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Abstract

A strong invariance principle is established for random fields which satisfy dependence
conditions more general than positive or negative association. We use the approach of
Csörgő and Révész applied recently by Balan to associated random fields. The key step
in our proof combines new moment and maximal inequalities, established by the authors
for partial sums of multiindexed random variables, with the estimate of the convergence
rate in the CLT for random fields under consideration.
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1. Introduction and main results

Strong invariance principles are limit theorems concerning strong approximation for par-
tial sums process of some random sequence or field by a (multiparameter) Wiener process.
The first result of such type was obtained by Strassen [21] with the help of Skorokhod’s
embedding technique. Another powerful method, introduced by Csörgő and Révész [10],
is based on quantile transforms. It was used by Kómlos, Major and Tusnady [15, 16] to
achieve an unimprovable rate of convergence in the strong invariance principle for inde-
pendent identically distributed random sequences. Berkes and Morrow [2] extended that
method to mixing random fields.

In this paper, we study random fields with dependence condition proposed by Bulinski
and Suquet [7] (in the case of a random sequence it was given by Doukhan and Louhichi
[11]). Namely, let X = {Xj, j ∈ Z

d} be a real-valued random field on a probability
space (Ω,F,P) with EX2

j < ∞ for any j ∈ Z
d. We say that X is weakly dependent, or

1E-mail: bulinski@mech.math.msu.su
2E-mail: shashkin@mech.math.msu.su
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(BL, θ)−dependent, if there exists a sequence θ = (θr)r∈N of positive numbers, θr → 0 as
r → ∞, such that for any pair of disjoint finite sets I, J ⊂ Z

d and any pair of bounded
Lipschitz functions f : R

|I| → R and g : R
|J | → R one has

|cov(f(Xi, i ∈ I), g(Xj, j ∈ J))| ≤ Lip(f)Lip(g)(|I| ∧ |J |)θr. (1.1)

Here and below |V | stands for the cardinality of a finite set V, r = dist(I, J) = min{‖i−j‖ :
i ∈ I, j ∈ J} with the norm ‖z‖ = maxi=1,...,d |zi|, z = (z1, . . . , zd) ∈ Z

d, and, for
F : R

n → R,

Lip(F ) = sup
x6=y

|F (x) − F (y)|
|x1 − y1| + · · ·+ |xn − yn|

.

Note that one can apply (1.1) to unbounded Lipschitz functions f and g whenever
Ef 2(Xi, i ∈ I) <∞ and Eg2(Xj, j ∈ J) <∞.

The interest in studying model (1.1) is motivated by the following fact. There are
a number of important stochastic models in mathematical statistics, reliability theory
and statistical physics involving families of positively and negatively associated random
variables (see [13, 18, 14] for the exact definitions and examples, for further references see,
e.g., [7]). As shown by Bulinski and Shabanovich [8], a positively or negatively associated
random field with finite second moments satisfies (1.1), provided that the Cox-Grimmett
coefficient

θ̂r = sup
j∈Zd

∑

u∈Zd:‖u−j‖≥r

|cov(Xu, Xj)|, r ∈ N,

is finite and θ̂r → 0 when r → ∞. In this case one can take θ = (θ̂r)r∈N. There are also
examples of (1.1) which are not induced by association, see [11, 20].

A strong invariance principle for associated random sequences whose Cox-Grimmett
coefficient decreases exponentially was proved by Yu [22]. Recently Balan [1] extended
this result to associated random fields. The principal goal of this paper is to extend
the strong invariance principle to (BL, θ)−dependent random fields. The new maximal
inequality needed is given in Theorem 1.1.

For any finite V ⊂ Z
d, we let S(V ) =

∑
j∈V Xj. The sum over empty set is zero, as

usual. We call a block a set V = (a, b] := ((a1, b1] × · · · × (ad, bd])∩Z
d when a, b ∈ Z

d, a1 <
b1, . . . , ad < bd. Given a block V, set MV = maxW⊂V |S(W )| where the supremum is over
all the blocks W contained in V.

Assume that
Dp := sup

j∈Zd

E|Xj|p <∞ for some p > 2. (1.2)

We will use condition (1.1) specialized to a sequence θ with a power or exponential rate
of decreasing. Namely, either

θr ≤ c0r
−λ , r ∈ N, for some c0 > 1 and λ > 0, (1.3)

or
θr ≤ c0e

−λr , r ∈ N, for some c0 > 1 and λ > 0. (1.4)
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Introduce a function

ψ(x) =





(x− 1)(x− 2)−1, 2 < x ≤ 4,

(3 −√
x)(

√
x + 1)/2, 4 < x ≤ t20,

((x− 1)
√

(x− 2)2 − 3 − x2 + 6x− 11)(3x− 12)−1, x > t20

(1.5)

where t0 ≈ 2.1413 is the maximal root of the equation

t3 + 2t2 − 7t− 4 = 0.

Note that ψ(x) → 1 as x → ∞.
Now let us formulate the first of main results of this paper.

Theorem 1.1. Let X be a centered weakly dependent random field satisfying (1.2) and
(1.3) with λ > dψ(p) for ψ(p) defined in (1.5). Then there exist δ > 0 and C > 1 depending
only on d, p,Dp, c0 and λ such that for any block U ⊂ Z

d one has

E|S(U)|2+δ ≤ C|U |1+δ/2, EM(U)2+δ ≤ AC|U |1+δ/2 (1.6)

where A = 5d(1 − 2δ/(4+2δ))−d(2+δ).

Remark 1. Moment and maximal inequalities for associated random fields were ob-
tained in [4] and [6]. In paper [19] similar inequalities were proved for weakly dependent
random fields X = {Xj, j ∈ Z

d} under a stronger moment condition supj∈Zd E|Xj|4+δ <
∞, δ > 0. There was also established an inequality for a (BL, θ)−dependent field X hav-
ing only finite second moments when λ > 3d in (1.3), which permits to prove a weak
invariance principle in the strictly stationary case. That result does not comprise ours.

Remark 2. The condition on the rate of decrease of θr determined by the function ψ in
(1.5) is implied by a simple condition λ > d(p− 1)/(p− 2) because ψ(p) ≤ (p− 1)/(p− 2)
for all p > 2.

Now suppose that
σ2 :=

∑

j∈Zd

cov(X0, Xj) 6= 0. (1.7)

Note that (1.1) entails the convergence of series in (1.7) for a field X with EX 2
j <∞, j ∈

Z
d. As is generally known, for a wide-sense stationary field X one has

var(SN) ∼ σ2[N ] as N → ∞ (1.8)

where N ∈ N
d, [N ] = N1 . . . Nd, SN = S((0, N ]) and N → ∞ means that N1 →

∞, . . . , Nd → ∞.
Following [2], for any τ > 0, we introduce the set

Gτ =
d⋂

s=1

{
j ∈ N

d : js ≥
(∏

s′ 6=s

js′
)τ}

. (1.9)
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Theorem 1.2. Suppose that X is a wide-sense stationary weakly dependent centered
random field satisfying (1.2), (1.4) and (1.7). Then one can redefine X, without changing
its distribution, on a new probability space together with a d−parameter Wiener process
W = {Wt, t ∈ [0,∞)d}, so that for some ε > 0 the following relation holds

SN − σWN = O([N ]1/2−ε) a.s. (1.10)

as N → ∞, N ∈ Gτ and τ > 0.

Remark 3. The value ε in (1.10) depends on a field X. More precisely, ε is determined
by τ, the covariance function of X and parameters d, p,Dp, c0, λ. Note that Gτ = ∅ for
τ > 1/(d − 1), d > 1. One can easily obtain an analogue of Theorem 1.2 for wide-sense
stationary weakly dependent stochastic process (i.e. for d = 1).

2. Proof of Theorem 1.1

We fix some δ ∈ (0, 1], δ < p − 2. The exact value of δ will be specified later. Choose
Aδ > 0 (e.g., Aδ = 5) to ensure that

(x+ y)2(1 + x+ y)δ ≤ x2+δ + y2+δ + Aδ((1 + x)δy2 + x2(1 + y)δ)

for any x, y ≥ 0.
Let h(n) = min{k ∈ Z+ : 2k ≥ n}, n ∈ N. For any block V ⊂ Z

d having edges with
lengths l1, . . . , ld, we set h(V ) = h(l1) + · · ·+ h(ld).

We will show that for some C > 2(Dp ∨ 1) and all blocks U ⊂ Z
d

ES2(U)(1 + |S(U)|)δ ≤ C|U |1+δ/2. (2.1)

This is proved by induction on h(U). For h(U) = 0 (i.e. when |U | = 1) inequality (2.1) is
obviously true. Suppose now that (2.1) is verified for all U such that h(U) ≤ h0. Consider
a block U having h(U) = h0 + 1.

Let L be any of the longest edges of U. Denote its length by l(U). Draw a hyperplane
orthogonal to L dividing it into two intervals of lengths [l(U)/2] and l(U)− [l(U)/2], here
[·] stands for integer part of a number. This hyperplane divides U into two blocks U1 and
U2 with h(U1), h(U2) ≤ h0.

Lemma 2.1. There exists a value τ0 = τ0(δ) < 1 such that, for any block U ⊂ Z
d with

|U | > 1, one has
|U1|1+δ/2 + |U2|1+δ/2 ≤ τ0|U |1+δ/2.

Proof. Straightforward.

Observe that for the considered field X condition (1.3) implies the bound

ES2(U) ≤ (D2 + c0)|U | (2.2)

for any block U ⊂ Z
d.
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Set Qk = S(Uk), k = 1, 2. By induction hypothesis and Lemma 2.1,

ES2(U)(1 + |S(U)|)δ = E(Q1 +Q2)
2(1 + |Q1 +Q2|)δ ≤ C(|U1|1+δ/2 + |U2|1+δ/2)

+AδE((1 + |Q1|)δQ2
2 + (1 + |Q2|)δQ2

1)

≤ Cτ0|U |1+δ/2 + AδE
(
(1 + |Q1|)δQ2

2 + (1 + |Q2|)δQ2
1

)
. (2.3)

Our goal is to obtain upper bounds for E(1 + |Q1|)δQ2
2 and E(1 + |Q2|)δQ2

1. We proceed
with the first estimate only, the second one being similar. To this end, let us take positive
ζ < (1 − τ0)/(4Aδ) and introduce a block V letting

V = {j ∈ U2 : dist({j}, U1) ≤ ζ|U |1/d}.

Note that the induction hypothesis applies to V, since V ⊆ U2. Using the Hölder inequality
and (2.2), one shows that

E(1 + |Q1|)δQ2
2 ≤ 2E(1 + |Q1|δ)S2(V ) + 2E(1 + |Q1|)δS2(U2 \ V )

≤ 2(D2 + c0)|V | + 2(E|Q1|2+δ)δ/(2+δ)(E|S(V )|2+δ)2/(2+δ) + 2E(1 + |Q1|)δS2(U2 \ V )

≤ 2(D2 + c0)|U | + 2Cζ|U |1+δ/2 + 2E(1 + |Q1|)δS2(U2 \ V ). (2.4)

Fix any indices i, j ∈ U2 \ V and assume first that i 6= j. Then dist({j}, {i} ∪ U1) =
m > 0. For any y > 0, we define the function Gy by

Gy(t) = (|t| ∧ y)sign(t), t ∈ R, (2.5)

and for some y, z ≥ 1 introduce the random variables

QI
1 = Gy(Q1), Q

II
1 =

(
(1 + |Q1|)δ − (1 + |QI

1|)δ
)1/δ

,

XI
i = Gz(Xi), X

II
i = Xi −XI

i .

To simplify the notation we do not write QI
1,y, Q

II
1,y, X

I
i,z and XII

i,z. Obviously

|E(1 + |Q1|)δXiXj| ≤ |E(1 + |QI
1|)δXI

iXj|+

+ E(1 + |Q1|)δ|XII
i Xj| + E|QII

1 |δ|XI
iXj|. (2.6)

Note that Φ(v, w) = (1 + |Gy(v)|)δGz(w) is a bounded Lipschitz function with Lip(Φ) ≤
2yδ + z. Since X is a weakly dependent centered field, we can write

|E(1 + |QI
1|)δXI

iXj| = |cov((1 + |QI
1|)δXI

i , Xj)| ≤ (2yδ + z)θm. (2.7)

Let q be a positive number such that 1/q + δ/(2 + δ) + 1/p = 1, that is q = p(2 +
δ)/(2p− 2 − δ) < p. By the Hölder and Lyapunov inequalities,

E

(
1 + |Q1|)δ|XII

i Xj

∣∣∣ ≤ (E|XII
i |q)1/qD1/p

p

(
1 + (E|Q1|2+δ)δ/(2+δ)

)
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≤ 2Cδ/(2+δ)|U |δ/2
(
Dp

zp−q

)1/q

D1/p
p , (2.8)

the last estimate being due to induction hypothesis.
For r ∈ (δ, 2 + δ) to be specified later,

E|QII
1 |δ|XI

iXj| ≤ zE|QII
1 |δ|Xj| ≤ z

(
|cov(|QII

1 |δ, |Xj|)| + E|Xj|E|QII
1 |δ

)

≤ zδyδ−1θm + 2zyδ−rD1C
r/(2+δ)|U |r/2. (2.9)

The last inequality follows from the induction hypothesis and the fact that the function
v → ((1 + |v|)δ − (1 + y)δ)I{|v| ≥ y} is a Lipschitz one.

Now from (1.3) and (2.6)—(2.9), denoting T = 2c0(1 ∨Dp), we conclude that

|E(1 + |Q1|)δXiXj| ≤ TCr/(2+δ)
(
(yδ + z)m−λ + |U |δ/2z1−p/q + zyδ−r|U |r/2

)
. (2.10)

Let β, γ be positive parameters. Introduce y = |U |1/2mβλ, z = mγλ. Then in view of
(2.10) we obtain

|E(1 + |Q1|)δXiXj| ≤ TCr/(2+δ)

(
|U |δ/2

3∑

k=1

m−λνk +m−λν4

)

where

ν1 = 1 − δβ, ν2 = γ

(
p

q
− 1

)
, ν3 = (r − δ)β − γ, ν4 = 1 − γ.

Our next claim is the following elementary statement.

Lemma 2.2. For each d ∈ N, any block U ⊂ Z
d, every ν > 0 and arbitrary i ∈ U one

has ∑

j∈U,j 6=i

‖i− j‖−ν ≤ c(d, ν)f(|U |, d, ν) (2.11)

where c(d, ν) > 0 and

f(|U |, d, ν) =





|U |1−ν/d, 0 < ν < d, ν 6∈ N,

(1 + ln |U |)|U |1−ν/d, 0 < ν ≤ d, ν ∈ N,

1, ν > d.

Proof. The case d = 1 is trivial. For d ≥ 2, consider U = (a, b] ∩ Z
d. Without loss of

generality we can assume that l1 ≤ · · · ≤ ld where ls = bs − as, s = 1, . . . , d. It is easily
seen that

∑

j∈U,j 6=i

‖i− j‖−ν ≤ 3dd
d−1∑

s=0

∏

1≤m≤s

lm

ls+1∑

k=ls+1

kd−s−1−ν
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where l0 = 0 and a product over an empty set is equal to 1. Using the well-known estimates
for sums

∑r2
k=r1

kγ by means of corresponding integrals and the estimates

( ∏

1≤m≤s

lm

)
ld−s−ν ≤

( ∏

1≤m≤d

lm

)1−ν/d

for l = ls and l = ls+1 we come to (2.11). The Lemma is complete.

Now pick r close enough to 2 + δ and β, γ in such a way that λνk > d, k = 1, 2, 3. One
can verify that this is possible if

λ > λ1(d) = d
(2 + δ)(2p− 4 − δ)

4(p− 2 − δ)
. (2.12)

Moreover, to have simultaneously λν4 > (1 − δ/2)d it suffices to require

λ > λ2(d) = d
(

2 + δ

2(p− 2 − δ)
+ 1 − δ

2

)
. (2.13)

The condition imposed on λ in Theorem 1.1 enables us to satisfy (2.12) and (2.13) taking
δ small enough when p ≤ 4, respectively δ = p−√

p− 2 when 4 < p ≤ t20 and

δ =
2

3

(
p− 2 −

√
(p− 2)2 − 3

)

otherwise.
For arbitrary i ∈ U2 \ V, set

U2 = {j ∈ U2 \ V : ‖j − i‖ ≥ ζ|U |1/d}, Û2 = {j ∈ U2 \ V : ‖j − i‖ < ζ|U |1/d}.

By Lemma 2.2, for any i ∈ U2 \ V, we have

∣∣∣∣
∑

j 6=i,j∈U2\V

E(1 + |Q1|)δXiXj

∣∣∣∣ ≤
∣∣∣∣
∑

j∈U2

E(1 + |Q1|)δXiXj

∣∣∣∣

+

∣∣∣∣
∑

j∈Û2,j 6=i

E(1 + |Q1|)δXiXj

∣∣∣∣ ≤ TCr/(2+δ)|U |δ/2
(
4ζ−λν0 +

4∑

k=1

c(d, λνk)
)
, (2.14)

here ν0 = maxk=1,...,4 νk.
Now we treat the case of i = j ∈ U2\V. Obviously, one has δp/(p−2) < 2+δ. Therefore,

by Hölder’s inequality and induction hypothesis we infer that

E(1 + |Q1|)δX2
i ≤ (E|Xi|p)2/p

(
1 +

(
E|Q1|δp/(p−2)

)(p−2)/p
)

≤ TCδ/(2+δ)|U |δ/2. (2.15)
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¿From (2.14) and (2.15) one deduces that

E(1 + |Q1|)δS2(U2 \ V ) ≤
∣∣∣∣
∑

i,j∈U2\V
i6=j

E(1 + |Q1|)δXiXj

∣∣∣∣+
∑

i∈U2\V

E(1 + |Q1|)δX2
i

≤ |U | max
i∈U2\V

∣∣∣∣
∑

j 6=i,j∈U2\V

E(1 + |Q1|)δXiXj

∣∣∣∣+ TCδ/(2+δ)|U |1+δ/2

≤MCr/(2+δ)|U |1+δ/2 (2.16)

where M = T (1 + 4ζ−λν0 +
∑4
k=1 c(d, λνk)).

Employing (2.3), (2.4) and (2.16) we conclude that

ES2(U)(1 + |S(U)|)δ ≤
(
Cτ0 + 4Aδ(D2 + c0)4CAδζ + 4Cr/(2+δ)AδM

)
|U |1+δ/2.

The first assertion of the Theorem is now easily verified on account of (2.1) if C is so
large that

(1 − τ0 − 4Aδζ)C > 4AδMCr/(2+δ) + 4Aδ(D2 + c0).

The second assertion follows from the first one and the Moricz theorem [17]. �

3. Proof of Theorem 1.2

The proof adapts the approach of [1] and [2]. However, as the random field under con-
sideration possesses a dependence property more general than association, we have to
involve other results on normal approximation and partial sums behaviour. We also give
simplified proofs of some steps.

Let α > β > 1 be integers specified later. Introduce

n0 = 0, nl :=
l∑

i=1

(iα + iβ), l ∈ N. (3.1)

For k ∈ N
d, put k − 1 = (k1 − 1, . . . , kd − 1) and Nk = (nk1, . . . , nkd

). Set

Bk = (Nk−1,Nk], Hk =
d∏

s=1

(nks−1, nks−1 + kαs ], Ik = Bk \Hk,

uk = S(Hk), σ
2
k = var(uk), vk = S(Ik), τ

2
k = var(vk).

(3.2)

We can redefine the random field {uk} on another probability space together with a
random field {wk, k ∈ N

d} of independent random variables such that wk ∼ N(0, τ 2
k ) and

the fields {uk} and {wk} are independent.
Further on we will denote by C any positive factor which could depend only on

d, c0, λ, p,Dp, τ and the covariance function of the field X except when specially men-
tioned. Occasionally when C is a positive random variable, we write C(ω).3 Now we pass

3A point ω, in general, belongs to an extension of the initial probability space.
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to a number of lemmas. In their formulations, the requirements “(1.3) holds” or “(1.4)
holds” mean that the field X is (BL, θ)−dependent with the decrease of θ as mentioned.

Due to weak stationarity and (1.7), we have σ2
k > 0 for any k ∈ N

d. There exists k0 ∈ N

such that τ 2
k > 0 for all k ∈ N

d with mins=1,...,d ks ≥ k0. This is an immediate consequence
of the following statement.

Lemma 3.1. Let X be a random field such that D2 <∞ and (1.4) holds. Then, for any
finite union V of disjoint blocks Vq, one has

σ2 − 1

|V |var(S(V )) = O(l(V )−1/2), as l(V ) → ∞, (3.3)

where l(V ) is the minimal edge of all the blocks Vq.

Proof. We have

∣∣∣∣σ
2|V | − var(S(V ))

∣∣∣∣ =

∣∣∣∣∣∣
∑

j∈V,k 6∈V

cov(Xj, Xk)

∣∣∣∣∣∣
= |Σ1 + Σ2|,

where Σ1 is the sum over k 6∈ V and all j’s such that dist({j}, {Z
d\V }) ≥ l(V )1/2, and Σ2

is taken over k 6∈ V and the rest j ∈ V. By weak dependence |Σ1| ≤ C|V | exp
{
−λl(V )1/2

}
.

Furthermore, |Σ2| ≤ 2dC|V |l(V )−1/2 with C =
∑
k∈Zd |cov(X0, Xk)| <∞ and the Lemma

is true.

In what follows, we will consider only k “large enough”, that is having mins ks ≥ k0.
For such k and x ∈ R let

ξk =
uk + wk√
σ2
k + τ 2

k

, Fk(x) = P(ξk ≤ x). (3.4)

Then ξk has a density fk(x).
Analogously to [1] we introduce the random variables

ηk = Φ−1(Fk(ξk)), ek =
√
σ2
k + τ 2

k (ξk − ηk), k ∈ N
d,

where Φ(x) = (2π)−1/2
∫ x
−∞ e−t

2/2dt.
Let ρ = τ/8, L be the set of all indices i corresponding to the (“good”) blocks Bi ⊂ Gρ,

and H be the set of points in N
d which belong to some good block. For each point

N = (N1, . . . , Nd) ∈ H, let N (1), . . . , N (d) be the points defined as follows:

N
(s)
s′ := Ns′, s

′ 6= s and N (s)
s := min

n∈H
n

s′
=N

s′
,s′ 6=s

ns.

We consider also the sets

Rk = (Mk,Nk] where Mk = ((N
(1)
k )1, . . . , (N

(d)
k )d), Lk = {i : Bi ⊂ Rk}.
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Clearly,

S(Rk) =
∑

i∈Lk

ei +
∑

i∈Lk

√
|Bi|



√√√√σ2

i + τ 2
i

|Bi|
− σ


 ηi

+
∑

i∈Lk

σ
√
|Bi|ηi −

∑

i∈Lk

wi +
∑

i∈Lk

vi. (3.5)

If V = (a, b] ∩ Z
d
+ is a block in Z

d
+ for some a, b ∈ Z

d
+, and V = (a, b] ⊂ R

d
+, then

set W (V ) := W (V ). Here W (V ) is defined as usual (i.e. the signed sum of W (tl) where
tl, l = 1, . . . , 2d, are the vertices of V ).

Lemma 3.2. If (1.2), (1.3) and (1.7) are satisfied, then for any k ∈ L

sup
x∈R

|Fk(x) − Φ(x)| ≤ C[k]−αµ

where µ > 0 does not depend on k.

Proof. If X is a weakly dependent random field and we replace some of the variables
Xj with independent from X and mutually independent random variables Yj, then the
random field X ′ = {X ′

j, j ∈ N
d} obtained is again weakly dependent with the same

sequence θ = (θr)r∈N (cf. [12]). Moreover, note that if X ′
j = Yj ∼ N(0, τ 2

k/|Ik|) for j ∈ Ik
and X ′

j = Xj for other j ∈ Z
d then for some C > 0,

1

|Bk|
var

( ∑

j∈Bk

X ′
j

)
≥ σ2

k + τ 2
k

2d[k]α
≥ C (3.6)

for any Bk ⊂ Gρ, k ∈ N
d. This is true since the middle expression in (3.6) is always positive

and in view of (1.8) and (3.3) has positive limit as k → ∞, k ∈ L. Now the desired result
follows from Theorem 4 of [9] by standard Bernstein’s technique, analogously to Theorem
5 of that paper.

Lemma 3.3. Under conditions (1.2), (1.3) and (1.7) for any K ∈ (0,
√

2αµ) one has

|Φ−1(Fk(x)) − x| ≤ C[k]−αµ+K2/2

if |x| ≤ K
√

ln[k]. Here C may also depend on K.

Proof. Follows the main lines of that given in [10] (Lemmas 2 and 3).

Lemma 3.4. If (1.2), (1.4) and (1.7) hold, then

Ee2k ≤ C[k]α−ε0

for ε0 = αµδ/(2 + 2δ) where δ > 0 is the same as in Theorem 1.1 and µ is the same as
in Lemma 3.2.

10



Proof. In view of (2.2) our task is to show that E(ηk − ξk)
2 ≤ C[k]−ε0. To this end we

take K from Lemma 3.3 and write

E(ηk − ξk)
2 = E(ηk − ξk)

2
I{|ξk| ≤ K

√
ln[k]} + E(ηk − ξk)

2
I{|ξk| > K

√
ln[k]}

≤ C[k]−αµ+K2/2 + (E|ηk − ξk|2+δ)2/(2+δ)(P(|ξk| > K
√

ln[k]))δ/(2+δ)

≤ C[k]−αµ+K2/2 + C(P(|ηk| > K
√

ln[k]))δ/(2+δ)

+C|P(|ξk| > K
√

ln[k]) − P(|ηk| > K
√

ln[k])|δ/(2+δ)

≤ C([k]−αµ+K2/2 + [k]−K
2δ/2(2+δ) + [k]−αµδ/(2+δ))

by Lemmas 3.2 and 3.3 and Theorem 1.1. The optimization in K yields the result.

Lemma 3.5. If (1.2), (1.4), (1.7) hold and α− β ≤ ε0/4, then

sup
x∈R

|fk(x) − f(x)| ≤ C

where f(x) = (2π)−1/2e−x
2/2, fk appeared after (3.4) and ε0 is the same as in Lemma 3.4.

Proof. Let ϕk(t) = E exp{itξk}, ϕ̂k(t) = E exp{ituk/
√
σ2
k + τ 2

k}, ϕ(t) = e−t
2/2, where t ∈

R, i2 = −1. Note that

ϕk(t) = ϕ̂k(t) exp
{
−τ 2

k t
2/2(σ2

k + τ 2
k )
}
.

By Lemma 3.4, for any t ∈ R

|ϕk(t) − ϕ(t)| ≤ E| exp{itξk} − exp{itηk}| ≤ |t|E|ξk − ηk| ≤ C|t|[k]−ε0/2.

Therefore for any T > 0 and any x ∈ R, denoting νk = τ 2
k/(σ

2
k + τ 2

k ), one has

|fk(x) − f(x)| ≤ 1

2π

∫

R

|ϕk(t) − ϕ(t)|dt ≤ 1

2π

∫

|t|≤T
|ϕk(t) − ϕ(t)|dt

+
1

2π

∫

|t|≥T

(
|ϕ̂k(t)|e−t

2νk/2 + ϕ(t)
)
dt ≤ CT 2[k]−ε0/2 + C

∫ ∞

T
e−t

2/2dt

+C
∫ ∞

T
e−νkT t/2dt ≤ C

(
T 2[k]−ε0/2 + 1 +

1

Tνk
exp

{
−T

2νk
2

})
.

The lemma follows if we take T = [k]α−β.

Remark 4. Clearly the condition α− β ≤ ε0/4 is equivalent to

(α/β)(1 − µδ/8(1 + δ)) ≤ 1. (3.7)

Note that in Lemmas 3.4, 3.5 and Lemma 3.6 below one can replace condition (1.4) on λ
with that used in Theorem 1.1.

Two lemmas which follow can be proven analogously to Lemmas 3.6 and 3.9 in [1].
11



Lemma 3.6. Suppose that (1.2), (1.4), (1.7) hold and α is so large that ε0 > 2. Then
there exists ε1 > 0 such that

∑

i∈Lk

|ei| ≤ C(ω)[Nk]
1/2−ε1 a.s.

Lemma 3.7. Assume that D2 <∞. If (1.3) holds and α−β > 6/ρ then, for some ε2 > 0,

∑

i∈Lk

(|vi| + |wi|) ≤ C(ω)[Nk]
1/2−ε2 a.s.

Lemma 3.8. Suppose that D2 < ∞. If (1.4), (1.7) hold and β > 6/ρ then, for some
ε3 > 0,

∑

i∈Lk

√
|Bi|


σ −

√√√√σ2
i + τ 2

i

|Bi|


 |ηi| ≤ C(ω)[Nk]

1/2−ε3 a.s. (3.8)

Proof. With the help of an inequality

∣∣∣∣σ −
√√√√σ2

i + τ 2
i

|Bi|

∣∣∣∣ ≤ σ−1
∣∣∣∣σ

2 − 1

|Bi|
var(ui + wi)

∣∣∣∣ ≤ C[i]−βρ/4

ensuing from Lemma 3.1, we come to (3.8) applying arguments analogous to those proving
Lemma 3.8 in [1].

Lemma 3.9. Suppose that X = {Xj, j ∈ Z
d} is a weakly dependent random field and

Y = {Yj, j ∈ Z
d} is a field consisting of independent random variables and independent

of X. Let I, J ⊂ Z
d be disjoint finite sets and f : R

|I| → R, g : R
|J | → R be bounded

Lipschitz functions. Then

|cov(f(XI + YI), g(XJ + YJ))| ≤ Lip(f)Lip(g)(|I| ∧ |J |)θr (3.9)

for r = dist(I, J), that is, such addition of Y does not alter the property (1.1).

Proof. By a smoothing procedure we can reduce the general case to that of the random
vector (YI , YJ) with a density q(t1, t2) = qI(t

1)qJ(t
2), here t1 ∈ R

|I|, t2 ∈ R
|J |. Evidently

(3.9) is true for a field Y consisting of some constants. Thus by independence hypothesis,
the Fubini theorem and (1.1) we have

|cov(f(XI + YI), g(XJ + YJ))| =
∣∣∣∣
∫∫

cov(f(XI + yI), g(XJ + yJ))q(yI, yJ)dyIdyJ

∣∣∣∣

≤ Lip(f)Lip(g)(|I| ∧ |J |)θr
∫∫

q(yI, yJ)dyIdyJ = Lip(f)Lip(g)(|I| ∧ |J |)θr

where the double integral is taken over R
|I| × R

|J |.

12



Lemma 3.10. (Lemma 4.3 in [1]). There exists a bijection ψ : Z+ → L with the following
properties:

l < m⇒ ∃s∗ = s∗(l, m) ∈ {1, . . . , d} such that ψ(l)s∗ ≤ ψ(m)s∗,

∃m0 ∈ Z+ such that m ≤ [ψ(m)]γ0 ∀m ≥ m0,

for any γ0 > (1 + 1/ρ)(1 − 1/d).

Set Ym = ηψ(m), m ∈ Z+.

Lemma 3.11. If (1.2), (1.4), (1.7) and (3.7) hold, then for every m ∈ N, m > 1, and all
t = (t1, . . . , tm) ∈ R

m one has

∣∣∣∣E exp
{
i
m∑

l=1

tlYl

}
− E exp

{
i
m−1∑

l=1

tlYl

}
E exp

{
itmYm

}∣∣∣∣ ≤ Cm∆γ, i2 = −1, (3.10)

where

∆ =
[ψ(m)]α

m
θr

m∑

l=1

t2l , r = dist
(
Hψ(m),∪m−1

l=1 Hψ(l)

)
, γ =





1, ∆ > 1,

1/3, ∆ ≤ 1
(3.11)

and the cubes Hk were defined in (3.2).

Proof. Let M > 0 be a number to be specified later and GM(t) be the function defined
in (2.5). We set Yj,M = GM(ηψ(j)), j ∈ Z+. Note that

| exp{itYj,M} − exp{itYj}| ≤ 2I{|Yj| > M}, t ∈ R.

Therefore, we have ∣∣∣∣cov
(
exp

{
i
m−1∑

l=1

tlYl

}
, exp

{
−itmYm

})∣∣∣∣

≤
∣∣∣∣cov

(
exp

{
i
m−1∑

l=1

tlYl,M

}
, exp

{
−itmYm,M

})∣∣∣∣+ 4
m∑

l=1

P{|Yl| > M}. (3.12)

Every summand in (3.12) except for first one is not greater than Ce−M
2/2. To estimate

the first summand in the right hand side of (3.12), we notice that, for any k ∈ N
d, the

random variable ηk,M is a Lipschitz function of ξk. Indeed, Lip(Fk) ≤ C by Lemma 3.5
and ηk,M = hM(Fk(ξk)) where

hM (x) =
(
|Φ−1(x)| ∧M

)
sign(Φ−1(x)), x ∈ R.

Clearly Lip(hM ) ≤
√

2πeM
2/2. By Lemma 3.9, one can estimate the covariance in the

same way as if the normal variables wk, k ∈ N
d were constants, and with the help of (3.6)

we obtain

∣∣∣∣cov
(
exp

{
i
m−1∑

l=1

tlYl,M

}
, exp

{
−itmYm,M

})∣∣∣∣ ≤ Cθre
M2
[
ψ(m)]α

m∑

l=1

t2l (3.13)
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Thus, from (3.12)—(3.13) we see that

∣∣∣∣cov
(
exp

{
i
m−1∑

l=1

tlYl

}
, exp

{
−itmYm

})∣∣∣∣ ≤ C
(
me−M

2/2 + eM
2

[ψ(m)]αθr
m∑

l=1

t2l

)
.

The result follows now by optimization in M.

Lemma 3.12. Suppose that (1.2), (1.4), (1.7), (3.7) hold and β > 2γ0/ρ where γ0 appears
in the formulation of Lemma 3.10. Then we can redefine the random field X, without
changing its distribution, on a new probability space together with a d−parameter Wiener
process W = {Wt, t ∈ [0,∞)d}, such that for some ε4 > 0

∑

i∈Lk

σ
√
|Bi|

∣∣∣∣∣∣
ηi −

W (Bi)√
|Bi|

∣∣∣∣∣∣
≤ C(ω)[Nk]

1/2−ε4 a.s. (3.14)

Proof. Arguing as in the proof of Lemma 4.4 of [1], we see that by Berkes-Philipp strong
approximation result ([3]) it is enough to establish the following fact. There exist sequences
κm > 0 and zm > 104m2 (m ∈ N, m > 1) such that

1. for any m ∈ N, m > 1, and all t = (t1, . . . , tm) ∈ R
m with

∑m
l=1 t

2
l ≤ z2

m one has

∣∣∣∣E exp
{
i
m∑

l=1

tlYl

}
− E exp

{
i
m−1∑

l=1

tlYl

}
E exp

{
itmYm

}∣∣∣∣ ≤ κm,

2. z−1/4
m ln zm + exp{−3z1/2

m /16}m1/2z1/4
m + κ

1/2
m zm+1/4

m = O(m−2), m→ ∞.

We take zm = 104mq, q > 8. Then it suffices to prove that one can take κm =
O(exp{−AmR}), m→ ∞, for some A > 0, R > 1.

The distance r between Hm and any of the blocks H1, . . . , Hm−1 is by construction not
less than mins=1,...,d(ψ(m)s − 1)β. But since ψ(m) ∈ L, by Lemma 3.10 for m > m0 we
have

r ≥ C min
s=1,...,d

ψ(m)βs ≥ C[ψ(m)]ρβ/2 ≥ Cmρβ/2γ0 . (3.15)

¿From Lemma 3.10 one can also easily see that for large enough m

[ψ(m)] ≤ C min
s=1,...,d

ψ(m)2/ρ
s ≤ Cm2/ρ. (3.16)

Obviously, ∆1 := Cm2q+2α/ρ exp{−Cλmρβ/2γ0} < 1 for all m large enough. Therefore, for
such m, by Lemma 3.11, (1.4), (3.15) and (3.16), one has

∣∣∣∣E exp
{
i
m∑

l=1

tlYl

}
− E exp

{
i
m−1∑

l=1

tlYl

}
E exp

{
itmYm

}∣∣∣∣ ≤ Cm∆γ ≤ Cm∆
1/3
1

where ∆ and γ are defined in (3.11). Thus one can take A = 1, R ∈ (1, ρβ/2γ0). The
lemma is proved.
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Now we estimate the terms S((0,Nk] \Rk), σW ((0,Nk] \Rk), SN − S((0,Nk]), σWN −
σW ((0,Nk]) when N ∈ Gτ and Nk < N ≤ Nk+1. Here the relation a < b (a ≤ b) for
a, b ∈ Z

d is defined in the usual way. All the terms involving the Wiener process can
be considered as sums of independent identically distributed normal random variables,
therefore forming a weakly dependent field, we will proceed only with the partial sums
generated by X. Obviously one can write

|S((0,Nk] \Rk)| ≤
d∑

s=1

2d−sMs(Nk), (0, N ] \ (0,Nk] = ∪JI(J)
k

where Ms(N) = maxn≤N(s) |Sn|, I(J)
k =

∏
s∈J(nks

, Ns]×
∏
s6∈J(0, nks

] and the union is taken
over all non-empty subsets J of {1, . . . , d}. Furthermore,

max
Nk<N≤Nk+1

|SN − S((0,Nk])| ≤
∑

J

M
(J)
k where M

(J)
k = sup |S(I

(J)
k )|,

here the supremum is taken over all N such that nks
< Ns ≤ nks+1, s ∈ J.

Lemma 3.13. Suppose that conditions of Theorem 1.1 are satisfied. Then there exists
δ > 0 such that for any x > 0 and any block V,

P(M(V ) ≥ x
√
|V |) ≤ Cx−2−δ.

Proof. Follows from the second assertion of Theorem 1.1 and the Markov inequality.

Lemma 3.14. Let conditions of Theorem 1.1 hold. If (1.7) is true then there exists γ1 > 0
such that for any block V = (m,m + n] with n ∈ Gρ and m ∈ Z

d
+

P(M(V ) ≥ |V |1/2(ln |V |)d+1) ≤ C|V |−γ1 ,

where C does not depend on m and n.

Proof. The proof is the same as that for the second inequality of Lemma 7 in [2]; the

needed Berry-Esseen type estimate for P(S(V ) ≥ x
√
|V |), x > 0, can be obtained from

the results mentioned in the proof of Lemma 3.2.

The next two lemmas are proved analogously to Lemmas 6 and 9 established in [2] for
mixing random fields.

Lemma 3.15. Assume that conditions of Theorem 1.1 are satisfied and α > 8/(3τ) − 1.
Then

max
s=1,...,d

Ms(Nk) ≤ C(ω)[Nk]
1/2−ε5a.s.

for some ε5 > 0 and every Nk ∈ Gτ .

Lemma 3.16. Suppose that conditions of Theorem 1.1 hold and (1.7) is true. Let γ1 be
the constant given by Lemma 3.14. If α > 2/γ1 then one has

max
J

M
(J)
k ≤ C(ω)[Nk]

1/2−ε6 a.s.

for some ε6 > 0 and every Nk ∈ Gρ.
15



Now, if we take γ0, α, β to satisfy conditions

γ0 >

(
1 +

1

ρ

)(
1 − 1

d

)
,
α

β

(
1 − µδ

8(1 + δ)

)
< 1, β >

6

ρ
,

α− β >
6

ρ
, β >

2γ0

ρ
, α >

8

3τ
− 1, αγ1 > 2,

then Theorem 1.2 follows from (3.5), Lemmas 3.6, 3.7, 3.8, 3.12, 3.15 and 3.16 with
ε = mini=1,...,6 εi. The proof of Theorem 1.2 is completed. �

4. The law of the iterated logarithm

In order to provide applications of Theorem 1.2, we state now the law of the iterated
logarithm for weakly dependent random fields. This is the first result of such type for the
fields with dependence condition (1.1); it generalizes the laws of the iterated logarithm
known for positively and negatively associated random variables, see, e.g., [5].

For x > 0, set Log x = log(x ∨ e).
Theorem 4.1. Suppose that X is a random field satisfying all the conditions of Theorem
1.2. Then, for any τ ∈ (0, 1/(d− 1)), one has, almost surely,

lim sup
SN√

2dσ2[N ]LogLog[N ]
= 1 and lim inf

SN√
2dσ2[N ]LogLog[N ]

= −1,

as N → ∞, N ∈ Gτ .

Proof. We have lim supWN/
√

2dσ2[N ]LogLog[N ] ≤ 1, due to the LIL for d−parameter

Wiener process [23]. The fact that this upper limit is not less than 1 as N → ∞, N ∈ Gτ ,
can be proved in the same way as the lower bound in classical law of the iterated logarithm
for the Wiener process. Thus, Theorem follows from Theorem 1.2.

Acknowledgements

This work is partially supported by the RFBR grant 03-01-00724, by the grant 1758.2003.1
of Scientific Schools and by the INTAS grant 03-51-5018.

A.Bulinski is grateful to the Department of Probability Theory and Stochastic Models
of the University Paris-VI for hospitality.

16



References

[1] Balan, R. (2004). A strong invariance principle for associated random fields. To
appear in Ann. Probab. (see also LRSP Technical Report 390, Carleton University,
1–18).

[2] Berkes, I. and Morrow, G. (1981). Strong invariance principle for mixing random
fields. Z. Wahrsch. verw. Gebiete 57 15–37. MR623453

[3] Berkes, I. and Philipp, W. (1979). Approximation theorems for independent and
weakly dependent random vectors. Ann. Probab. 7 29–54. MR515811

[4] Bulinski, A. V. (1993). Inequalities for the moments of sums of associated multi-
indexed variables. Theory Probab. Appl. 38 342–349. MR1317986

[5] Bulinski, A. V. (1995). A functional law of the iterated logarithm for associated
random fields. Fundam. Appl. Math. 1 623–639. MR1788546

[6] Bulinski, A. V. and Keane, M. S. Invariance principle for associated random
fields. J. Math. Sci. 81 2905–2911. MR1420893

[7] Bulinski, A. V. and Suquet, Ch. (2001). Normal approximation for quasi- asso-
ciated random fields. Statist. Probab. Lett. 54 215–226. MR1858636

[8] Bulinski, A. V. and Shabanovich, E. (1998). Asymptotical behaviour of some
functionals of positively and negatively dependent random fields. Fundam. Appl.
Math. 4 479–492. MR1801168

[9] Bulinski, A. V. and Shashkin, A. P.(2004). Rates in the central limit theorem
for sums of dependent multiindexed random vectors. J. Math. Sci. 122 3343–3358.
MR2078752
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