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Abstract

The topological analysis of deterministic chaos based on a knot-theoretic characterization of unstable

periodic orbits has proved a powerful method, however knot theory can only be applied to three-dimensional

systems. Still, the core principles upon which this approach is built, determinism and continuity, apply in

any dimension. We propose an alternative framework in whichthese principles are enforced on triangulated

surfaces rather than curves. As a first step toward a formalism applicable in higher dimensions, we show

that in dimension three our approach predicts the correct topological entropies for periodic orbits of the

horseshoe map.

PACS numbers: 05.45.-a
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A dynamical system is naturally described as a flow connecting states to other states in a phase

space. Chaotic behavior occurs when trajectories become unstable to perturbations, and results

from the interplay of two geometrical processes:stretchingseparates neighboring trajectories ex-

ponentially fast whilesqueezingmaintains the flow within a bounded region [1, 2, 3]. A topo-

logical analysis has been developed to classify the ways in which the stretching and squeezing

mechanisms can organize a chaotic attractor [2, 3, 4, 5]. It relies on a theorem stating that un-

stable periodic orbits (UPO) of a chaotic three-dimensional (3D) flow can be projected onto a 2D

branched manifold (atemplate) without modifying their knot invariants [6]. This property has

been harnessed to design an analysis of experimental time series [4, 5] that seeks to determine

the simplest template compatible with the topological invariants of UPO extracted from the time

series [2, 3].

Although the relevance of this approach has been confirmed inseveral experiments [2, 3, 5],

it can only be applied to 3D attractors: in higher dimensions, all knots can be deformed into

each other. A first step to overcome this limitation is to recognize that knot theory is not a core

ingredient of topological analysis but simply a convenientway to study how two fundamental

properties, determinism and continuity, constrain trajectories in phase space. It is because two

trajectories cannot intersect that the knot type of a 3D periodic orbit is well defined and that it is

not modified as the orbit is deformed under control parametervariation. Thus, we need to build

a framework where UPO are characterized by mathematical objects playing the same role in any

phase space dimension as knot invariants in dimension three, i.e., that can classify periodic orbits

according to whether they can be deformed into each other without violating determinism and

continuity.

In this paper, we propose a formalism which enforces the non-intersection requirement on ob-

jects whose dimension varies with that of phase space, yet remains applicable to UPO extracted

from experimental signals. It is based on a representation of the dynamics in a triangulated space

whose nodes are periodic points in a Poincaré section. In dimension three, its explicit construction

is easy, and we find that the new formalism predicts the correct topological entropies for periodic

orbits of the horsehoe map. This is an important result because a positive-entropy orbit is a pow-

erful indicator of chaos [5, 7]; it suggests that we have captured a key ingredient for constructing

a knotless topological analysis. However, all the details of the higher-dimensional theory are not

yet understood, and we postpone its description to a future work.

We now detail our approach. A first step is to replace the requirement of non-intersecting
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curves by a geometrical problem that adapts naturally to phase spaces of any dimension. It has

been suggested to exploit the fact that invariant manifoldsof UPO have a rigid structure [5, 8].

In this work, we note that a consequence of determinism is that as a volume elementV of a

d-dimensional phase space is advected by a chaotic flowΦt , the imageΦt(∂V) of its boundary,

although stretched and squeezed, cannot display self-intersections: at any timet, its interior and its

exterior remain distinct, as with a droplet in a fluid flow. A technical formulation of this property

is that volume orientation is preserved by the dynamics.

For the sake of simplicity, we restrict ourselves to attractors embedded inRn×S1 (e.g., forced

systems), that can be sliced inton-dimensional Poincaré sections parameterized byϕ ∈ S1. The

non-intersection theorem can then be applied to boundariesof n-dimensional volume elements of

Poincaré sections (Fig. 1). In particular, successive images of a boundary by a first return map

should all have the same orientation.

ϕ

FIG. 1: Under the action of the flow, volume elements of Poincaré sections and their boundaries are stretched

and squeezed but retain their orientation, as illustrated here for 2D section planes.

Topological analysis must be applicable to UPO extracted from experimental signals, thus the

only piece of data on which it can rely is the trajectory in phase space of a period-p orbit, i.e., the

positions in successive Poincaré sections of itsp intersections. From these data, we must obtain

information on the evolution of surfaces attached to these periodic points.

To this end, we represent the dynamics in a triangulated space whose nodes arepperiodic points

Pi in a Poincaré section, withPi+1 = F(Pi), F being the return map. In this space, pointsPi are

0-cells, line segments〈Pi ,Pj〉 ≡ 〈i j 〉 joining two points are 1-cells, triangles〈Pi,Pj ,Pk〉 ≡ 〈i jk〉 are

2-cells, etc (Fig. 2a). A collection of contiguousm-cells (e.g., triangles linked through their edges)

is the analog in this space of am-dimensional surface in the original phase space. We denoteby
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Sm the set of such collections. Unlike in [9] where similar concepts were used to analyze the static

structure of the attractor, we focus here on the dynamics. AsPoincaré sections are swept, periodic

points move in the section plane and so do them-cells attached to them (Fig. 2b). Ideally, the

dynamics induced inSm should reflect that ofm-dimensional phase-space surfaces under action of

the chaotic flow, and in particular be organized by the same stretching and squeezing mechanisms.

Pi

Pl

Pm

Pk

Pj

(a)

(b)
ϕ=0

ϕ=2π

FIG. 2: (a) Triangulated space based on periodic pointsPi in a 3D Poincaré section. The 2-cell〈ikl〉 is

shaded. (b) The flow induces a mapping of this triangulated space into itself, as illustrated here for a period-

5 orbit embedded inR2×S1.

As illustrated by Fig. 2b, we want to lift dynamical information from S0 = {Pi} to m-th order

spacesSm by constructing a set{F0,F1, . . . ,Fn} of mapsFm : Sm → Sm that can be viewed as

induced by the same Poincaré return mapF. These maps should be continuous, invertible and

satisfy determinism. Because periodic points are mapped to periodic points under F, we expect

that eachm-cell is mapped underFm to another cell or to a set of contiguous cells. Since the volume

elements of the triangulated space are then-dimensional simplices〈i1i2 . . . inin+1〉, we focus here

on constructing a dynamicsFn−1 : Sn−1 → Sn−1 of their boundaries. As we see below, this can

be achieved by keeping track of changes of orientation ofn-dimensional simplices as Poincaré

sections are swept.

For clarity, we now specialize to the 3D case. The simplest volume element of a triangulated

set of periodic points in a 2D Poincaré section is a triangle(2-cell) based on three periodic points

Pi , Pj , Pk. Denote byPi(ϕ) the position of periodic pointPi in the section plane labeled byϕ,

with Pi(0) = Pi andPi(2π) = Pi+1.The simplest description of the evolution ofT = 〈Pi,Pj ,Pk〉 in

4



successive Poincaré sections is given by

T(ϕ) = 〈Pi(ϕ),Pj(ϕ),Pk(ϕ)〉. (1)

This would lead to a trivial induced return map

F2(T) = T(2π) = 〈Pi+1,Pj+1,Pk+1〉, (2)

if additional rules were not required to enforce determinism and continuity. As long asT(ϕ)

retains its initial orientation, Eq. (1) is adequate. However, it commonly happens that at some time

ϕ = ϕ0, one of the three points [sayPk(ϕ)] passes between the two others, thereby changing the

orientation of the triangle〈Pi(ϕ),Pj(ϕ),Pk(ϕ)〉 (Fig. 3). A naive application of Eq. (1) would then

imply thatT = T(0) andF2(T) = T(2π) have different orientations. As emphasized above, this is

strictly forbidden by determinism, and we must thus modify the representation of the dynamics. It

turns out that there exists a simple and elegant solution to this problem.

T( )2π

0ϕT( )

k k

j

j

k

j

T(0)

i
i

i

FIG. 3: As three points move in the section plane, the triangle they form can change its orientation.

A degenerate triangle (such asT(ϕ0) in Fig. 3) is similar to a flattened balloon whose bound-

ary can be decomposed into two superimposed sides with opposing outer normals. Determinism

appears to be violated when these two sides seemingly go through each other so that interior and

exterior, as defined with respect with the outer normal, seemto be exchanged. However, only the

motion of points is fixed by the experimental data, the dynamics of surfaces is interpolated from

this information. Determinism violation can thus result from an incorrect interpretation of point

motion. To preserve determinism, we assume that the two opposing sides actually do not cross and

enforce this fact in the dynamics by swapping the two sides atthe degeneracy, thereby canceling

the inversion.
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This prescription is illustrated in Fig. 4 where the two opposing sides at triangle degeneracy

are represented as a solid and a dashed line, respectively. The key point is that we construct the

edge dynamics so that the left (solid line) and right (dashedline) sides remain at the left and

right, respectively. Since the left (resp., right) side consists of itinerary〈ik〉+ 〈k j〉 (resp.,〈i j 〉)

before degeneracy and of itinerary〈i j 〉 (resp.〈ik〉+ 〈k j〉) after degeneracy, their relative position

is preserved by associating triangle inversion with the following dynamical rule inS1 = Sn−1:

〈i j 〉 → 〈ik〉+ 〈k j〉 (3a)

〈ik〉+ 〈k j〉 → 〈i j 〉 (3b)

These rules also apply to reverse paths (e.g.,〈 ji〉 → 〈 jk〉+ 〈ki〉 follows from (3a)).

k k k

jjj

i i i

FIG. 4: A triangle is inverted asPk passes betweenPi andPj . Identifying the solid (resp., dashed) paths in

the initial and end configurations leads to substitution (3).

It is easy to check that∂T = ∂〈i jk〉 = 〈i j 〉+(〈 jk〉+ 〈ki〉) is mapped to(〈ik〉+ 〈k j〉)+ 〈 ji〉 =

∂〈ik j〉 by (3). This change in point ordering compensates for the change in the triangle orientation

so that orientation of∂T, and hence determinism, is preserved. Practically, itineraries visiting

edgesei j = 〈i j 〉 in a given order can be viewed as words in a languageA ∗ over alphabetA = {elm},

and (3) as a substitution operatorσk
i j that in each wordw replaces the letterei j by the stringeikek j

andeikek j by ei j [hence(σk
i j )

2 = 1]. For example,

σk
i j ekleliei j ejl eli eikek jeji . . . = ekleli eikek jejl eli ei j ejkeki . . .

The σk
i j generate a non-trivial dynamics, as the image of an itinerary depends on how periodic

points rotate around each other. In spite of its simplicity,this dynamics faithfully reflects that of

the flow around the periodic orbit, as we now show by computingthe topological entropy of the

orbit.
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By following the motion of intersections of an orbitP with consecutive section planes

[Fig. 2(b)], we record a list ofl triangle inversionsσkm
im jm. From this list, we build a substitution

dynamical system that transforms a wordw∈ A ∗ into another word according to:

F1 : w→ w′ = Nσkl
i l j l

· · ·σk2
i2 j2

σk1
i1 j1

w, (4)

whereN ei j · · · = e(i+1)( j+1) · · · . Consider the case of the periodic orbit 00111 of the standard

horseshoe map equipped with the usual symbolic coding [2] (Figs. 2b and 5a). We find that

the induced return map isF1 = Nσ4
23σ4

25σ4
13σ4

15, leading to the substitution system (we only give

asymptotically relevant rules and omit those for reverse paths):

e14 → e25, e15 → e25e51, e25 → e35e51, e35 → e41. (5)

Table I displays iteratesFm
1 (w) of w = e15 computed using (5). Their length|Fm

1 (w)| diverges

exponentially asm→ ∞, indicating that trajectories in the neighborhood of the orbit are continu-

ously stretched apart by the flow. The growth rate:

hT(P) = lim
m→∞

ln |Fm
1 (w)|

m
(6)

should be equal to the topological entropy of the periodic orbit [10], a powerful indicator of

chaos [5, 7]. It is obtained as the logarithm of the leading eigenvalue of the incidence matrix

(Mee′), whose entries indicate how many times edgee′ or its reverse edge occurs inF1(e). Here,

hT(00111) ∼ 0.5435.

Table 1 also shows howFkp
1 (w) (wherep is the orbit period) converges towards an infinite word

w∞ satisfyingF p
1 (w∞) = w∞. The invariant wordw∞ is the discrete analog of the infinitely folded

unstable manifold of the periodic orbit.

The induced map (5) can be entirely specified by its action on edgesei j . Because of the “squeez-

ing” rules (3b), this is not always the case. For example, theinduced mapF1 for horseshoe orbit

0010111 features the length-decreasing rulee16e67 → e17. An incidence matrix then cannot be

defined, although entropy estimates can still be obtained bydirect iteration. In every example we

considered, enlarging the alphabet with special sequencessuch ase167≡ e16e67 and then applying

suitable recodings always allowed us to rewrite the inducedmapF1 as an ordinary substitution

like (5). For example, the induced return map characterizing the structure of horseshoe orbit
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m Itinerary ofFm
1 (e15)

0 15

1 251

2 35152

3 41525153

4 5251535152514

5 1535152514152515351525

6 2514152515351525251535152514152515351

10 1535152514152515351525251535152525153515. . .

15 1535152514152515351525251535152525153515. . .

100 1535152514152515351525251535152525153515. . .

TABLE I: A few iteratesFm
1 (e15) are given by their itinerary between periodic points (e.g.,35152 denotes

the pathe35e51e15e52).

P5

0

1

P1

P2

P3

P4

4 1 5 2 5 1 5 3

4

1

5

2

5

1

5
3(a) (b)

FIG. 5: (a) Periodic points of the horseshoe orbit 00111 and their schematic trajectory in section plane.

Bold lines indicate edges involved in the asymptotic dynamics of (5). (b) PathP4P1P5P2P5P1P5P3 folds onto

itself under action of induced return mapF1. The unimodal map obtained has 00111 as a periodic orbit.

0010111 can be rewritten as

e14 → e25, e15 → e257e76, e17 → e257e71,

e25 → e37e76, e37 → e41, e67 → e71,

e167→ e25e51, e257→ e37 e761

(7)

whereei jk is the letter obtained from the recodingei j ejk → ei jk . An incidence matrix can then be
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Orbit This work TTA Orbit This work TTA

011010
11 0.4421 0.4421 000100

11 0.3822 0.3822

0010110
11 0.3460 0.3460 0001010

11 0.5686 0.5686

001010
11 0.4768 0.4768 00010

11 0.6329 0.6329

0010100
11 0.4980 0.4980 0001110

11 0.5686 0.5686

0010
11 0.5435 0.5435 000110

11 0.3822 0.3822

0011100
11 0.4980 0.4980 0000100

11 0.4589 0.4589

001110
11 0.4768 0.4768 000010

11 0.6662 0.6662

0011110
11 0.3460 0.3460 0000110

11 0.4589 0.4589

0011010
11 0.4980 0.4980 0000010

11 0.6804 0.6804

TABLE II: Topological entropies obtained for positive-entropy horseshoe orbits up to period 8 with the

approach described in this work and with the train-track algorithm (TTA) [10, 11, 12].

written for (7), with entropyhT(0010111) ∼ 0.4768.

For all 746 periodic orbits of the horseshoe map up to period 12, we have compared topological

entropies given by our approach and by the train-track algorithm [10, 11], as implemented in the

TRAINS computer code [12]. As illustrated in Table II, we foundexact agreement in each instance.

This provides strong evidence that in dimension three, our approach is equivalent to the train track

approach. Qualitative properties of chaos are also reproduced: the dynamics is deterministic (by

construction), invertible, and the stretching and squeezing processes are described in a completely

symmetrical way.

Remarkably, we note that while transformations (4) areinvertible, the asymptotic dynamics has

underlying singularities. For example, we consider the itineraryw0 = F3(e15) = (41525153) in

Table I, which is the shortest subpath ofw∞ visiting the four segments involved in (5). As Fig. 5(b)

shows, the imageF1(w0) = (5251535152514) = (525153)+(35152514) consists of a subpath of

w0 concatenated with a reverse copy ofw0: this path is folded onto itself by a one-dimensional

map. The same property holds for all subsequent iteratesFm(e15), hence for the infinite wordw∞.

This directly reflects the fact that associated to an invertible return map (e.g., Hénon map), there

exists an underlying lower-dimensional noninvertible map(e.g., logistic map) that describes the

dynamics restricted to the unstable manifold, a keystone ofthe Birman-Williams construction [2,

6]. Note that the symbolic name of the orbit can be obtained directly from Fig. 5(b), much more
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easily than in [13]. Given the singular return map and layering information obtained by continuity

arguments, the simplest template that can carry the periodic orbit studied could then be determined.

For the first time, a knotless topological analysis of chaos seems at hand.

That reformulating the determinism principle to make it dimension-independent leads to a more

natural formalism in three dimensions suggests that we havecaptured an essential ingredient for

constructing a higher-dimensional topological analysis.Thus we conjecture that in a(n+ 1)-

dimensional phase spaceR
n×S1, the structure of a periodic orbit can be described by a “braid

word” listing successive changes of orientation of simplexes based onn+ 1 periodic points as

Poincaré sections are swept. Preserving orientation simplex inversions by exchanging sets of

facets is expected to induce a non-trivial dynamics in the space of triangulated hypersurfaces.

In conclusion, we have proposed a framework for constructing a topological analysis of higher-

dimensional chaos. By recasting the determinism principlein terms of orientation preservation

rather than non-intersection of curves and enforcing it in atriangulated space, we have constructed

a simple formalism that is equivalent to previous approaches in three dimensions, as demonstrated

by entropy calculations. Our preliminary results also suggest that it leads to a faithful combina-

torial description of the folding of the invariant unstablemanifold over itself, yielding key infor-

mation about the symbolic dynamics of the orbit. This formalism will naturally extend to higher

dimensions once substitution rules associated to different types of simplex inversion are deter-

mined. We might then be in a position to classify higher-dimensional chaotic systems, study their

symbolic dynamics and their bifurcation sequences. Another important application would be to

obtain direct evidence of higher-order singularities (e.g., cusps) in the dynamics along higher-

dimensional unstable manifolds [2].

The ideas described here grew out of innumerable discussions with R. Gilmore, to whom I am

very much indebted for sharing his insight with me. I thank T.Hall, J. Los and F. Gautero for

helpful explanations about the train track algorithm, and M. Nizette, T. Tsankov, J.-C. Garreau,

C. Szwaj and S. Bielawski for a careful reading of this manuscript. CERLA is supported by the

Ministère chargé de la Recherche, Région Nord-Pas de Calais and FEDER.
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