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Summary In [1], we have constructed a family of finite volume
schemes on rectangular meshes for the p-laplacian and we proved
error estimates in case the exact solution lies in W 2,p. Actually, W 2,p

is not a natural space for solutions of the p-laplacian in the case p > 2.
Indeed, for general Lp′ data it can be shown that the solution only

belongs to the Besov space B
1+ 1

p−1
,p

∞ .
In this paper, we prove Besov kind a priori estimates on the ap-

proximate solution for any data in Lp′ . We then obtain new error
estimates for such solutions in the case of uniform meshes

Key words Finite volume methods – p-laplacian – Besov spaces

Mathematics Subject Classification (1991): 35J65 – 65N15 – 74S10

1 Introduction

In this paper we are interested in the finite volume numerical ap-
proximation on rectangular meshes of solutions to the p-laplacian
with homogeneous Dirichlet boundary conditions (1 < p < +∞):

{
−div

(
|∇u|p−2∇u

)
= f, on Ω,

u = 0, on ∂Ω.
(1)

Correspondence to: fboyer@cmi.univ-mrs.fr
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In the sequel we assume that f ∈ Lp′(Ω). The schemes we consider
derive from the minimization of a discrete functional that approaches
the functional associated to (1) defined by

J : u 7→ 1

p

∫

Ω
|∇u|p dz −

∫

Ω
fu dz.

These schemes are presented in Section 2 and the details of their
construction are given in [1].

For these schemes, on rectangular non-uniform meshes, we proved
in [1] the following error estimates




‖uT − uT ‖1,p,T ≤ Ch‖u‖W 2,p

+ Ch
1

p−1 ‖u‖
3p−4

p(p−1)

W 2,p ‖f‖
(p−2)2

p(p−1)2

Lp′
, for p ≥ 2,

‖uT − uT ‖1,p,T ≤ Chp−1‖u‖p−1
W 2,p‖f‖

2−p

p−1

Lp′
, for p < 2,

(2)

as soon as the exact solution u lies in W 2,p(Ω). Here, h is the size
of the mesh T , uT is the approximate solution, uT the projection of
the exact solution on the approximation space and ‖·‖1,p,T stands for

the discrete W
1,p
0 norm. All the precise definitions and notations are

given in Section 2.1.
For 1 < p ≤ 2, J.W. Barrett and W.B. Liu proved in [4] that if

f ∈ Lp′(Ω), then u lies in H2(Ω) which is embedded in W 2,p(Ω).
Hence, the error estimate (2) applies in this case. Unfortunately, for
p > 2, except in some particular situations, there seems to be no
known condition on the regularity of the right-hand side f ensuring
that the solution u of (1) belongs to such a space.

In this paper, we address the problem of giving error estimates for
less regular solutions of (1) that is to say for any data f ∈ Lp′(Ω).
Indeed, in this context, the regularity of u is given by the following
result due to J. Simon in [11].

Theorem 1 If Ω is a rectangle and if p > 2, then for any data f in

Lp′(Ω), the solution u of (1) belongs to the Besov space B
1+ 1

p−1
,p

∞ (Ω)
and, there exists a constant C > 0 such that

‖u‖
B

1+ 1
p−1 ,p

∞

≤ C‖f‖
1

p−1

Lp′
, ∀f ∈ Lp′(Ω).

We recall the definition of Besov spaces in Section 2.2.2 but for a thor-
ough study of these spaces, we refer to [9,12]. Note that the assump-
tion “Ω is a rectangle” is not necessary and the precise result given
in [11] is valid in more general situations. Furthermore, Theorem 1



Besov regularity and error estimates for FV approx. of the p-laplacian 3

is sharp: there exist solutions of (1) which belong to B
1+ 1

p−1
,p

∞ (Ω),

but do not belong to any space W
1+ 1

p−1
+ε,p

(Ω) or B
1+ 1

p−1
+ε,p

∞ (Ω)
with ε > 0. We give an example of such solutions in Section 4 and we
show the numerical results obtained for this solution whose regularity
is critical for the problem.

In order to prove the error estimates, our approach here is radically
different from the one we used in [1]. It is adapted from an idea of
V.B. Tyukhtin [13] used by S. Chow in [6] in order to improve the
error estimate obtained in [8] for the finite element approximation of
solutions to the p-laplacian. Notice that in the finite element case,
sharper error estimates for this problem are given by W.B. Liu and
J.W. Barrett in [4] and [5].

The key-point of the method is to use the minimization properties
of both continuous and discrete problems. To our knowledge, the use
of this kind of techniques in the finite volume framework is new. This
is possibly due to the fact that, unlike in the finite elements case, ad-
ditional regularity assumptions on the exact solutions do not yield the
corresponding ”discrete” regularity properties for the finite volume
approximate solutions (see Remark 4). Thus, the use of the natural

regularity space (here B
1+ 1

p−1
,p

∞ (Ω)) is crucial for the adaptation of
Chow’s technique for finite volume methods.

Even though our results are expected to be true on general carte-
sian meshes, our proof in this paper only concerns the case of uniform
meshes. More precisely, the crucial part of the proof (see Section 3.4)
still holds for general meshes, but the proof of some a priori estimates
(in particular in Lemma 4) can not be extended to this case in a
straightforward way. In a forthcoming work, we will show that these
a priori estimates can also be obtained for particular non-uniform
cartesian grids allowing some refinement of the mesh near the singu-
larities of the data.

The outline of this paper is the following. In Section 2, we present
the finite volume schemes we are interested in and we introduce the
notations used in the sequel. Section 3 is mainly devoted to the proof
of the error estimate for solutions lying in the natural Besov space
for the problem. We also give in Section 3.5 some improvements of
our results in the case where the data f lies in some Hölder space.
Finally, we give some numerical results in Section 4 which show that
our error estimate is sharp for solutions with the critical regularity
for the problem.
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2 The finite volume schemes

2.1 Notations

Let Ω be a rectangular bounded domain of R
2, without loss of gen-

erality we assume Ω =]0, Lx[×]0, Ly[. We consider a uniform mesh
T , i.e. a set of disjoint control volumes K ∈ T isometric to a given
reference rectangular volume ]0, h[×]0, k[, such that Ω = ∪K∈T K̄. We
consider a family of meshes with h tending to zero and that satisfy
the following assumption:

∃c1 > 0, such that c1 ≤ k

h
≤ 1

c1
. (3)

We denote by xK the center of the control volume K. In order
to take into account the boundary conditions, we introduce artificial
points constructed by symmetry with respect to the boundaries of Ω

(see Figure 1). The dual mesh T ∗ of T is defined to be the set of dual

k

h

xK
∗

1

xK
∗

3xK
∗

4

xK
∗

2
−uK

∗

1

ghost cells

uK
∗

4

uK
∗

1

−uK
∗

4

K
∗

Fig. 1. Notations

rectangular control volumes whose vertices are the points xK and the
artifical points.

For any dual control volume K∗,

– Let (xK
∗

i )i=1,2,3,4 be the vertices of the dual control volume K∗

numbered counter clockwise starting from the lower left hand cor-
ner.

– Let (KK
∗

i )i=1,2,3,4 be the corresponding control volumes with cen-
ters (xK

∗

i )i=1,2,3,4.
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– Finally let lK
∗

i be the distance between xK
∗

i and xK
∗

i+1; in this paper,

since the meshes are assumed to be uniform, we have lK
∗

1 = lK
∗

3
def
= h

and lK
∗

2 = lK
∗

4
def
= k for any K∗.

Conventionally, in a given dual control volume, the indices i ∈ Z are
understood modulo 4.

The finite volume method associates to all control volumes K an
unknown value uK. We denote the set (uK)

K∈T ∈ R
T by uT . The

discrete function uT is called the approximate solution on the mesh
T . For any continuous function v on Ω, the discrete function vT =
(vK)

K∈T with vK = v(xK), is called the projection of v on the space

R
T of discrete functions.
For a given discrete function uT ∈ R

T , the homogeneous Dirich-
let boundary conditions are taken into account by using the ghost
cells method (see Figure 1). That is, we extend the values of uT on
artificial points outside of Ω by odd symmetry with respect to the
corresponding boundaries.

Given a dual control volume K∗, we define the projection oper-
ator TK

∗ which associates to each uT ∈ R
T its values TK

∗(uT ) =
(uT

1,K∗ , uT
2,K∗ , uT

3,K∗ , uT
4,K∗) in the four control volumes (KK

∗

i )i that in-
tersect K∗. Note that for boundary dual control volumes, ghost cells
are used in order to give sense to the definition of TK

∗ . For instance,
if K∗ is located at the right boundary of Ω, we have by definition

uT
2,K∗ = −uT

1,K∗ and uT
3,K∗ = −uT

4,K∗ , where uT
1,K∗ = u

K
K∗

1
, uT

4,K∗ = u
K
K∗

4
.

2.2 Discrete norms

2.2.1 Lebesgue and Sobolev norms Denote by 1K the characteristic
function of the control volume K. Each discrete function uT ∈ R

T is
identified with the bounded function uT =

∑
K∈T uK1K, so that for

r ∈ [1,+∞] the norms ‖uT ‖Lr are naturally defined. Let us define a
discrete Sobolev norm for the elements of R

T . For any uT ∈ R
T , and

any K∗ ∈ T ∗, we define the differential quotients

δK
∗

i (uT ) =
uT

i+1,K∗ − uT
i,K∗

lK
∗

i

, i ∈ {1, . . . , 4}. (4)

Definition 1 Consider uT ∈ R
T . For any K∗, we define

|uT |1,K∗ =

(
1

2

4∑

i=1

∣∣∣δK
∗

i (uT )
∣∣∣
2
) 1

2

,
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to be an approximation of |∇u|, so that the discrete W
1,p
0 norm of uT

is defined by

‖uT ‖1,p,T =

(
∑

K
∗∈T ∗

m(K∗ ∩ Ω)|uT |p1,K∗

) 1
p

.

Lemma 1 (Discrete Poincaré inequality) Let T be a mesh of the
rectangle Ω. There exists a constant C which only depends on p such
that for any uT ∈ R

T , we have

‖uT ‖Lp ≤ C diam(Ω)‖uT ‖1,p,T .

The proof is an adaptation of the one given in [3].

2.2.2 Besov spaces and discrete Besov norms The whole family of
Besov spaces is described in details for instance in [9,12]. For our
purposes we only need to introduce, for any 0 < α < 1, the following
space

B1+α,p
∞ (Ω) =

(
W 1,p(Ω),W 2,p(Ω)

)
α,∞

, (5)

obtained from the classical Sobolev spaces using the K-method of
real interpolation by Peetre (see [9]). The main point is that one can

characterize the Besov space B
1+α,p
∞ (Ω) using translation operators

(see also [10]) as follows:

B1+α,p
∞ (Ω) =

{
u ∈ W 1,p(Ω), such that

sup
r∈R2

(∫

Ωr

∣∣∣∣
∇u(z + r) −∇u(z)

|r|α
∣∣∣∣
p

dz

) 1
p

< +∞
}
,

(6)

where for any r ∈ R
2, Ωr = {z ∈ Ω, [z, z + r] ⊂ Ω}. An equivalent

norm on this space is obtained by adding the W 1,p norm and the
supremum over r ∈ R

2 above.

Let us introduce a discrete equivalent to this characterization in
the case of general meshes.

Definition 2 (Discrete Besov norm) For any α ∈]0, 1[, we define

the discrete B
1+α,p
∞ semi-norm for any uT ∈ R

T by

9uT 91+α,p,T =

(
∑

K
∗∈T ∗

m(K∗ ∩ Ω)

∣∣∣∣
δK

∗

1 (uT ) + δK
∗

3 (uT )

(l2,K∗)α

∣∣∣∣
p
) 1

p

, (7)

where δK
∗

i (uT ) is defined in (4). The discrete B
1+α,p
∞ norm is then

naturally defined by

‖uT ‖1+α,p,T = ‖uT ‖1,p,T + 9uT 91+α,p,T .
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Let us remark that we have lK
∗

1 δK
∗

1 (uT )+lK
∗

2 δK
∗

2 (uT )+lK
∗

3 δK
∗

3 (uT )+
lK

∗

4 δK
∗

4 (uT ) = 0 for any uT , so that, under the regularity assumptions
of the meshes (3), we have

C19uT 91+α,p,T ≤
(
∑

K
∗∈T ∗

m(K∗ ∩ Ω)

∣∣∣∣
δK

∗

2 (uT ) + δK
∗

4 (uT )

(l1,K∗)α

∣∣∣∣
p
) 1

p

≤ C29uT 91+α,p,T .

(8)

Remark 1 Note that δK
∗

1 is an approximation of ∂xu at the bottom
of the dual control volume K∗ and δK

∗

3 is an approximation of −∂xu

at the top of K∗. As a consequence, the sum δK
∗

1 + δK
∗

3 is, roughly
speaking, an approximation of ∂xu(·) − ∂xu(· + (0, h)). Hence, the
previous definition is a natural generalization of the Besov semi-norm
introduced in (6).

In fact, the semi-norm we propose looks like an approximation
of the Lp-norm of ∂α

y ∂xu, where ∂α
y stands for the α-th fractional

derivative with respect to y. Thanks to (8), this semi-norm gives also
the control of the Lp norm of ∂α

x ∂yu. Nevertheless, this semi-norm is
somewhat an incomplete approximation of the classical semi-norm in
B

1+α,p
∞ (Ω), since it lacks the control of terms like ∂α

x ∂xu or ∂α
y ∂yu.

To cope with this problem, we may have considered the following
discrete Besov norm

JuT K1+α,p,T = ‖uT ‖1,p,T

+



∑

K
∗∈T ∗

m(K∗ ∩ Ω)
∑

L
∗∈VK∗

4∑

i=1

∣∣∣∣
δK

∗

i (uT ) − δL
∗

i (uT )

(lK
∗

i )α

∣∣∣∣
p



1
p

,
(9)

where VK
∗ is the set of neighbor dual control volumes of K∗. Nev-

ertheless, it appears that using the discrete Besov semi-norm (7) is
sufficient to prove the error estimate we are interested in. That is the
reason why all the intermediate results in the sequel are stated using
(7) instead of (9).

Let us point out that we are able to derive a priori estimates for
this more complete (and more complicated) norm (see Remarks 5
and 6), in particular the approximate solution satisfies a complete
discrete Besov estimate.

2.3 Description of the finite volume approximation

The general form of symmetric, locally conservative finite volume
schemes on cartesian meshes that are consistent with piecewise affine
functions was described in [1].
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In the particular case of uniform meshes, these schemes can be
written as the following system of equations:

a(uT )
def
=
(
aK(uT )

)
K∈T

def
=

∑

K
∗∈T ∗

m(K∗ ∩ Ω)T t
K
∗ ◦ a0 ◦ TK

∗(uT )

= (m(K)fK)
K∈T

(10)

where uT = (uK)K∈T are the unknowns and fK denotes the mean
value of the function f on the control volume K. Furthermore, the
map a0 : R

4 → R
4 is defined by:

a0(v)
def
= (Bv, v)

p−2
2 Bv, ∀v ∈ R

4, (11)

where B is a 4 × 4 symmetric matrix defined by the choice of one
parameter ξ as follows:

B =
1

2hk

0

B

B

@

4ξ + k

h
+ h

k
−4ξ − k

h
4ξ −4ξ − h

k

−4ξ − k

h
4ξ + k

h
+ h

k
−4ξ − h

k
4ξ

4ξ −4ξ − h

k
4ξ + k

h
+ h

k
−4ξ − k

h

−4ξ − h

k
4ξ −4ξ − k

h
4ξ + k

h
+ h

k

1

C

C

A

, (12)

such that (Bv, v)1/2 is an approximation of the norm of the gradient
of the solution. This choice ensures in particular the symmetry of the
scheme.

Remark 2 In [1], we have studied more general schemes, where the
parameter ξ and consequently the matrix B and the map a0 may
depend on K∗. Even though our results in this paper are still true when
the parameter ξ = ξK

∗ depends “continuously” on K∗, we suppose for
simplicity in the sequel that ξ is constant.

Let us recall the following properties of these schemes (see [1]):

Definition 3 We say that a scheme defined by (10), (11), (12) is
admissible if B is a non-negative matrix that is to say if and only if
we have:

8ξ +
k

h
+

h

k
> 0,

Lemma 2 Let γ > 0 be such that

ξ ≤ 1

γ
and 8ξ +

k

h
+

h

k
≥ γ. (13)

Then there exist β1, β2 > 0, depending only on γ and on c1 in (3)
such that

β1|uT |1,K∗ ≤ |B 1
2 TK

∗(uT )| ≤ β2|uT |1,K∗ ,∀K∗ ∈ T ∗,∀uT ∈ R
T . (14)
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2.4 Discrete energy

We call discrete energy of the scheme the following functional JT

acting on discrete functions uT ∈ R
T :

JT (uT ) =
1

p

(
a(uT ), uT

)
−
∑

K∈T

m(K)fKuK

=
1

p

∑

K
∗∈T ∗

m(K∗ ∩ Ω)|B 1
2 TK

∗(uT )|p −
∑

K∈T

m(K)fKuK.

It is proved in [1] that this functional is strictly convex and coercive
and that its unique minimizing point is the unique solution of the
discrete equations (10). Notice that this property is crucial since it
gives a concrete way to compute the approximate solution of the
problem.

Finally, the following properties hold:

Lemma 3 If p ≥ 2, there exists a constant C > 0 depending only on
c1 in (3) and γ in (13), such that for any uT , vT ∈ R

T we have

JT (vT ) − JT (uT ) − (∇JT (uT ), vT − uT ) ≥ C‖uT − vT ‖p
1,p,T ,

and

(∇JT (vT ) −∇JT (uT ), vT − uT ) ≥ C‖uT − vT ‖p
1,p,T .

Notice that this lemma is a discrete version of well-known properties
for the continuous problem.

3 Error estimate for Besov solutions

When the solution u of (1) lies in the space W 2,p(Ω), we proved in
[1] the error estimates (2). The main result of this paper is the fol-
lowing error estimate theorem which does not require any additional
regularity assumption on u.

Theorem 2 There exists a constant C > 0 depending only on c1 in
(3) and γ in (13), such that for any f ∈ Lp′(Ω), the solution u of
(1), and uT solution of the scheme (10), satisfy

‖uT − uT ‖1,p,T ≤ Ch
2

p(p−1) ‖f‖
2

p(p−1)

Lp′
‖u‖1− 2

p

W 1,p , if p ≥ 3,

‖uT − uT ‖1,p,T ≤ Ch
1
p ‖f‖

1
p

Lp′
‖u‖

1
p

W 1,p , if 2 < p < 3.
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Remark 3 In the case where 2 < p < 3, if the data f is supposed to be

in the Hölder space C0, 3−p

p−1 (Ω), then we can recover an error estimate

in h
2

p(p−1) (see Section 3.5).

We saw in [1] that the discrete Poincaré inequality holds true, so
that we have

‖uT − uT ‖Lp(Ω) ≤ C‖uT − uT ‖1,p,T .

Furthermore, since u ∈ B
1+ 1

p−1
,p

∞ (Ω), we know (see [9]) that ∇u ∈
L

2p(p−1)
p−2 (Ω) and then it is easy to prove that

‖uT − u‖Lp(Ω) ≤ Ch‖u‖
B

1+ 1
p−1 ,p

∞

≤ Ch‖f‖
1

p−1

Lp′
.

Hence, we have

‖u − uT ‖Lp ≤ C‖uT − uT ‖1,p,T + Ch‖f‖
1

p−1

Lp′
,

so that the theorem above also gives an intrinsic error estimate in
Lp(Ω).

The sketch of the proof of this theorem is the following. In the first
step, we derive a discrete Besov estimate for the approximate solution
uT , which is a discrete version of Theorem 1. In the second step, we
prove a discrete Besov estimate for the projection uT of the exact
solution u provided that f ∈ Lp′(Ω). Thanks to these two estimates,
we are able to prove the error estimates by using the minimization
properties of u and uT and the comparison Lemma 6 between the
two functionals J and JT .

Let us emphasize that in the finite elements framework, the dis-
crete functional is nothing but the restriction of the continuous func-
tional J on a finite dimensional subspace of W

1,p
0 (Ω). This is not the

case in finite volume methods, thus it is needed to compare the con-
tinuous functional J and the discrete functional JT as it is made in
Lemma 6.

Remark 4 In the finite volume case, the estimate (2) for W 2,p(Ω) so-
lutions cannot be improved using this kind of method, as S. Chow
did in [6] in the finite elements framework. Indeed, our proof funda-
mentally relies on Lemma 6 applied to both the approximate solution
uT and to the projection of the exact solution uT . Hence, the con-
vergence order we can obtain depends essentially on the best discrete
Besov estimate available for uT and uT . Unfortunately, it is clear that
the best a priori estimate one can obtain for uT is the one given by
Lemma 4, even if the exact solution is supposed to be very smooth.
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In the sequel, let us denote by C a generic constant that only
depends on p, c1, γ and on Ω.

3.1 Discrete Besov estimate for the approximate solution

Let us estimate the discrete Besov semi-norm for the solution uT of
the scheme (10). The proof is a discrete adaptation of the proof of
Theorem 1 (see [11]).

Lemma 4 There exists a constant C > 0 such that for any f ∈
Lp′(Ω), the approximate solution uT of (1), defined by (10) satisfies

9uT 9
1+ 1

p−1
,p,T

≤ C‖f‖
1

p−1

Lp′
. (15)

Proof
• Step 1: Recall that we have Ω =]0, Lx[×]0, Ly[. Let us introduce

Ω̃ =] − Lx, Lx[×] − Ly, Ly[, and T̃ the unique uniform mesh on Ω̃

extending the mesh T on Ω. It is clear that the dual mesh T̃ ∗ of T̃
is an extension of the dual mesh T ∗.

Let us denote by u
eT = (ũK)

K∈R
eT the unique discrete function

defined on the mesh T̃ which is odd with respect to both variables x

and y and such that u
eT = uT on Ω. It is natural to think of u

eT as a
periodic discrete function with periodicity cell Ω̃.

It is clear that if we prove a local discrete Besov estimate for u
eT

then we immediatly deduce the claim for uT .
By analogy with (10), we define:

(m(K)gK)
K∈eT

def
=

∑

K
∗∈eT ∗

m(K∗ ∩ Ω̃)T̃ t
K
∗ ◦ a0 ◦ T̃K

∗(u
eT ), (16)

where T̃K
∗ is the projector from R

eT onto R
4 defined just like the

projector TK
∗ introduced in Section 2.1, but taking into account pe-

riodicity conditions (in both variables x and y) instead of Dirichlet
boundary conditions.

Note that because of the oddness with respect to x and y of u
eT ,

the previous extension procedure is consistent with the ghost cells
values we have used to take into account the boundary conditions in
the scheme (see Figure 1).

It is now an easy computation, using (10), to prove that for any
K ⊂ Ω, we have gK = fK.

• Step 2: Let us now prove that (gK)
K∈eT is odd with respect to

the variable x for example (it is of course the same computation for
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the variable y). For any K ∈ T̃ and K∗ ∈ T̃ ∗, we denote by SK ∈ T̃
and SK∗ ∈ T̃ ∗ the volumes obtained by symmetry with respect to
{x = 0}. Furthermore, we recall that we have identified 1K to the

unique element of R
eT which is zero on every control volume except

on K, where its value is 1. Finally, let us introduce the matrix

M =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 .

Straightforward computations show that for L = SK and L∗ = SK∗,
we have

T̃L
∗(u

eT ) = −M.T̃K
∗(u

eT ), and T̃L
∗(1L) = M.T̃K

∗(1K).

Using (16) we deduce

m(L)gL =
∑

L
∗∈eT ∗

m(L∗)(T̃ t
L∗ ◦ a0 ◦ T̃L

∗(u
eT ),1L)

=
∑

L
∗∈eT ∗

m(L∗)(a0(T̃L
∗(u

eT )), T̃L
∗(1L))

=
∑

K
∗∈eT ∗

m(K∗)(a0(−MT̃K
∗(u

eT )),MT̃K
∗(1K)).

From (12), we see that the matrices B and M commute so that we
have, using M tM = Id:

a0(−MT̃K
∗(u

eT )) = −(BT̃K
∗(u

eT ), T̃K
∗(u

eT ))
p−2
2 MBT̃K

∗(u
eT )

= −Ma0(T̃K
∗(u

eT )).

Therefore we have

m(L)gL = −
∑

K
∗∈eT ∗

m(K∗)(Ma0(T̃K
∗(u

eT )),MT̃K
∗(1K))

= −
∑

K
∗∈eT ∗

m(K∗)(a0(T̃K
∗(u

eT )), T̃K
∗(1K)) = −m(K)gK.

As m(K) = m(L), we deduce gK = −gL provided that L = SK. This is
exactly the claim.

In particular, we have proved that (gK)
K∈eT is bounded in Lp′(Ω̃)

and more precisely we have
∑

K∈eT

m(K)|gK|p
′

= 4
∑

K∈T

m(K)|fK|p
′ ≤ C‖f‖Lp′(Ω).
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• Step 3: Now it is enough to prove a discrete Besov estimate for
the periodic problem (16).

For any K ∈ T̃ , we denote by τhK (resp. τ−hK) the right (resp. left)
neighbor control volume of K. Taking into account the periodicity
conditions, τhK and τ−hK are well defined for all K. Let us define the

translated discrete function τhu
eT by

(τhu
eT )K = ũτhK, ∀K ∈ T̃ .

Using periodicity, we deduce from (16) that

(m(K)gτhK)K =
∑

K
∗∈eT ∗

m(K∗ ∩ Ω̃)T̃ t
K
∗ ◦ a0 ◦ T̃K

∗(τhu
eT ).

Subtracting (16), and taking the inner product in R
eT with τhu

eT −u
eT ,

we get

∑

K
∗∈eT ∗

m(K∗ ∩ Ω̃)
(
a0 ◦ T̃K

∗(τhu
eT ) − a0 ◦ T̃K

∗(u
eT ), T̃K

∗τhu
eT − T̃K

∗u
eT
)

=
∑

K∈eT

m(K)(gτhK − gK)(ũτhK − ũK)

= h
∑

K∈eT

m(K)gK

(ũK − ũτ−hK) − (ũτhK − ũK)

h

≤ h



∑

K∈eT

m(K)|gK|p
′




1
p′


∑

K∈eT

m(K)

∣∣∣∣
(ũK − ũτ−hK) − (ũτhK − ũK)

h

∣∣∣∣
p



1
p

≤ Ch‖f‖Lp′



∑

K∈eT

m(K)

∣∣∣∣
(ũK − ũτ−hK) − (ũτhK − ũK)

h

∣∣∣∣
p



1
p

.

Using (14), the left-hand side member above is minorated by the

quantity C‖τhu
eT − u

eT ‖p

1,p, eT
. Hence, thanks to Definition 1 and to

Lemma 3 the previous estimate gives

‖τhu
eT − u

eT ‖p

1,p, eT
≤ Ch‖f‖Lp′‖τhu

eT − u
eT ‖

1,p, eT
,

and so we get

‖τhu
eT − u

eT ‖
1,p, eT

≤ Ch
1

p−1 ‖f‖
1

p−1

Lp′
. (17)
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We claim that this inequality gives the result. Indeed, let us define

∆hu
eT = τhu

eT − u
eT , and let us consider a given dual control volume

K∗ ∈ T̃ ∗, we have

|δK
∗

4 (∆hu
eT )| =

∣∣∣∣∣
(T̃K

∗(∆hu
eT ))4 − (T̃K

∗(∆hu
eT ))1

k

∣∣∣∣∣ ≤
√

2|∆hu
eT |1,K∗ .

But, by definition of the translation operator τh, we have

(T̃K
∗(∆hu

eT ))1 = (T̃K
∗(u

eT ))2 − (T̃K
∗(u

eT ))1,

(T̃K
∗(∆hu

eT ))4 = (T̃K
∗(u

eT ))3 − (T̃K
∗(u

eT ))4,

and then
∣∣∣∣∣
(T̃K

∗(∆hu
eT ))4 − (T̃K

∗(∆hu
eT ))1

k

∣∣∣∣∣ =
∣∣∣δK

∗

2 (u
eT ) + δK

∗

4 (u
eT )
∣∣∣ .

Hence, we get the result from the estimate (17). ut

Remark 5 We also have

|δK
∗

1 (u
eT ) − δ

τhK
∗

1 (u
eT )| = |δK

∗

1 (∆hu
eT )| ≤

√
2|∆hu

eT |1,K∗ ,

where τhK
∗ ∈ T̃ ∗ is the right neighbor of K∗. Hence, we can estimate

the complete Besov norm (see Remark 1) as follows:

JuT K
1+ 1

p−1
,p,T

≤ C‖f‖
1

p−1

Lp′
.

3.2 Discrete Besov estimate for the exact solution

Let us now consider u, the unique solution in W
1,p
0 (Ω) of problem (1)

with data f ∈ Lp′(Ω) and p > 2. We know (see Theorem 1) that u is

in the Besov space B
1+ 1

p−1
,p

∞ (Ω). The goal of this section is to prove
that the projection uT of u on the mesh T satisfies the same discrete
Besov estimate as (15). The precise result is the following.

Lemma 5 Assume that p > 2 and let α ∈]0, 1[. There exists a con-

stant C > 0 such that for any v ∈ W
1,p
0 (Ω) ∩ B

1+α,p
∞ (Ω), we have

9vT 91+α,p,T ≤ C‖v‖
B1+α,p

∞
,

where vT = (v(xK))K∗∈T is the projection of v on R
T .
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Proof We can extend v to the unique function ṽ defined on the whole
space R

2, odd with respect to both variables x and y and periodic
with periodicity cell Ω̃ =]−Lx, Lx[×]−Ly, Ly[. As v vanishes on ∂Ω,

it is easily seen that ṽ lies in the space B
1+α,p
∞,loc (R2).

Note that this extension is consistent with the ghost cell method
we used to treat the boundary conditions in the scheme. Furthermore
a local discrete Besov estimate for the function ṽ and its projection
is clearly equivalent to the claim. Hence, it is enough to prove the
result without taking into account the boundaries.

Consider now a given dual control volume K∗ ∈ T ∗. Changing co-
ordinates we can assume that K∗ =]0, h[×]0, k[. Recall that x1, . . . , x4

are the four vertices of K∗, where we dropped the superscript K∗

in order to simplify the notations in this proof. Let us denote by
x0 = (h

2
, k

2
) the center of K∗.

T ′
1 T1

z

z′

x4 d′
0 x3

x2x1

d0

d1

xz′

0

ds = xz
1

x0

Fig. 2. Discrete Besov estimate in a dual control volume K
∗

For s taking its values in [0, 1], the point ds = (h
2
s, k

2
(1 − s))

describes the segment [d0d1] as shown in Figure 2. We denote by T1

and T ′
1 the triangles x0d0d1 and x1d0d1, respectively.

Let us suppose that v is smooth enough (the final result will follow
by density). Using a Taylor expansion of v between x1 and ds and
between x0 and ds, we get

v(ds) = v(x1) +

∫ 1

0
∇v(x1 + t(ds − x1)) · (ds − x1) dt,

v(ds) = v(x0) +

∫ 1

0
∇v(x0 + t(ds − x0)) · (ds − x0) dt.
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Subtracting these two equalities and integrating with respect to s,
we obtain

v(x1) − v(x0) = −
∫ 1

0

∫ 1

0
∇v(x1 + t(ds − x1)) · (ds − x1) dt ds

+

∫ 1

0

∫ 1

0
∇v(x0 + t(ds − x0)) · (ds − x0) dt ds.

Now, let us consider the change of variables (s, t) into z = x1 + t(ds−
x1) in the first term. Its Jacobian determinant is −t

hk

4
, and we have

t =
|z − x1|
|ds − x1|

so that the first term becomes

− 4

hk

∫

T ′
1

|ds − x1|
|z − x1|

∇v(z) · (ds − x1) dz.

In this formula, ds is the intersection point of the segment [d0d1] with
the line passing through z ∈ T ′

1 and x1. In the sequel, we will denote
this point by xz

1 (see Figure 2). With similar computations for the
second term, we get

v(x1) − v(x0) = − 4

hk

∫

T ′
1

|xz
1 − x1|

|z − x1|
∇v(z) · (xz

1 − x1) dz

+
4

hk

∫

T1

|xz
0 − x0|

|z − x0|
∇v(z) · (xz

0 − x0) dz,

(18)

where x0
z is the intersection point between the line passing through

z ∈ T1 and x0, and the segment [d0d1].
Now let us apply the formula (18) to the translated function τh,kv :

z 7→ v(z+(x0−x1)). We have τh,kv(x1) = v(x0) and τh,kv(x0) = v(x3)
so that, it follows

v(x0) − v(x3) = − 4

hk

∫

T ′
1

|xz
1 − x1|

|z − x1|
∇(τh,kv)(z) · (xz

1 − x1) dz

+
4

hk

∫

T1

|xz
0 − x0|

|z − x0|
∇(τh,kv)(z) · (xz

0 − x0) dz.

(19)

Subtracting (19) from (18), we get

v(x1) + v(x3) − 2v(x0) =

− 4

hk

∫

T ′
1

|xz
1 − x1|

|z − x1|
[
∇v(z) −∇(τh,kv)(z)

]
· (xz

1 − x1) dz

+
4

hk

∫

T1

|xz
0 − x0|

|z − x0|
[
∇v(z) −∇(τh,kv)(z)

]
· (xz

0 − x0) dz

def
= I1 + I2.

(20)
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Consider I1 the first integral in the right-hand side of (20). Thanks
to (3), we have |xz

1 − x1| ≤ Ch, for any z ∈ T ′
1. Therefore, we get

|I1| ≤ C

∫

T ′
1

1

|z − x1|
|∇v(z) −∇(τh,kv)(z)| dz

≤ Chα

(∫

T ′
1

1

|z − x1|p′
dz

) 1
p′
(∫

T ′
1

∣∣∣∣
∇v(z) −∇(τh,kv)(z)

hα

∣∣∣∣
p

dz

) 1
p

≤ Chα

(∫

Bh

1

|z − x1|p′
dz

) 1
p′

(∫

T ′
1

∣∣∣∣
∇v(z) −∇(τh,kv)(z)

hα

∣∣∣∣
p

dz

) 1
p

≤ Ch
2
p′
−1+α

(∫

T ′
1

∣∣∣∣
∇v(z) −∇(τh,kv)(z)

hα

∣∣∣∣
p

dz

) 1
p

,

where Bh is the ball of radius
√

h2 + k2 ≤ Ch centered in x1. The
term I2 in (20) is estimated in the same way, so that we finally have

|v(x1)+v(x3)−2v(x0)| ≤ Ch
2
p′
−1+α

(∫

K
∗

∣∣∣∣
∇v(z) −∇(τh,kv)(z)

hα

∣∣∣∣
p

dz

) 1
p

.

Similarly, using Taylor expansions of v between x4 (respectively x0)
and the points of the segment [d0d

′
0] (see Figure 2), we get

|v(x2)+v(x4)−2v(x0)| ≤ Ch
2
p′
−1+α

(∫

K
∗

∣∣∣∣
∇v(z) −∇(τ−h,kv)(z)

hα

∣∣∣∣
p

dz

) 1
p

,

where the translated function τ−h,kv is defined by τ−h,kv(z) = v(z +
(x0 − x4)). Using the two previous estimates, we get

1

hα

∣∣∣∣
v(x4) − v(x3)

h
− v(x1) − v(x2)

h

∣∣∣∣

≤ 1

h1+α

∣∣∣[v(x4) + v(x2) − 2v(x0)] − [v(x1) + v(x3) − 2v(x0)]
∣∣∣

≤ Ch
− 2

p

(∫

K
∗

∣∣∣∣
∇v(z) −∇(τh,kv)(z)

hα

∣∣∣∣
p

dz

) 1
p

+ Ch
− 2

p

(∫

K
∗

∣∣∣∣
∇v(z) −∇(τ−h,kv)(z)

hα

∣∣∣∣
p

dz

) 1
p

.

(21)
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Hence, summing this inequality over T ∗, we deduce that

∑

K
∗∈T ∗

m(K∗ ∩ Ω)

∣∣∣∣
δK

∗

3 (vT ) + δK
∗

1 (vT )

hα

∣∣∣∣
p

≤ C

∫

Ω

∣∣∣∣
∇v(z) −∇(τh,kv)(z)

hα

∣∣∣∣
p

dz + C

∫

Ω

∣∣∣∣
∇v(z) −∇(τ−h,kv)(z)

hα

∣∣∣∣
p

dz

≤ C‖v‖p

B1+α,p
∞

.

The claim of the Lemma follows. ut

x1

x4 x3

x2

x6

x5

τhK
∗

K
∗

Fig. 3. Complete Besov norm estimate

Remark 6 Inequality (21) is in fact valid for any parallelogram x1x2x3x4,
if we replace τh,kv and τ−h,kv by suitable translations of v. Consider
the situation described in Figure 3.

We can write

1

hα
|δτhK

∗

1 (vT ) − δK
∗

1 (vT )| =
1

hα

∣∣∣∣
v(x5) − v(x2)

h
− v(x2) − v(x1)

h

∣∣∣∣

≤ 1

hα

∣∣∣∣
v(x5) − v(x2)

h
− v(x6) − v(x3)

h

∣∣∣∣

+
1

hα

∣∣∣∣
v(x6) − v(x3)

h
− v(x2) − v(x1)

h

∣∣∣∣ ,

so that using (21) respectively in the square x2x5x6x3 and in the par-
allelogram x1x2x6x3, and summing over all the dual control volumes,
we deduce an estimate for the complete Besov norm defined in (9):

JvT K1+α,p,T ≤ C‖v‖B1+α,p
∞

.

3.3 Piecewise affine approximation of functions in W
1,p
0

For any u ∈ W
1,p
0 (Ω), let us denote by ΠT u the piecewise affine

Lagrange interpolation of u on the triangles constructed from the
dual control volumes, as shown in Figure 4.
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T1

T1

T2

Boundary dual control volumeInterior dual control volume

T3

T2

Fig. 4. Triangles in K
∗ for the Lagrange affine interpolation operator

The construction proposed on the boundary dual control volumes
is chosen so that ΠT u lies in the space W

1,p
0 (Ω). The corresponding

interpolation error can be controlled as follows.

Proposition 1 For any p > 2, there exists C > 0 such that the
following estimates hold:

‖u − ΠT u‖W 1,p ≤ C‖u‖W 1,p , ∀u ∈ W
1,p
0 (Ω),

‖u − ΠT u‖W 1,p ≤ Ch‖u‖W 2,p , ∀u ∈ W
1,p
0 (Ω) ∩ W 2,p(Ω),

‖u−ΠT u‖W 1,p ≤ Chα‖u‖B1+α,p
∞

, ∀α ∈]0, 1[,∀u ∈ W
1,p
0 (Ω)∩B1+α,p

∞ (Ω).

Proof The first two estimates are classical results of the finite ele-
ments theory (see for example [7]). Note that the proof is straight-
forward in our case.

The third result follows directly from the first two estimates by
applying the interpolation theorem associated to (5) for the operator
Id − ΠT . ut

3.4 Proof of the error estimate

We are now able to prove Theorem 2.

We have ∇JT (uT ) = 0, so that, thanks to Lemma 3, we can write

C‖uT − uT ‖p
1,p,T ≤ JT (uT ) − JT (uT ).

Let us rewrite this inequality under the form

C‖uT − uT ‖p
1,p,T ≤

[
JT (uT ) − J(ΠT u)

]
+
[
J(ΠT u) − J(u)

]

+
[
J(u) − J(v)

]
+
[
J(v) − JT (uT )

]
,
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for any function v ∈ W
1,p
0 (Ω). As u minimize J over W

1,p
0 (Ω), we

see that the third term is negative. Now, we choose for v the unique
function which is affine on each triangles as shown in Figure 4 and
such that v(xK) = uK. We denote this function by v = ΠT uT . This
notation is consistent with the one introduced in section 3.3, since we
have for example ΠT u = ΠT uT . Therefore we can write

C‖uT − uT ‖p
1,p,T ≤

[
JT (uT ) − J(ΠT uT )

]

+
[
J(ΠT u) − J(u)

]

+
[
J(ΠT uT ) − JT (uT )

]
.

(22)

We recall the following classical result (see for example [6]):

Proposition 2 Suppose that p > 2 and consider u ∈ W
1,p
0 (Ω) the

solution to problem (1). There exists a constant C > 0 such that for

any v ∈ W
1,p
0 (Ω),

|J(v) − J(u)| ≤ C‖v − u‖2
W 1,p(1 + ‖v‖W 1,p + ‖u‖W 1,p)p−2.

Thanks to Proposition 2 and Proposition 1, the second term in (22)
is majorated by

|J(ΠT u) − J(u)| ≤ C‖ΠT u − u‖2
W 1,p(‖ΠT u‖W 1,p + ‖u‖W 1,p)p−2

≤ Ch
2

p−1 ‖u‖2

B
1+ 1

p−1
∞

‖u‖p−2
W 1,p .

(23)

The first and the third terms in (22) are of the same kind. We have
to estimate |J(ΠT vT ) − JT (vT )| for vT ∈ R

T satisfying a discrete
Besov estimate.

The claim of Theorem 2 will follow, if we prove Lemma 6 below.
Indeed, the desired estimate comes from (22), (23) and Lemmas 4, 5,
6. ut

Lemma 6 For any α ∈]0, 1[, there exists a constant C > 0 such that
for any vT ∈ R

T ,

|J(ΠT vT )−JT (vT )| ≤ Ch2α9vT 92
1+α,p,T ‖vT ‖p−2

1,p,T +Ch‖f‖Lp′‖vT ‖1,p,T .
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Proof By definition of J and JT , we can write

J(ΠT vT ) − JT (vT )

=
1

p

∑

K
∗∈T ∗

(∫

K∗∩Ω
|∇ΠT vT |p dz − m(K∗ ∩ Ω)(BTK

∗(vT ), TK
∗(vT ))

p

2

)

−
∑

K∈T

(∫

K

f(z)ΠT vT (z) dz − m(K)fKvK

)

def
=

1

p

∑

K
∗∈T ∗

IK
∗ +

∑

K∈T

LK.

(24)

Let us estimate each of the terms IK
∗ and LK.

• Step 1: Take K∗ ∈ T ∗. We use here the notations of Figure 1.
First assume that K∗ is an interior dual control volume (see Figure
4). Dropping the superscripts K∗, we have

∇ΠT vT (z) =





(
v2−v1

h
v4−v1

k

)
=

(
δ1

−δ4

)
, if z ∈ T1,

(
v3−v4

h
v3−v2

k

)
=

(
−δ3

δ2

)
, if z ∈ T2.

(25)

Therefore
∫

K
∗

|∇ΠT vT |p dz =
m(K∗)

2

(
(δ2

1 + δ2
4)

p

2 + (δ2
3 + δ2

2)
p

2

)
. (26)

It is an easy computation to see that if we define the following
quadratic form in the variables (δi)i:

Q(δ1, δ2, δ3, δ4) =
1

2

4∑

i=1

δ2
i + ξ

(
h

k
(δ1 + δ3)

2 +
k

h
(δ2 + δ4)

2

)
, (27)

then we have

|B 1
2 TK

∗(vT )|2 = Q(δ1, δ2, δ3, δ4), ∀vT ∈ R
T .

By construction this quadratic form is consistent with |∇·|2 for affine
functions on K∗, that is to say that

∀a, b ∈ R, Q(a, b,−a,−b) = a2 + b2.

Consequently, (26) reads
∫

K
∗

|∇ΠT vT |p dz =
m(K∗)

2

(
Q(δ1,−δ4,−δ1, δ4)

p

2 + Q(−δ3, δ2, δ3,−δ2)
p

2

)
.
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Thus, we have to estimate

IK
∗ =

∫

K
∗

|∇ΠT vT |p dz − m(K∗)(BTK
∗(vT ), TK

∗(vT ))
p

2

= m(K∗)

(
1

2
Q(δ1,−δ4,−δ1, δ4)

p

2 +
1

2
Q(−δ3, δ2, δ3,−δ2)

p

2

− Q(δ1, δ2, δ3, δ4)
p

2

)
.

We denote by ∂iQ the derivative of Q with respect to the i-th variable
and for any multi-index α ∈ N

4, let ∂αQ stand for the derivative
∂α1

1 ∂α2
2 ∂α3

3 ∂α4
4 Q.

Set ∆1 = (δ1,−δ4,−δ1, δ4), ∆2 = (−δ3, δ2, δ3,−δ2) and ∆0 =

(δ1, δ2, δ3, δ4). Using Taylor expansions of Q
p

2 around the point ∆0,
we get

Q(∆1)
p

2 = Q(∆0)
p

2 − p

2
Q

p

2
−1(∆0)

(
∂2Q(∆0)(δ2 + δ4) + ∂3Q(∆0)(δ1 + δ3)

)

+



∫ 1

0
Q

p

2
−2



∑

|α|=1

|∂αQ|2 +
∑

|β|=2

Q|∂βQ|


 (t∆1 + (1 − t)∆0) dt




×O
(
(δ1 + δ3)

2 + (δ2 + δ4)
2
)
,

and

Q(∆2)
p

2 = Q(∆0)
p

2 − p

2
Q

p

2
−1(∆0)

(
∂1Q(∆0)(δ1 + δ3) + ∂4Q(∆0)(δ2 + δ4)

)

+



∫ 1

0
Q

p

2
−2



∑

|α|=1

|∂αQ|2 +
∑

|β|=2

Q|∂βQ|


 (t∆2 + (1 − t)∆0) dt




×O
(
(δ1 + δ3)

2 + (δ2 + δ4)
2
)
.

Consequently, we get

IK
∗ = −m(K∗)

[p
4
Q

p

2
−1(∆0)

(
(∂1Q(∆0) + ∂3Q(∆0))(δ1 + δ3)

+ (∂2Q(∆0) + ∂4Q(∆0))(δ2 + δ4)
)

+ (|δ1| + |δ2| + |δ3| + |δ4|)p−2 O
(
(δ1 + δ3)

2 + (δ2 + δ4)
2
)]

.

But a straightforward computation using (27) shows that we have,
under assumptions (3) and (13),

|∂1Q(∆0) + ∂3Q(∆0)| =

∣∣∣∣1 + 4ξ
h

k

∣∣∣∣ |δ1 + δ3| ≤ C|δ1 + δ3|,
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and

|∂2Q(∆0) + ∂4Q(∆0)| =

∣∣∣∣1 + 4ξ
k

h

∣∣∣∣ |δ2 + δ4| ≤ C|δ2 + δ4|.

Hence, we deduce that

|IK
∗ | ≤ Cm(K∗) (|δ1| + |δ2| + |δ3| + |δ4|)p−2

(
(δ1 + δ3)

2 + (δ2 + δ4)
2
)
.

In the case where K∗ is a boundary control volume (for example
near the right boundary of Ω - see the right part of Figure 4), we
have

∇ΠT vT (z) =





(
0−

v1+v4
2

h
v4−v1

k

)
=

(
δ1−δ3

2
−δ4

)
, if z ∈ T1,

(
0−v1

h
2

0

)
=

(
−δ1

0

)
, if z ∈ T2.

(
0−v4

h
2

0

)
=

(
δ3

0

)
, if z ∈ T3.

(28)

Recall that in this boundary dual control volume K∗ we have δ2 = δ4.
Using Taylor expansion of Q

p

2 around ∆0, we get

IK
∗ =

m(K∗ ∩ Ω)

4
Q

(
δ1 − δ3

2
, δ2,

δ3 − δ1

2
,−δ2

) p

2

+
m(K∗ ∩ Ω)

4
Q

(
δ1 − δ3

2
,−δ4,

δ3 − δ1

2
, δ4

) p

2

+
m(K∗ ∩ Ω)

4
Q(δ1, 0,−δ1, 0)

p

2 +
m(K∗ ∩ Ω)

4
Q(−δ3, 0, δ3, 0)

p

2

− m(K∗ ∩ Ω)Q(∆0)
p

2

= −m(K∗ ∩ Ω)
[p
4
Q

p

2
−1(∆0)

(
(∂1Q(∆0) + ∂3Q(∆0))(δ1 + δ3)

+ (∂2Q(∆0) + ∂4Q(∆0))(δ2 + δ4)
)

+ (|δ1| + |δ2| + |δ3| + |δ4|)p−2 O
(
(δ1 + δ3)

2 + (δ2 + δ4)
2
)]

.

We can conclude in the same way than in the case of an interior dual
control volume.
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• Step 2: Take K ∈ T and let us now deal with the term LK =∫

K
f(z)(ΠT vT (z) − vK) dz. Note that vK = ΠT vT (xK) so that we

have,

|LK| =

∣∣∣∣∣∣

∑

K
∗∈VK

∫

K∩K
∗

f(z)(ΠT vT (z) − ΠT vT (xK)) dz

∣∣∣∣∣∣

≤ Ch
∑

K
∗∈VK

∫

K∩K
∗

|f(z)||vT |1,K∗ dz

≤ Ch
∑

K
∗∈VK

m(K∗ ∩ Ω)gK
∗ |vT |1,K∗ ,

where for any K∗ ∈ T ∗, we define

gK
∗ =

1

m(K∗ ∩ Ω)

∫

K
∗∩Ω

|f(z)| dz.

• Step 3: Note that we have

(
∑

K
∗∈T ∗

m(K∗ ∩ Ω)|gK
∗ |p′
) 1

p′

≤
(∫

Ω
|f(z)|p′ dz

) 1
p′

= ‖f‖Lp′ ,

by the Jensen inequality. Combining the estimates of the two previous
steps and (24), by the Hölder inequality we get

|J(ΠT vT ) − JT (vT )| ≤ C
∑

K
∗∈T ∗

IK
∗ + C

∑

K∈T

LK

≤ Ch2α
∑

K∗∈T ∗

∣∣∣B
1
2 TK

∗(vT )
∣∣∣
p−2

(∣∣∣∣
δ1 + δ3

hα

∣∣∣∣
2

+

∣∣∣∣
δ2 + δ4

hα

∣∣∣∣
2
)

+ Ch
∑

K
∗∈T ∗

m(K∗ ∩ Ω)gK
∗ |vT |1,K∗

≤ Ch2α‖vT ‖p−2
1,p,T 9vT 92

1+α,p,T + Ch‖f‖Lp′‖vT ‖1,p,T .

ut

3.5 Improved estimates for Hölder data

In the case where the data f is supposed to lie in the Hölder space
C0,β(Ω) with 1

p−1 < β ≤ 1 we can improve our error estimate.

First of all, the control of the difference between J and JT (see
Lemma 6) can be precised as follows:
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Lemma 7 Suppose that f ∈ C0,β(Ω), then for any α ∈]0, 1[, there
exists C > 0 such that for any vT ∈ R

T , we have

|J(ΠT vT ) − JT (vT )| ≤ Ch2α9vT 92
1+α,p,T ‖vT ‖p−2

1,p,T

+ Ch1+α‖f‖Lp′ Jv
T K1+α,p,T + Ch1+β‖f‖C0,β‖vT ‖1,p,T ,

where JvT K1+α,p,T is the complete discrete Besov norm defined in (9).

Proof We follow the proof of Lemma 6 except that the Hölder regu-
larity of f give us a more precise estimate of the term LK in (24).

Indeed, let K ∈ T be any control volume and let us choose L∗ ∈ VK.
Let φ be the unique affine function on the whole control volume K

such that φ(xK) = vK and ∇φ = (δL
∗

1 (vT ), δL
∗

2 (vT ))t. We can control
the term LK as follows:

|LK| ≤
∣∣∣∣
∫

K

f(z)(ΠT vT (z) − φ(z)) dz

∣∣∣∣ +
∣∣∣∣
∫

K

f(z)(φ(z) − φ(xK)) dz

∣∣∣∣

=

∣∣∣∣
∫

K

f(z)(ΠT vT (z) − φ(z)) dz

∣∣∣∣

+

∣∣∣∣
∫

K

(f(z) − f(xK))(φ(z) − φ(xK)) dz

∣∣∣∣ ,

(29)

since

∫

K

(φ(z) − φ(xK)) dz = 0, the point xK being the center of K.

Since ΠT vT −φ is affine by parts and vanishes in xK we have for any
z ∈ K

|ΠT vT (z)−φ(z)| = |z−xK| |∇ΠT vT (z)−∇φ(z)| ≤ Ch|∇ΠT vT (z)−∇φ|.

Hence, the first term in (29) is controlled by

Ch

∫

K

|f(z)||∇ΠT vT (z) −∇φ| dz

≤ Cm(K)h|fK|
∑

K
∗∈VK

4∑

i=1

∣∣∣δK
∗

i (vT ) − δL
∗

i (vT )
∣∣∣ .

Thanks to the Hölder regularity of f , the second term in (29) is
estimated by

h3+β‖f‖C0,β |vT |1,L∗ .

Summing these estimates over all the control volumes K and using
the Hölder inequality gives exactly the claim. ut
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Notice that the complete discrete Besov norm can be controlled
in the same way than 9vT 91+α,p,T when vT = uT or vT = uT as
shown in the Remarks 5 and 6. Hence, the Lemma above implies the
improved estimate stated in Remark 3.

Let us now prove a new regularity result for the solution to (1)
when the data enjoys Hölder regularity.

Lemma 8 If 1
p−1 < β ≤ 1 and f ∈ C0,β(Ω), then the solution u to

(1) satisfies

u ∈ B
1+ 1+β

p
,p

∞ (Ω),

and

‖u‖
B

1+
1+β

p ,p

∞

≤ C‖f‖
1
p

C0,β‖f‖
1

p(p−1)

Lp′
.

Proof As we have seen before, by extending u and f to a larger do-
main, it is enough to consider the case of periodic boundary condi-
tions. Let r ∈ R

2 given and τr be the translation operator associated
to r. We have

−div(|∇τru|p−2∇τru) + div(|∇u|p−2∇u) = τrf − f,

so that multiplying by τru− u and integrating over a periodicity cell
Ω we get
∫

Ω
|∇τru −∇u|p dz ≤ |r|β‖f‖C0,β

∫

Ω
|τru − u| dz,

≤ |r|β|r|‖f‖C0,β‖∇u‖L1 ≤ C|r|1+β‖f‖C0,β‖u‖W 1,p

≤ C|r|1+β‖f‖C0,β‖f‖
1

p−1

Lp′
.

Hence, the result follow by the characterization (6) of the Besov space

B
1+ 1+β

p
,p

∞ . ut

As usual, we have a discrete adaptation of this result which reads:

Lemma 9 If 1
p−1 < β ≤ 1 and f ∈ C0,β(Ω), then the approximate

solution uT satisfies

9uT 9
1+ 1+β

p
,p,T

≤ C‖f‖
1
p

C0,β‖f‖
1

p(p−1)

Lp′
.

The proof is adapted from the one of Lemma 8 as we did in the proof
of Lemma 4.

We can now state the following improved error estimate result.
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Theorem 3 Let β ∈
]

1
p−1 , 1

]
. There exists a constant C > 0 depend-

ing only on c1 in (3) and γ in (13), such that for any f ∈ C0,β(Ω),
the solution u of (1) and uT solution of the scheme (10) satisfy

‖uT − uT ‖1,p,T ≤ Ch
2(1+β)

p2 ‖f‖
1

p−1

C0,β .

Since β > 1
p−1 in this last result, the convergence rate obtained

here is obviously better than the one given by Theorem 2.

Proof Using the new estimates above, the proof is very similar to the
one of Theorem 2.

We consider the main inequality (22). Under the assumptions of
the theorem, the second term in this inequality is estimated by using
Propositions 1 and 2 as well as Lemma 8. The first and third terms
in (22) are controled by using Lemmas 7, 8, 4 and 9. ut

4 Numerical results

We claimed in the introduction that Theorem 1 is optimal. Indeed,
for p > 2 consider a regular function ρ with compact support in
Ω =] − 1, 1[×] − 1, 1[ such that ρ = 1 in a neighborhood of the point
(0, 0). For α, β ∈ R, set

uα,β(z) = ρ(z)|z|α(− log |z|)β , ∀z ∈ Ω.

Evaluating the p-laplacian of uα,β, we have

fα,β
def
= −div (|∇uα,β |p−2∇uα,β) ∼

|z|→0
C|z|(α−1)(p−1)−1(− log |z|)β(p−1).

Consequently, if we choose

α =
p − 1

p
+

1

p(p − 1)
and β = −2

p
, (30)

then fα,β lies in Lp′(Ω) (but not in Lq(Ω) for any q > p′). Further-
more, following [9, p 43], for such (α, β) the function uα,β is not in
B

s,p
r (Ω) for any r ∈ [1,+∞] and any s > 1 + 1

p−1 .

Using this example of a solution with critical regularity for the
problem, we can perform numerical tests in order to show that our
theoretical results provide sharp convergence order. For each p ∈
{3.0, 3.5, 4.0}, we define α and β by (30) and we compare (for var-
ious meshes) the exact solution uα,β with the approximate solution
obtained with data fα,β.
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Fig. 5. Numerical results for p ∈ {3.0, 3.5, 4.0}

The results are summed up in Figure 5 where we plot in logarith-

mic scale the relative error eT =
‖uT −uT ‖1,p,T

‖uT ‖1,p,T

in front of the size of

the mesh h. We have also plotted for each value of p, a dotted straight
line with slope 2

p(p−1) which is exactly the convergence order that we

obtained in Theorem 2.
We can see that the numerical results are in good accordance with

the predicted convergence rate. Hence, our theoretical results seems
to be optimal within the class of Lp′ data.

5 Conclusion

In this paper we proved an optimal error bound in the discrete W 1,p

norm for the finite volume approximation of the p-laplacian (p > 2)
with general Lp′(Ω) data on uniform cartesian grids. In this case
where the exact solution does not belong to W 2,p(Ω) but only to the

Besov space B
1+ 1

p−1
,p

∞ (Ω), classical finite volume techniques can not
be used to estimate the consistency error of numerical fluxes. Hence,
our proof consists in taking advantage of the variationnal structure of
the continuous problem and of its discrete approximation. The error
estimate follows if one shows a discrete Besov estimate independent of
the mesh size for the approximate solution but also for the projection
of the exact solution on the space of piecewise constant functions.
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We provide in this paper a proof of these two bounds in the case of
uniform cartesian grids which implies the error estimates. Numerical
results for some analytical solutions with critical regularity give some
evidences that the convergence rate obtained is optimal.

In a forthcoming work, we address the problem of proving these
discrete Besov estimates for more general cartesian grids, in particular
for meshes obtained by taking the image of uniform grids through
smooth enough maps. In this framework, the control volumes can be
chosen finer near the singularities of the data. To our knowledge, the
adaptation of our approach to general non-cartesian grids (see for
instance [2]) is an open question at the present time.
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