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Abstract

The topological analysis of deterministic chaos based on a knot-theoretic characterization of

unstable periodic orbits has proved a powerful method, however knot theory can only be applied to

three-dimensional systems. Still, the core principles upon which this approach is built, determinism

and continuity, apply in any dimension. We propose an alternative framework in which these

principles are enforced on triangulated surfaces rather than curves. As a first step toward a

formalism applicable in higher dimensions, we show that our approach simplifies significantly the

computation of topological entropies of three-dimensional periodic orbits.

PACS numbers: 05.45.-a

1



A dynamical system is naturally described as a flow connecting states to other states in a

phase space. Chaotic behavior occurs when trajectories become unstable to perturbations,

and results from the interplay of two geometrical processes: stretching separates neigh-

boring trajectories exponentially fast while squeezing maintains the flow within a bounded

region [1, 2, 3]. A topological analysis has been developed to classify the ways in which the

stretching and squeezing mechanisms can organize a chaotic attractor [2, 3, 4, 5]. It relies

on a theorem stating that unstable periodic orbits (UPO) of a chaotic three-dimensional

(3D) flow can be projected onto a 2D branched manifold (a template) without modifying

their knot invariants [6]. This property has been harnessed to design an analysis of experi-

mental time series [4, 5] that seeks to determine the simplest template compatible with the

topological invariants of UPO extracted from the time series [2, 3].

Although the relevance of this approach has been confirmed in several experiments [2, 3,

5], it can only be applied to 3D attractors: in higher dimensions, all knots can be deformed

into each other. A first step to overcome this limitation is to recognize that knot theory is

not a core ingredient of topological analysis but simply a convenient way to study how two

fundamental properties, determinism and continuity, constrain trajectories in phase space.

It is because two trajectories cannot intersect that the knot type of a 3D periodic orbit is well

defined and that it is not modified as the orbit is deformed under control parameter variation.

Thus, we need to build a framework where UPO are characterized by mathematical objects

playing the same role in any phase space dimension as knot invariants in dimension three,

i.e., that classify periodic orbits according to whether they can be deformed into each other

without violating determinism and continuity.

In this Letter, we propose a formalism which enforces the non-intersection requirement

on objects whose dimension varies with that of phase space, yet remains applicable to UPO

extracted from experimental signals. It is based on a representation of the dynamics in

a triangulated space whose nodes are periodic points in a Poincaré section. In dimension

three, its explicit construction is easy, and we find that the new formalism correctly predicts

topological entropies of 3D UPO, but in a simpler way than previous methods. This is

an important result because a positive-entropy orbit is a powerful indicator of chaos [5, 7];

it suggests that we have captured a key ingredient for constructing a knotless topological

analysis. However, all the details of the higher-dimensional theory are not yet understood,

and we postpone its description to a future work.
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We now detail our approach. A first step is to replace the requirement of non-intersecting

curves by a geometrical problem that adapts naturally to phase spaces of any dimension.

It has been suggested to exploit the fact that invariant manifolds of UPO have a rigid

structure [5, 8]. In this work, we note that a consequence of determinism is that as a volume

element V of a d-dimensional phase space is advected by a chaotic flow Φt, the image

Φt(∂V ) of its boundary, although stretched and squeezed, cannot display self-intersections:

at any time t, its interior and its exterior remain distinct, as with a droplet in a fluid

flow. A technical formulation of this property is that volume orientation is preserved by the

dynamics.

For the sake of simplicity, we restrict ourselves to attractors embedded in R
n × S1 (e.g.,

forced systems), that can be sliced into n-dimensional Poincaré sections parameterized by

ϕ ∈ S1. The non-intersection theorem can then be applied to boundaries of n-dimensional

volume elements of Poincaré sections (Fig. 1). In particular, successive images of a boundary

by a first return map should all have the same orientation.

ϕ

FIG. 1: Under the action of the flow, volume elements of Poincaré sections and their boundaries

are stretched and squeezed but retain their orientation, as illustrated here for 2D section planes.

Topological analysis must be applicable to UPO extracted from experimental signals,

thus the only piece of data on which it can rely is the trajectory in phase space of a period-p

orbit, i.e., the positions in successive Poincaré sections of its p intersections. From these

data, we must obtain information on the evolution of surfaces attached to these periodic

points.

To this end, we represent the dynamics in a triangulated space whose nodes are p periodic

points Pi in a Poincaré section, with Pi+1 = F (Pi), F being the return map. In this space,
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points Pi are 0-cells, line segments 〈Pi, Pj〉 ≡ 〈ij〉 joining two points are 1-cells, triangles

〈Pi, Pj, Pk〉 ≡ 〈ijk〉 are 2-cells, etc (Fig. 2a). A collection of contiguous m-cells (e.g., triangles

linked through their edges) is the analog in this space of a m-dimensional surface in the

original phase space. We denote by Sm the set of such collections. Unlike in [9] where

similar concepts were used to analyze the static structure of the attractor, we focus here on

the dynamics. As Poincaré sections are swept, periodic points move in the section plane and

so do the m-cells attached to them (Fig. 2b). Ideally, the dynamics induced in Sm should

reflect that of m-dimensional phase-space surfaces under action of the chaotic flow, and in

particular be organized by the same stretching and squeezing mechanisms.

Pi

Pl

Pm

Pk

Pj

(a)

(b)
ϕ=0

ϕ=2π

FIG. 2: (a) Triangulated space based on periodic points Pi in a 3D Poincaré section. The 2-cell

〈ikl〉 is shaded. (b) The flow induces a mapping of this triangulated space into itself, as illustrated

here for a period-5 orbit embedded in R
2 × S1.

As illustrated by Fig. 2b, we want to lift dynamical information from S0 = {Pi} to m-th

order spaces Sm by constructing a set {F0, F1, . . . , Fn} of maps Fm : Sm → Sm that can be

viewed as induced by the same Poincaré return map F . These maps should be continuous,

invertible and satisfy determinism. Because periodic points are mapped to periodic points

under F , we expect that each m-cell is mapped under Fm to another cell or to a set of

contiguous cells. Since the volume elements of the triangulated space are the n-dimensional

simplices 〈i1i2 . . . inin+1〉, we focus here on constructing a dynamics Fn−1 : Sn−1 → Sn−1

of their boundaries. As we see below, this can be achieved by keeping track of changes of

orientation of n-dimensional simplices as Poincaré sections are swept.

4



For clarity, we now specialize to the 3D case. The simplest volume element of a trian-

gulated set of periodic points in a 2D Poincaré section is a triangle (2-cell) based on three

periodic points Pi, Pj, Pk. Denote by Pi(ϕ) the position of periodic point Pi in the section

plane labeled by ϕ, with Pi(0) = Pi and Pi(2π) = Pi+1.The simplest description of the

evolution of T = 〈Pi, Pj, Pk〉 in successive Poincaré sections is given by

T (ϕ) = 〈Pi(ϕ), Pj(ϕ), Pk(ϕ)〉. (1)

This would lead to a trivial induced return map

F2(T ) = T (2π) = 〈Pi+1, Pj+1, Pk+1〉, (2)

if additional rules were not required to enforce determinism and continuity. As long as T (ϕ)

retains its initial orientation, Eq. (1) is adequate. However, it commonly happens that at

some time ϕ = ϕ0, one of the three points [say Pk(ϕ)] passes between the two others, thereby

changing the orientation of the triangle 〈Pi(ϕ), Pj(ϕ), Pk(ϕ)〉 (Fig. 3). A naive application of

Eq. (1) would then imply that T = T (0) and F2(T ) = T (2π) have different orientations. As

emphasized above, this is strictly forbidden by determinism, and we must thus modify the

representation of the dynamics. It turns out that there exists a simple and elegant solution

to this problem.

T( )2π

0ϕT( )

k k

j

j

k

j

T(0)

i
i

i

FIG. 3: As three points move in the section plane, the triangle they form can change its orientation.

A degenerate triangle (such as T (ϕ0) in Fig. 3) is similar to a flattened balloon whose

boundary can be decomposed into two superimposed sides with opposing outer normals.

Determinism appears to be violated when these two sides seemingly go through each other

so that interior and exterior, as defined with respect with the outer normal, seem to be
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exchanged. However, only the motion of points is fixed by the experimental data, the

dynamics of surfaces is interpolated from this information. Determinism violation can thus

result from an incorrect interpretation of point motion. To preserve determinism, we assume

that the two opposing sides actually do not cross and enforce this fact in the dynamics by

swapping the two sides at the degeneracy, thereby canceling the inversion.

This prescription is illustrated in Fig. 4 where the two opposing sides at triangle degen-

eracy are represented as a solid and a dashed line, respectively. The key point is that we

construct the edge dynamics so that the left (solid line) and right (dashed line) sides re-

main at the left and right, respectively. Since the left (resp., right) side consists of itinerary

〈ik〉 + 〈kj〉 (resp., 〈ij〉) before degeneracy and of itinerary 〈ij〉 (resp. 〈ik〉 + 〈kj〉) after

degeneracy, their relative position is preserved by associating triangle inversion with the

following dynamical rule in S1 = Sn−1:

〈ij〉 → 〈ik〉 + 〈kj〉 (3a)

〈ik〉 + 〈kj〉 → 〈ij〉 (3b)

These rules also apply to reverse paths (e.g., 〈ji〉 → 〈jk〉 + 〈ki〉 follows from (3a)).

k k k

jjj

i i i

FIG. 4: A triangle is inverted as Pk passes between Pi and Pj . Identifying the solid (resp., dashed)

paths in the initial and end configurations leads to substitution (3).

It is easy to check that ∂T = ∂〈ijk〉 = 〈ij〉 + (〈jk〉 + 〈ki〉) is mapped to (〈ik〉 + 〈kj〉) +

〈ji〉 = ∂〈ikj〉 by (3). This change in point ordering compensates for the change in the trian-

gle orientation so that orientation of ∂T , and hence determinism, is preserved. Practically,

itineraries visiting edges eij = 〈ij〉 in a given order can be viewed as words in a language

A∗ over alphabet A = {elm}, and (3) as a substitution operator σk
ij that in each word w

replaces the letter eij by the string eikekj and eikekj by eij [hence (σk
ij)

2 = 1]. For example,

σk
ij eklelieijejlelieikekjeji . . . = eklelieikekjejlelieijejkeki . . .
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The σk
ij generate a non-trivial dynamics, as the image of an itinerary depends on how periodic

points rotate around each other. In spite of its simplicity, this dynamics faithfully reflects

that of the flow around the periodic orbit, as we now show by computing the topological

entropy of the orbit.

By following the motion of intersections of an orbit P with consecutive section planes, we

record a list of l triangle inversions σkm

imjm
. From this list, we build a substitution dynamical

system that transforms a word w ∈ A∗ into another word:

F1 : w → w′ = Nσkl

iljl
· · ·σk2

i2j2
σk1

i1j1
w (4)

where N eij · · · = e(i+1)(j+1) · · · . Consider the case of the periodic orbit 00111 of the standard

horseshoe map equipped with the usual symbolic coding [2] (Figs. 2b and 5a). We find that

the induced return map is F1 = Nσ4
23σ

4
25σ

4
13σ

4
15, leading to the substitution system (we only

give asymptotically relevant rules and omit those for reverse paths):

e14 → e25, e15 → e25 e51, e25 → e35 e51, e35 → e41. (5)

It is easily seen that when (5) is repeatedly applied to a word w, the length |F m
1 (w)| of the

m-th iterate diverges as m → ∞. This indicates that trajectories in the neighborhood of

the orbit are continuously stretched apart by the flow. The growth rate:

hT (P ) = lim
m→∞

ln |F m
1 (w)|

m
(6)

should be equal to the topological entropy of the periodic orbit [10], a powerful indicator of

chaos [5, 7]. It is obtained as the logarithm of the leading eigenvalue of the incidence matrix

(Mee′), whose entries indicate how many times edge e′ or its reverse edge occurs in F1(e).

Here, hT (00111) ∼ 0.5435.

The induced map (5) is entirely specified by its action on edges eij . Because of the

“squeezing” rules (3b), this is not always the case. For example, the induced map F1 for

horseshoe orbit 0010111 features the length-decreasing rule e16e67 → e17. An incidence

matrix then cannot be defined, although entropy estimates can still be obtained by direct

iteration. In every example we considered, enlarging the alphabet with special sequences

such as e167 ≡ e16e67 and then applying suitable recodings always allowed us to rewrite the

induced map F1 as an ordinary substitution like (5). For example, the induced return map
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FIG. 5: (a) Periodic points of the horseshoe orbit 00111 and their schematic trajectory in sec-

tion plane. Bold lines indicate edges involved in the asymptotic dynamics of (5). (b) Path

P4P1P5P2P5P1P5P3 folds onto itself under action of induced return map F1. The unimodal map

obtained has 00111 as a periodic orbit.

characterizing the structure of horseshoe orbit 0010111 can be rewritten as

e14 → e25, e15 → e257 e76, e17 → e257 e71,

e25 → e37 e76, e37 → e41, e67 → e71,

e167 → e25 e51, e257 → e37 e761

(7)

where eijk is the letter obtained from the recoding eijejk → eijk. An incidence matrix can

then be written for (7), with entropy hT (0010111) ∼ 0.4768.

For all 746 periodic orbits of the horseshoe map up to period 12, we have compared

topological entropies given by our approach and by the train-track algorithm [10, 11], as

implemented in the trains computer code [12]. As illustrated in Table I, we found exact

agreement in each instance.

Our approach not only reproduces results obtained with the train-track algorithm but

also simplifies significantly the computation. The train-track algorithm starts with a graph

map built from a braid line diagram using only counterparts of the stretching rules (3a).

This yields an upper bound on entropy, which is then adjusted to the correct value by a series

of moves transforming the graph map to a lower-entropy one in the isotopy class [10, 11].

Our approach, through the use of both stretching and squeezing rules (3), yields directly a

substitution dynamical system with the correct entropy and thus seems to provide a more

natural description of chaotic dynamics.
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Orbit This work TTA Orbit This work TTA

01101 0
11 0.4421 0.4421 00010 0

11 0.3822 0.3822

001011 0
11 0.3460 0.3460 000101 0

11 0.5686 0.5686

00101 0
11 0.4768 0.4768 0001 0

11 0.6329 0.6329

001010 0
11 0.4980 0.4980 000111 0

11 0.5686 0.5686

001 0
11 0.5435 0.5435 00011 0

11 0.3822 0.3822

001110 0
11 0.4980 0.4980 000010 0

11 0.4589 0.4589

00111 0
11 0.4768 0.4768 00001 0

11 0.6662 0.6662

001111 0
11 0.3460 0.3460 000011 0

11 0.4589 0.4589

001101 0
11 0.4980 0.4980 000001 0

11 0.6804 0.6804

TABLE I: Topological entropies obtained for positive-entropy horseshoe orbits up to period 8 with

the approach described in this work and with the train-track algorithm (TTA) [10, 11, 12].

Remarkably, we note that while substitutions (4) are invertible, the asymptotic dynam-

ics has underlying singularities. For example, we consider the infinite itinerary obtained

by repeatedly iterating (5), and extract from it the shortest subpath w0 = (41525153) ≡

〈41〉 + 〈15〉 + 〈52〉 + · · · passing through the five periodic points. As Fig. 5(b) shows, the

image F1(w0) = (5251535152514) = (525153) + (35152514) consists of a subpath of w0 con-

catenated with a reverse copy of w0: this path is folded onto itself by a one-dimensional map.

This directly reflects the fact that associated to an invertible return map (e.g., Hénon map),

there exists an underlying lower-dimensional noninvertible map (e.g., logistic map) that de-

scribes the dynamics restricted to the unstable manifold, a keystone of the Birman-Williams

construction [2, 6]. Note that the symbolic name of the orbit can be obtained directly from

Fig. 5(b), much more easily than in [13]. Given the singular return map and layering infor-

mation obtained by continuity arguments, the simplest template that can carry the periodic

orbit studied could then be determined. For the first time, a knotless topological analysis

of chaos seems at hand.

That reformulating the determinism principle to make it dimension-independent leads

to a more natural formalism suggests that we have captured an essential ingredient for

constructing a higher-dimensional topological analysis. Thus we conjecture that in a (n +

1)-dimensional phase space R
n × S1, the structure of a periodic orbit can be described
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by a “braid word” listing successive changes of orientation of simplexes based on n + 1

periodic points as Poincaré sections are swept. By associating each orientation change with

a substitution that preserves determinism across degeneracies, a non-trivial dynamics is

induced in the space of triangulated hypersurfaces.

The number of distinct types of simplex inversion increases with dimension and their

structure becomes more complicated. In R
3×S1, there are two types. Fig. 6(a) displays the

3D counterpart of Fig. 4, to be associated with substitution rule 〈123〉 ↔ 〈234〉 + 〈143〉 +

〈124〉. The case of Fig. 6(b), where the opposing sides at degeneracy are 〈124〉 + 〈143〉 and

〈123〉 + 〈243〉, is more complex because the two 1-cells 〈23〉 and 〈14〉 are also intersecting,

and at a point that is not a triangulation node. It is not yet clear how to handle this case.

Note that since no method is currently available to compute 4D orbit entropies, the validity

of a tentative formalism can only be assessed by verifying that the entropies obtained are

invariant under changes of coordinates. This requirement could also provide some hints as

to how to handle the case of Fig. 6(b).
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FIG. 6: Two types of simplex (tetrahedron) inversion can occur in three-dimensional Poincaré

sections.

In conclusion, we have shown that topological analysis can be based on principles that

are more general than knot theory. By recasting the determinism principle in terms of orien-

tation preservation rather than non-intersection of curves and enforcing it in a triangulated

space, we have constructed a simple formalism that is equivalent to previous approaches
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in three dimensions, as demonstrated by entropy calculations. This formalism will natu-

rally extend to higher dimensions once substitution rules associated to different types of

simplex inversion are completely determined. We would then be in a position to classify

higher-dimensional chaotic systems, study their symbolic dynamics and their bifurcation se-

quences. Another important application would be to obtain direct evidence of higher-order

singularities (e.g., cusps) in the dynamics along higher-dimensional unstable manifolds [2].

The ideas described here grew out of innumerable discussions with R. Gilmore, to whom I

am very much indebted for sharing his insight with me. I thank T. Hall for helpful comments,

and M. Nizette, T. Tsankov, J.-C. Garreau, C. Szwaj and S. Bielawski for a careful reading

of this manuscript. CERLA is supported by the Ministère chargé de la Recherche, Région

Nord-Pas de Calais and FEDER.
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