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Trace theorems and spatial continuity properties for the solutions of the
transport equation

Franck Boyer1

LATP, CNRS / Université de Provence, 39 rue Joliot-Curie, 13453 Marseille Cedex 13, FRANCE

Abstract. This paper is first concerned with the trace problem for the transport equation. We prove the existence and the uniqueness
of the traces as well as the well-posedness of the initial and boundary value problem for the transport equation for any Lp data
(p ∈]1,+∞]). In a second part, we use our study of the trace problem to prove that any solution to the transport equation is, roughly
speaking, continuous with respect to the spatial variable along the direction of the transport vector field with values in a suitable Lq
space in the other variables.

We want to emphasize the fact that we do not need to suppose any time regularity on the vector field defining the transport. This
point is crucial in view of applications to fluid mechanics for instance. One of the main tools in our study is the theory of renormalized
solutions of Di Perna and Lions.
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1 Introduction
This paper is concerned with the study of some properties of the transport equation:

∂tρ+ v · ∇ρ = f, in Ω, (1.1)

where Ω is a bounded smooth domain in Rd (d ≥ 2), v(t, x) is a given vector field, and f(t, x) is a source term.
In the case where the vector field v is tangential to ∂Ω, that is to say when v · ν = 0 (ν being the unitary outward

normal to ∂Ω), the Cauchy problem for (1.1) was studied by numerous authors for a long time. When v is regular
enough (say Lipschitz), the problem can be solved by the characteristics method, that is to say by solving the ordinary
differential equation associated to v.

When v is less regular - and this is crucial in the applications - the transport equation (1.1) was studied by Di Perna
and Lions in [10] by introducing the fundamental theory of renormalized solutions. In particular, they show that if the
vector field v has a bounded divergence and is integrable in time with values in a suitable Sobolev space in x, then any
weak solution ρ of the equation (1.1) is a renormalized solution. It means that, for a wide class of regular functions β,
β(ρ) is also a solution to the corresponding transport equation. This result implies many properties of the weak solutions
of (1.1) and in particular, the well-posedness of the Cauchy problem and the continuity of these solutions with respect
to the time t and with values in suitable Lq(Ω) space.

Many variants and improvements of these results were provided by numerous authors, always in the case of a
tangential velocity field (or in the case of the whole space Ω = Rd), in particular by weakening the requirements on
the vector field v. For instance, it is shown in [7] that the boundedness of the divergence of v is not necessary and
that a more general assumption on div(v) is sufficient. In [12] the case of “piecewise” W 1,1 vector fields is adressed.
The uniqueness of solutions in the class L∞(]0, T [, C0

b (Rd)) for vector fields in L1(]0, T [, (BVloc(Rd))d) with bounded
divergence and suitable behavior at infinity is proved in [6]. Finally, it is shown in [1] that for the same “BV in space”
vector fields the uniqueness of weak solutions still holds in the class L∞(]0, T [×Rd).

The aim of this paper is twofold. In a first part, we study the transport equation (1.1) in the case where v ·ν 6= 0 on the
boundary of Ω. We first give the trace theorems for the weak solutions to this equation, then we solve the corresponding
initial and boundary value problem. In the second part, we prove a new continuity property of the solutions to (1.1) with
respect to one spatial variable with values in appropriate Lebesgue spaces in the other variables. It turns out that the
trace results given in the first part of this paper are the main tools in order to prove this regularity result.

1e-mail: fboyer@cmi.univ-mrs.fr
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1.1 Trace problem and Cauchy problem for the transport equation
In the first part of this work, we are interested in the study of (1.1) in the case where the vector field v is not necessarily
tangential to the boundary of Ω, that is to say that we do not assume that v · ν = 0 on ∂Ω.

The key of the problem is to define and to study the properties of the trace of the weak solutions of (1.1) on the
boundary ∂Ω. In particular, in order to solve the initial and boundary value problem





∂tρ+ v · ∇ρ = f, in Ω,

ρ(0) = ρ0,

ρ = ρi, where v · ν < 0,
(1.2)

it is needed to give a precise sense to the boundary condition ρ = ρi imposed only on the part of ∂Ω where v · ν < 0.
For time independent and Lipschitz vector fields v, this problem has been treated by Bardos in [2] by using the

characteristics method and the semi-group theory. This problem was also addressed by different authors for other
equations: in the case of the neutronic transport equation by Cessenat in [4, 5] using also the characteristics method, and
for the Vlasov equation by Mischler in [13] using the renormalized solutions theory.

The detailed outline of this part is the following. In section 2, we introduce the notations used throughout this work.
We also recall some results concerning the normal and tangential coordinates near the boundary of a smooth bounded
domain, and we give the precise assumptions on the velocity field v and on the data f that we will consider.

In section 3, we prove (Theorem 3.1) the existence and uniqueness of the traces of any solution ρ ∈ L∞(]0, T [, Lp(Ω))
of the transport equation (1.1), for any 1 < p ≤ +∞. We also prove that these traces enjoy the renormalization property.
The main tool in the proof of this result is a regularization procedure and a commutator estimate originally introduced
by Di Perna and Lions in [10] and generalized for a bounded domain by Mischler in [13] for the study of the Vlasov
equation. We also prove that any such weak solution ρ is continuous in time with values in Lq(Ω) for any q < p.

Section 4 is devoted to the proof of the well-posedness of the initial and boundary value problem for (1.1) in the
case of bounded data (Theorem 4.1). We also show the strong convergence of the approximated solutions obtained by a
suitable parabolic regularization of the problem (see (4.2)).

The fifth section is concerned with the description of the precise trace space in which the traces of the solutions
ρ ∈ L∞(]0, T [, Lp(Ω)) are lying in when p is finite. As it was noticed in [2, 4, 5, 13], it is needed to introduce the notion
of life time associated to a vector field in Ω so that we can characterize the trace space (see Theorem 5.1).

Finally, using the results of the previous sections, we are able to prove in section 6, the well-posedness of the initial
and boundary value problem with Lp data, for finite values of p (Theorem 6.1).

We want to emphasize here that one of the main challenge of this paper is to provide results which do not require
any time regularity property for the vector field v just like in the tangential case (see [10]). Indeed, one of the main
applications we have in mind for this problem is the study of outflow boundary conditions for the non-homogeneous
Navier-Stokes equations: 




∂tρ+ v · ∇ρ = 0,

∂t(ρv) + div(ρv ⊗ v)− div(2µ(ρ)D(v)) +∇p = f,

div(v) = 0,

ρ(0) = ρ0, v(0) = v0,

ρ = ρi, where v · ν < 0,

+ Boundary condition for v on ∂Ω.

(1.3)

The boundary conditions for v have to be chosen so that the problem is well-posed. We dot not enter the details here,
since the study of this problem is proposed in [3]. Nevertheless, it is clear that weak solutions to (1.3) will classically
lie in the energy space, i.e. v ∈ L2(]0, T [, (H1(Ω))d), and that ∂tv has no reason to be integrable on ]0, T [×Ω (see
[8, 9, 11]). Hence, it is fundamental to provide results which do not need v to be regular in time.

Notice that if one assumes that v is more regular in time (for instance if v is time independent), some of the proofs
given below can be simplified.
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1.2 Spatial regularity of the solutions to the transport equation
In section 7, we investigate the spatial regularity of the weak solutions to the transport equation. More precisely, we
prove that any solution of the transport equation is continuous along the direction of the vector field v in a sense to be
precised.

Let us see on a simple example why such a result has to be true. Let ρ0 ∈ L∞(R2) with compact support and let
v(t, x, y) = (ϕ(t), 0), ∀(t, x, y) ∈]0, T [×R2, where ϕ ∈ L1(]0, T [) is a positive function such that min]0,T [ ϕ > 0. We
obviously find that the weak solution to (1.1) in the whole space R2 with initial data ρ0 is given by

ρ(t, x, y) = ρ0(x− Φ(t), y),

with Φ(t) =
∫ t

0
ϕ(s) ds. It is clear that ρ is continuous with respect to t with values in L1

x,y(R2) (this point is well
known since the works by Di Perna and Lions [10]). Furthermore, we see that ρ is also continuous with respect to x
(which is the direction of v) and with values in L1

t,y(]0, T [×R). Indeed, using the change of variable τ = Φ(t) we find
∫ T

0

∫

R
|ρ(t, x, y)− ρ(t, x0, y)| dt dy =

∫ T

0

∫

R
|ρ0(x− Φ(t), y)− ρ0(x0 − Φ(t), y)| dt dy

=

∫ Φ(T )

0

∫

R
|ρ0(x− τ, y)− ρ0(x0 − τ, y)| 1

ϕ(Φ−1(τ))
dτ dy.

Since 1
ϕ◦Φ−1 ∈ L∞(]0,Φ(T )[), the above quantity tends to zero when x converges to x0 thanks to the continuity of the

translation operators in L1. Notice of course that ρ is not continuous in any sense with respect to y which is transverse
to the vector field v.

Suppose now that ϕ is any function in L1(]0, T [). If ϕ vanishes on an interval ]t0, t1[, then for any t ∈]t0, t1[ and
any x, y ∈ R the solution of (1.1) is given by

ρ(t, x, y) = ρ0(x− C, y),

with C =
∫ t0

0
ϕ. Hence, without any regularity assumption on the initial data ρ0 we see that ρ cannot be continuous

with respect to the variable x with values in L1
t,y .

Nevertheless, the same computations than above show that the function

ρ(t, x, y) (v(t, x, y) · ex) = ρ(t, x, y)ϕ(t),

is continuous with respect to x with values in L1
t,y(]0, T [×R) even if ϕ vanishes.

In the general case, where v is integrable in time with a Sobolev regularity in the spatial variables, we will give a
general result which is similar to the one of the previous example. We shall see that the results are slightly different in
the case of bounded solutions (Theorems 7.2 and 7.3) and for Lp solutions with finite values of p (Theorem 7.5). Once
more, we emphasize the fact that our proofs are valid without any time regularity assumption on v.

The main idea in the proofs of these results is, roughly speaking, to show that the traces of a solution to the transport
equation (defined in the first part of this paper) depend continuously on the domain we consider (since any solution in
Ω is also solution in any subdomain of Ω). Then, such a continuity property of the traces is shown to imply a continuity
property of the solution itself near the boundary of Ω. Finally, since we can apply all these results to any smooth
subdomain in Ω, we can state in fact a continuity property in the whole domain Ω and not only near the boundary.

2 Notations and preliminaries
Throughout this paper, we will denote by C1

b (R) the set of bounded C1 functions with a bounded derivative.
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2.1 Elementary differential geometry
We suppose that Ω is a smooth (say C2) bounded domain in Rd (with d ≥ 2) and we denote by Γ the boundary of Ω and
by ν the outward unitary normal to Γ. The distance between any x ∈ Rd and Γ is denoted by d(x,Γ).

For any ξ ≥ 0, we introduce the open sets

Oξ = {x ∈ Ω, d(x,Γ) < ξ}, and Ωξ = {x ∈ Ω, d(x,Γ) > ξ},

and for any 0 ≤ ξ1 < ξ2, we define

Oξ1,ξ2 = {x ∈ Ω, ξ1 < d(x,Γ) < ξ2}.

Since Ω is bounded and regular, there exists ξΩ > 0 such that the maps d(·,Γ) (distance to Γ) and PΓ (projection on
Γ) are well defined and smooth in OξΩ .

In OξΩ it is possible to use (d(x,Γ), PΓ(x)) ∈ [0, ξΩ] × Γ as a coordinate system. For any function f : ΩξΩ 7→ R
we will use the notation

f(ξ, σ) ≡ f(σ − ξν(σ)), ∀(ξ, σ) ∈ [0, ξΩ]× Γ. (2.1)

Notice that for any σ ∈ Γ, we have f(0, σ) = f(σ). The reverse formula obviously reads

f(x) = f(d(x,Γ), PΓ(x)), ∀x ∈ OξΩ .

In particular, if f ∈W 1,q(OξΩ) with q ≥ 1, we deduce that

∂

∂ξ
f(ξ, σ) = −(∇f)(ξ, σ) · ν(σ) ∈ Lq(]0, ξΩ[×Γ),

and therefore we have
ξ 7→ f(ξ, σ) ∈ C0([0, ξΩ], Lq(Γ)). (2.2)

We remark that (2.2) also holds for any f ∈W 1
q+ε,q(OξΩ), with ε > 0.

For any ξ ∈ [0, ξΩ[, we denote by Γξ = {x ∈ Ω, d(x,Γ) = ξ}. Notice that for any ξ ∈ [0, ξΩ] and 0 ≤ ξ1 < ξ2 ≤ ξΩ

we have
∂Oξ = Γ ∪ Γξ, ∂Ωξ = Γξ, ∂Oξ1,ξ2 = Γξ1 ∪ Γξ2 .

For any ξ ≤ ξΩ, the manifolds Γ and Γξ are isomorphic through the parallel transport with respect to the vector
field −ξν. Let Jξ(σ), σ ∈ Γ be the Jacobian determinant of the isomorphism between the manifolds Γ and Γξ. For any
g ∈ L1(Γξ), we have ∫

Γξ

g(σ′) dσ′ =

∫

Γ

g(σ − ξν(σ))Jξ(σ) dσ =

∫

Γ

g(ξ, σ)Jξ(σ) dσ. (2.3)

Therefore, for any f ∈ L1(OξΩ) we have the following change of variables formula :
∫

OξΩ
f(x) dx =

∫ ξΩ

0

(∫

Γ

f(ξ, σ)Jξ(σ) dσ

)
dξ. (2.4)

It is clear that J0(σ) = 1 for any σ ∈ Γ and that (ξ, σ) 7→ Jξ(σ) is smooth for ξ small enough. Of course, Jξ(σ) can
be computed explicitly depending on the two fundamental forms of Γ but it is not useful in this work. We just have to
notice that if ξΩ is small enough we have 1

2 ≤ Jξ(σ) ≤ 3
2 for any (ξ, σ) ∈ [0, ξΩ]× Γ.

Finally, notice that there exists a smooth function D : Ω 7→ R such that D = d(·,Γ) on OξΩ so that we can define
for any x ∈ Ω, the vector field ν(x) = −∇D(x) which is regular bounded and which coincides with the normal vector
field near the boundary. More precisely, we have

ν(x) = ν(PΓ(x)), for any x ∈ OξΩ .
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2.2 Regularization procedure in Ω

Let us recall now the regularization procedure which extend the classical smoothing method to the case of bounded
domains (see [13]).

Let η be a positive radial and regular function with compact support in Rd, such that
∫

Rd
η(x) dx = 1. For any

ε > 0, let ηε(x) =
1

εd
η
(x
ε

)
.

For any function f ∈ L1(]0, T [×Ω) we define the following space regularized function :

f ?ν ηε(t, y) =

∫

Ω

f(t, x)ηε(y − x− 2εν(y)) dx, ∀(t, y) ∈]0, T [×Ω.

The properties of this regularization procedure are summed up in the following straightforward result.

Lemma 2.1
• If Ω is a C2 bounded domain, then for any f ∈ Lp(]0, T [, L1(Ω)) we have

f ?ν ηε ∈ Lp(]0, T [, C1(Ω)).

• For any p, q ∈ [1,+∞], and any f ∈ Lp(]0, T [, Lq(Ω)), we have

‖f ?ν ηε‖Lp(]0,T [,Lq(Ω)) ≤ C‖f‖Lp(]0,T [,Lq(Ω)),

‖∇(f ?ν ηε)‖Lp(]0,T [,Lq(Ω)) ≤
C

ε
‖f‖Lp(]0,T [,Lq(Ω)).

Furthermore, if p < +∞ and q < +∞ then we have

f ?ν ηε −→
ε→0

f, in Lp(]0, T [, Lq(Ω)).

2.3 Assumptions on the vector field v
In this paper, p denotes any element of ]1,+∞] and p′ = p

p−1 ∈ [1,+∞[ its conjugate exponent. From section 3 to
section 6, we are interested in vector fields v satisfying the following assumptions:





v ∈ L1(]0, T [, (W 1,p′(Ω))d),

div(v) = 0,

(v · ν) ∈ Lα(]0, T [×Γ), for a given α > 1.
(2.5)

In the case where v · ν = 0, the regularity assumption on v is exactly the same than in previous works in this case
(see [7, 10]). In particular, one of the main feature of this paper is that we do not need any additional time regularity
assumption on the vector field v to prove our results.

Notice that most of the results in this paper can be adapted to vector fields such that div(v) is only supposed to be
bounded (see [7, 10]).

For any such vector field, we can introduce the following measures on ]0, T [×Γ :

dµv = (v · ν) dσdt,

dµαv = |v · ν|α dσdt.
As usual dµ+

v = (v · ν)+ dσdt and dµ−v = (v · ν)− dσdt are the positive and negative parts of dµv so that we have

dµv = dµ+
v − dµ−v , |dµv| = dµ+

v + dµ−v .
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3 Trace theorem and continuity in time of solutions.
In this section, we prove the existence and the uniqueness of the trace of any weak solution of the transport equation

in the domain Ω. We also give the renormalization property for these traces.

Theorem 3.1
Let p ∈]1,+∞], v satisfying (2.5) and f ∈ L1(]0, T [, Lp(Ω)). Let ρ ∈ L∞(]0, T [, Lp(Ω)) be a solution, in the
distribution sense, to the transport equation

∂tρ+ v · ∇ρ = f.

1. The function ρ lies in C0([0, T ], Lq(Ω)), for any 1 ≤ q < p. Furthermore, ρ is weakly continuous in time with
values in Lp(Ω).

2. There exists a function γρ measurable on ]0, T [×Γ such that for any β ∈ C1
b (R), for any test function ϕ ∈

C1([0, T ]× Ω), and for any [t0, t1] ⊂ [0, T ], we have
∫ t1

t0

∫

Ω

β(ρ)(∂tϕ+ v · ∇ϕ) dt dx+

∫

Ω

β(ρ(t0))ϕ(t0) dx−
∫

Ω

β(ρ(t1))ϕ(t1) dx

−
∫ t1

t0

∫

Γ

β(γρ)ϕ(v · ν) dt dσ +

∫ t1

t0

∫

Ω

β′(ρ)fϕ dt dx = 0.

(3.1)

Furthermore, the function γρ satisfying the above properties is unique in the almost-everywhere sense for the
measure |dµv| on ]0, T [×Γ.

Remark 3.1
Suppose that p = +∞ and let us introduce

ρmax = sup
]0,T [×Ω

ρ(t, x), ρmin = inf
]0,T [×Ω

ρ(t, x).

Let β be a regular non-negative function in C1
b (R) such that β(s) = 0 if and only if s ∈ [ρmin, ρmax]. For this particular

choice of β, formula (3.1) gives ∫ T

0

∫

Γ

β(γρ)ϕ(v · ν) dt dσ = 0,

for any regular test function ϕ, since the first term in (3.1) vanishes. This implies that β(γρ)(v ·ν) = 0 for almost every
(t, σ) ∈]0, T [×Γ. Hence, we have β(γρ) = 0 for |dµv|-almost every (t, σ) ∈]0, T [×Γ.

Therefore, we have ρmin ≤ γρ(t, σ) ≤ ρmax for |dµv|-almost every (t, σ) ∈]0, T [×Γ. In particular, we have
γρ ∈ L∞(]0, T [×Γ, |dµv|). Hence, in this case formula (3.1) is true for any β ∈ C1(R) not necessarily bounded. In
particular, taking β(s) = s, we deduce that

∫ t1

t0

∫

Ω

ρ(∂tϕ+ v · ∇ϕ) dt dx+

∫

Ω

ρ(t0)ϕ(t0) dx−
∫

Ω

ρ(t1)ϕ(t1) dx

−
∫ t1

t0

∫

Γ

γρ(v · ν)ϕdt dσ +

∫ t1

t0

∫

Ω

fϕ dt dx = 0,

(3.2)

which gives the weak formulation of the transport equation taking into account the trace γρ of the solution on ]0, T [×Γ.
Notice that (3.2), is not true in general in the case p < +∞ since it is possible that γρ does not lie in the space

L1(]0, T [×Γ, |dµv|) (see the counter-example by Bardos in [2]). We will adress the problem of giving a sense to (3.2)
in section 6.

Proof :
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1. By assumption, we have for any ϕ ∈ C1
c (]0, T [×Ω)

∫ T

0

∫

Ω

ρ(∂tϕ+ v · ∇ϕ) dt dx+

∫ T

0

∫

Ω

fϕ dt dx = 0.

Let ψ ∈ C∞c (]0, T [×Ω). For any y ∈ Ω we choose ϕ(t, x) = ψ(t, y)ηε(y − x − 2εν(y)) in the following
formulation. Notice that ϕ vanishes on the boundary Γ. If now we integrate with respect to y ∈ Ω the above
identity, we obtain

∫ T

0

∫

Ω

∫

Ω

ρ(t, x)∂tψ(t, y)ηε(y − x− 2εν(y)) dt dx dy

+

∫ T

0

∫

Ω

∫

Ω

ρ(t, x)ψ(t, y)v(t, x) · ∇xηε(y − x− 2εν(y)) dt dx dy

+

∫ T

0

∫

Ω

∫

Ω

f(t, x)ψ(t, y)ηε(y − x− 2εν(y)) dt dx dy = 0,

which gives after integrations by parts

0 =

∫ T

0

∫

Ω

ρ ?ν ηε(t, y)(∂tψ(t, y) + v(t, y) · ∇yψ(t, y)) dt dy

+

∫ T

0

∫

Ω

∫

Ω

ρ(t, x)

(
v(t, x) · ∇xηε(y − x− 2εν(y))ψ(t, y)− v(t, y) · ∇yψ(t, y)ηε(y − x− 2εν(y))

)
dt dx dy

+

∫ T

0

∫

Ω

f ?ν ηε(t, y)ψ(t, y) dt dy

=

∫ T

0

∫

Ω

ρ ?ν ηε(t, y)(∂tψ(t, y) + v(t, y) · ∇yψ(t, y)) dt dy

+

∫ T

0

∫

Ω

∫

Ω

ρ(t, x)

(
v(t, x) · ∇xηε(y − x− 2εν(y)) + v(t, y) · ∇yηε(y − x− 2εν(y))

)
ψ(t, y) dt dx dy

+

∫ T

0

∫

Ω

f ?ν ηε(t, y)ψ(t, y) dt dy.

If now we let ρε = ρ ?ν ηε and fε = f ?ν ηε, we have proved that ρε is solution in the distribution sense to the
equation

∂tρε + v · ∇ρε = Rε + fε, (3.3)

where

Rε(t, y) =

∫

Ω

ρ(t, x)

(
v(t, x) · ∇xηε(y − x− 2εν(y)) + v(t, y) · ∇yηε(y − x− 2εν(y))

)
dx.

The renormalized solutions theory (see [10]) is based on the fact that this remainder term Rε, which can be seen
as a commutator, tends to 0 as ε goes to 0 in a suitable Lebesgue space. The precise result in our case is the
following.

Lemma 3.1
If ρ ∈ L∞(]0, T [, Lp(Ω)) and v ∈ L1(]0, T [, (W 1,p′(Ω))d) with div(v) = 0, then we have

Rε −→
ε→0

0, in L1(]0, T [×Ω).
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Very similar lemmas can be found in [10] and [13] so that we do not give the proof here.
We deduce from (3.3) that ρε is W 1,1 in time (and hence continuous) with values in L1(Ω). But since ρ
lies in L∞(]0, T [, Lp(Ω)) then for any ε > 0, ρε lies in L∞(]0, T [×Ω) and is bounded independtly of ε in
L∞(]0, T [, Lp(Ω)) (Lemma 2.1). In particular, we see that ρε is continuous in time with values in Lq(Ω) for any
q < +∞.
For any ε1, ε2 > 0, we have

∂t(ρε1 − ρε2) + v · ∇(ρε1 − ρε2) = (Rε1 −Rε2) + (fε1 − fε2). (3.4)

Let β be a regular function such that |β(s)| ≤ |s| and |β ′(s)| ≤ C, for any s ∈ R. Multiplying (3.4) by
β′(ρε1 − ρε2) we get in the distribution sense

∂tβ(ρε1 − ρε2) + v · ∇β(ρε1 − ρε2) = β′(ρε1 − ρε2)(Rε1 −Rε2) + β′(ρε1 − ρε2)(fε1 − fε2). (3.5)

Let h > 0 be small enough and ϕh be the function in W 1,∞(Ω) defined by ϕh = 1 in Ωh and ϕh = 1
hd(x,Γ) in

Oh (see section 2.1 for the definitions of Ωh andOh). We have∇ϕh(x) = − 1
hν(x), for x ∈ Oh and∇ϕh = 0 in

Ωh.
Let us take ( tT − 1)ϕh as a test function in (3.5) on ]0, T [×Ω, we get

∫

Ω

ϕhβ(ρε1(0)− ρε2(0)) dx =
1

T

∫ T

0

∫

Ω

ϕhβ(ρε1 − ρε2) dt dx

+

∫ T

0

∫

Ω

(
t

T
− 1

)
β(ρε1 − ρε2)(v · ∇ϕh) dt dx

+

∫ T

0

∫

Ω

ϕh

(
t

T
− 1

)
β′(ρε1 − ρε2)(Rε1 −Rε2 + fε1 − fε2) dt dx.

(3.6)

Taking now ϕh as a test function in (3.5), we get

d

dt

∫

Ω

ϕhβ(ρε1 − ρε2) dx−
∫

Ω

β(ρε1 − ρε2)v · ∇ϕh dx =

∫

Ω

β′(ρε1 − ρε2)(Rε1 −Rε2 + fε1 − fε2)ϕh dx,

so that:

sup
t∈[0,T ]

∫

Ω

ϕhβ(ρε1 − ρε2) dx ≤
∫

Ω

ϕhβ(ρε1(0, ·)− ρε2(0, ·)) dx+ C

∫ T

0

∫

Ω

|Rε1 −Rε2 | dt dx

+ C

∫ T

0

∫

Ω

|fε1 − fε2 | dtdx+ C

∫ T

0

∫

Ω

|ρε1 − ρε2 ||v · ∇ϕh| dt dx.

Using (3.6) and the definition of ϕh, it follows:

sup
t∈[0,T ]

∫

Ωh

β(ρε1 − ρε2) dx ≤ C‖ρε1 − ρε2‖L1
t,x

+ C‖Rε1 −Rε2‖L1
t,x

+ C‖fε1 − fε2‖L1
t,x

+
C

h

∫ T

0

∫

Oh
|ρε1 − ρε2 ||v · ν| dt dx.

(3.7)

Now we choose β(s) = s2√
s2+δ

and we perform the limit when δ goes to zero so that finally (3.7) holds with
β(s) = |s|. Using the fact that Ω = Ωh ∪ Oh, we deduce:

sup
t∈[0,T ]

∫

Ω

|ρε1 − ρε2 | dx ≤ sup
t∈[0,T ]

∫

Oh
|ρε1 − ρε2 | dx+ C‖ρε1 − ρε2‖L1

t,x
+ C‖Rε1 −Rε2‖L1

t,x

+ C‖fε1 − fε2‖L1
t,x

+
C

h

∫ T

0

∫

Oh
|ρε1 − ρε2 ||v · ν| dt dx.
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As |Oh| ≤ Ch for any h > 0, and using the bound of (ρε)ε in L∞(]0, T [, Lp(Ω)), we get

sup
t∈[0,T ]

∫

Ω

|ρε1 − ρε2 | dx ≤ Ch
1
p′ + C‖ρε1 − ρε2‖L1

t,x
+ C‖Rε1 −Rε2‖L1

t,x

+ C‖fε1 − fε2‖L1
t,x

+
C

h

∫ T

0

∫

Oh
|ρε1 − ρε2 ||v · ν| dt dx.

(3.8)

Let us denote the last term in (3.8) by I . We use inOh, the tangential and normal coordinates introduced in section
2.1 so that we can write

|I| ≤ 1

h

∫ T

0

∫ h

0

∫

Γ

|ρε1(t, ξ, σ)− ρε2(t, ξ, σ)||v(t, ξ, σ) · ν(σ)− v(t, 0, σ) · ν(σ)| Jξ(σ) dσ dξ dt

+
1

h

∫ T

0

∫ h

0

∫

Γ

|ρε1(t, ξ, σ)− ρε2(t, ξ, σ)||v(t, 0, σ) · ν(σ)| Jξ(σ) dσ dξ dt ≡ I1 + I2.

(3.9)

The term I1 can be estimated as follows:

I1 ≤
1

h

∫ T

0

∫ h

0

∫

Γ

|ρε1(t, ξ, σ)− ρε2(t, ξ, σ)|
(
ξ

∫ 1

0

|∇v(t, uξ, σ)| du
)
Jξ(σ) dσ dξ dt

≤ 1

h
‖ρε1 − ρε2‖L∞(]0,T [,Lp(Ω))

∫ T

0

(∫ h

0

∫

Γ

∫ 1

0

ξp
′ |∇v(t, uξ, σ))|p′ Jξ(σ)du dσ dξ

) 1
p′

dt

≤ C

h

∫ T

0

(∫ h

0

∫

Γ

Jξ(σ)

Jτ (σ)
ξp
′−1

∫ ξ

0

|∇v(t, τ, σ)|p′Jτ (σ)dτ dσ dξ

) 1
p′

dt

≤ C
∫ T

0

(
1

h

∫ h

0

∫

Oξ
|∇v(t, x)|p′dx dξ

) 1
p′

dt.

Since for almost every t ∈]0, T [ we have

(
1

h

∫ h

0

∫

Oξ
|∇v(t, x)|p′dx dξ

) 1
p′

≤ ‖∇v(t)‖Lp′ , ∀h > 0,

and
1

h

∫ h

0

∫

Oξ
|∇v(t, x)|p′dx dξ −→

h→0
0,

we are able to conclude, using the Lebesgue theorem, that the term I1 converges to zero when h goes to 0,
independently of ε1 and ε2.

• In the case p < +∞, assumptions (2.5) imply that there exists λ > 0 such that

(t, σ) 7→ (v(t, 0, σ) · ν(σ)) ∈ L1(]0, T [,W
1− 1

p′ ,p
′
(Γ)) ⊂ L1(]0, T [, Lp

′+λ(Γ)).

But as we also assume that (v ·ν) ∈ Lα(]0, T [×Γ) ⊂ Lα(]0, T [, L1(Γ)), with α > 1, classical interpolation
inequalities show that there exists δ > 1 such that (v · ν) ∈ Lδ(]0, T [, Lp

′
(Γ)). As a consequence, we can

estimate the term I2 defined in (3.9) as follows using the Hölder inequality:

I2 ≤
C

h
1− 1

p′
‖ρε1 − ρε2‖Lδ′ (]0,T [,Lp(Ω))‖v · ν‖Lδ(]0,T [,Lp′ (Γ)).
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• In the case p = +∞, we estimate I2 as follows

I2 ≤
C

h
1
α′
‖ρε1 − ρε2‖Lα′ (]0,T [,Lα′ (Ω))‖v · ν‖Lα(]0,T [,Lα(Γ)),

where α′ = α
α−1 is the conjugate exponent of α, which is finite since α > 1.

Finally, (3.8) gives in any cases

sup
t∈[0,T ]

∫

Ω

|ρε1 − ρε2 | dx ≤ Ch
1
p′ + C‖ρε1 − ρε2‖L1

t,x
+ C‖Rε1 −Rε2‖L1

t,x
+ C‖fε1 − fε2‖L1

t,x

+ I1 + C(h)‖ρε1 − ρε2‖Lλ(]0,T [,Lq(Ω)),

(3.10)

where λ < +∞ and q ≤ p is finite.
As a consequence, we deduce that (ρε)ε is a Cauchy sequence in C0([0, T ], L1(Ω)). Indeed, we can first choose h
so that the terms Ch

1
p′ and I1 are small enough independently of ε1 and ε2. Using Lemmas 2.1 and 3.1 we know

that (ρε)ε converge in Lλ(]0, T [, Lq(Ω)) and that (Rε)ε and (fε)ε converge in L1(]0, T [×Ω). Hence, h being
fixed, all the other terms in (3.10) can be made small as ε1 and ε2 are close to 0.
At this point, we proved that (ρε)ε converges towards ρ in C0([0, T ], L1(Ω)). As (ρε)ε is known to be bounded
in L∞(]0, T [, Lp(Ω)) we deduce that (ρε)ε converges towards ρ in C0([0, T ], Lq(Ω)) for any q < p. The weak
continuity in time of ρ with values in Lp(Ω) when p is finite follows immediatly.

2. First of all, the uniqueness property of γρ is straightforward. Indeed, if γ1ρ and γ2ρ are two measurable functions
satisfying (3.1), then we have:

∫ T

0

∫

Γ

β(γ1ρ)(v · ν)ϕdt dσ =

∫ T

0

∫

Γ

β(γ2ρ)(v · ν)ϕdt dσ,

for any suitable β and ϕ which implies that β(γ1ρ)(v · ν) = β(γ2ρ)(v · ν) for almost every (t, σ). It follows that
γ1ρ = γ2ρ for |dµv|-almost every (t, σ).

Now, let us prove the existence of the trace γρ. Since ρε is regular enough, for any β ∈ C1
b (R) we have

∂tβ(ρε) + v · ∇β(ρε) = β′(ρε)Rε + β′(ρε)fε, (3.11)

in the distribution sense. Hence, for any ε1, ε2 > 0, we have

∂t(β(ρε1)− β(ρε2)) + v · ∇(β(ρε1)− β(ρε2)) = β′(ρε1)(Rε1 + fε1)− β′(ρε2)(Rε2 + fε2). (3.12)

Let ψ(t, x) be a smooth function with compact support in time but not necessarily in space. Let us choose
β(ρε1 − ρε2)ψ as a test function in (3.12). It follows

∫ T

0

∫

Γ

|β(ρε1)− β(ρε2)|2ψ(v · ν) dt dσ =

∫ T

0

∫

Ω

|β(ρε1)− β(ρε2)|2(∂tψ + v · ∇ψ) dt dx

+ 2

∫ T

0

∫

Ω

(β′(ρε1)(Rε1 + fε1)− β′(ρε2)(Rε2 + fε2))(β(ρε1)− β(ρε2))ψ dt dx.

(3.13)

Thanks to assumption (2.5), it is now natural to take ψ = |v ·ν|α−2(v ·ν) in this formula, in order for the left-hand
side term to be non-negative. Unfortunately, this is not possible since this function ψ is not smooth enough, in
particular in the time variable.
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Let gn ∈ C1
c (]0, T [×Γ) be a sequence of smooth functions such that (gn)n converges towards |v · ν|α−2(v · ν) in

Lα
′
(]0, T [×Γ). Notice that the condition α > 1 is crucial here. For any n ≥ 0, let Gn ∈ C1

c (]0, T [×Ω) be such
that gn is the trace of Gn on ]0, T [×Γ. Now we take ψ = Gn in (3.13), and we get

∫ T

0

∫

Γ

|β(ρε1)− β(ρε2)|2|v · ν|α dt dσ =

∫ T

0

∫

Γ

|β(ρε1)− β(ρε2)|2(v · ν)

(
|v · ν|α−2(v · ν)− gn

)
dt dσ

+

∫ T

0

∫

Ω

|β(ρε1)− β(ρε2)|2(∂tGn + v · ∇Gn) dt dx

+ 2

∫ T

0

∫

Ω

(β′(ρε1)(Rε1 + fε1)− β′(ρε2)(Rε2 + fε2))(β(ρε1)− β(ρε2))Gn dt dx.

(3.14)

This shows that (β(ρε))ε is a Cauchy sequence in L2(]0, T [×Γ, dµαv ). Indeed, as β is a bounded function, the
first term can be controlled by Cβ‖v · ν‖Lα(]0,T [×Γ)‖|v · ν|α−2(v · ν) − gn‖Lα′ (]0,T [×Γ), hence it converges
towards zero when n goes to infinity, independently of ε1 and ε2. Therefore, we choose n so that this first term
is as small as we want. Then the last two terms are small as soon as ε1 and ε2 are small enough because Gn is
now fixed and regular, (Rε)ε converges to zero in L1(]0, T [×Ω) and furthermore (β(ρε))ε converges to β(ρ) in
C0([0, T ], Lq(Ω)) for any q < +∞.
Hence, we have shown that the traces (β(ρε))ε are a Cauchy sequence in L2(]0, T [×Γ, dµαv ). In particular, there
exists a subsequence (β(ρεk))k which converges dµαv -almost everywhere and hence |dµv|-almost everywhere.
If we choose now β to be injective, we deduce that (ρεk)k has a limit, denoted by γρ, for |dµv|-almost every
(t, σ) ∈]0, T [×Γ.
We claim that γρ is finite |dµv|-almost everywhere. Indeed, in the case p = +∞, this point follows from Remark
3.1. In the case p < +∞, it is more difficult to prove it at this point but it is worth to remark that this claim will
be a straightforward consequence of Theorem 5.1 and Proposition 5.1.
Now we know that for any suitable β, the traces (β(ρεk))k converges in L2(]0, T [×Γ, dµαv ) but converges also
dµαv -almost everywhere towards β(γρ) since β is continuous.
Let ϕ ∈ C1

c (]0, T [×Ω) be a function test for (3.11), we get
∫ T

0

∫

Ω

β(ρεk)(∂tϕ+ v · ∇ϕ) dt dx−
∫ T

0

∫

Γ

β(ρεk)(v · ν)ϕdt dσ =

∫ T

0

∫

Ω

β′(ρεk)(Rεk + fεk) dt dx.

The convergences obtained previously as well as Lemma 3.1 allow us to pass to the limit in this formula and we
get exactly (3.1).

4 Initial and boundary value problem in L∞

In this section we show that the initial and boundary value problem for the transport equation (1.1) with bounded
data is well-posed. The existence of a solution is proved by introducing a parabolic approximation of the problem with
mixed boundary conditions whose solutions weakly converge to a solution to our problem. The uniqueness is essentially
a consequence of the our trace result (Theorem 3.1) and more precisely of the renormalization property.

At the end of this section, we prove a posteriori that the solutions (including the traces of these solutions) of the
approximate parabolic problem are in fact strongly convergent towards the solution of the limit problem.
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Theorem 4.1
Let T > 0, f ∈ L1(]0, T [, L∞(Ω)) and v satisfying (2.5) (with p′ = 1). For any initial data ρ0 ∈ L∞(Ω), and any
boundary data ρi ∈ L∞(]0, T [×Γ, dµ−v ), there exists a unique couple (ρ, ρo) ∈ L∞(]0, T [×Ω) × L∞(]0, T [×Γ, dµ+

v )
such that for any ϕ ∈ C1([0, T ]× Ω) with ϕ(T ) = 0, we have:
∫ T

0

∫

Ω

ρ(∂tϕ+ v · ∇ϕ) dt dx+

∫

Ω

ρ0ϕ(0) dx

−
∫ T

0

∫

Γ

ρoϕ(v · ν)+ dt dσ +

∫ T

0

∫

Γ

ρiϕ(v · ν)− dt dσ +

∫ T

0

∫

Ω

fϕ dt dx = 0.

(4.1)

Furthermore, ρ is continuous in time with values in Lq(Ω) for any q < +∞ and (ρ, ρo) is a renormalized solution of
(4.1) which means that for any real function β in C1(R), the couple (β(ρ), β(ρo)) is the unique solution of (4.1) with
data (β(ρ0), β(ρi)) and source term β′(ρ)f .

Proof :

• Existence :
For any ε > 0 we consider the following parabolic problem





∂tρ̃ε + v · ∇ρ̃ε − ε∆ρ̃ε = f, in Ω

ρ̃ε(t = 0) = ρ0,

ε
∂ρ̃ε
∂ν

+ (ρ̃ε − ρi)(v · ν)− = 0, on ∂Ω.

(4.2)

Lemma 4.1
For any ρ0 ∈ L∞(Ω) and ρi ∈ L∞(]0, T [×Γ, dµ−v ) there exists a unique solution ρ̃ε ∈ L∞(]0, T [, L2(Ω)) ∩
L2(]0, T [, H1(Ω)) to (4.2). Furthermore, we have the estimates

‖ρ̃ε‖L∞(]0,T [,L2(Ω)) + ‖√ε∇ρ̃ε‖L2(]0,T [,L2(Ω)) ≤ C, (4.3)
∫ T

0

∫

Γ

|ρ̃ε|2(v · ν)+ dσ dt ≤ C, (4.4)

where C does not depend on ε.

Proof :
The weak formulation of the problem (4.2) reads:

−
∫ T

0

∫

Ω

ρ̃ε(∂tϕ+ v · ∇ϕ) dt dx+ ε

∫ T

0

∫

Ω

∇ρ̃ε∇ϕdt dx

+

∫ T

0

∫

Γ

(ρ̃ε(v · ν)+ϕ− ρi(v · ν)−ϕ) dt dσ −
∫

Ω

ρ0ϕ(0) dx =

∫ T

0

∫

Ω

fϕ dt dx,

(4.5)

for any ϕ ∈ C1
c ([0, T [×Ω). We can use, for instance, a very classical Galerkin method to solve this problem. The

energy estimate is obtained by choosing ϕ = ρ̃ε in the formulation, it follows :
∫

Ω

|ρ̃ε(T )|2 dx+ 2ε

∫ T

0

∫

Ω

|∇ρ̃ε|2 dx dt+

∫ T

0

∫

Γ

ρ̃2
ε(v · ν)+ dt dσ

+

∫ T

0

∫

Γ

(ρ̃ε − ρi)2(v · ν)− dt dσ ≤
∫

Ω

ρ2
0 dx+

∫ T

0

∫

Γ

(ρi)2(v · ν)− dσ dt+ 2

∫ T

0

∫

Γ

ρ̃εf dt dx.

(4.6)
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Hence, there exists a solution ρ̃ε ∈ L∞(]0, T [, L2(Ω)) ∩ L2(]0, T [, H1(Ω)) ∩ C0([0, T ], L2(Ω)), and we deduce
the bounds (4.3)-(4.4) and the uniqueness of the solution.
We can now prove a maximum principle for ρ̃ε. More precisely we have :

Lemma 4.2
Let us define

ρmax = max

(
esssup

Ω
ρ0, esssup

]0,T [×Γ,dµ−v

ρi

)
,

and

ρmin = min

(
essinf

Ω
ρ0, essinf

]0,T [×Γ,dµ−v
ρi

)
.

We have

ρmin −
∫ t

0

‖f(s)‖L∞ ds ≤ ρ̃ε(t, x) ≤ ρmax +

∫ t

0

‖f(s)‖L∞ ds, for almost every (t, x) ∈]0, T [×Ω,

and

ρmin −
∫ t

0

‖f(s)‖L∞ ds ≤ ρ̃ε(t, σ) ≤ ρmax +

∫ t

0

‖f(s)‖L∞ ds, for dµ+
v -almost every (t, σ) ∈]0, T [×Γ.

Proof :
Let us denote by F the non-decreasing and bounded function defined by

F (t) =

∫ t

0

‖f(s)‖L∞ ds.

The equation being linear, it is enough to prove that if ρmin = 0, then we have

ρ̃ε(t, x) ≥ −F (t), for almost every (t, x) ∈]0, T [×Ω, (4.7)

ρ̃ε(t, σ) ≥ −F (t), for dµ+
v -almost every (t, σ) ∈]0, T [×Γ. (4.8)

Let β be the real function defined by β(s) = s2 for s ≤ 0 and β(s) = 0 for s ≥ 0. If we multiply the equation
(4.2) by the function ϕ(t, x) = β ′ (ρ̃ε(t, x) + F (t)), we get after integrations by parts

∂t

∫

Ω

β (ρ̃ε + F (t)) dx−
∫

Ω

‖f(t)‖L∞β′ (ρ̃ε + F (t)) dx

+

∫

Γ

β(ρ̃ε + F (t))(v · ν) dσ + ε

∫

Ω

β′′(ρ̃ε + F (t))|∇ρ̃ε|2 dx+

∫

Γ

(ρ̃ε − ρi)(v · ν)−β′(ρ̃ε + F (t)) dσ

=

∫

Ω

f(t)β′(ρ̃ε + F (t)) dx.

Notice that we have f(t, x) + ‖f(t)‖L∞ ≥ 0 for almost every (t, x) ∈]0, T [×Ω, and that β ′ ≤ 0 and β′′ ≥ 0. It
follows

∂t

∫

Ω

β (ρ̃ε + F (t)) dx+

∫

Γ

β(ρ̃ε + F (t))(v · ν)+ dσ

≤
∫

Γ

(
β(ρ̃ε + F (t)) + (ρi − ρ̃ε)β′(ρ̃ε + F (t))

)
(v · ν)− dσ,
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and since β is a convex function we get:

∂t

∫

Ω

β (ρ̃ε + F (t)) dx+

∫

Γ

β(ρ̃ε + F (t))(v · ν)+ dσ ≤
∫

Γ

β(ρi + F (t))(v · ν)− dσ.

Integrating in time we get for any s ∈ [0, T ]
∫

Ω

β (ρ̃ε(s) + F (s)) dx+

∫ s

0

∫

Γ

β(ρ̃ε+F (t))(v ·ν)+ dσ dt ≤
∫

Ω

β(ρ0) dx+

∫ s

0

∫

Γ

β(ρi+F (t))(v ·ν)− dσ dt,

but since we have assumed that ρmin = 0, and thanks to the choice of β the right-hand side member of this
inequality is zero. It follows that

∫

Ω

β (ρ̃ε(s) + F (s)) dx = 0, ∀s ∈ [0, T ],

∫ T

0

∫

Γ

β (ρ̃ε(t) + F (t)) (v · ν)+ dσ dt = 0.

Since β(y) = 0 if and only if y ≥ 0, inequalities (4.7) and (4.8) follow.
The two previous lemmas show that (ρ̃ε)ε is bounded in L∞(]0, T [×Ω) and that the trace of ρ̃ε is bounded in
L∞(]0, T [×Γ, dµ+

v ), hence we can find a subsequence (ρ̃εk)k, a function ρ ∈ L∞(]0, T [×Ω) and a function
ρo ∈ L∞(]0, T [×Γ, dµ+

v ) such that

ρ̃εk ⇀
ε→0

ρ, in L∞(]0, T [×Ω) weak-?,

ρ̃εk ⇀
ε→0

ρo, in L∞(]0, T [×Γ, dµ+
v ) weak-?.

(4.9)

Thanks to these convergences and to the estimate (4.3), it is now straightforward to perform the limit in the linear
equation (4.5) which proves that (ρ, ρo) is a solution to the problem.
The continuity in time of this solution is given by Theorem 3.1.

• Uniqueness :
Let (ρ1, ρ

o
1) and (ρ2, ρ

o
2) be two solutions of (4.1). Let us introduce ρ = ρ1 − ρ2 and ρo = ρo1 − ρo2. It is clear that

(ρ, ρo) is solution of (4.1) with ρ0 = 0, f = 0 and ρi = 0. Hence, we have for any test function ϕ ∈ C1([0, T ]×Ω)

∫ T

0

∫

Ω

ρ(∂tϕ+ v · ∇ϕ) dt dx−
∫

Ω

ρ(T )ϕ(T ) dx−
∫ T

0

∫

Γ

ρoϕ(v · ν)+ dσ dt = 0. (4.10)

We have seen in Theorem 3.1 (and Remark 3.1) that there exists a unique function γρ ∈ L∞(]0, T [×Γ, |dµv|)
such that for any β ∈ C1(R) and any ϕ ∈ C1([0, T ]× Ω)

∫ T

0

∫

Ω

β(ρ)(∂tϕ+ v · ∇ϕ) dx dt−
∫

Ω

β(ρ(T ))ϕ(T ) dx−
∫ T

0

∫

Γ

β(γρ)ϕ(v · ν) dσ dt = 0, (4.11)

in particular, for β(s) = s, we deduce by comparing (4.10) and (4.11) that

γρ (v · ν) = ρo(v · ν)+.

Taking now β(s) = s2 and ϕ(t, x) = 1, we get for any t1 ∈ [0, T ],

−
∫

Ω

|ρ(t1)|2 dx−
∫ t1

0

∫

Γ

|ρo|2(v · ν)+ dσ dt = 0.

If follows that ρo(t, σ) = 0, for dµ+
v -almost every (t, σ) ∈]0, T [×Γ and that ρ(t, x) = 0 for almost every (t, x) in

]0, T [×Ω and the claim is proved.
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• Renormalization :
It is now clear from (4.1) that the trace γρ introduced in Theorem 3.1 is nothing but the function defined by

γρ (v · ν) = ρo(v · ν)+ − ρi(v · ν)−,

that is to say the function equal to ρo where (v · ν) > 0 and equal to ρi where (v · ν) < 0. Hence, (3.1) proves
exactly that (β(ρ), β(ρo)) is the unique solution of the transport equation with data (β(ρ0), β(ρi)) and source term
β′(ρ)f .

In fact, the uniqueness property of the solution to the boundary and initial value problem (4.1) is a particular case of
the following comparison result which can be proved in a similar way.

Proposition 4.1
Let ρ1

0, ρ
2
0 ∈ L∞(Ω), f1, f2 ∈ L1(]0, T [, L∞(Ω)) and ρi1, ρi2 ∈ L∞(]0, T [×Γ, dµ−v ). Let (ρ1, ρ

o
1) and (ρ2, ρ

o
2) be the

solutions to (4.1) respectively with data (ρ1
0, ρ

i
1, f1) and (ρ2

0, ρ
i
2, f2).

If we have ρ1
0 ≤ ρ2

0 and f1 ≤ f2, almost everywhere for the Lebesgue-measure, and ρi1 ≤ ρi2 almost everywhere for
the measure dµ−v , then we have ρ1 ≤ ρ2, and ρo1 ≤ ρo2 almost everywhere with respect to the Lebesgue measure and to
dµ+

v respectively.

We can also prove that the product of two solutions to the transport equation is a solution to the same transport
equation with the corresponding source term and that the trace of the product is the product of the traces.

Proposition 4.2
If ρ1 and ρ2 are two bounded solutions of the transport equation with source terms f1 and f2 in L1(]0, T [×Ω) then the
product ρ1ρ2 is solution to the transport equation with the source term ρ1f2 + ρ2f1. Furthermore we have γ(ρ1ρ2) =
γρ1 . γρ2.

The sketch of the proof consists in taking ϕ(ρ1 ?ν ηε) as a test function in the equation satisfied by ρ2 and to pass to the
limit when ε tends to zero (see [13] for a similar proof).

To conclude this section, we can now describe more precisely the convergence of the parabolic approximations (ρ̃ε)ε
introduced above towards the solution of the initial and boundary value problem for the transport equation. In particular,
we show that the trace of the approximate solution strongly converge towards the trace of the solution to the transport
equation.

Proposition 4.3
If ρ̃ε is the solution to (4.2) and (ρ, ρo) the solution to (4.1), then we have for any 1 ≤ p < +∞

ρ̃ε −→
ε→0

γρ in Lp(]0, T [×Γ, |dµv|),

ρ̃ε −→
ε→0

ρ in C0([0, T ], Lp(Ω)).

Proof :
First of all, since the solution to (4.1) is unique we deduce that the weak convergences (4.9) remain valid for the whole
family (ρ̃ε)ε. Furthermore, it is clear that for any t ∈ [0, T ], (ρ̃ε(t))ε converges weakly towards ρ(t) in L2(Ω).

Using the energy estimate (4.6), we deduce that

lim sup
ε→0

(∫

Ω

|ρ̃ε(T )|2 dx+

∫ T

0

∫

Γ

ρ̃2
ε(v · ν)+ dt dσ

)
≤
∫

Ω

ρ2
0 dx+

∫ T

0

∫

Γ

(ρi)2(v · ν)− dt dσ + 2

∫ T

0

∫

Ω

fρ dt dx,

but thanks to the renormalization property of the solution of (4.1) we have:
∫

Ω

|ρ(T )|2 dx+

∫ T

0

∫

Γ

(ρo)2(v · ν)+ dt dσ =

∫

Ω

ρ2
0 dx+

∫ T

0

∫

Γ

(ρi)2(v · ν)− dt dσ + 2

∫ T

0

∫

Ω

fρ dt dx.
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Hence, we get:

lim sup
ε→0

(∫

Ω

|ρ̃ε(T )|2 dx+

∫ T

0

∫

Γ

ρ̃2
ε(v · ν)+ dt dσ

)
≤
∫

Ω

|ρ(T )|2 dx+

∫ T

0

∫

Γ

(ρo)2(v · ν)+ dt dσ.

Using the weak convergences (4.9), it follows that

ρ̃ε(T ) −→
ε→0

ρ(T ), in L2(Ω),

ρ̃ε −→
ε→0

ρo, in L2(]0, T [×Γ, dµ+
v ).

Furthermore, the energy estimate (4.6) gives:

2ε‖∇ρ̃ε‖2L2(]0,T [×Ω) + ‖ρ̃ε − ρi‖2L2(]0,T [×Γ,dµ−v )
−→
ε→0

0, (4.12)

so that the first claim of the proposition follows.
Let us consider ρε = ρ ?ν ηε the family of regularized functions introduced in section 2.2. We have already shown

in the proof of Theorem 3.1 that (ρε)ε converge towards ρ in C0([0, T ], Lp(Ω)) for any p < +∞. The second claim of
the proposition will immediately follow if we show that

‖ρ̃ε − ρ√ε‖C0([0,T ],L2(Ω)) −→
ε→0

0.

Using (3.3), we see that the equation satisfied by ρ̃ε − ρ√ε is

∂t(ρ̃ε − ρ√ε) + v · ∇(ρ̃ε − ρ√ε)− ε∆ρ̃ε = f − f ?ν η√ε −R√ε.

Multiplying this equation by ρ̃ε − ρ√ε and integrating in space and time, we get for any s ∈ [0, T ]

1

2
‖ρ̃ε(s)− ρ√ε(s)‖2L2 =

1

2
‖ρ0 − ρ0 ?ν η√ε‖2L2(Ω) +

∫ s

0

∫

Ω

(f − f ?ν η√ε −R√ε)(ρ̃ε − ρ√ε) dt dx

− ε
∫ s

0

∫

Ω

∇ρ̃ε · ∇(ρ̃ε − ρ√ε) dt dx−
1

2

∫ s

0

∫

Γ

|ρ̃ε − ρ√ε|2(v · ν) dt dσ

−
∫ s

0

∫

Γ

(ρ̃ε − ρi)(ρ̃ε − ρ√ε)(v · ν)− dt dσ.

It follows that

1

2
‖ρ̃ε − ρ√ε‖2C0([0,T ],L2(Ω)) ≤

1

2
‖ρ0 − ρ0 ?ν η√ε‖2L2(Ω) + C‖f − f ?ν η√ε‖L1(]0,T [×Ω) + C‖R√ε‖L1(]0,T [×Ω)

+ ε‖∇ρ̃ε‖2L2 + (
√
ε‖∇ρ̃ε‖L2(]0,T [×Ω))(

√
ε‖∇ρ√ε‖L2(]0,T [×Ω))

+ C‖ρ̃ε − ρi‖L2(]0,T [×Γ,dµ−v ) + C‖ρ̃ε − ρ√ε‖2L2(]0,T [×Γ,|dµv|).

Using Lemmas 2.1 and 3.1 and the convergence (4.12), we see that the right member of this inequality tends to 0 with ε
so that the claim is proved.

5 Trace operator in the Lp case (p < +∞)
In the case of Lipschitz vector fields v, or in the case of some kinetic equations similar to the transport equation, it

was remarked in [2, 4, 5, 13] that the traces of a solution ρ ∈ L∞(]0, T [, Lp(Ω)) when p < +∞ may not belong to
Lp(]0, T [×Γ, |dµv|) but only in a larger space (see in particular a counter-example in [2]). In order to define this trace
space it is necessary to introduce the life time in Ω associated to the vector field v.
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5.1 Life time in Ω

By Theorem 4.1, there exists an unique solution τ− to the problem




∂tτ− + v · ∇τ− = 1,

τ−(0) = 0,

γτ− = 0, on ]0, T [×Γ where (v · ν) < 0.

(5.1)

Using the comparison principle (see Proposition 4.1) we easily get that

0 ≤ τ−(t, x) ≤ t, for almost every (t, x) ∈]0, T [×Ω,

0 ≤ γτ−(t, σ) ≤ t, for |dµv|-almost every (t, σ) ∈]0, T [×Γ.

If v is regular enough, then τ− can be computed explicitly using the characteristics of the velocity field v. Indeed, in this
case τ−(t, x) is exactly the time that a material point evolving with the flow of v, being at position x at time t has spent
in ]0, T [×Ω since it enters the domain. Hence, τ−(t, x) = t if the material point has not touched the boundary between
times 0 and t.

Similarly we are able to solve the following final value problem (by reverting the time and changing v in −v for
instance) 




∂tτ+ + v · ∇τ+ = −1,

τ+(T ) = 0,

γτ+ = 0, on ]0, T [×Γ where (v · ν) > 0,

and we have
0 ≤ τ+(t, x) ≤ T − t, for almost every (t, x) ∈]0, T [×Ω,

0 ≤ γτ+(t, σ) ≤ T − t, for |dµv|-almost every (t, σ) ∈]0, T [×Γ.

Once again, if v is regular enough, then τ+ is the time that a material point at the position x at time t will spent in Ω
before reaching the boundary of ]0, T [×Ω.

Finally we will denote by τ = τ+ + τ− the total life time in Ω. It satisfies

0 ≤ τ(t, x) ≤ T, for almost every (t, x) ∈]0, T [×Ω,

0 ≤ γτ(t, σ) ≤ T, for |dµv|-almost every (t, σ) ∈]0, T [×Γ.

Hence, τ(t, x) is the total time that the trajectory passing through (t, x) in the phase plane has spent in Ω without
reaching the boundary of ]0, T [×Ω.

In fact, we can show that τ and γτ are positive almost everywhere. More precisely, we have the following result.

Proposition 5.1
We have

τ+(t0, x) > 0, ∀t0 ∈ [0, T [, for almost every x ∈ Ω,

τ−(t0, x) > 0, ∀t0 ∈]0, T ], for almost every x ∈ Ω,

γτ(t, σ) > 0, for |dµv|-almost every (t, σ) ∈]0, T [×Γ.

As a consequence, the non-negative measures |dµv|, dµαv and γτ |dµv| have the same zero measure sets on ]0, T [×Γ.

Proof :
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1. Suppose that there exists t0 < T and a set E ⊂ Ω of positive Lebesgue measure such that τ+(t0, x) = 0 for any
x ∈ E. Let us consider ζ the unique solution on [t0, T ] to the problem





∂tζ + v · ∇ζ = 0,

ζ(t0) = 1E ,

γζ = 0, on ]t0, T [×Γ where (v · ν) < 0,

where 1E stands for the characteristic function of the set E.
Using Proposition 4.2 and since τ+(t0) vanishes on the set E, we know that the function τ+ζ is solution of the
problem 




∂t(τ+ζ) + v · ∇(τ+ζ) = −ζ,
τ+ζ(t0) = 0,

τ+ζ(T ) = 0,

γ(τ+ζ) = 0, on ]t0, T [×Γ where (v · ν) > 0,

γ(τ+ζ) = 0, on ]t0, T [×Γ where (v · ν) < 0.

We deduce that we have
0 = −

∫ T

t0

∫

Ω

ζ dx dt,

and so ζ, which is non-negative, must be identically zero. This is impossible since ζ(t0) = 1E and E has a non
zero Lebesgue measure. The second point is proved in the same way.

2. Let us prove that γτ+(t, σ) > 0 for dµ−v -almost every (t, σ) ∈]0, T [×Γ. If we suppose that it is not true, then
there exists E ⊂]0, T [×Γ such that dµ−v (E) > 0 and γτ+(t, σ) = 0 for all (t, σ) ∈ E.
Let ζ be the unique solution of the following problem





∂tζ + v · ∇ζ = 0,

ζ(0) = 0,

γζ = 1E , on ]0, T [×Γ where (v · ν) < 0.

Since, γτ+ = 0 on the set E, we can see that the function τ+ζ is solution to the problem




∂t(τ+ζ) + v · ∇(τ+ζ) = −ζ,
τ+ζ(0) = 0,

τ+ζ(T ) = 0,

γ(τ+ζ) = 0, on ]0, T [×Γ where (v · ν) > 0,

γ(τ+ζ) = 0, on ]0, T [×Γ where (v · ν) < 0.

If we integrate the previous equation on ]0, T [×Ω, we find that

0 =

∫ T

0

∫

Ω

ζ dx dt,

which implies that ζ = 0. Theorem 3.1 implies that the trace of ζ on ]0, T [×Γ is zero |dµv|-almost everywhere.
This is impossible since by construction this trace is equal to 1 on E which has a positive dµ−v -measure.
Using the same method one can show that γτ−(t, σ) > 0 for dµ+

v -almost every (t, x) ∈]0, T [×Γ.
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5.2 Trace space for finite values of p
In the case p = +∞, we have shown that the trace γρ lies in the space L∞(]0, T [×Γ, |dµv|). In the case p < +∞, we
only know at that time that γρ is measurable. We can now define the space in which the traces γρ are lying as follows.

Theorem 5.1
Suppose that p < +∞ and that v satisfies the assumptions (2.5). For any f ∈ L1(]0, T [, Lp(Ω)) and any ρ ∈
L∞(]0, T [, Lp(Ω)) solution to

∂tρ+ v · ∇ρ = f,

the trace γρ lies in the space Lp(]0, T [×Γ, γτ |dµv|) and we have

‖γρ‖Lp(]0,T [×Γ,γτ |dµv|) ≤ C(‖ρ‖L∞(]0,T [,Lp(Ω)) + ‖f‖L1(]0,T [,Lp(Ω))),

where C depends only on T and p.

Notice that, thanks to Proposition 5.1, this theorem implies in particular that γρ is finite |dµv|-almost everywhere as
claimed during the proof of Theorem 3.1.
Proof :
We choose ϕ = τ− − τ+ as a test function in (3.1). Notice that this function satisfies

∂tϕ+ v · ∇ϕ = 2.

Furthermore one can easily check that we have γϕ (v · ν) = γτ |v · ν|. Hence, we get
∫ T

0

∫

Γ

β(γρ)γτ |v · ν| dσ dt = 2

∫ T

0

∫

Ω

β(ρ) dx dt−
∫

Ω

β(ρ0)τ+(0) dx−
∫

Ω

β(ρ(T ))τ−(T ) dx

+

∫ T

0

∫

Ω

β′(ρ)fϕ dx dt.

For any n ≥ 0 we choose βn(s) = |s|p
1+ 1

n |s|p
which satisfies

|βn(s)| ≤ C|s|p, |β′n(s)| ≤ C|x|p−1.

The previous estimate gives, since |ϕ| ≤ T ,
∫ T

0

∫

Γ

βn(γρ)γτ |v · ν| dσ dt ≤ C
∫ T

0

∫

Ω

|ρ|p dx dt+ C

∫ T

0

∫

Ω

|ρ|p−1f dx dt

≤ C‖ρ‖pL∞(]0,T [,Lp(Ω)) + C‖f‖pL1(]0,T [,Lp(Ω)).

When n goes to infinity, βn(s) is non-decreasing and converges toward |s|p. The claim follows using the monotone
convergence theorem.

6 Initial and boundary value problem in Lp

We are now able to solve the initial and boundary value problem in the case p < +∞. Notice that even though in
general it is not true that γρ ∈ Lp(]0, T [×Γ, |dµv|) (see the beginning of section 5), we show in the following result
that if the inflow data ρi lies in Lp(]0, T [×Γ, dµ−v ) then the whole trace γρ lies in Lp(]0, T [×Γ, |dµv|). This fact was
already pointed out in similar situations in [4, 5, 13].
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Theorem 6.1
Let p ∈]1,+∞[, v a vector field satisfying (2.5) and f ∈ L1(]0, T [, Lp(Ω)). For any initial data ρ0 ∈ Lp(Ω) and any
boundary data ρi ∈ Lp(]0, T [×Γ, dµ−v ) there exists a unique couple (ρ, ρo) ∈ L∞(]0, T [, Lp(Ω))×Lp(]0, T [×Γ, dµ+

v )
such that for any ϕ ∈ C1

c ([0, T [×Ω) we have

∫ T

0

∫

Ω

ρ(∂tϕ+ v · ∇ϕ) dt dx+

∫

Ω

ρ0ϕ(0) dx

−
∫ T

0

∫

Γ

ρoϕ(v · ν)+ dt dσ +

∫ T

0

∫

Γ

ρiϕ(v · ν)− dt dσ +

∫ T

0

∫

Ω

fϕ dt dx = 0. (6.1)

Moreover, ρ is continuous in time with values in Lp(Ω) and the solution is a renormalized solution: for any regular
function β such that |β(s)| ≤ C(1+ |s|p̄) and |β′(s)| ≤ C(1+ |s|p−1), with p̄ = min(p, p

p+d ), the couple (β(ρ), β(ρo))

is a solution to (6.1) with data (β(ρ0), β(ρi)) and source term β′(ρ)f .

Notice that, without any additional regularity assumption on the vector field v, we do not know in general whether
the solution of (6.1) with data (β(ρ0), β(ρi)) and source term β′(ρ)f is unique.
Proof :

• Existence :
For any n ≥ 1, we consider the truncature function Tn(s) = min(max(s,−n), n). Thanks to Theorem 4.1, there
exists a unique solution (ρn, ρ

o
n) ∈ L∞(]0, T [, L∞(Ω))×L∞(]0, T [×Γ, dµ+

v ) to (4.1) with data (Tn(ρ0), Tn(ρi))
and source term Tn(f).
Since this solution is a renormalized solution, we have the following estimate, for any s ∈ [0, T ]

∫

Ω

|ρn(s)|p dx+

∫ s

0

∫

Γ

|ρon|p(v · ν)+ dσ dt =

∫

Ω

|Tn(ρ0)|p dx+

∫ s

0

∫

Γ

|Tn(ρi)|p(v · ν)− dσ dt

+ p

∫ s

0

∫

Ω

|ρn|p−2ρnTn(f) dx dt

≤
∫

Ω

|ρ0|p dx+

∫ s

0

∫

Γ

|ρi|p(v · ν)− dσ dt

+ p

∫ s

0

‖ρn(t)‖p−1
Lp(Ω)‖f(t)‖Lp(Ω) dt.

Using the Gronwall lemma, this estimate shows that (ρn)n is bounded in L∞(]0, T [, Lp(Ω)) and that ρon is
bounded in Lp(]0, T [×Γ, dµ+

v ). Hence, we can find subsequences (ρnk , ρ
o
nk

)k which ∗-weakly converge towards
a couple (ρ, ρo) in the spaces L∞(]0, T [, Lp(Ω))× Lp(]0, T [×Γ, dµ+

v ).
Since Tn(ρ0), Tn(ρi) and Tn(f) respectively converge towards ρ0, ρ

i and f in the corresponding spaces, it is
easily seen that we can perform the limit in the weak formulation satisfied by the solution ρn. Therefore, the
couple (ρ, ρo) is a solution to the problem.

• Identification of the trace :
Using Theorems 3.1 and 5.1, we know that there exists a unique trace γρ ∈ Lp(]0, T [×Γ, γτ |dµv|) such that we
have (3.1) for any test function ϕ and any function β in C1

c (R).
We want to find the relationship between (ρi, ρo) satisfying (6.1) on the one hand and γρ in the other hand. This
is not so obvious since we cannot choose β(s) = s in (3.1) contrarily to the case p = +∞ (see Remark 3.1).
Let β be a smooth positive function such that β(s) = 1

|s| for all |s| ≥ 1, and let us define β2(s) = sβ(s). It is
easily seen that β, β′, β2 and β′2 are bounded on R.
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Let ψ ∈ C1([0, T [×Ω). We can take ϕ = β(ρε)ψ as a test function in (6.1), where ρε = ρ?νηε is the regularization
of ρ. Using the convergence properties of the sequence (ρε)ε and of its traces established in the proof of Theorem
3.1, as well as Lemma 3.1, we can perform the limit when ε→ 0. We get:

∫ T

0

∫

Ω

ρβ(ρ)(∂tψ + v · ∇ψ) dt dx+

∫

Ω

ρ0β(ρ0)ψ(0) dx−
∫ T

0

∫

Γ

ρoβ(γρ)ψ(v · ν)+ dt dσ

+

∫ T

0

∫

Γ

ρiβ(γρ)ψ(v · ν)− dt dσ +

∫ T

0

∫

Ω

f(β(ρ) + ρβ′(ρ))ψ dt dx = 0.

(6.2)

Now let us take ψ as a test function in (3.1) used with the function β2 instead of β. It follows:
∫ T

0

∫

Ω

ρβ(ρ)(∂tψ + v · ∇ψ) dt dx+

∫

Ω

ρ0β(ρ0)ψ(0) dx−
∫ T

0

∫

Γ

γρ β(γρ)ψ(v · ν) dt dσ

+

∫ T

0

∫

Ω

f(β(ρ) + ρβ′(ρ))ψ dt dx = 0.

(6.3)

By comparison between (6.2) and (6.3), we obtain for any ψ
∫ T

0

∫

Γ

ρoβ(γρ)ψ(v · ν)+ dt dσ −
∫ T

0

∫

Γ

ρiβ(γρ)ψ(v · ν)− dt dσ =

∫ T

0

∫

Γ

γρ β(γρ)ψ(v · ν) dt dσ.

This implies:
γρ β(γρ) (v · ν) = ρoβ(γρ)ψ(v · ν)+ − ρiβ(γρ)(v · ν)−,

but as β does not vanish, we deduce that

γρ (v · ν) = ρo(v · ν)+ − ρi(v · ν)−. (6.4)

This proves that the trace γρ in the sense of Theorem 3.1 is given by γρ = ρo where (v · ν) > 0 and γρ = ρi

where (v · ν) < 0.

• Renormalization :
Using (6.4), the formulation (3.1) gives, for any ϕ ∈ C1([0, T [×Ω),

∫ T

0

∫

Ω

β(ρ)(∂tϕ+ v · ∇ϕ) dt dx+

∫

Ω

β(ρ0)ϕ(0) dx

−
∫ T

0

∫

Γ

β(ρo)ϕ(v · ν)+ dt dσ +

∫ T

0

∫

Γ

β(ρi)ϕ(v · ν)− dt dσ +

∫ T

0

∫

Ω

β′(ρ)fϕ dt dx = 0,

(6.5)

for any β ∈ C1
b (R). In fact, since ρ ∈ L∞(]0, T [, Lp(Ω)), ρi ∈ Lp(]0, T [×Γ, dµ−v ), ρo ∈ Lp(]0, T [×Γ, dµ+

v ), and
v ∈ L1(]0, T [, (W 1,p′(Ω))d) it is easily seen that we can extend the formulation above using a truncature argument
to functions β ∈ C1(R) such that |β(s)| ≤ C(1 + |s|p̄) and |β′(s)| ≤ C(1 + |s|p−1), with p̄ = min(p, p+dd ). This
value of p̄ ensures that the term β(ρ)v · ∇ϕ which appears in the weak formulation of the equation is integrable
on ]0, T [×Ω for any smooth test function ϕ.

• Uniqueness :
Since the equation is linear, it is enough to prove that, if ρ0 = 0, f = 0 and ρi = 0 then ρ = 0 and ρo = 0. This
claim is an straightforward consequence of (6.5) with β(s) = s2

1+s2 .

• Time continuity :
We already know that ρ lies in C0([0, T ], Lq(Ω)) for any q < p and that ρ is continuous in time with values in
Lp(Ω) for the weak topology (since ρ ∈ L∞(]0, T [, Lp(Ω))).
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Let t0, t1 ∈ [0, T ], with t0 < t1. Let ϕε(t, x) be defined by ϕε(t, x) = 0 for t ≤ t0 and t ≥ t1, ϕε(t, x) = 1 for
t0 + ε ≤ t ≤ t1 − ε and which is linear on [t0, t0 + ε] and on [t1 − ε, t1].
Let β ∈ C1(R). If we take ϕε(t, x) as a test function in (6.5), we can perform the limit when ε goes to zero, since
β(ρ) is continuous in time with values in any Lq(Ω), q < +∞ and we get

∫

Ω

β(ρ(t0)) dx−
∫

Ω

β(ρ(t1)) dx−
∫ t1

t0

∫

Γ

β(ρo)(v · ν)+ dt dσ

+

∫ t1

t0

∫

Γ

β(ρi)(v · ν)− dt dσ +

∫ t1

t0

∫

Ω

β′(ρ)f dt dx = 0,

Since ρ(t0), ρ(t1) ∈ Lp(Ω), we can easily extend this formula to the function β(s) = |s|p.
Finally, since ρi ∈ Lp(]0, T [×Γ, dµ−v ), ρo ∈ Lp(]0, T [×Γ, dµ+

v ), and ρ ∈ L∞(]0, T [, Lp(Ω)), we deduce that

lim
t1→t0

‖ρ(t1)‖Lp = ‖ρ(t0)‖Lp .

Hence, the continuity of ρ with values in Lp(Ω) for the strong topology follows.

7 Space continuity of solutions to the transport equation
We pointed out in section 1.2 of the introduction an example of the kind of spatial regularity property we can expect

for the solutions to the transport equation. Let us now consider the following more general situation for which a simple
proof is available.

Let v = (v1, v2) ∈ C∞(R × R2)2 be a bounded smooth vector field with div(v) = 0, and f ∈ C∞(R × R2) be a
smooth bounded source term. Let ρ be a bounded solution to the transport equation

∂tρ+ v1∂x1
ρ+ v2∂x2

ρ = f, (7.1)

for any t ∈ R and x ∈ R2 with an initial data ρ(0) = ρ0 ∈ L∞(R2). Suppose that we have v1(t, x) ≥ δ > 0 for any
(t, x), then (7.1) reads

∂t

(
ρv1

v1

)
+ ∂x1

(ρv1) + ∂x2

(
v2

v1
ρv1

)
= f.

Hence, this equation can be seen as a transport equation for the new unknown R = ρv1, in which x1 is the “time”
variable and (t, x2) are the “space” variables. More precisely, we have

∂x1
R+ w0∂tR+ w2∂x2

R+ cR = f, (7.2)

where
w0 =

1

v1
, w2 =

v2

v1
, c = ∂tw0 + ∂x2

w2.

The vector field (w0, w2) and the scalar function c are smooth and bounded. Hence the results of Di Perna and Lions [10]
apply for this equation, at least locally, and we deduce that R = ρv1 is continuous with respect to the “time” variable
(that is to say x1) with values in any Lqloc(R2) in the variables (t, x2), for any q < +∞. Since v1 is smooth and does not
vanish, we deduce that ρ itself is continuous with respect to x1 with values in some local Lebesgue space in the (t, x2)
variables.

If we want to make this proof rigorous for less regular vector fields v, we know that the study of (7.2) requires at least
that (w0, w2) is integrable with respect to the “time” variable x1 with values in a Sobolev space W 1,1 in the “space”
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variables (t, x2). In particular, we see that it is needed to suppose some integrability condition on ∂tv. Unfortunately,
we have seen that in the applications ∂tv may not be integrable and we wish to avoid such an assumption.

The aim of the present section is to prove such continuity in space results for the weak solutions of the transport
equation without any time regularity assumption on v. The proof we propose is very different from the one above in the
case of smooth vector fields. It fundamentally relies on the properties of the traces that we established in the previous
sections of this paper.

We consider here a vector field v satisfying (2.5) as well as the additional assumption

(v · ν) ∈ C0
ξ ([0, ξΩ[, Lα(]0, T [×Γ)), (7.3)

for a given α > 1. As it was remarked in section 2.1, this last assumption is satisfied in particular by any v lying in
Lα(]0, T [, (W

1
α+ε,α(Ω))d). In the applications to the study of incompressible viscous fluids for instance, the velocity

field is known to lie in the energy space L2(]0, T [, (H1(Ω))d) and then satisfies this additional assumption (see [3]).

7.1 Space continuity of bounded solutions
Notice that for any ξ small enough, Ωξ (defined in section 2.1) is a regular domain whose boundary is Γξ. Thanks to
(7.3), the velocity field v satisfies the assumptions (2.5) in each domain Ωξ. Hence, one can apply all the results of the
previous sections for each domain Ωξ, and in particular we know that any function ρξ solution to the transport equation
in Ωξ has a trace denoted by γξρξ on ]0, T [×Γξ defined almost everywhere for the measure |v(t, ξ, σ) · ν(σ)| dt dσ.

The purpose of the first result below is to show that if we are given a family of solutions to the transport equation in
each domain Ωξ and if this family of solutions depends continuously on ξ then, the family of the traces on Γξ of these
solutions also enjoy a continuity property with respect to ξ. The precise statement is the following.

Theorem 7.1
Let f ∈ L1(]0, T [, L∞(Ω)) and v satisfying (2.5) and (7.3). For any ξ ∈ [0, ξΩ[, let ρξ be a bounded solution to the
transport equation (1.1) in the domain Ωξ. We extend ρξ by zero in Oξ = Ω\Ωξ.

Suppose that the family (ρξ)ξ is bounded in L∞(]0, T [×Ω) and continuous with respect to ξ with values in the space
C0([0, T ], Lq(Ω)) for any q < +∞. Then, the family of functions γξρξ(v(., ξ, .) ·ν) is continuous with respect to ξ with
values in Lα(]0, T [×Γ).

Thanks to this theorem, we are able to prove that any bounded solution of the transport equation in Ω enjoys a
continuity property with respect to the normal coordinate near the boundary Γ.

Theorem 7.2
Let f ∈ L1(]0, T [, L∞(Ω)) and v satisfying (2.5) and (7.3). Let ρ be any solution in L∞(]0, T [×Ω) to the transport
equation (1.1) in Ω.

The map
(t, ξ, σ) ∈]0, T [×[0, ξΩ[×Γ 7→ ρ(t, ξ, σ)(v(t, ξ, σ) · ν(σ)),

is continuous with respect to ξ ∈ [0, ξΩ[ with values in Lα(]0, T [×Γ).

Actually, the previous theorem let us deduce in a straightforward way a more general continuity in space result for
any solution of the transport equation which is the main result of this section. Roughly speaking, the following result
shows that the solution is continuous across any smooth hypersurface in Ω which is not characteristic for the vector field
v.

Theorem 7.3
Let f ∈ L1(]0, T [, L∞(Ω)) and v satisfying (2.5) and such that v ∈ Lα(]0, T [, (W

1
α+ε,α(Ω))d) with ε > 0. Let ρ be

any solution in L∞(]0, T [×Ω) of the transport equation in Ω.
Consider any regular domain ω b Ω with boundary S = ∂ω and normal vector field N defined in a neighborhood

of S. The function ρ(v · N) is continuous with respect to the normal coordinate relative to S and with values in
L2(]0, T [×S) in a neighborhood of S.
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In particular, if there exist δ1, δ2 > 0 and ]t0, t1[⊂]0, T [, such that

|v(t, x) ·N(x)| ≥ δ1, for almost every (t, x) in Ut0,t1,S,δ2 ≡]t0, t1[×{x ∈ Ω, d(x, S) ≤ δ2},
then ρ is continuous in Ut0,t1,S,δ2 with respect to the normal coordinate relative to S and with values in L2(]t0, t1[×S).

Notice that this result also applies for bounded solutions of the transport equation in unbounded domain (with ap-
propriate assumptions on the behavior of v and f at infinity, see [7, 10]) if we restrict ourselves to bounded subdomains
in Ω.

Let us now prove Theorems 7.1 and 7.2.
Proof (of Theorem 7.1):
Since (v · ν) lies in C0

ξ ([0, ξΩ[, Lα(]0, T [×Γ)), we can add any constant to each ρξ so that we can suppose that ρξ ≥ 0

and γξρξ ≥ 0. Let ϕ ∈ C∞([0, T ]× Ω) be a smooth function and 0 ≤ ξ0 < ξ1 < ξΩ (the case ξ1 < ξ0 can be treated in
the same way). For any q ∈ [1,+∞[, let us take ϕ as a test function both for the equation satisfied by ρqξ0 in Ωξ0

and for
the equation satisfied by ρqξ1 in Ωξ1

. We get for i ∈ {0, 1},
∫ T

0

∫

Γξi

(γξiρξi)
q(v · ν)ϕdt dσ =

∫ T

0

∫

Ωξi

(
ρqξi(∂tϕ+ v · ∇ϕ) + qρq−1

ξi
fϕ
)
dt dx

+

∫

Ωξi

ρξi(0)qϕ(0) dx−
∫

Ωξi

ρξi(T )qϕ(T ) dx.

Using the fact that ρξi = 0 outside Ωξi
, it follows that

∫ T

0

∫

Γξ0

(γξ0ρξ0)q(v · ν)ϕdt dσ −
∫ T

0

∫

Γξ1

(γξ1ρξ1)q(v · ν)ϕdt dσ

=

∫ T

0

∫

Ω

(
(ρqξ0 − ρ

q
ξ1

)(∂tϕ+ v · ∇ϕ) + q(ρq−1
ξ0
− ρq−1

ξ1
)fϕ

)
dt dx

+

∫

Ω

(ρξ0(0)q − ρξ1(0)q)ϕ(0) dx−
∫

Ω

(ρξ0(T )q − ρξ1(T )q)ϕ(T ) dx.

Thanks to the continuity assumption of the family (ρξ)ξ with respect to ξ, we deduce that the right member of this
identity tends to zero when ξ1 converges towards ξ0. Using the change of variables (2.3), we deduce:

∫ T

0

∫

Γ

(γξ0ρξ0)q(t, σ)(v(t, ξ0, σ) · ν(σ))ϕ(t, ξ0, σ)Jξ0(σ) dt dσ

−
∫ T

0

∫

Γ

(γξ1ρξ1)q(t, σ)(v(t, ξ1, σ) · ν(σ))ϕ(t, ξ1, σ)Jξ1(σ) dt dσ −→
ξ1→ξ0

0.

(7.4)

Since (ξ, σ) 7→ Jξ(σ) is smooth and bounded from below by 1
2 for ξ ≤ ξΩ (see section 2.1), we can take

ϕ(t, ξ, σ) =
ψ(t, ξ, σ)

Jξ(σ)
,

extended smoothly to the whole domain Ω, where ψ is any function in C∞([0, T ]× Ω). We get
∫ T

0

∫

Γ

(γξ0ρξ0)q(t, σ)(v(t, ξ0, σ) · ν(σ))ψ(t, ξ0, σ) dt dσ

−
∫ T

0

∫

Γ

(γξ1ρξ1)q(t, σ)(v(t, ξ1, σ) · ν(σ))ψ(t, ξ1, σ) dt dσ −→
ξ1→ξ0

0.

(7.5)

Since the family (ρξ)ξ is uniformly bounded in L∞(]0, T [×Γ) and (v · ν) ∈ C0
ξ (Lαt,σ), the expression in the left-hand

side of (7.5) is uniformly bounded by the norm of ψ in C0
ξ (]0, ξΩ[, Lα

′
t,σ(]0, T [×Γ)). Therefore, it is easily seen that the

convergence (7.5) still holds for any ψ ∈ C0
ξ (]0, ξΩ[, Lα

′
t,σ(]0, T [×Γ)). Let us now consider two different choices for ψ.
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1. We take ψ(t, ξ, σ) = ψ(t, σ) ∈ Lα′(]0, T [×Γ) independent of ξ. The convergence (7.5) for q = 1, proves that

γξ1ρξ1 (v(., ξ1, .) · ν(.)) ⇀
ξ1→ξ0

γξ0ρξ0 (v(., ξ0, .) · ν(.)), in Lα(]0, T [×Γ).

2. Since (v · ν) ∈ C0
ξ (Lαt,σ) with α > 1, we can choose ψ = |v · ν|α−2(v · ν) ∈ C0

ξ (Lα
′
t,σ) as a test function in (7.5)

with q = α. It follows
∫ T

0

∫

Γ

(γξ1ρξ1)α(t, σ)|v(t, ξ1, σ) · ν(σ)|α dt dσ −→
ξ1→ξ0

∫ T

0

∫

Γ

(γξ0ρξ0)α(t, σ)|v(t, ξ0, σ) · ν(σ)|α dt dσ.

The weak convergence of the first point together with the convergence of the Lα norms obtained in the second point
imply that the convergence is strong in Lα(]0, T [×Γ) and the claim is proved.

Proof (of Theorem 7.2):

Thanks to assumption (7.3), the claim is clearly unchanged if we add a constant to ρ so that we can assume that
ρ ≥ 0, which implies that γρ ≥ 0. For any h > 0 small enough, let ψh be defined by ψh(x) = 1 − d(x,Γ)

h in Oh and
which is zero in Ωh. Let ϕ ∈ C∞([0, T ] × Ω), and let us take ϕ(t, x)ψh(x) as a test function in the transport equation
satisfied by ρq, for any q ≥ 1

∫ T

0

∫

Γ

(γρ)q(v · ν)ϕdt dσ =
1

h

∫ T

0

∫

Oh
ρq(v · ν)ϕdtdx+

∫ T

0

∫

Oh
ρqψh(∂tϕ+ v · ∇ϕ) dt dx

+ q

∫ T

0

∫

Oh
ρq−1fϕψh dt dx+

∫

Oh
ρ(0)qϕ(0)ψh dx−

∫

Oh
ρ(T )qϕ(T )ψh dx.

Since |ψh| ≤ 1 and |Oh| → 0 when h→ 0, we deduce:
∫ T

0

∫

Γ

(γρ)q(v · ν)ϕdt dσ = lim
h→0

1

h

∫ T

0

∫

Oh
ρq(v · ν)ϕdt dx. (7.6)

Since for any ξ ∈ [0, ξΩ[, Ωξ is a smooth domain and ρ is a solution to the transport equation in Ωξ, we can apply
formula (7.6) with q = 1 and replacing the initial domain Ω by each Ωξ. It follows that

d

dξ

∫ T

0

∫

Oξ
ρ(v · ν)ϕdtdx =

∫ T

0

∫

Γξ

γξρ (v · ν)ϕdt dσ, ∀ξ ∈ [0, ξΩ[.

Since the map

ξ 7→
∫ T

0

∫

Oξ
ρ(v · ν)ϕdtdx,

is absolutely continuous and vanishes for ξ = 0, we deduce that, for any ϕ, we have
∫ T

0

∫

Oξ
ρ(v · ν)ϕdt dx =

∫ ξ

0

∫ T

0

∫

Γξ

γξρ (v · ν)ϕdt dσ dξ, ∀ξ ∈ [0, ξΩ[. (7.7)

Hence, we get

ρ(t, ξ, σ)(v(t, ξ, σ) · ν(σ)) = γξρ(t, σ)(v(t, ξ, σ) · ν(σ)), for almost every (t, ξ, σ) ∈]0, T [×]0, ξΩ[×Γ. (7.8)

For any ξ > 0 small enough, let ρξ be the restriction of ρ to the domain Ωξ. Obviously, ρξ is solution to the transport
equation in Ωξ and is uniformly bounded in L∞(]0, T [×Ω). It is easily seen that this family (ρξ)ξ is continuous with
respect to ξ in any space C0([0, T ], Lq(Ω)) with q < +∞.

Using Theorem 7.1 with this particular family (ρξ)ξ, we deduce that the right-hand side of (7.8) is continuous with
respect to ξ with values in L2(]0, T [×Γ), which proves the claim.
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7.2 An additional property of the trace of bounded solution
We show here that the trace γρ of any bounded solution ρ to the transport equation can be expressed as the limit of the
mean-values of ρ along the normal direction to Γ.

Proposition 7.1
Let f ∈ L1(]0, T [, L∞(Ω)) and v satisfying (2.5) with p′ = 1 and (7.3). For any bounded solution ρ to the transport
equation and any 1 ≤ q < +∞, we have

(
(t, σ) 7→ 1

h

∫ h

0

ρ(t, ξ, σ) dξ

)
−→
h→0

γρ, in Lq(]0, T [×Γ, dµαv ).

Notice that the convergence obviously still holds in Lq(]0, T [×Γ, |dµv|).
Proof :
Without loss of generality, we assume that ρ ≥ 0. Using the change of variables (2.4) in (7.6), we get:

∫ T

0

∫

Γ

(γρ)q(v · ν)ϕdt dσ = lim
h→0

1

h

∫ T

0

∫ h

0

∫

Γ

ρq(t, ξ, σ)(v(t, ξ, σ) · ν(σ))ϕ(t, ξ, σ)Jξ(σ) dt dξ dσ.

Since the Jacobian Jξ(σ) is smooth and satisfies J0(σ) = 1 for any σ ∈ Γ, we can take ϕ(t, ξ, σ) = ψ(t,ξ,σ)
Jξ(σ) for any

smooth ψ. It follows
∫ T

0

∫

Γ

(γρ)q(v · ν)ψ dt dσ = lim
h→0

1

h

∫ T

0

∫ h

0

∫

Γ

ρq(t, ξ, σ)(v(t, ξ, σ) · ν(σ))ψ(t, ξ, σ) dt dξ dσ. (7.9)

Furthermore we have the following estimate, which is uniform with respect to h > 0,
∣∣∣∣∣
1

h

∫ T

0

∫ h

0

∫

Γ

ρq(t, ξ, σ)(v(t, ξ, σ) · ν(σ))ψ(t, ξ, σ) dt dξ dσ

∣∣∣∣∣

≤
∫ T

0

∫

Γ

sup
ξ

(
ρq(t, ξ, σ)|v(t, ξ, σ) · ν(σ)||ψ(t, ξ, σ)|

)
dt dσ

≤ ‖ρq‖L∞(]0,T [×Ω)‖v · ν‖C0
ξ(Lαt,σ)‖ψ‖C0

ξ(Lα
′
t,σ).

This estimate shows that we can extend by density the formula (7.9) to any function ψ ∈ C0
ξ ([0, ξΩ[, Lα

′
(]0, T [×Γ)).

• We apply (7.9) with q = 1 and ψ(t, ξ, σ) = ψ(t, σ) ∈ Lα′(]0, T [×Γ) which does not depend on ξ. We get

∫ T

0

∫

Γ

γρ(t, σ)(v(t, σ)·ν(σ))ψ(t, σ) dt dσ = lim
h→0

∫ T

0

∫

Γ

ψ(t, σ)

(
1

h

∫ h

0

ρ(t, ξ, σ)(v(t, ξ, σ) · ν(σ)) dξ

)
dt dσ.

Hence, the family

(t, σ) 7→ fh(t, σ) =
1

h

∫ h

0

ρ(t, ξ, σ)(v(t, ξ, σ) · ν(σ)) dξ,

weakly converges towards γρ (v · ν) in Lα(]0, T [×Γ).

• Thanks to the assumption (7.3), we can take ϕ(t, ξ, σ) = |v(t, ξ, σ) ·ν(σ)|α−2(v(t, ξ, σ) ·ν(σ)) as a test function
in (7.9) with q = α. It follows that

∫ T

0

∫

Γ

(γρ)α|v.ν|α dtdσ = lim
h→0

∫ T

0

∫

Γ

(
1

h

∫ h

0

ρ(t, ξ, σ)α|v(t, ξ, σ) · ν(σ)|α dξ
)
dt dσ.
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Therefore we have
lim sup
h→0

∫ T

0

∫

Γ

|fh(t, σ)|α dt dσ ≤
∫ T

0

∫

Γ

(γρ)α|v · ν|α dt dσ.

It follows that the family (fh)h strongly converges when h→ 0 towards γρ (v · ν) in Lα(]0, T [×Γ).

• Finally we have the following estimate

∫ T

0

∫

Γ

∣∣∣∣∣γρ(t, σ)− 1

h

∫ h

0

ρ(t, ξ, σ) dξ

∣∣∣∣∣

α

|v(t, σ) · ν(σ)|α dt dσ

≤ C
∫ T

0

∫

Γ

|γρ(t, σ)(v(t, σ) · ν(σ))− fh(t, σ)|α dt dσ

+
C

h

∫ T

0

∫

Γ

∫ h

0

|ρ(t, ξ, σ)|α|v(t, ξ, σ) · ν(σ)− v(t, 0, σ) · ν(σ)|α dt dξ dσ.

As we have seen just before, the first term converges to zero when h → 0 and the second one is bounded by
C sup0≤ξ≤h ‖v(., ξ, .) · ν − v(., 0, .) · ν‖αLα(]0,T [×Γ) which converges also to zero since we have assumed that
(v · ν) lies in C0

ξ ([0, ξΩ[, Lα(]0, T [×Γ)).

We proved the claim for q = α but since ρ and γρ are bounded functions, the general case follows immediately.

7.3 Continuity of the life time with respect to the domain
Our goal now, is to investigate the spatial continuity properties of any solution ρ of the transport equation lying in
L∞(]0, T [, Lp(Ω)) for finite values of p. As we have seen before in the trace Theorem 5.1, the notion of life time with
respect of the domain Ω is crucial to define the spaces in which the traces of such solutions are lying. Therefore, in order
to use a similar strategy than in section 7.1 for the case of bounded solutions (i.e. by considering ρ as a solution of the
transport equation on a family of domains Ωξ), it is crucial to investigate how the life time τ depends on the domain Ω.
More precisely, in this section we will prove that the life time τ introduced in section 5 (and in fact both τ+ and τ−) is
in some sense continuous with respect to the domain Ω we consider.

The proof of continuity properties of solutions of the transport equation in L∞(]0, T [, Lp(Ω)) is then postponed to
the next section.

Let us introduce some notations: as Ωξ is a regular bounded domain (for ξ ∈ [0, ξΩ[) and the trace of (v · ν) lies in
Lα(]0, T [×Γξ) thanks to (7.3), we can define the life time τξ (as well as τ+,ξ and τ−,ξ) associated to the vector field v
and to the domain Ωξ as we did in section 5 for the initial domain Ω. Furthermore, we extend each τξ, τ+,ξ and τ−,ξ by
the value 0 so that they are defined on the whole initial domain Ω.

Theorem 7.4
1. The families (τξ)ξ, (τ+,ξ)ξ and (τ−,ξ)ξ are continuous with respect to ξ ∈ [0, ξΩ[ with values in C0([0, T ], Lq(Ω))

for any 1 ≤ q < +∞.

2. The families
(
γξτ−,ξ (v(., ξ, .) ·ν)

)
ξ
,
(
γξτ+,ξ (v(., ξ, .) ·ν)

)
ξ

and
(
γξτξ (v(., ξ, .) ·ν)

)
ξ

are continuous with respect
to ξ with values in Lα(]0, T [×Γ).

Proof :
We only give the proof of the claims concerning τ−,ξ since the proofs for τ+,ξ are similar and the results for τξ will follow
from the definition τξ = τ+,ξ + τ−,ξ.

1. Since all the functions (τ−,ξ)ξ are uniformly bounded (by the final time T ), it is enough to show the result for
q = 1. Let 0 ≤ ξ0 < ξ1 < ξΩ. By definition of τ−,ξ0 and τ−,ξ1 , we deduce that τ−,ξ0 − τ−,ξ1 is solution to the
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problem 



∂t(τ−,ξ0 − τ−,ξ1) + v · ∇(τ−,ξ0 − τ−,ξ1) = 0, in Ωξ1
,

τ−,ξ0(0)− τ−,ξ1(0) = 0,

γξ1(τ−,ξ0 − τ−,ξ1) = γξ1τ−,ξ0 , on ]0, T [×Γξ1 where (v · ν) < 0.
Notice that, thanks to Proposition 5.1 and to Remark 3.1, we know that γξ1τ−,ξ0 ≥ 0 almost everywhere on
]0, T [×Γξ1 for the measure |v · ν| dt dσ. Therefore, using the comparison principle (Proposition 4.1), we get that
τ−,ξ0 − τ−,ξ1 ≥ 0 almost everywhere in ]0, T [×Ω, which is of course quite natural.
If we integrate the equation above on ]0, s[×Ωξ1

for any s ∈ [0, T ], we get
∫

Ωξ1

(τ−,ξ0(s)− τ−,ξ1(s)) dx+

∫ s

0

∫

Γξ1

γξ1(τ−,ξ0 − τ−,ξ1)(v · ν)+ dt dσ ≤
∫ s

0

∫

Γξ1

γξ1τ−,ξ0(v · ν)− dt dσ.

The boundary term in the left-hand size of this inequality is non-negative so that we deduce

sup
s∈[0,T ]

∫

Ω

(τ−,ξ0(s)− τ−,ξ1(s)) dx ≤ T |Oξ0,ξ1 |+
∫ T

0

∫

Γξ1

γξ1τ−,ξ0(v · ν)− dt dσ. (7.10)

Applying the continuity Theorem 7.2 to the bounded function τ−,ξ0 on the domain Ωξ0
we easily get

∫ T

0

∫

Γξ1

γξ1τ−,ξ0(v · ν)− dt dσ −→
ξ1→ξ0

∫ T

0

∫

Γξ0

γξ0τ−,ξ0(v · ν)− dt dσ = 0,

thanks to the boundary condition on τ−,ξ0 in (5.1). Since |Oξ0,ξ1 | → 0 when ξ1 → ξ0, the estimate (7.10) gives
the first claim of the theorem.

2. The second claim is a consequence of Theorem 7.1 applied to the family (τ−,ξ)ξ since we just have shown the
continuity of this family of solutions with respect to ξ in every space C0([0, T ], Lq(Ω)), q < +∞.

7.4 Space continuity for finite values of p
First of all, let us notice that if p ∈]1,+∞[ and ρ ∈ L∞(]0, T [, Lp(Ω)) is a solution to the transport equation in Ω,
the renormalization property (3.1) shows that for any β ∈ C1

b (R), β(ρ) is a bounded solution to the transport equation
with source term β′(ρ)f . Hence, we can apply Theorem 7.2 to β(ρ). In particular we deduce that, near Γ, the function
β(ρ)(v · ν) is continuous with respect to ξ with values in L2(]0, T [×Γ).

Since we are restricted to bounded functions β, this first approach does not allow to prove a continuity result for the
solution ρ itself. Of course, this obstruction follows from the fact that the trace space is not the Lp space on ]0, T [×Γ
for the measure |dµv| but only for the measure γτ |dµv|, τ being the life time in Ω as we saw in Theorem 5.1.

Using the results of the previous sections, we can prove a more specific result for such solutions which reads as
follows.

Theorem 7.5
For p ∈]1,+∞[, let us define p̄ = min(p, p+dd ), where d is the space dimension. For any β ∈ C1(R) such that

|β(s)| ≤ C(1 + |s|q1), and |β′(s)| ≤ C(1 + |s|q2−1), ∀s ∈ R, (7.11)

with q1 < p̄, q2 < p, and any ρ ∈ L∞(]0, T [, Lp(Ω)) solution to the transport equation, the map

(t, ξ, σ) ∈]0, T [×[0, ξΩ[×Γ 7→ β(ρ)(t, ξ, σ)γξτξ(t, σ)(v(t, ξ, σ) · ν(σ)),

is continuous with respect to ξ with values in Lr(]0, T [×Γ) for any r < pα
p+(α−1)q1

.
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Notice that pα
p+(α−1)q1

> 1 since we have q1 < p. Obviously, the identity function β(s) = s satisfies the as-
sumptions of the theorem so that we have proved, as a particular case, the continuity with respect to ξ of the function
ρ(., ξ, .)γξτξ(v(., ξ, .) · ν) in suitable spaces.

Furthermore, one can prove a result similar to Theorem 7.3 in the present case. In particular, if it happens that
|(v(., ξ, .) · N)γξτξ| ≥ δ1 > 0 on a neighborhood of ]t0, t1[×S where S is a smooth hypersurface in Ω whose unitary
normal is N , then the solution ρ itself is continuous with respect to the normal variable to S with values in a suitable
local Lebesgue space in the transverse variables.

Let us give a simple example. We consider the domain Ω =]0, 1[×R and v(t, x, y) = (v1(y), v2(t, x)) such that
v ∈ L2(]0, T [, H1

loc(Ω)2) for instance. The fact that Ω is unbounded is not a problem here since we are concerned
with local properties. Suppose that there exists α1, α2 ∈ R such that 0 < α1 ≤ v1(y) ≤ α2, ∀y ∈ R. Then, any
solution ρ ∈ L∞(]0, T [, L2(Ω)) to the transport equation is continuous with respect to the variable x and with values in
L2(]0, T [, L2

loc(R)) in the variables (t, y). Indeed, using the notations of the theorem, we have v · ν = v · ex = v1 ≥
α1 > 0 and we can also prove (using Proposition 4.1 for instance) a bound from below for the life time

γξτξ ≥
C(1− ξ)

α2
> 0,

γξ being the trace operator on the halfplane Γξ = {(x, y) ∈ Ω, x = ξ} and τξ the life time associated to v and to the
domain Ωξ = {(x, y) ∈ Ω, x > ξ}.

Let us now give the proof of the previous theorem.
Proof :

• Step 1 :
Let β0 ∈ C1

b (R) be an injective function. We have seen that β0(ρ) is a bounded solution of a transport equation in Ω
so that we can apply (7.8) to this solution. It follows that

β0(ρ(t, ξ, σ))(v(t, ξ, σ) · ν(σ)) = β0(γξρ(t, σ))(v(t, ξ, σ) · ν(σ)), for a.e. (t, ξ, σ) ∈]0, T [×]0, ξΩ[×Γ.

Since β0 is injective, we deduce that, for any β satisfying (7.11), we have

β(ρ)(t, ξ, σ)γξτξ(t, σ)(v(t, ξ, σ) · ν(σ)) = β(γξρ(t, σ))γξτξ(t, σ)(v(t, ξ, σ) · ν(σ)),

for almost every (t, ξ, σ) ∈]0, T [×]0, ξΩ[×Γ. Hence, it is enough to show that the right-hand side above is continuous
with respect to ξ with values in Lr(]0, T [×Γ).
• Step 2 :
Let F (s) be a smooth non-negative function such that F (s) = 0, for s ≤ 0 and F (s) = s for s ≥ 1. For any

β ∈ C1(R) satisfying (7.11), we can write β as a sum

β = (F ◦ β + 1)− (F ◦ β − β + 2) + 1.

It is easily seen that the functions F ◦ β + 1 and F ◦ β − β + 2 are in C1(R), satisfy (7.11) and are bounded from below
by 1. Furthermore, when β is a constant function, the result is already proved in Theorem 7.4. Hence, the claim of the
theorem being linear with respect to β, it is enough to restrict ourselves to the functions β which satisfy

β(s) ≥ 1, ∀s ∈ R. (7.12)

• Step 3 :
Using Theorem 5.1 in each domain Ωξ for ξ ∈ [0, ξΩ[ and the assumption (7.11), we find that

(t, ξ, σ) 7→ β(γξρ(t, σ))γξτξ(t, σ)(v(t, ξ, σ) · ν(σ)),

lies in L∞ξ (]0, ξΩ[, L1
t,σ(]0, T [×Γ)).
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In particular the function β(γξρ)
1
d (γξτξ)

1
d |v(., ξ, .) · ν| 1d lies in L∞ξ (]0, ξΩ[, Ldt,σ(]0, T [×Γ)). Hence, ξ0 ∈ [0, ξΩ[

being fixed, there exists Lξ0 ∈ Ld(]0, T [×Γ) such that, up to a subsequence, we have

β(γξρ)
1
d (γξτξ)

1
d |v(., ξ, .) · ν| 1d ⇀

ξ→ξ0
Lξ0 in Ld(]0, T [×Γ). (7.13)

Let us introduce β̃ = β
1
d . Using (7.11) and (7.12), we easily see that β̃ lies in C1(R) and satisfies

|β̃(s)| ≤ C(1 + |s| qd ), and |β̃′(s)| ≤ C(1 + |s|p−1), ∀s ∈ R,

so that, thanks to Theorem 6.1, we know that β̃(ρ) is a solution to the transport equation with the corresponding data
and source term. Therefore, for any ξ ∈ [0, ξΩ[, the function β̃(ρ)(τ−,ξ − τ+,ξ) satisfies in Ωξ the equation

∂t
(
β̃(ρ)(τ−,ξ − τ+,ξ)

)
+ v · ∇

(
β̃(ρ)(τ−,ξ − τ+,ξ)

)
= (τ−,ξ − τ+,ξ)β̃

′(ρ)f + 2β̃(ρ), (7.14)

with the corresponding initial data and boundary conditions. Let us choose the restriction to Ωξ of a smooth function
ϕ ∈ C∞([0, T ]× Ω) as a test function in (7.14). We get

∫ T

0

∫

Γξ

β̃(γξρ)γξτξ|v · ν|ϕdt dσ =

∫ T

0

∫

Ωξ

β̃(ρ)(τ−,ξ − τ+,ξ)(∂tϕ+ v · ∇ϕ) dt dx

+

∫ T

0

∫

Ωξ

ϕ
[
(τ−,ξ − τ+,ξ)β̃

′(ρ)f + 2β̃(ρ)
]
dt dx

−
∫

Ωξ

β̃(ρ(0))ϕ(0)τ+,ξ(0) dx−
∫

Ωξ

β̃(ρ(T ))ϕ(T )τ−,ξ(T ) dx,

We deduce that for any 0 < ξ0 ≤ ξ1 < ξΩ we can write
∫ T

0

∫

Γξ0

β̃(γξ0ρ)γξ0τξ0 |v · ν|ϕdt dσ −
∫ T

0

∫

Γξ1

β̃(γξ1ρ)γξ1τξ1 |v · ν|ϕdt dσ

=

∫ T

0

∫

Ω

F1

(
(τ−,ξ0 − τ−,ξ1)− (τ+,ξ0

− τ+,ξ1
)

)
dt dx+

∫ T

0

∫

Oξ0,ξ1
F2 dt dx

−
∫

Ω

(
G1(τ+,ξ0

(0)− τ+,ξ1
(0)) +G2(τ−,ξ0(T )− τ−,ξ1(T ))

)
dx,

(7.15)

where G1, G2 ∈ L1+ε(Ω), F1, F2 ∈ L1(]0, T [, L1+ε(Ω)) for some suitable ε > 0, are functions depending only on
ϕ, f and ρ. The fact that these functions are in a slightly better space than L1 is due to the fact that in (7.11), we have
supposed q1 < p̄ and q2 < p. Thanks to Theorem 7.4, we know that τ−,ξ1 and τ+,ξ1

converge respectively towards τ−,ξ0
and τ−,ξ0 in C0([0, T ], L

1+ε
ε (Ω)) when ξ1 goes to ξ0. Therefore, we can pass to the limit in the right-hand side member

of (7.15) and deduce that, ϕ being fixed, we have
∫ T

0

∫

Γξ0

β̃(γξ0ρ)γξ0τξ0 |v · ν|ϕdt dσ −
∫ T

0

∫

Γξ1

β̃(γξ1ρ)γξ1τξ1 |v · ν|ϕdt dσ −→
ξ1→ξ0

0.

Using (2.3), we write both terms above as integrals over Γ, and choose ϕ(t, ξ, σ) = ψ(t,ξ,σ)
Jξ(σ) for any smooth ψ since the

Jacobian Jξ(σ) is smooth and does not vanish. It follows
∫ T

0

∫

Γ

β̃(γξ1ρ)γξ1τξ1 |v(t, ξ1, σ) · ν(σ)|ψ(t, ξ1, σ) dt dσ −→
ξ1→ξ0

∫ T

0

∫

Γ

β̃(γξ0ρ)γξ0τξ0 |v(t, ξ0, σ) · ν(σ)|ψ(t, ξ0, σ) dt dσ.

(7.16)

30



Let us introduce d′ = d
d−1 . Using Theorem 7.4 and the Lebesgue theorem, we know that (γξ1τξ1)

1
d′ |v(t, ξ1, σ) ·ν(σ)| 1

d′

converges, up to an extraction of a subsequence, towards (γξ0τξ0)
1
d′ |v(t, ξ0, σ) · ν(σ)| 1

d′ almost everywhere but also for
the strong topology of Lαd′(]0, T [×Γ). Using the weak convergence (7.13) we deduce that

β̃(γξ1ρ)γξ1τξ1 |v(t, ξ1, σ) · ν(σ)| ⇀
ξ1→ξ0

Lξ0(γξ0τξ0)
1
d′ |v(t, ξ0, σ) · ν(σ)| 1

d′ ,

weakly in Lα′d′(]0, T [×Γ). If we compare this result to (7.16), we deduce that

Lξ0(γξ0τξ0)
1
d′ |v(t, ξ0, σ) · ν(σ)| 1

d′ = β̃(γξ0ρ)γξ0τξ0 |v(t, ξ0, σ) · ν(σ)|.

Hence, the weak limit Lξ0 introduced in (7.13) has necessarily the following form

Lξ0 = β̃(γξ0ρ)(γξ0τξ0)
1
d |v(t, ξ0, σ) · ν(σ)| 1d + L̃ξ0 , (7.17)

where L̃ξ0 is in Ld(]0, T [×Γ) and has its support in the set {(t, σ) ∈]0, T [×Γ, v(t, ξ0, σ) · ν(σ) = 0}. Notice that we
used here the fact that γξ0τξ0 6= 0 for almost every (t, σ) such that v(t, ξ0, σ) · ν(σ) 6= 0 (see Proposition 5.1)

We now remark that (7.16) also holds if we replace β̃ by β, thanks to the assumptions (7.11). Choosing ψ = 1 in
this case, we deduce that

∫ T

0

∫

Γ

β(γξ1ρ)γξ1τξ1 |v(t, ξ1, σ) · ν(σ)| dt dσ −→
ξ1→ξ0

∫ T

0

∫

Γ

β(γξ0ρ)γξ0τξ0 |v(t, ξ0, σ) · ν(σ)| dt dσ.

Since β̃ = β
1
d , the convergence above reads

∥∥β̃(γξ1ρ)(γξ1τξ1)
1
d |v(t, ξ1, σ) · ν(σ)| 1d

∥∥d
Ld(]0,T [×Γ)

−→
ξ1→ξ0

∥∥β̃(γξ0ρ)(γξ0τξ0)
1
d |v(t, ξ0, σ) · ν(σ)| 1d

∥∥d
Ld(]0,T [×Γ)

= ‖Lξ0‖dLd(]0,T [×Γ) − ‖L̃ξ0‖dLd(]0,T [×Γ) ≤ ‖Lξ0‖dLd(]0,T [×Γ),

where we used the decomposition of Lξ0 as a sum of two functions with disjoint supports obtained in (7.17).
Therefore, we proved that the convergence of β̃(γξ1ρ)(γξ1τξ1)

1
d |v(t, ξ1, σ)·ν(σ)| 1d towardsLξ0 is strong inLd(]0, T [×Γ),

and that L̃ξ0 = 0. As a consequence, we have shown that β̃(γξ1ρ)(γξ1τξ1)
1
d |v(t, ξ1, σ) · ν(σ)| 1d converges strongly in

Ld(]0, T [×Γ) towards β̃(γξ0ρ)(γξ0τξ0)
1
d |v(t, ξ0, σ)·ν(σ)| 1d when ξ1 → ξ0. Since β = β̃d, it follows that β(γξρ)γξτξ|v(., ξ, .)·

ν| is continuous with respect to ξ with values in L1(]0, T [×Γ).
Using the fact that (v ·ν) ∈ C0

ξ (Lαt,σ) and Theorem 5.1, we deduce that β(γξρ)γξτξ|v(., ξ, .) ·ν| is in fact bounded in

L∞ξ (L
pα

p+(α−1)q1
t,σ ). Therefore, we proved that this function is continuous with respect to ξ and with values inLr(]0, T [×Γ)

for any r < pα
p+(α−1)q1

.
Finally, it is easily seen that the result still holds for the function β(γξρ)γξτξ(v(., ξ, .) · ν), that is to say without

absolute values. Indeed, one can prove the continuity for the weak topology of Lr(]0, T [×Γ) by the same kind of
arguments than above and the continuity of the norms in Lr(]0, T [×Γ) follows from the previous results concerning
β(γξρ)γξτξ|v(., ξ, .) · ν|.
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