 3.4, let us remark that a simple change of variable gives

E(λ2 t; v) = E(t; vλ) ∀t ∈ (−λ−2, 0) (3.7)

where vλ(x, t) := λ−2v(λx, λ2 t). Using (3.6), we obtain a characterization of the functions which are
invariant under the scaling v 7→ vλ.

Corollary 3.5 (Scale invariance of E) Let v ∈W 2,1;∞
x,t (R × R−). Then

Lv ≡ 0 ⇔ E(t; v) = E(t; vλ) ∀ t < 0 , ∀ λ > 0 .

Proof of Proposition 3.4. We split it into two main steps.
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First Step. Exactly as in [7], we can evaluate the time derivative of the first term in the expression of E .
Assume that v ∈ D(R × [−1, 0]), let

e(t; v) :=

∫

R

{

1

−t

( ∣

∣

∣

∣

∂v

∂x
(x, t)

∣

∣

∣

∣

2

+ 2 v(x, t)

)

− 1

t2
v2(x, t)

}

G(x, t) dx

and compute d
dλe(t; vλ) at λ = 1 using d

dλ vλ = Lv at λ = 1, and e(λ2 t; v) = e(t; vλ) :

de

dt
(t; v) =

1

2t
Dve(t; v) · Lv(x, t) ,

where Dve is defined for all φ in C∞(R × (−1, 0 )) by

Dve(t; v) · φ :=

∫

R

{

1

−t

(

2
∂v

∂x
· ∂φ
∂x

+ 2φ

)}

G dx−
∫

R

2

t2
v φG dx .

To compute Dve(t; v) · Lv, we integrate by parts.

Dve(t; v) · Lv(x, t) =

∫

R

{

2

−t

(

1−Hv(x, t)

)

+
1

t2
Lv(x, t)

}

Lv(x, t)G(x, t) dx .

This proves

d

dt
e(t; v) =

∫

R

{

1

2t3
|Lv(x, t)|2 +

1

t2
Lv(x, t)

(

Hv(x, t) − 1

)}

G(x, t) dx .

By density, the above expression also holds for a.e. time for any v ∈ W 2,1;∞
x,t (R × [−1, 0]), with compact

support, and the function t 7→ e(t; v) is bounded from below and bounded in W 1,∞
loc (−1, 0).

Second Step. We prove that the function

s 7→ r(v; s) :=
1

s2

∫

R

(Hv(x, s) − 1)Lv(x, s)G(x, s) dx

is integrable. The integral
∫ 0

t
1
s2

∫

R
|(Hv(x, s) − 1)Lv(x, s)G(x, s)| dx ds can indeed be bounded by (I) +

(II), with

(I) :=

∫ 0

t

1

s2

∫

R

|(Hv(x, s) − (1 + g(x, s)))Lv(x, s)G(x, s)| dx ds ,

(II) :=

∫ 0

t

1

s2

∫

R

|g(x, s)Lv(x, s)G(x, s)| dx ds .

By definition of v(x, t) := U(x, t)ψ(x), (Hv − (1 + g))Lv vanishes on (−1/2, 1/2) because U is a solution
of (3.3), and on (−∞,−1) ∪ (1,+∞) because of ψ. As a consequence of Theorem 2.1, there exists a
constant C > 0 such that |Lv(x, t)| ≤ C(x2 + |t|). For t ∈ (−1, 0), with c := C ′ (‖ψxx‖L∞ ‖U‖L∞(Q1(0)) +
‖ψx‖L∞ ‖Ux‖L∞(Q1(0))‖+ ‖ψ‖L∞(‖Uxx‖L∞(Q1(0)) + ‖Ut‖L∞(Q1(0))) + ‖1+g‖L∞(Q1(0))), we get

(I) ≤ c

∫ |t|

0

ds

s2

∫ 1

1/2

e−ρ2/4s

√
2π s

dρ ≤ c

2
√

2π

∫ |t|

0

e−1/16s

s5/2
ds .

With the change of variable

(s, x) 7→
(

β :=

√

x2 − s

−s , θ :=
√

x2 − s

)
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we get

(II) ≤ Const

∫ +∞

1

β3

√

β2 − 1
e−β2/4

(

∫ θmax(β,|t|)

0

σ(θ)

θ
dθ

)

dβ

where θmax(β, |t|) := min(β
√

|t|,
√

1 + |t|) and σ(θ) := supess√
x2+|t|≤θ

g(x, t) is the modulus of continu-

ity of g at the origin. By (3.4), σ is Dini-integrable, i.e. θ 7→ θ−1σ(θ) is integrable, which ends the proof.
�

Remark 3.6 An inspection of the proof shows that Proposition 3.4 holds under the following weaker
conditions: U ∈W 2,1;∞

x,t (Q1(0)) is a solution of (3.3) and σ, defined as above, is Dini-integrable.

Lemma 3.7 Under Assumption (1.2), consider a solution u of (1.1). Then for any t0 < 0, Γ 3 P 7→
E(vP , t0) is continuous.

Proof. This is a straightforward consequence of the dominated convergence theorem of Lebesgue and the
a priori bounds on the solution. �

Proposition 3.4 applies to blow-up limits.

Proposition 3.8 (Scale invariance of the blow-up limit for t < 0) Under Assumption (3.4), con-
sider a solution U of (3.3), and U 0 a blow-up limit corresponding to a blow-up sequence associated to U .
Then U0 is scale-invariant for t < 0:

U0(λx, λ2t) = λ2 U0(x, t) ∀ (x, t) ∈ R × (−∞, 0) , ∀ λ > 0 .

Proof. Consider as above v(x, t) := U(x, t)ψ(x). Let (vεn)n∈N be a blow-up sequence associated to v, and
v0 a blow-up limit. By (3.7) we have

E(ε2nt; v) = E(t; vεn) ∀ t ∈
(

−ε−2
n , 0

)

. (3.8)

Since E is monotone nonincreasing and bounded from below by Proposition 3.4, we may pass to the limit
in (3.8) and obtain

lim
n→∞

E(τ ; v) = E(t; v0) ∀ t < 0 . (3.9)

Note that because of the monotonicity of E the limit does not depend on the subsequence. As a con-
sequence,

0 =
d

dt
E(t; v0) =

1

2 t3

∫

R

|Lv0(x, t)|2G(x, t) dx ∀ t < 0

and v0 is scale invariant by (3.6). Since U εn(x, t) = vεn(x, t) for any x, t such that |εn x| ≤ 1/2,
−1 < ε2n t < 0, we have: U0 ≡ v0, which ends the proof. �

3.5. Classification of the blow-up limits

According to Proposition 3.2, blow-up limits are solutions in R
2 of the parabolic obstacle problem with

constant coefficients:






























Hv0(x, t) = 1l{v0>0}(x, t) (x, t) ∈ R
2 a.e.

v0(x, t) ≥ 0 (x, t) ∈ R
2 a.e.

0 ∈ ∂{v0 > 0}

(3.10)

15



which are scale-invariant in R × (−∞, 0) by Proposition 3.8. For all (x, t) ∈ R
2, define the functions:

v0
+(x, t) :=

1

2
(max{0, x})2 ,

v0
−(x, t) :=

1

2
(max{0,−x})2 ,

v0
m(x, t) :=











mt+
1 +m

2
x2 if t < 0 ,

max

{

0, t V

( |x|√
t

)}

if t ≥ 0 ,

where m ∈ [−1, 0] and V (ξ) = −1 + C1(a) (ξ2 + 2) + C2(a)
(

2 ξ e−ξ2/4 + (ξ2 + 2)
∫ ξ

0
e−s2/4 ds

)

. The

constants C1(a) and C2(a) are given by

C1(a) = −1

4

(

2 + ea2/4

∫ a

0

e−s2/4 ds

)

, C2(a) =
a

4
ea2/4 .

where the parameter a ∈ [0,+∞] is uniquely determined in terms of m by the equation

1 +m = 2(C1(a) +
√
π C2(a)) . (3.11)

The limiting cases correspond to

m = −1 , a = 0 , v0
−1(x, t) = max{0,−t} ,

m = 0 , a = +∞ , v0
0(x, t) =

1

2
x2 .

We have the following classification result.

Theorem 3.9 (A Liouville type result) Consider a solution v0 ∈ W 2,1;∞
x,t,loc(R

2) of (3.10) with v0
xx and

v0
t bounded. If v0 is such that

v0(λx, λ2 t) = λ2v0(x, t) ∀ (x, t) ∈ R × (−∞, 0) , ∀ λ ∈ (0,+∞) ,

then v0 = v0
+, v0 = v0

− or v0 = v0
m for some m ∈ [−1, 0].

Proof. We first classify the solutions in R × (−∞, 0). Then we extend the solutions to R
2.

First Step: Classification in R × (−∞, 0). This result is given in [7]. We reproduce it for completeness.

(1) Assume first that the interior of {v0 = 0} ∩ {t < 0} is non-empty. Because of the self-similarity
property, the function V (ξ) := v0(ξ,−1) is such that v(x, t) = |t|V (x/

√−t) and it is solution in {u > 0}
of

V ′′(ξ) + V (ξ) − ξ

2
V ′(ξ) = 1 .

A direct computation gives V (ξ) = 1+C1 (ξ2 −2)+C2

(

−2 ξ eξ2/4 + (ξ2 − 2)
∫ ξ

0
es2/4 ds

)

. Because of the

regularity of v0, we have to choose a ∈ R such that V (a) = V ′(a) = 0. The functions ξ 7→ ξ2 − 2 =: V1(ξ)

and ξ 7→ −2 ξ eξ2/4 + (ξ2 − 2)
∫ ξ

0 e
s2/4 ds =: V2(ξ) are respectively even and odd, so there is no restriction

to take a ≥ 0, up to a sign change of C1 and C2. This amounts to

C1 =
1

2
− a

4
e−a2/4

∫ a

0

es2/4 ds and C2 =
a

4
e−a2/4 .
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Note that V ′′(a) = 1 and V ′′′(ξ) = 2C2 e
ξ2/4. If a 6= 0, this clearly contradicts the nonnegativity of V

and we have therefore a = 0, C1 = 1/2: V (ξ) = ξ2/2 in {v0 > 0}, or, equivalently, v0 = v0
± since

either V (ξ) =
1

2
(max{0, ξ})2 or V (ξ) =

1

2
(max{0,−ξ})2 .

(2) Assume now that {v0 = 0}∩{t < 0} is of empty interior: by Theorem 2.6, Γ has zero Lebesgue measure
and for almost all (x, t) ∈ R × (−∞, 0), Hv0(x, t) = 1. As a consequence, Hv0

t = 0 in R × (−∞, 0). Since
v0

t is bounded, m := v0
t has to be a constant by Liouville’s principle (see for instance [30], Chapter XIV,

Theorem 1.2). Integrating with respect to t, we get: v0(x, t) = mt + v0(x, 0) with v0
xx(x, 0) = 1 + m.

Taking into account the conditions v0 ≥ 0 and v0(0) = 0, an integration with respect to x gives v0(x, 0) =
(1 +m)x2/2. Therefore v0(x, t) = v0

m(x, t) := mt+ (1 +m)x2/2 in R× (−∞, 0). Since v0 is nonnegative,
this implies that m ∈ [−1, 0].

Second Step: Classification in R
2. The solution of (3.10) is uniquely extended to the domain corresponding

to t > 0, once it is known for t < 0.
(1) If v0 = v0

± in R × (−∞, 0) a.e., by unique continuation v0 = v0
± in R

2.
(2) If v0 = v0

m for some m ∈ [−1, 0], in R × (−∞, 0) a.e., as in the first step of the proof, we may use
the scale invariance. In the interior of {v0 > 0} ∩ {t > 0}, the function V (ξ) := v0(ξ, 1) is such that
v0(x, t) = t V (x/

√
t) is solution of

V ′′(ξ) − V (ξ) +
ξ

2
V ′(ξ) = 1 .

A direct computation gives V (ξ) = −1 + C1 (ξ2 + 2) + C2

(

2 ξ e−ξ2/4 + (ξ2 + 2)
∫ ξ

0
e−s2/4 ds

)

. The

free boundary condition V (a) = V ′(a) = 0 allows to parametrize C1 and C2 in terms of a: C1(a) =

− 1
4

(

2 + ea2/4
∫ a

0 e
−s2/4 ds

)

and C2(a) = a
4 e

a2/4. Taking the limit t→ 0, t < 0, we get

v0(x, 0) = (C1 +
√
π C2)x

2

that we have to identify with limt→0, t<0 v
0
m(x, t) = 1

2 (1 + m)x2. The point ξ = a corresponds to t =
x2/a2 it remains to characterize the solution in (−∞,−a). As V1(ξ) := ξ2 + 2 is even and V2(ξ) :=

2 ξ e−ξ2/4 + (ξ2 + 2)
∫ ξ

0 e
−s2/4 ds is odd we can keep the same C1 and C2 by replacing V2 by −V2. This

provides (3.11) and completes the proof of Theorem 3.9. �

x

t

{v0
+ = 0} {v0

+ > 0}

v0
+

x

t

{v0

− > 0} {v0

− = 0}

v0
−

x

t

{v0

m
= 0}

{v0

m
> 0}

v0
m, m ∈ (−1, 0)

x

{v0

−1
= 0}

t

{v0

−1
> 0}

v0
−1

x

t

{v0

0
> 0}{v0

0
> 0}

{v0

0
= 0}

v0
0

Figure 3. Solutions of Theorem 3.9. The equation of the free boundary associated to v0
m for m ∈ (−1, 0) is t(x) = a−2 x2,

where a and m are related by (3.11).
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4. Regular and singular points of the free boundary

4.1. An energy characterisation

As in Section 3.2, to a nonnegative cut-off function ψ ∈ D(R) such that ψ ≡ 1 on (−1/2, 1/2) and ψ ≡ 0
on (−∞,−1] ∪ [1,∞), we associate the function v(x, t) := U(x, t)ψ(x), (x, t) ∈ R × (−1, 0) where U is
given in terms of a solution of (1.1) as in Section 3.1 for some P1 ∈ Γ, and solves (3.3) (also see Equation
(1.3)). The localized energy is defined by (3.5). As in Section 3.2, we omit the index P1 whenever there
is no ambiguity. Otherwise, we write vP1 = v. We refer to Section 3.5 for the definition of v0

± and v0
m.

Proposition 4.1 (Energy characterisation of the points of Γ) Let u be a solution of (1.1) and
consider P1 ∈ Γ such that Qr(P1) ⊂ QR(P0) for some r > 0. With the above notations and under
Assumption (1.2), if v0 is a blow-up limit associated to v, then

Λ(v) := lim
τ→0
τ<0

E(τ ; v) ∈ {
√

2,
√

2/2} = E(t; v0) ∀ t < 0 .

If Λ(v) =
√

2/2, then v0 = v0
±. If Λ(v) =

√
2, then v0 = v0

m for some m ∈ [−1, 0].

Proof. The uniqueness of the limit of the energy is a consequence of the monotone decay of E , according
to Proposition 3.4, and of (3.9).

Since a blow-up limit is scale invariant by Proposition 3.8, by (3.6) and Proposition 3.4, E(t; v0) does not
depend on t < 0. By Theorem 3.9, the only possible values of Λ(v) are E(t; v0

±) and E(t; v0
m), m ∈ [−1, 1].

Using Lv0 = 0 and integrating by parts with respect to x, we get

E(t; v0) =

∫

R

{

1

−t

(

∣

∣

∣

∣

∂v0

∂x

∣

∣

∣

∣

2

+ 2 v0

)

− 1

t2
(v0)2

}

G(x, t) dx

=

∫

R

{

1

−t

(

−∂
2v0

∂x2
− x

2 t

∂v0

∂x
+ 2

)

v0 − 1

t2
(v0)2

}

G(x, t) dx

=

∫

R

{

1

−t
(

−Hv0 + 2
)

+
1

2 t2
Lv0

}

v0G(x, t) dx

Using again Lv0 = 0 and Equation (3.3), we get E(t; v0) =
∫

R

1
−t

(

−1l{v0>0} + 2
)

v0G(x, t) dx. Taking

into account that E(t; v0) = E(1; v0), this amounts to

E(t; v0) =
1√
2π

∫

R

(

−1l{v0>0} + 2
)

v0(x,−1) e−x2/4 dx .

We easily conclude that

E(t; v0
+) =

∫ ∞

0

x2

2

e−
x2

4√
2π

dx =

√
2

2
, E(t; v0

m) =

∫

R

(

−m+
1 +m

2
x2

)

e−
x2

4√
2π

dx =

∫

R

e−
x2

4√
2π

dx =
√

2 .

�

Proposition 4.1 allows to divide the free boundary in two sets, depending on the value of Λ(v). Recall that
according to the notations of Section 3.2, the function v depends on P1 ∈ Γ. When there is no ambiguity
on the blow-up point, we will denote the blow-up limit by v0

m(P1), consistently with the notations of

Section 3.5, and by v0
P1

when the point of blow-up P1 is not fixed.
To emphasize the dependence of v on the point P1 ∈ Γ, we will write explicitly the index and note vP1

in the rest of this section.
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Definition (Regular and singular points) Under the assumptions of Proposition 4.1, a point P1 ∈ Γ
is said to be regular (respectively singular) if Λ(vP1) =

√
2/2 (respectively if Λ(vP1) =

√
2). We will denote

by R the set of regular points, and by S the set of singular points.

4.2. First topological properties of the regular and singular sets

Lemma 4.2 (Topological properties of R and S) Under Assumption (1.2), S is a closed set, and
R = Γ \ S is open in Γ.

Proof. Let P1, P2 ∈ Γ and take t0 < t < 0. We may write

E(t; vP2) − E(t; vP1) = E(t0; vP2) − E(t0; vP1) + E(t; vP2 ) − E(t0; vP2) + E(t0; vP1) − E(t; vP1 ) .

Since the function t 7→ E(t; vP1 ) is monotone nonincreasing, E(t; vP2 )−E(t0; vP2) ≤ 0. Passing to the limit
t→ 0, we get

Λ(vP2) − Λ(vP1) ≤ E(t0; vP2) − E(t0; vP1) + E(t0; vP1) − Λ(vP1) .

We fix P1 and will move P2 close to P1. For |t0| small enough, E(t0; vP1)−Λ(vP1) can be chosen arbitrarily
small. Now, from Lemma 3.7 for a fixed t0, P2 7→ E(t0; vP2) is continuous, so that E(t0; vP2) − E(t0; vP1)
can also be chosen arbitrarily small for P2 close enough to P1. Then lim supP2→P1

Λ(vP2) ≤ Λ(vP1), i.e.

the function Γ 3 P 7→ Λ(vP ) is upper semi-continuous. If Λ(vP1) =
√

2/2, then Λ(vP2) =
√

2/2 for P2 in
a neighborhood of P1. This proves that R is an open set in Γ. �

5. Study of the singular points of the free boundary

5.1. A monotonicity formula for singular points

We adapt a monotonicity formula for the elliptic obstacle problem [21] to the parabolic case. As in the
second step of the proof of Proposition 3.4, let

r(v; s) :=
1

s2

∫

R

(Hv(x, s) − 1)Lv(x, s)G(x, s) dx .

With the notations of Sections 3.2 and 3.4 and 3.5 consider v = vP1 given by vP1(x, t) := U(x, t)ψ(x), for
some fixed point P1 ∈ S and v0

m one of the blow-up limit of vP1 . We define the functional

Φm(t; v) :=
1

t2

∫

R

∣

∣v−v0
m

∣

∣

2
G dx−

∫ 0

t

2

s2

∫

R

(Hv−1) (v−v0
m)G dx ds+

∫ 0

t

2

s

∫ 0

s

r(θ; v) dθ ds .

Proposition 5.1 (Local monotonicity formula for singular points) Under Assumption (3.4), let
U be a solution of (3.3). With the above notations the function t 7→ Φm(t; v) is nonincreasing, bounded
in W 1,1(−1, 0).

Proof. By density, it is sufficient to prove the result for a smooth function v as in the proof of Propos-
ition 3.4. Let w := v − v0

m. Using the change of variable x =
√−t y, since 1

t2

∫

R
w2(x, t)G(x, t) dx =

∫

R

1
t2 w

2(
√−t y, t)G(y, 1) dx and d

dtw(
√−t y, t) = − y

2
√
−t

∂w
∂x (

√−t y, t) + ∂w
∂t (

√−r y, t), we get

d

dt

[

1

t2

∫

R

w2(x, t)G(x, t) dx

]

=
1

t3

∫

R

Lv(x, t)w(x, t)G(x, t) dx .
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Let e(t; v) := −
∫

R

{

1
t (|vxx|2 +2 v)+ 1

t2 v
2
}

G(x, t) dx be as in the first step of the proof of Proposition 3.4.

e(t; v) − e(t; v0
m) = −

∫

R

[

1

t

(

∂

∂x
(v + v0

m)
∂w

∂x
+ 2w

)

+
1

t2
(

v + v0
m

)

w

]

G dx .

Integrating by parts with respect to x and using Hv0
m = 1 and Lv0

m = 0 for every t < 0, we get

e(t; v) − e(t; v0
m) =

∫

R

[

1

t

(

∂2

∂x2
(v + v0

m) +
x

2 t

∂

∂x
(v + v0

m) − 2

)

w − 1

t2
(

v + v0
m

)

w

]

G dx

=

∫

R

[

1

t
(Hv − 1) +

1

2 t2
Lv
]

wG dx .

Thus
d

dt

[

1

t2

∫

R

w2(x, t)G(x, t) dx

]

=
2

t

[

e(t; v) − e(t; v0
m)
]

− 2

t2

∫

R

(Hv − 1) wG dx ,

d

dt
Φm(t; v) =

2

t

[

e(t; v) − e(t; v0
m)
]

− 2

t

∫ 0

t

r(s; v) ds .

Recall that E(t; v) = e(t; v)−
∫ 0

t r(v; s) ds by definition of E , e and r, and for any t < 0, e(t; v0
m) =

√
2 =

limτ→0 E(τ ; v) according to Proposition 4.1. Thus

d

dt
Φm(t; v) =

2

t

[

E(t; v) − lim
τ→0

E(τ ; v)
]

(5.1)

is nonpositive by Proposition 3.4. It remains to prove that

(I) =
2

t

∫ 0

t

r(s; v) ds and (II) =
−2

t2

∫

R

(Hv − 1) wG dx ,

are integrable. (I) can be evaluated as in the second step of the proof of Proposition 3.4, using the
integrability of

t 7→ 1

|t|

∫ |t|

0

e−1/16s

s5/2
ds and t 7→ 1

|t|

∫ +∞

1

β3√
β2−1

e−β2/4

(

∫ min
(

β
√

|t|,
√

1+|t|
)

0

σ(θ)
dθ

θ

)

dβ ,

where σ(θ) := supess√
x2+|t|≤θ

g(x, t) ≤ Const · θα by Assumption (3.4).

As for (II), in {v > 0}, Hv − 1 = g, and v ≡ 0 in (R \ (−1, 1)) × (−1, 0), so we have:

−1

2
× (II) =

1

t2

∫

|x|<1/2

g1l{v>0} wG dx+
1

t2

∫

1/2<|x|<1

(Hv − 1)wG dx+
1

t2

∫

|x|>1

v0
mG dx .

The last term is integrable: a trivial change of variable shows that the exponential decay is the domin-
ant factor. The second term is integrable because of the gaussian weight, as in the second step of the

proof of Proposition 3.4: the function t 7→ |t|−5/2
∫ 1

1/2
e−s2/(−4t) ds is indeed integrable. The first term

|t|−2
∫

|x|<r/2
g 1l{v>0} wGdx is also integrable: using the change of variables (s, x) 7→ (β, θ) as in the

second step of the proof of Proposition 3.4 again, we can conclude as above. �

Remark 5.2 As for the local monotonicity formula for E studied in Proposition 3.4, an inspection of the

proof shows that a sufficient condition for the proof of Proposition 5.1 is that the map α 7−→ 1
α

∫ α

0
σ(θ)

θ dθ
is integrable, i.e. σ is twice Dini-integrable.

As a consequence, we can state the following result.
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Corollary 5.3 Under Assumption (1.2), consider a solution u of (1.1). Let us fix P1 ∈ S. Note v0
m(P1)

a blow-up limit in P1. Then for any r ∈ (0, R) there exists tr < 0 and a continuous function s : (tr, 0] ×
Qr(P0) ∩ S → R with s(0, P1) = 0 such that for any P2 ∈ Qr(P0) ∩ S and t ∈ (tr, 0) we have

Φm(P1)(t; vP2 ) ≤ Φm(P1)(t; vP1) + s(t, P2) .

Similarly there exists a continuous function s̃ satisfying s̃(0, P1) = 0, such that
∫

R

1

t2

∣

∣

∣
vP2(x, t) − v0

m(P1)(x, t)
∣

∣

∣

2

G(x, t) dx ≤
∫

R

1

t2

∣

∣

∣
vP1 (x, t) − v0

m(P1)(x, t)
∣

∣

∣

2

G(x, t) dx + s̃(t, P2)

Proof. The point P1 is fixed and we write for t0 < t < 0,

Φ(t; vP2) − Φ(t; vP1) = Φ(t; vP2) − Φ(t0; vP2) + Φ(t0; vP2) − Φ(t0; vP1) + Φ(t0; vP1) − Φ(t; vP1) .

By the monotonicity formula, the first term satisfies Φ(t; vP2) − Φ(t0; vP2) ≤ 0. There exists a modulus
of continuity ωt0(d), continuous in (t0, d) such that ωt0(0) = 0 and

|Φ(t0; vP2) − Φ(t0; vP1)| ≤ ωt0(|P2 − P1|) .
Finally there exists a monotone modulus of continuity ω such that

|Φ(t; vP1) − Φ(0; vP1)| ≤ ω(|t|) .
Therefore we get

Φ(t; vP2) − Φ(t; vP1 ) ≤ s(t, P2)

with
s(t;P2) = inf

t0, tr<t0<t
(ωt0(|P2 − P1|) + 2ω(|t0|))

We now prove the second inequality. A careful investigation of the proof of Proposition 5.1 shows that
the estimates on (I) and (II) are uniform with respect to the point P2 ∈ S. So there exists t 7→ c̃1(t)
which tends to zero when t tends to zero such that uniformly in P2 ∈ S, we have

∣

∣

∣

∣

Φm(P1)(t; vP2) −
1

t2

∫

R

∣

∣

∣
vP2 − v0

m(P1)

∣

∣

∣

2

G dx

∣

∣

∣

∣

≤ c̃1(t)

This implies the result with s̃(t, P2) = s(t, P2) + 2c̃1(t). �

5.2. Scale invariance and blow-up limits

A simple change of variable gives

Φm(λ2 t; v) = Φm(t; vλ) ∀ t ∈ (−λ−2, 0 ) , ∀ λ > 0 , (5.2)

where vλ(x, t) := λ−2v(λx, λ2 t). If we replace E by Φm, we have a result which is similar to Corollary 3.5
and Proposition 4.1.

Proposition 5.4 (Scale invariance of Φm and consequences) Under Assumption (1.2), consider a
solution u of (1.1). For some P1 ∈ S define v as in Section 3.2 and take m ∈ [−1, 0]. Consider a blow-up
limit v0 associated to v. Then

lim
τ→0
τ<0

Φm(τ ; v) = Φm(t; v0) ∀ t < 0 .

with

Φm(t; v0) =
1

t2

∫

R

∣

∣v0 − v0
m

∣

∣

2
G dx ∀ t < 0 .

In the particular case where we choose v0
m = v0, we get limτ→0, τ<0 Φm(τ ; v) = Φm(t; v0

m) = 0 for all
t < 0.
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5.3. Uniqueness of the blow-up limit at singular points

Proposition 5.5 Under Assumption (3.4) consider a solution U of (3.3) and v = vP1 given by vP1(x, t) :=
U(x, t)ψ(x), for some fixed point P1 ∈ S. There exists a unique m ∈ [−1, 0] such that for any sequence
(εn)n∈N converging to 0, the whole blow-up sequence (U εn)n∈N locally uniformly converges to v0

m.

Proof. Let (vεn,1)n∈N and (vεn,2)n∈N be two blow-up sequences associated to v, with blow-up limits v0
(1)

and v0
(2). Assume that v0

(1) = v0
m. By (5.2),

Φm(ε2n,1 t; v) = Φm(t; vεn,1) → Φm(t; v0
(1)) = 0 as n→ ∞ .

With no restriction, we may assume that εn,2 ≤ εn,1, so that by Proposition 5.1,

Φm(ε2n,1 t; v) ≥ Φm(ε2n,2 t; v) = Φm(t; vεn,2) .

Passing to the limit n→ ∞, we get

0 ≥ Φm(t; v0
(2)) =

1

t2

∫

R

∣

∣

∣
v0
(2) − v0

m

∣

∣

∣

2

G(x, t) dx ≥ 0

since Lv0
(2) = 0, r(v0

(2); t) = 0 and Hv0
(2) ≡ 1 for t < 0, since Λ(v0

(2)) =
√

2 by Proposition 4.1. This proves

that v0
(2) = v0

m = v0
(1).

For any (x, t) ∈ Q1/(2εn,i)(0), i = 1, 2, U εn,i coincides with vεn,i . This proves the uniqueness of the
blow-up limit of U . �

To any P1 ∈ Γ, we can therefore associate a unique m(P1) := m ∈ [−1, 0] such that the blow-up limit
of a solution at this point is v0

m. For any m ∈ [−1, 0], we set

Sm = {P1 ∈ Γ : m(P1) = m} .

5.4. Continuity properties of the singular set

Lemma 5.6 (Continuity of the blow-up limit) The function P1 7→ m(P1) is continuous on S.

Proof. Let P1 ∈ S. From Corollary 5.3 and the scale invariance of the monotonicity formula, we have

with v
|t|
P2

(y, τ) = 1
t2 vP2(|t|y, t2τ):

Φm(P1)(−1; v
|t|
P2

) ≤ Φm(P1)(−1; v
|t|
P1

) + s(t, P2) .

At the limit t = 0, we get

Φm(P1)(−1; v0
m(P2)

) ≤ Φm(P1)(−1; v0
m(P1)

) + s(0, P2)

i.e.
∫

R

∣

∣

∣
v0

m(P2) − v0
m(P1)

∣

∣

∣

2

G(x,−1) dx ≤ s(0, P2) .

The contiuity of s joint to the fact that s(0, P1) = 0 implies that

lim
P2→P1

m(P2) = m(P1)

�
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Lemma 5.7 (A uniform continuity result) For any r ∈ (0, R), there exists tr < 0 such that for any
t ∈ (tr, 0), if vP is given in terms of U as in Section 3.2, where U is a solution of (3.3), and if (3.4) is
satisfied, then

lim
ε→0

sup
P∈S∩Qr(P0)

1

t2

∫

R

∣

∣

∣
vε

P (x, t) − v0
m(P )(x, t)

∣

∣

∣

2

G(x, t) dx = 0 .

Proof. Consider a monotone decreasing sequence (εn)n∈N with limn→∞ εn = 0 and a sequence (Pn)n∈N of
points in S ∩Qr(P0), and assume by contradiction that

lim
n→∞

1

t2

∫

R

∣

∣

∣
vεn

Pn
(x, t) − v0

m(Pn)(x, t)
∣

∣

∣

2

G(x, t) dx =: l > 0 .

We also assume that Pn → P∞ ∈ S ∩Qr(P0). We first remark that by the scale invariance we have

1

t2

∫

R

∣

∣

∣
vεn

Pn
(x, t) − v0

m(Pn)(x, t)
∣

∣

∣

2

G(x, t) dx =
1

(εnt)2

∫

R

∣

∣

∣
v(x, ε2nt) − v0

m(Pn)(x, ε
2
nt)
∣

∣

∣

2

G(x, ε2nt) dx .

Next we estimate this expression by 2 ((I)n + (II)n) where

(I)n =
1

(εnt)2

∫

R

∣

∣

∣
vPn(x, ε2nt) − v0

m(P∞)(x, ε
2
nt)
∣

∣

∣

2

G(x, ε2nt) dx

(II)n =
1

(εnt)2

∫

R

∣

∣

∣
v0

m(P∞)(x, ε
2
nt) − v0

m(Pn)(x, ε
2
nt)
∣

∣

∣

2

G(x, ε2nt) dx .

We also introduce the quantity

(III)n =
1

(εnt)2

∫

R

∣

∣

∣
vP∞(x, ε2nt) − v0

m(P∞)(x, ε
2
nt)
∣

∣

∣

2

G(x, ε2nt) dx .

From Corollary 5.3, we get

(I)n ≤ (III)n + s̃(ε2nt, Pn)

with the particular choice P1 = P∞. Moreover, still by scaling invariance, we have

(III)n =

∫

R

∣

∣

∣

∣

v
εn

√
|t|

P∞
(x,−1) − v0

m(P∞)(x,−1)

∣

∣

∣

∣

2

G(x,−1) dx −→ 0 as εn → 0 .

This implies that

(I)n −→ 0 as n→ +∞ .

Finally we remark that

(II)n =

∫

R

∣

∣

∣
v0

m(P∞)(x,−1) − v0
m(Pn)(x,−1)

∣

∣

∣

2

G(x,−1) dx ≤ C |m(P∞) −m(Pn)|2 −→ 0 as Pn → P∞

This gives the contradiction with l > 0. �

5.5. Time projection of the singular set

Proposition 5.8 The set I := {t ∈ [−R2, R2] : ∃x ∈ [−R,R], (x, t) ∈ S\S0} has zero Lebesgue measure.

To prove Proposition 5.8, we need several preliminary results.

Lemma 5.9 For any m0 ∈ (−1, 0), the set S[−1,m0] :=
⋃

m∈[−1,m0]
Sm is locally a graph as a function

of x.
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Proof. Consider two sequences (Pn)n∈N and (P ′
n)n∈N of points in S[−1,m0] converging to some point

P∞ ∈ Γ. Since S is closed, P∞ ∈ S, and by Lemma 5.6, m(P∞) ∈ [−1,m0]. Assume by contradiction
that Pn = (xn, tn) and P ′

n = (xn, t
′
n), t′n > tn. Consistently with the previous notations, we consider the

function v = vPn , which is associated to the change of coordinates (3.1) where now the point P1 = Pn is

moving. In the new coordinates the image of Pn is the origin and the image of P ′
n is a point P

′
n = (0, ε2n)

with ε2n = f(Pn)(t′n − tn). We then consider the sequence of functions

vεn

Pn
(x, t) := ε−2

n v(εn x, ε
2
n t) .

But at time t = −1, we have
∫

R

∣

∣

∣
vεn

Pn
− v0

m(P∞)

∣

∣

∣

2

G dx ≤ 2

∫

R

∣

∣

∣
vεn

Pn
− v0

m(Pn)

∣

∣

∣

2

G dx+ 2

∫

R

∣

∣

∣
v0

m(Pn) − v0
m(P∞)

∣

∣

∣

2

G dx .

From lemma 5.7, the sequence (vεn

Pn
)n∈N is uniformly close to v0

m(Pn) and m(Pn) → m(P∞) ∈ [−1,m0].

Therefore on the one hand vεn

Pn
converges to v0

m(P∞). On the other hand, let us remark that by construction

the point P
′
= (0, 1) belongs to ∂

{

vεn

Pn
> 0
}

and from the non-degeneracy Proposition 3.1 in the rescaled
variables, we have for any r ∈ (0, 1):

sup
Q−

r (P
′
)

vεn

Pn
≥ Cr2

At the limit we get for any r ∈ (0, 1):

sup
Q−

r (P
′
)

v0
m(P∞) ≥ Cr2

This is in contradiction (see Section 3.5) with the fact that P
′
is in the interior of the coincidence set of

v0
m(P∞) when m(P∞) ∈ [−1,m0] with m0 < 0. �

Although we will not use it later, we can state the following additional result.

Corollary 5.10 For any m0 ∈ (−1, 0), x0 ∈ [−R,R], t0 ∈ [−R2, R2], the sets {(x, t) ∈ S[−1,m0] : x =
x0} and {(x, t) ∈ S0 : t = t0} are locally finite. Moreover S0 is locally contained in a graph, as a function
of t.

Proof. Taking into account Lemma 5.9, we only have to prove that locally S0 is contained in a graph.
Let us do it as in Lemma 5.9, by contradiction. Consider two sequences (Pn)n∈N, and (P ′

n)n∈N ∈ SN
0

such that limn→∞ Pn = limn→∞ P ′
n = P∞, Pn = (xn, tn), P ′

n = (x′n, tn), x′n − xn > 0. By Lemma 5.6,
P∞ ∈ S0. Consider the sequence (vεn

Pn
)n∈N defined by vεn

Pn
(x, t) := ε−2

n v(εn x, ε
2
n t) for v = vPn and

εn =
√

f(Pn)
a(Pn) (x

′
n −xn). The remainder of the proof is the same as above. We end up by noticing that the

point P
′
= (1, 0) needs to satisfy v0

0(P
′
) = 0, while the limit of vεn

Pn
is v0

0(x, t) = x2/2 when m = 0. �

By Lemma 5.9, locally S[−1,m0] can be described as a graph: x 7→ (x, h(x)). To the function h : R → R,
for any δ > 0, we associate the quantity:

qh(x, δ) := sup
x′; |x−x′|≤δ

|h(x′) − h(x)|
|x′ − x| .

Lemma 5.11 Let m0 ∈ (−1, 0). With the above notations, limδ→0 qh(x, δ) = 0, uniformly in x.

Proof. If the Lemma is false, we can find two sequences of points Pn = (xn, h(xn)) and P ′
n = (x′n, h(x

′
n))

such that (Pn)n∈N and (P ′
n)n∈N converge to P∞ = (x, h(x)), and such that

ln :=
|h(x′n) − h(xn)|

|x′n − xn|
−→ l 6= 0 .
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Let us consider v = vPn and the corresponding change of coordinates which transforms Pn in the origin

and P ′
n in a point P

′
n = (x′n, t

′
n) with x′n =

√

f(Pn)
a(Pn) (x

′
n − xn), t

′
n = f(Pn)(h(x′n) − h(xn)). We define

εn > 0 such that
P

′
n ∈ ∂Qεn(0)

and consider the blow-up sequence of functions

vεn

Pn
:= ε−2

n v(εn x, ε
2
n t)

and define

P̃ ′
n = (x̃′n, t̃

′
n) =

(

x′n
εn
,
t
′
n

ε2n

)

∈ ∂Q1(0) .

Up to the extraction of a subsequence, (P̃ ′
n)n∈N converges to some P̃ ′ = (x̃′, t̃′) ∈ ∂Q1(0). By construction,

P̃ ′
n belongs to ∂{vεn

Pn
= 0}, hence by the non-degeneracy Proposition 3.1, we have

sup
Qr(P̃ ′

n)

vεn

Pn
≥ Cr2, vεn

Pn
(P̃ ′

n) = 0 .

Taking the limit as n goes to infinity, we identify v0
m(P∞) as the limit of vεn

Pn
as in the proof of Lemma

5.9, and get
sup

Qr(P̃ ′)

v0
m(P∞) ≥ Cr2, v0

m(P∞)(P̃
′) = 0 .

This implies that P̃ ′ ∈ ∂
{

v0
m(P∞) > 0

}

=
{

(x, t), t = x2/a2
}

where a is related to m by (3.11). In

particular there exists a0 > 0 related to m0 ∈ (−1, 0) by (3.11) such that a ∈ [a0,+∞]. Therefore we
get that t̃′ = (x̃′)2/a2, which, joint to the fact that P̃ ′ = (x̃′, t̃′) ∈ ∂Q1(0), implies that x̃′ 6= 0. We now
compute

ln =
|h(x′n) − h(xn)|

|x′n − xn|

=

(

t
′
n

f(Pn)

)

/

(

x′n

√

a(Pn)

f(Pn)

)

= εn
t̃′n
x̃′n

1
√

a(Pn)f(Pn)
.

The fact that x̃′n → x̃′ 6= 0 and |t̃′n| ≤ 1 implies that ln → 0. Contradiction. �

We will now use the Hausdorff area formula. According to [11], Theorem 3.2.3 (p. 243), we have the
following result (also see [11], 2.8.9 (p. 145), Theorem 2.8.18 (p. 152), 2.9.12 (p. 158), 3.2.1 (p. 241),
Theorem 3.1.8 (p. 217), Definition 2.8.16 (p. 161), 3.1.2 (p. 211), Theorem 2.10.35 (p. 197), for related
results).

Lemma 5.12 (Hausdorff area formula) Let A be a measurable set of R and consider a function h :
A 7→ R such that, with the above notations, for all x ∈ A, qh(x, δ) < ∞ for some δ > 0. If Nh(y) is the
number of elements of h−1(t), then

∫

A

[

lim
δ→0

qh(x, δ)

]

dx =

∫

R

Nh(t) dt .

Proof of Proposition 5.8. Apply Lemmata 5.11 and 5.12 with A = {x ∈ R, ∃ t ∈ R, (x, t) ∈ S[−1,m0]}:
∫

R
Nh(t) dt = 0. This proves that for any m0 ∈ (−1, 0), the measure of the set

Im0 =
{

t ∈ R : ∃x ∈ R , (x, t) ∈ S[−1,m0]

}

25



is zero. Hence the measure of I =
⋃

n∈N
I− 1

n
is also zero. �

Remark 5.13 An inspection of the proof of lemma 5.11 shows that h(x′)−h(x)
|x′−x|2 is bounded. This ratio

even goes to zero uniformly as |x′ − x| → 0 and (x, h(x)), (x′ , h(x′)) ∈ S[−1,m0], because the two blow-up
limits centered in Pn and in P ′

n need to be the same which implies the limit a to be equal to +∞.

A simple consequence of the boundedness of the ratio h(x′)−h(x)
|x′−x|2 is that the one-dimensional parabolic

Hausdorff measure of S[−1,m0], i.e. H1
p

(

S[−1,m0]

)

is bounded. Let us recall that the parabolic Hausdorff
measure is build on the parabolic distance distp defined for two points P = (x, t) and P ′ = (x′, t′) by

distp(P, P
′) :=

√

(x − x′)2 + |t− t′|. At this stage it can be seen that the time projection of S[−1,m0]

defined by Π[−1,m0] =
{

t, ∃(x, t) ∈ S[−1,m0]

}

satisfies H 1
2

(

Π[−1,m0]

)

< +∞ for the classical euclidian

Hausdorff measure. A further inspection shows that the convergence to zero of the ratio h(x′)−h(x)
|x′−x|2 implies

that H 1
2

(

Π[−1,m0]

)

= 0 As a consequence we get that

H 1
2

(

Π[−1,0)

)

= 0

where
Π[−1,0) = {t, ∃(x, t) ∈ S\S0} .

This last remark can be of particular interest in higher dimension, especially in space dimension 2.

Remark 5.14 Using a blow-up argument, it can be easily deduced from this section that any point in
S\ (S0 ∪ S−1) is an isolated point in S and then is only surrounded by regular points from the free bound-
ary.

6. On the continuity of ut and proof of the results of Section 1

In this section using the transformation of Section 3.1, we reduce the problem to the case a ≡ 1, b ≡ 0,
c ≡ 0 and f(P1) = 1 where P1 ∈ Γ. After this transformation we have in the new coordinates P1 = 0, but
we will still keep the notation P1 to avoid some possible confusions.

6.1. Proof of Theorem 1.2

With direct estimates, we first prove the following result.

Lemma 6.1 (Estimates on the limit of ut at the boundary) Under assumption (1.2), if u is a
solution of (1.1) and P1 ∈ Γ, then we have

(i) lim sup
P→P1, P∈{u>0}

∂u

∂t
(P ) ≤ 0 and (ii) lim inf

P→P1, P∈{u>0}

∂u

∂t
(P ) ≥ −1 .

Theorem 1.2 is a straightforward consequence of (i).

Proof. We first prove (i). Let l := lim supP→P1, P∈{u>0} ut(P ). Assume by contradiction that there exists
a sequence (Pn = (xn, tn))n∈N such that

u(Pn) > 0 , lim
n→∞

Pn = P1 and lim
n→∞

∂u

∂t
(Pn) = l > 0 .

Define now Πn := (xn, tn) ∈ Γ, ηn > 0 such that

Qηn(Pn) ⊂ {u > 0} , Πn ∈ ∂ (Qηn(Pn)) ∩ {u = 0}
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and νn :=
(

η−1
n (xn − xn), η−2

n (tn − tn)
)

. Let uηn

Πn
(x, t) := η−2

n u(Πn + (ηnx, η
2
nt)). Up to the extraction

of a subsequence, (uηn

Πn
)n∈N converges locally uniformly on all compacts sets in R

2 to a function u0 ∈
W 2,1;∞

x,t;loc(R
2), and (νn)n∈N to some ν ∈ ∂Q1(0), such that







Hu0 = 1 in
{

u0 > 0
}

, u0 ≥ 0 a.e. in R
2 ,

∂u0

∂t
(ν) = l and u0(ν) > 0 .

Here u0(ν) > 0 is a consequence of the fact that l 6= 0.
By Lemma 2.3 we can pass to the limit in ut because ut is bounded in Hα, and the corresponding bound
is uniform under zooming scaling. The function u0

t achieves its maximum at ν. Otherwise, there would
be a point P ′ = (x′, t′) ∈ {u0 > 0} such that u0

t (P
′) > l and then the point Tn = Πn + (ηnx

′, η2
nt

′) would
satisfy

lim
n→∞

Tn = P1 and lim
n→∞

∂u

∂t
(Tn) = lim

n→∞

∂uηn

Πn

∂t
(P ′) =

∂u0

∂t
(P ′) > l ,

a contradiction. Thus u0
t ≤ u0

t (ν) = l. Moreover u0
t satisfies the equation

H

(

∂u0

∂t

)

= 0 a.e. in
{

u0 > 0
}

.

By the strong maximum principle, u0
t ≡ l in Q−

r (ν) for some r > 0, small enough, and as a consequence

∂u0

∂x2
= 1 + l in Q−

r (ν) ,

which means that there exist x0 and k ∈ R such that

u0(x, t) = l(t− tν) + (1 + l) (x− x0)
2/2 + k ≥ 0 in Q−

r (ν) .

Iterating the method, we may cover the parabolic connected component of {(x, t) ∈ R
2 : u0(x, t) > 0, t <

tν} which contains ν. Its boundary is given by

x 7→ φ(x) := min
{

tν , tν − l−1
(

(1 + l) (x− x0)
2/2 + k

)}

.

For any x ∈ R such that φ(x) < tν and x 6= x0, u
0
x(x, φ(x)) = (1+l)(x−x0) 6= 0 contradicts the continuity

of u0
x(·, t). Thus l ≤ 0.

It remains to prove (ii). This is equivalent to prove that

q := lim sup
P→P1, P∈{u>0}

∂2u

∂x2
(P ) ≥ 0 .

Assume by contradiction that q < 0 and as for (i), define Pn = (xn, tn) such that limn→∞ uxx(Pn) = q,
Πn = (xn, tn), ηn, νn and uηn

Πn
. Up to the extraction of a subsequence (νn)n∈N and (uηn

Πn
)n∈N respectively

converge to ν ∈ ∂Q1(0) and u0 ∈W 2,1;∞
x,t;loc(R

2), which satisfy







Hu0 = 1 in
{

u0 > 0
}

, u0 ≥ 0 a.e. in R
2 ,

∂2u0

∂x2
(ν) = q and u0(ν) > 0 .

As above, in the parabolic component of {(x, t) ∈ R
2 : u0(x, t) > 0, t < tν} which contains ν

u0(x, t) = (q − 1)(t− tν) + q (x− x0)
2/2 + k ≥ 0 .

This again contradicts the regularity of u0
x on ∂{u0 = 0}. �

27



6.2. A new characterization of some singular points and consequences

Lemma 6.2 Under Assumption (1.2) consider a solution u of (1.1). Let l := lim infP→P1, P∈{u>0} ut(P )
be negative. Consider a minimizing sequence (Pn = (xn, tn))n∈N for l. Define Πn = (xn, tn) ∈ Γ, ηn > 0
such that

Qηn(Pn) ⊂ {u > 0} , Πn ∈ ∂ (Qηn(Pn)) ∩ {u = 0}
and νn :=

(

η−1
n (xn − xn), η−2

n (tn − tn)
)

. Up to the extraction of a subsequence, (uηn

Πn
:= η−2

n u(Πn +

(ηnx, η
2
nt)))n∈N converges locally uniformly on all compacts sets in R

2 to a function u0 ∈ W 2,1;∞
x,t;loc(R

2),
and (νn)n∈N to some ν = (xν , tν) ∈ ∂Q1(0). Moreover there exist x0 and k ∈ R such that

u0(x, t) = l(t− tν) + (1 + l) (x− x0)
2/2 + k ≥ 0 ∀ (x, t) ∈ R × (−∞, tν) .

Proof. We proceed as in the proof of Lemma 6.1. The function u0 and ν are such that






Hu0 = 1 in
{

u0 > 0
}

, u0 ≥ 0 a.e. in R
2 ,

∂u0

∂t
(ν) = l and u0(ν) > 0 .

The function u0
t achieves its minimum at ν: u0

t ≥ u0
t (ν) = l. Moreover Hu0

t = 0 almost everywhere in
{

u0 > 0
}

. By the strong maximum principle, u0
t ≡ l in Q−

r (ν) for some r > 0, small enough, and as a
consequence

∂2u0

∂x2
= 1 + l in Q−

r (ν) ,

which means that there exist x0 and k ∈ R such that

u0(x, t) = l(t− tν) + (1 + l) (x− x0)
2/2 + k ≥ 0 in Q−

r (ν) .

Iterating the method, we may cover the parabolic connected component of {(x, t) ∈ R
2 : u0(x, t) > 0, t <

tν} which contains ν. This proves that its boundary is given by

x 7→ φ(x) := max
{

tν , tν − l−1
(

(1 + l) (x− x0)
2/2 + k

)}

.

For any x ∈ R such that φ(x) < tν and x 6= x0, u
0
x(x, φ(x)) = (1+l)(x−x0) 6= 0 contradicts the continuity

of u0
x(·, t) if l > −1. Thus infR φ ≥ tν and u0 is positive in {t < tν}. By unique continuation, we establish

the expression of u0 in R × (−∞, tν). �

As a consequence of this lemma we have

Lemma 6.3 Under Assumption (1.2) consider a solution u of (1.1) and take P1 ∈ Γ. If

lim inf
P→P1, P∈{u>0}

∂u

∂t
(P ) < 0

then P1 ∈ S.

Proof. Consider a nonnegative cut-off function ψ ∈ D(R) such that ψ = 1 in a small neighborhood of
x = 0 and with small enough compact support. Assume by contradiction that P1 is regular. For any
P ′ = (x′, t′) we define

uP ′(x, t) = u(x+ x′, t+ t′) .

By Proposition 4.1, limτ→0 E(τ ;uP1ψ) =
√

2/2. By Proposition 3.4, for any δ > 0, there exists a τ0 < 0
such that √

2/2 ≤ E(τ0;uP1ψ) <
√

2/2 + δ/2 . (6.1)
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With the notations of Lemma 6.2 and according to Lemma 6.2 the sequence (uηn

Πn
)n∈N converges uniformly

to u0(x, t) = l(t− tν) + (1 + l) (x− x0)
2/2 + k ≥ 0 in R × (−∞, tν). We compute

lim
t→0, t<0

E(t;u0) =
√

2 .

Then for any δ > 0, there exists t∞ < 0 with |t∞| small enough such that for t > t∞ we have (using the
scaling invariance of the energy):

√
2 − δ

2
≤ E(t;u0) = lim

n→∞
E(t;uηn

Πn
ψ(ηn·)) = lim

n→∞
E(η2

nt;uΠnψ) .

So for τ0 defined in (6.1) and t > t∞ fixed, there exists N = N(t, δ) such that

∀n > N, E(t;uηn

Πn
ψ(ηn·)) > E(t;u0) − δ

2
and η2

nt > τ0 .

Proposition 3.4 applies to uΠn :
E(η2

nt;uΠnψ) ≤ E(τ0;uΠnψ) .

By continuity of the map P ′ 7−→ E(τ0;uP ′ψ), we have

E(τ0;uΠnψ) ≤ E(τ0;uP1ψ) +
δ

2
.

Collecting these estimates, we have for any n > N

√
2− δ ≤ E(t;u0) − δ

2
< E(η2

nt;uΠnψ) ≤ E(τ0;uΠnψ) ≤ E(τ0;uP1ψ) +
δ

2
<

√
2

2
+ δ ,

a contradiction for any δ <
√

2/4. �

As a direct consequence of Lemmata 6.1 and 6.3 we obtain

Corollary 6.4 Under Assumption (1.2) consider a solution u of (1.1). If P1 ∈ R then

lim
P→P1, P∈{u>0}

∂u

∂t
(P ) = 0 .

Lemma 6.5 Let u be a solution of (1.1) and assume that (1.2) holds. If there exist r > 0 and P1 =
(x1, t1) ∈ QR(P0) such that Qr(P1) ⊂ QR(P0) and t′ := inf{t ∈ (tP −r2, tP +r2] : ∃x′ ∈ (xP −r, xP +r)
such that (x′, t) ∈ Γ} is achieved in (xP − r, xP + r) × (tP − r2, tP + r2] and u is positive in {(x, t) ∈
Qr(P1) : t < t′} then (x′, t′) is a singular point.

Proof. Assume by contradiction that P ′ ∈ R. According to Theorem 3.9 and Proposition 5.5, the blow-up
limit in P ′ corresponding to a blow-up sequence at scale εn is u0 = v0

±. There exists therefore some

P̃ = (x, t) with t < 0 such that P̃ ∈ Int{u0 = 0}. By Lemma 2.5, this implies that u(P ′ + εn P̃ ) = 0 for
n large enough, a contradiction with the definition of P ′. �

Theorem 6.6 Under Assumption (1.2) consider a solution u of (1.1). For any m ∈ [−1, 0], if P1 ∈ Sm

then

lim inf
P→P1, P∈{u>0}

∂u

∂t
(P ) = m .

Proof. Let P1 = (x1, t1) and l := lim infP→P1, P∈{u>0} ut(P ). By considering a blow-up sequence (εn)n∈N

and by computing ut(xP1 , tP1 − εn/2) → (v0
m(P1))t(xP1 , tP1 − 1/2) = m(P1) we get that l ≤ m = m(P1).

Assume by contradiction that the inequality is strict.
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Let (Pn)n∈N be a sequence with Pn = (xn, tn) such that u(Pn) > 0, limn Pn = P1 and limn ut(Pn) = l.
For any n ∈ N, define εn > 0, such that Pn ∈ ∂Qεn(P1). Let us consider a localized blow-up sequence
(u3εn

P1
)n∈N which converges to v0

m. Since Qεn(Pn) ⊂ Q3εn(P1), the sequence (uεn

Pn
:= ε−2

n u(xn + εn x, tn +

ε2n t))n∈N satisfies
uεn

Pn
−→ v0

m(· + P ) with P ∈ ∂Q1(0) .

Here P = (x, t) = limn→+∞ Pn with Pn =
(

xn−x1

εn
, tn−t1

ε2
n

)

. By Lemma 6.2 and using the same notations,

for some Πn := (xn, tn) ∈ Γ, (uηn

Πn
)n∈N uniformly converges to u0(x, t) = l(t− tν) + (1 + l) (x−x0)

2/2 + k

in R × (−∞, tν). Let us define t0 such that l(t0 − tν) + k = 0. Then for P 0 = (x0, t0), and by uniqueness
of the limit solution u0, we have u0 = v0

l (· + P 0). Consequently we have

uηn

Πn
−→ v0

l (· + P 0) .

Moreover we have
ηn ≤ εn .

Now let us consider the sequence (uεn

Πn
)n∈N which satisfies uεn

Πn
= uεn

Pn
(·+Πn) with Πn =

(

xn−xn

εn
, tn−tn

ε2
n

)

∈
∂Qηn/εn

(0). Up to extraction of a subsequence, we can assume that Πn → Π with Π ∈ Q1(0) and then

uεn

Πn
−→ v0

m(· + P + Π) .

Because we assumed that l 6= m, this implies that ηn/εn → 0 and then Π = 0.
Given δ > 0, we now consider µ > 0 large enough such that

|v0
m((0,−µ) + P ) −mµ| ≤ δµ

|v0
l ((0,−µ) + P 0) − lµ| ≤ δµ .

The function λ 7→ uλ
Πn

:= λ−2u(x̄n + λx, t̄n + λ2 t) is continuous: there exists a λn ∈ (ηn, εn) such that

1

µ
uλn

Πn
(0,−µ) =

1

2
[m+ l ]

for any n large enough. The sequence (uλn

Πn
)n∈N converges to a function ū in W 2,1;∞

x,t which satisfies

Hū = 1l{ū>0} , ū ≥ 0 and ū(0,−µ) =
µ

2
[ m+ l ] .

Consider a nonnegative cut-off function ψ ∈ D(R) such that ψ ≡ 1 on (−1/2,+1/2), supp(ψ) = [−1, 1].
On the one hand, there exists t∞ = t∞(δ) < 0 such that

√
2 − δ

2
≤ E(t; v0

l (· + P 0)) = lim
n→∞

E(t;uηn

Πn
ψ(ηn·)) = lim

n→∞
E(η2

nt;uΠnψ) ∀t ∈ (t∞, 0) .

On the other hand by definition of S, limτ→0 E(τ ;uP1ψ) =
√

2. By Proposition 3.4, for any δ > 0, there
exists τ0 < 0, with |τ0| sufficiently small, such that

E(τ0;uP1ψ) <
√

2 + δ/2 .

For any δ > 0, t > 0, there exists a N = N(t, δ) such that

n > N ⇒ E(t;uηn

Πn
ψ(ηn·)) > E(t; v0

l (· + P 0)) −
δ

2
and η2

nt > τ0 .

Moreover, for a fixed τ0, by continuity of the energy, since Πn ∈ Q2εn(P1),

E(τ0;uΠnψ) ≤ E(τ0;uP1ψ) +
δ

2
∀n > N

30



for N large enough. Using Proposition 3.4, for all t > t∞, n > N , s ∈ (τ0, η
2
n t) ⊂ (τ0, 0), we get

√
2 − δ < E(t; v0

l (· + P 0)) −
δ

2
< E(η2

nt;uΠnψ) ≤ E(s;uΠnψ) ≤ E(τ0;uΠnψ) ≤ E(τ0;uP1ψ) +
δ

2
<

√
2 + δ .

For any given t > t∞ and n > N(t, δ) we define s := λ2
n τ , and τ ∈ (τ0/λ

2
n, (ηn/λn)2 t). As a consequence,

the estimate √
2 − δ ≤ E(λ2

nτ ;uΠnψ) = E(τ ;uλn

Πn
ψ(ηn·)) ≤

√
2 + δ

holds true for any t > t∞(δ) and n > N(t, δ). From our construction we get that λn → 0 and ηn/λn → 0,
so that

∣

∣E(τ ; ū) −
√

2
∣

∣ ≤ δ for all τ < 0 and for all δ > 0. Therefore

∀τ ∈ (−∞, 0), E(τ ; ū) =
√

2 .

This means that ū is scale-invariant by Corollary 3.5. By Theorem 3.9 there exists an m̄ such that ū = v0
m̄.

Because of the expression of ū(0,−µ)/µ we obtain m̄ = [m+ l]/2 ∈ (−1, 0). From the convergence of uλn

Πn

to v0
m̄ with m̄ ∈ (−1, 0) where the free boundary ∂

{

v0
m̄ > 0

}

is a parabola oriented in the positive time
direction, and from the fact that Pn ∈ Qλn(Πn), we deduce that Lemma 6.5 applies to u in QAλn(Pn) for
some A > 0 large enough, but independent of n. Then there exists a sequence of singular points (Zn)n∈N

in QAλn(Pn) such that limn→∞m(Zn) = m̄, because uλn

Πn
converges to v0

m̄. Moreover the sequence Zn

converges to P1 and then by Lemma 5.6, we obtain m̄ = m(P1), which is impossible. �

As a very simple consequence, we obtain the following result.

Corollary 6.7 Under Assumption (1.2) consider a solution u of (1.1). If P1 ∈ S0 then

lim
P→P1, P∈{u>0}

∂u

∂t
(P ) = 0 .

6.3. Proofs of the results of Section 1

Proof of Theorem 1.4. If for some t < 0, E(t; vP1 ) <
√

2, then by Proposition 3.4, t 7→ E(t; vP1) is
monotone decreasing, and by Proposition 4.1, P1 ∈ R. By Corollary 6.4, ut is continuous at P1 and in a
neighborhood of P1 by Lemma 4.2. �

Proof of Theorem 1.3. By Proposition 4.1, the limit of E is either
√

2 or
√

2/2. In the second case, Corollary
6.4 applies at P1 and the continuity of ut holds because R is open in Γ according to Lemma 4.2, which
proves (ii). �

Proof of Theorem 1.1. By Proposition 5.8, the set I has zero Lebesgue measure. If (x1, t1) = P1 ∈ Γ is
such that t1 6∈ I , then P1 ∈ S0 ∪R, and the result holds by Corollaries 6.4 and 6.7. �
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Marne la Vallée, 1999.

[28] G. S. Weiss, Self-similar blow-up and Hausdorff dimension estimates for a class of parabolic free boundary problems,
SIAM J. Math. Anal., 30 (1999), pp. 623–644 (electronic).

[29] , The free boundary of a thermal wave in a strongly absorbing medium, J. Differential Equations, 160 (2000),
pp. 357–388.

[30] D. V. Widder, The heat equation, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975. Pure and
Applied Mathematics, Vol. 67.

33


