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Alternative determinism principle for topological analysis of chaos
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Centre dEtudes et de Recherches Lasers et Applications,
Universi& des Sciences et Technologies de Lille, F-59655 Villeng'dseq, France
(Dated: May 19, 2005)

Abstract
The topological analysis of deterministic chaos based onat-theoretic characterization of unstable
periodic orbits has proved a powerful method, however Kmedity can only be applied to three-dimensional
systems. Still, the core principles upon which this appioaduilt, determinism and continuity, apply in
any dimension. We propose an alternative framework in wttiese principles are enforced on triangulated
surfaces rather than curves. As a first step toward a formaligplicable in higher dimensions, we show
that in dimension three our approach predicts the corrguilégical entropies for periodic orbits of the

horseshoe map.

PACS numbers: 05.45.-a



A dynamical system is naturally described as a flow conngdiates to other states in a phase
space. Chaotic behavior occurs when trajectories becost@ahle to perturbations, and results
from the interplay of two geometrical processssetchingseparates neighboring trajectories ex-
ponentially fast whilesqueezingnaintains the flow within a bounded regidn [1,[2, 3]. A topo-
logical analysis has been developed to classify the wayshichwthe stretching and squeezing
mechanisms can organize a chaotic attraqiof][Z] 3] 4, Skli#s on a theorem stating that un-
stable periodic orbits (UPO) of a chaotic three-dimendi@82) flow can be projected onto a 2D
branched manifold (#&emplaté without modifying their knot invariantg]6]. This propgrhas
been harnessed to design an analysis of experimental tiries §&, [5] that seeks to determine
the simplest template compatible with the topological irarts of UPO extracted from the time
series[[R[B].

Although the relevance of this approach has been confirmseviaral experiment$][2} B, 5],
it can only be applied to 3D attractors: in higher dimensjadkknots can be deformed into
each other. A first step to overcome this limitation is to ggume that knot theory is not a core
ingredient of topological analysis but simply a conveniemty to study how two fundamental
properties, determinism and continuity, constrain tr@jees in phase space. It is because two
trajectories cannot intersect that the knot type of a 3Dggkeiorbit is well defined and that it is
not modified as the orbit is deformed under control parametgation. Thus, we need to build
a framework where UPO are characterized by mathematicattsoplaying the same role in any
phase space dimension as knot invariants in dimension, theeghat can classify periodic orbits
according to whether they can be deformed into each othérowidtviolating determinism and
continuity.

In this paper, we propose a formalism which enforces theintarsection requirement on ob-
jects whose dimension varies with that of phase space, y@ins applicable to UPO extracted
from experimental signals. It is based on a representafitileadynamics in a triangulated space
whose nodes are periodic points in a Poincaré sectionniemsion three, its explicit construction
is easy, and we find that the new formalism predicts the cotopological entropies for periodic
orbits of the horsehoe map. This is an important result beealpositive-entropy orbit is a pow-
erful indicator of chaoq]4] 7]; it suggests that we have wagut a key ingredient for constructing
a knotless topological analysis. However, all the detdilhe higher-dimensional theory are not
yet understood, and we postpone its description to a futor&.w

We now detail our approach. A first step is to replace the requent of non-intersecting



curves by a geometrical problem that adapts naturally teelspaces of any dimension. It has
been suggested to exploit the fact that invariant manifofddPO have a rigid structuré][5] 8].
In this work, we note that a consequence of determinism isdhaa volume element of a
d-dimensional phase space is advected by a chaoticdigvthe image®; (dV) of its boundary,
although stretched and squeezed, cannot display sets@uions: at any time its interior and its
exterior remain distinct, as with a droplet in a fluid flow. Almical formulation of this property
is that volume orientation is preserved by the dynamics.

For the sake of simplicity, we restrict ourselves to atmesembedded iiR" x St (e.g., forced
systems), that can be sliced imadimensional Poincaré sections parameterizeg layS'. The
non-intersection theorem can then be applied to boundafiesiimensional volume elements of
Poincaré sections (Fi@] 1). In particular, successiveggsaof a boundary by a first return map

should all have the same orientation.
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FIG. 1: Under the action of the flow, volume elements of Pai@s&ctions and their boundaries are stretched

and squeezed but retain their orientation, as illustragzd for 2D section planes.

Topological analysis must be applicable to UPO extractechfexperimental signals, thus the
only piece of data on which it can rely is the trajectory in gdapace of a periog-orbit, i.e., the
positions in successive Poincaré sections opitstersections. From these data, we must obtain
information on the evolution of surfaces attached to thes@sgic points.

To this end, we represent the dynamics in a triangulatedesphose nodes aggperiodic points
B in a Poincaré section, witR1 = F(P), F being the return map. In this space, poiRtsre
0-cells, line segmentd?, Pj) = (ij) joining two points are 1-cells, triangl€B;, Pj, B) = (ijk) are
2-cells, etc (Fig[]J2a). A collection of contiguomscells (e.g., triangles linked through their edges)

is the analog in this space ofmadimensional surface in the original phase space. We ddxote



Sn the set of such collections. Unlike ifj [9] where similar cepts were used to analyze the static
structure of the attractor, we focus here on the dynamicfd\scaré sections are swept, periodic
points move in the section plane and so do feells attached to them (Fig} 2b). Ideally, the
dynamics induced iy, should reflect that afn-dimensional phase-space surfaces under action of

the chaotic flow, and in particular be organized by the sane¢c$ting and squeezing mechanisms.
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FIG. 2: (a) Triangulated space based on periodic pdnia a 3D Poincaré section. The 2-celkl) is
shaded. (b) The flow induces a mapping of this triangulatedesnto itself, as illustrated here for a period-

5 orbit embedded if®? x St.

As illustrated by Fig[]2b, we want to lift dynamical infornat from S = {P} to m-th order
spacesSy by constructing a sefFo, F1,...,F} of mapsky : Sy — Sy that can be viewed as
induced by the same Poincaré return nlapThese maps should be continuous, invertible and
satisfy determinismBecause periodic points are mapped to periodic pointsruRdee expect
that eachm-cell is mapped undd;,, to another cell or to a set of contiguous cells. Since themelu
elements of the triangulated space arertitdmensional simplice§i1iz. . .inint+1), We focus here
on constructing a dynamids,_1 : S,-1 — S$,-1 of their boundaries. As we see below, this can
be achieved by keeping track of changes of orientation-dimensional simplices as Poincaré
sections are swept.

For clarity, we now specialize to the 3D case. The simplekinae element of a triangulated
set of periodic points in a 2D Poincaré section is a triafigieell) based on three periodic points
R, Pj, P« Denote byP(¢) the position of periodic poin® in the section plane labeled Iy
with B (0) = R andP,(2m) = P1.The simplest description of the evolutiondf= (R, P;, F) in
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successive Poincaré sections is given by

T(9) = (R(9),Pi(¢),”(9))- 1)

This would lead to a trivial induced return map
F2(T> - T(2T[> - <P|+17 Pj+17 H(+1>7 (2)

if additional rules were not required to enforce determmmiand continuity. As long a3 (¢)
retains its initial orientation, Eq[](1) is adequate. Hoareit commonly happens that at some time

¢ = ¢o, one of the three points [sd@%($)] passes between the two others, thereby changing the
orientation of the triangleR: (¢),P;(¢), P«(¢)) (Fig. B). A naive application of Eq[](1) would then
imply thatT = T (0) andF,(T) = T(2m) have different orientations. As emphasized above, this is
strictly forbidden by determinism, and we must thus modiiy tepresentation of the dynamics. It

turns out that there exists a simple and elegant solutiom$gtoblem.

O ENGIDY
ok N\ XK y
S TEn

FIG. 3: As three points move in the section plane, the triaigey form can change its orientation.

A degenerate triangle (such @$do) in Fig.[3) is similar to a flattened balloon whose bound-
ary can be decomposed into two superimposed sides with ogposter normals. Determinism
appears to be violated when these two sides seemingly goghreach other so that interior and
exterior, as defined with respect with the outer normal, seebe exchanged. However, only the
motion of points is fixed by the experimental data, the dyranoif surfaces is interpolated from
this information. Determinism violation can thus resutirfr an incorrect interpretation of point
motion. To preserve determinism, we assume that the twosapgsides actually do not cross and
enforce this fact in the dynamics by swapping the two sidéseatlegeneracy, thereby canceling

the inversion.



This prescription is illustrated in Fi§] 4 where the two opiog sides at triangle degeneracy
are represented as a solid and a dashed line, respectiteykely point is that we construct the
edge dynamics so that the left (solid line) and right (dadie®) sides remain at the left and
right, respectively. Since the left (resp., right) side siets of itinerary(ik) + (kj) (resp.,(ij))
before degeneracy and of itinerafiy) (resp.(ik) + (kj)) after degeneracy, their relative position

is preserved by associating triangle inversion with thefeing dynamical rule ir5; = S§,_1:

{ij) — (k) + (kj) (3a)
{ik) + (kj) — (i) (3b)

These rules also apply to reverse paths (éjg.,— (jk) + (ki) follows from (3&)).

FIG. 4: Atriangle is inverted aB passes betwedh andP;. Identifying the solid (resp., dashed) paths in

the initial and end configurations leads to substitutipn (3)

It is easy to check thaT = d(ijk) = (ij) + ((jk) + (ki)) is mapped tq(ik) + (kj)) + (ji) =
d(ikj) by @). This change in point ordering compensates for theghan the triangle orientation
so that orientation 00T, and hence determinism, is preserved. Practically, @ines visiting
edgesj = (ij) in agiven order can be viewed as words in a languagever alphabets = {en},
and (B) as a substitution operatnﬁ that in each worav replaces the lettes;j by the stringgy e
andeye by g [hence(o}‘j)2 = 1]. For example,

0!‘,' &€ 8] €jl & CkE|€ji - - - = 18 OkEj€;l i & EjkEi- - -

The 0}‘1- generate a non-trivial dynamics, as the image of an itigedapends on how periodic
points rotate around each other. In spite of its simpli¢his dynamics faithfully reflects that of
the flow around the periodic orbit, as we now show by computiregtopological entropy of the
orbit.



By following the motion of intersections of an orbR with consecutive section planes

[Fig. B(b)], we record a list of triangle inversiong'™ . From this list, we build a substitution

ImJm

dynamical system that transforms a wev@ 2 * into another word according to:

: ko .k
whereNg; -+ = €j,1)j+1) - Consider the case of the periodic orbit 00111 of the stahdar

horseshoe map equipped with the usual symbolic codihg [@js(2b and]5a). We find that
the induced return map B = N03503:01507=, leading to the substitution system (we only give

asymptotically relevant rules and omit those for reversbg)a

€14 — €25, €15 — €25651, €5 — €35651, €35 — €41. (5)

Tablef] displays iterateB["(w) of w = e;5 computed using[[5). Their lengtk;"(w)| diverges
exponentially agn — o, indicating that trajectories in the neighborhood of thieitosire continu-
ously stretched apart by the flow. The growth rate:

e (P) = fim AW

m— oo m

(6)

should be equal to the topological entropy of the periodisitdfld], a powerful indicator of
chaos [b[]7]. It is obtained as the logarithm of the leadirgeevalue of the incidence matrix
(Mee), whose entries indicate how many times edger its reverse edge occurs f(e). Here,
ht(00111) ~ 0.5435.

Table 1 also shows hoﬁfp(w) (wherepis the orbit period) converges towards an infinite word
Woo satisfyingFlp(woo) = Ws. The invariant wordwv,, is the discrete analog of the infinitely folded
unstable manifold of the periodic orbit.

The induced mag[5) can be entirely specified by its actiordgess;;. Because of the “squeez-
ing” rules (3b), this is not always the case. For examplejridaced magr; for horseshoe orbit
0010111 features the length-decreasing mies7 — €17. An incidence matrix then cannot be
defined, although entropy estimates can still be obtainediregt iteration. In every example we
considered, enlarging the alphabet with special sequesumdsas; 7 = e16657 and then applying
suitable recodings always allowed us to rewrite the induoeg F; as an ordinary substitution

like (B). For example, the induced return map charactegizive structure of horseshoe orbit



Itinerary of F["(ess)

15

251

35152

41525153

5251535152514
1535152514152515351525

o o A~ W N P O3

2514152515351525251535152514152515351

10 1535152514152515351525251535152525153515
15 1535152514152515351525251535152525153515
100 1535152514152515351525251535152525153515

TABLE I: A few iteratesF"(e;5) are given by their itinerary between periodic points (€3§152 denotes

the pathessesi€15652).

@ " s (b)
1
5
I:’41 2
,,,,,,, -
1
P, \/ A |
Py 4 15 2515 3

FIG. 5: (a) Periodic points of the horseshoe orbit 00111 dwedt schematic trajectory in section plane.
Bold lines indicate edges involved in the asymptotic dyrenoif (§). (b) PattPsP; PsP.PsPyPsP; folds onto

itself under action of induced return m&p. The unimodal map obtained has 00111 as a periodic orbit.

0010111 can be rewritten as

€14 — €5, €15 — €257€76, €17 — €257€71,
€25 — €37€76, €37 — €41, €57 — €71, (7)
€167 — €25651, €257 — €37 €761

whereg;jk is the letter obtained from the recodiagejx — &jx. An incidence matrix can then be
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Orbit This work TTA |Orbit This work TTA

0110191 04421 044210001091 03822 03822
00101191 0.3460 0346000010191 05686 05686
0010191 04768 04768000191 06329 06329
00101091 04980 0498000011191 05686 05686
00191 05435 054350001191 03822 03822
00111091 04980 0498000001091 04589 04589
0011191 04768 047680000191 06662 06662
00111191 03460 0346000001191 04589 04589
00110191 04980 0498000000191 06804 06804

TABLE II: Topological entropies obtained for positive-espy horseshoe orbits up to period 8 with the
approach described in this work and with the train-tracloatgm (TTA) [L4,[11,[1P].

written for (), with entropyhr (0010113 ~ 0.4768.

For all 746 periodic orbits of the horseshoe map up to periyave have compared topological
entropies given by our approach and by the train-track étgar[fQ, [I1], as implemented in the
TRAINS computer codd]12]. As illustrated in TalplE Il, we fouexhct agreement in each instance
This provides strong evidence that in dimension three, ppraach is equivalent to the train track
approach. Qualitative properties of chaos are also regemtiuthe dynamics is deterministic (by
construction), invertible, and the stretching and squegprocesses are described in a completely
symmetrical way.

Remarkably, we note that while transformatidps (4)iavertible, the asymptotic dynamics has
underlying singularities For example, we consider the itineramg = F3(e15) = (41525153 in
Table[], which is the shortest subpathvef visiting the four segments involved il (5). As FHigj. 5(b)
shows, the imagE;(wp) = (5251535152514= (525153 + (35152514 consists of a subpath of
Wp concatenated with a reverse copyvaf. this path is folded onto itself by a one-dimensional
map The same property holds for all subsequent iterBt&@; s), hence for the infinite wordi..
This directly reflects the fact that associated to an inbkrtieturn map (e.g., HEnon map), there
exists an underlying lower-dimensional noninvertible nfeyy., logistic map) that describes the
dynamics restricted to the unstable manifold, a keystorteeBirman-Williams constructior][2,

B]. Note that the symbolic name of the orbit can be obtaineectly from Fig.[b(b), much more



easily than in[[I3]. Given the singular return map and laygimformation obtained by continuity
arguments, the simplest template that can carry the perasdit studied could then be determined.
For the first time, a knotless topological analysis of chamsss at hand.

That reformulating the determinism principle to make it dmsion-independent leads to a more
natural formalism in three dimensions suggests that we baptired an essential ingredient for
constructing a higher-dimensional topological analysifus we conjecture that in @+ 1)-
dimensional phase spad® x St, the structure of a periodic orbit can be described by a tbrai
word” listing successive changes of orientation of simpkekased om+ 1 periodic points as
Poincaré sections are swept. Preserving orientationlekripversions by exchanging sets of
facets is expected to induce a non-trivial dynamics in tleesmf triangulated hypersurfaces.

In conclusion, we have proposed a framework for constrgaitopological analysis of higher-
dimensional chaos. By recasting the determinism prindiplerms of orientation preservation
rather than non-intersection of curves and enforcing ittmeagulated space, we have constructed
a simple formalism that is equivalent to previous approadch¢hree dimensions, as demonstrated
by entropy calculations. Our preliminary results also fgjghat it leads to a faithful combina-
torial description of the folding of the invariant unstalbhanifold over itself, yielding key infor-
mation about the symbolic dynamics of the orbit. This forisralwill naturally extend to higher
dimensions once substitution rules associated to difteggres of simplex inversion are deter-
mined. We might then be in a position to classify higher-disienal chaotic systems, study their
symbolic dynamics and their bifurcation sequences. Amdthportant application would be to
obtain direct evidence of higher-order singularities .(ecgisps) in the dynamics along higher-
dimensional unstable manifoldg [2].

The ideas described here grew out of innumerable discus®aith R. Gilmore, to whom | am
very much indebted for sharing his insight with me. | thankd&ll, J. Los and F. Gautero for
helpful explanations about the train track algorithm, andN\¥kette, T. Tsankov, J.-C. Garreau,
C. Szwaj and S. Bielawski for a careful reading of this manpscCERLA is supported by the
Ministere chargé de la Recherche, Région Nord-Pas da<Cahd FEDER.
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