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Introdu
tionThe �rst part of this report was originally aimed at de�ning 
oherent terminology andnotations about redu
tion relations and their normalisation. The de�nition of the notionsof normalisation are inspired by a thread 
reated by René Vestergaard on the TYPESmailing-list, gathering and 
omparing the various de�nitions. Our �rst purpose here isrede�ning and re-establishing a theory of normalisation that does not rely on 
lassi
allogi
 and double negation.Negation usually lies in the very de�nition of strong normalisation already, when it isexpressed as �there is no in�nite redu
tion sequen
e�. The most striking example is theuse of the de�nition in order to prove that a redu
tion relation is strongly normalising. Itusually starts with �suppose an in�nite redu
tion sequen
e� and ends with a 
ontradi
tion.We believe that the theory of normalisation is not spe
i�
ally 
lassi
al, but the habit ofusing 
lassi
al logi
 has been taken be
ause of 
onvenien
e. Here, we show a theory ofnormalisation that is just as 
onvenient but 
onstru
tive.In this theory, the indu
tion prin
iple is no longer a property of strongly normalis-ing relations, but is its very de�nition. In other words, instead of basing the notion ofstrong normalisation on the �niteness of redu
tion sequen
es, we base it on the notionon indu
tion: by de�nition, a relation is strongly normalising if it satis�es the indu
tionprin
iple. The latter should hold for every predi
ate, so the notion of normqlisqtion isbased on se
ond-order quanti�
ation rather than double-negation.We express several indu
tion prin
iples in that setting, then we re-establish some tra-ditional results, espe
ially some te
hniques to prove strong normalisation. We 
onstru
-tively prove the simulation te
hnique and a few re�nements, as well as the terminationof the lexi
ographi
 redu
tions and the multi-set redu
tions. A 
onstru
tive proof of thelatter has already been given by Wilfried Bu
hholz and is a spe
ial 
ase of Coquand's
onstru
tive treatment [Coq94℄ of Ramsey theory.The se
ond part of this report presents two new te
hniques for proving strong nor-malisation. The �rst one is fundamentally 
lassi
al but applies to any rewrite system,whereas the se
ond one might hold in intuitionisti
 logi
 and applies more spe
i�
ally to
al
uli that have some 
onnexion with λ-
al
ulus. When applying the te
hniques, a majorpart of the proofs is a
tually independent from the 
al
ulus to whi
h they are applied.As an example, we show how the former te
hnique 
an be used to prove the nor-malisation of the expli
it substitution 
al
ulus λx [BR95℄, whi
h yields a short proof ofPreservation of Strong Normalisation (PSN). Sin
e the te
hnique is generi
, we also provethose properties for the expli
it substitution 
al
ulus λ [Her95℄, and the proof is shorterthan the existing ones in [DU03℄ and [Kik04℄. In both 
al
uli the te
hnique also allows usto easily derive the strong normalisation of typed terms from that of typed λ-terms. Un-fortunately, sin
e our te
hnique is fundamentally 
lassi
al, it 
annot draw advantage of the
onstru
tive proofs of strong normalisation su
h as the one in [JM03℄ for the simply-typed
λ-
al
ulus.We also apply the latter te
hnique to the PSN property of the expli
it substitution
al
ulus λlxr [KL05℄, a 
al
ulus with a full 
omposition of substitutions, for whi
h thestandard te
hniques all failed. This is a new result.The two te
hniques 
an be 
ombined in a fruitful way, for instan
e for proving 
ut-elimination in various powerful sequent 
al
uli, in
luding some type theories su
h as thesystems of Barendregt's Cube expressed in sequent 
al
ulus.2



1 A 
onstru
tive theory of normalisation1.1 RelationsWe start by establishing some notations about relations and sets.De�nition 1 (Relations) We denote the 
omposition of relations by · , the identityrelation by Id, and the inverse relation by −1, all de�ned below:Let R : A −→ B and R′ : B −→ C.
• Composition
R · R′ : A −→ C is de�ned as follows: given M ∈ A and N ∈ C,
M(R · R′)N if there exists P ∈ B su
h that MRP and PR′N

• IdentityId : A −→ A is de�ned as follows:given M ∈ A and N ∈ A, M IdN if M = N(Note that for higher-order rewrite systems, the above notion of equality is α-
onversion)
• Inverse
R−1 : B −→ A is de�ned as follows:given M ∈ B and N ∈ A, MR−1N if NRMIf D ⊆ A, we write R(D) for {M ∈ B| ∃N ∈ D, NRM}, or equivalently

⋃

N∈D{M ∈ B| NRM}. When D is the singleton {M}, we write R(M) for R({M}).Now when A = B we de�ne the relation indu
ed by R through R′, written R′[R], as
R′−1 · R · R′ : C −→ C.We say that a relation R : A −→ B is total if R−1(B) = A.All those notions and notations 
an be used in the parti
ular 
ase when R is a fun
tion,that is, if ∀M ∈ A, R(M) is of the form {N} (whi
h we simply write R(M) = N).Remark 1 Noti
e that 
omposition is asso
iative, and identity relations are neutral forthe 
omposition operation.Computation in a 
al
ulus is des
ribed by the notion of redu
tion relation, de�ned asfollows.De�nition 2 (Redu
tion relation) A redu
tion relation on A is a relation from A to
A (i.e. a subset of A×A), whi
h we often write as →.Given a redu
tion relation → on A, we de�ne the set of →-redu
ible forms (or justredu
ible forms when the relation is 
lear) as rf→ = {M ∈ A| ∃N ∈→(M)}. We de�nethe set of normal forms as nf→ = {M ∈ A| →(M) = ∅}.Given a redu
tion relation → on A, we de�ne →n by indu
tion on the natural number
n as follows:
→0= Id
→n+1= → ·→n(= →n · →)
→+ denotes the transitive 
losure of → (formally, →+=

⋃

n≥1 →
n).

→∗ denotes the transitive and re�exive 
losure of → (formally, →∗=
⋃

n≥0 →
n).

↔∗ denotes the transitive, re�exive and symmetri
 
losure of →.3



De�nition 3 (Finitely bran
hing relations) A redu
tion relation → on A is �nitelybran
hing if ∀M ∈ A, →(M) is �nite.De�nition 4 Given a redu
tion relation→ on A, we say that a subset T of A is→-stable(or stable under →) if →(T ) ⊆ T .1.2 Normalisation and indu
tionProving a universally quanti�ed property by indu
tion 
onsists of verifying that the setof elements having the property is stable, in some sense similar to -yet more subtle than-the one above. Leading to di�erent indu
tion prin
iples, we de�ne two su
h notions ofstability property: being patriar
hal and being paternal.De�nition 5 Given a redu
tion relation → on A, we say that
• a subset T of A is →-patriar
hal (or just patriar
hal when the relation is 
lear) if
∀N ∈ A, →(N) ⊆ T ⇒ N ∈ T .

• a subset T of A is →-paternal (or just paternal when the relation is 
lear) if it
ontains nf→ and is stable under →−1.
• a predi
ate P on A is patriar
hal (resp. paternal) if {M ∈ A| P (M)} is patriar
hal(resp. paternal).Lemma 2 Suppose that for any N in A, N ∈ rf→ or N ∈ nf→ and suppose T ⊆ A.If T is paternal, then it is patriar
hal.Proof: In order to prove ∀N ∈ A, → (N) ⊆ T ⇒ N ∈ T , a 
ase analysis is needed:either N ∈ rf→ or N ∈ nf→. In both 
ases N ∈ T be
ause T is paternal. ✷Remark 3 Noti
e that we 
an obtain from 
lassi
al logi
 the hypothesis for all N in

A, N ∈ rf→ or N ∈ nf→, be
ause it is an instan
e of the Law of Ex
luded Middle. Inintuitionisti
 logi
, assuming that amounts to saying that being redu
ible is de
idable,whi
h is very often the 
ase.We would not require this hypothesis if we de�ned that T is paternal whenever
∀N ∈ A, N ∈ T ∨ (N ∈ rf→ ∧ ( → (N) ∩ T = ∅)). This is 
lassi
ally equivalent tothe de�nition above, but this de�nition also has some disadvantages as we shall see later.Typi
ally, if we want to prove that a predi
ate holds on some set, we a
tually provethat it is patriar
hal or paternal, depending on the indu
tion prin
iple we use.Hen
e, we de�ne normalisation so that normalising elements are those 
aptured by anindu
tion prin
iple, whi
h should hold for every predi
ate satisfying the 
orrespondingstability property. We thus get two notions of normalisation: the strongly (resp. weakly)normalising elements are those in every patriar
hal (resp. paternal) set.De�nition 6 (Normalising elements) Given a redu
tion relation → on A:

• The set of →-strongly normalising elements isSN→ =
⋂

T is patriar
halT4



• The set of →-weakly normalising elements isWN→ =
⋂

T is paternalTRemark 4 Interestingly enough, WN→ 
an also be 
aptured by an indu
tive de�nition:WN→ =
⋃

n

WN→
nwhere WN→

n is de�ned by indu
tion on the natural number n as follows:WN→
0 = nf→WN→
n+1 = {M ∈ A| ∃n′ ≤ n, M ∈→−1(WN→

n′ )}With the alternative de�nition of paternal suggested in Remark 3, the in
lusionWN→ ⊆
⋃

nWN→
n would require the assumption that being redu
ible by → is de
idable.We therefore preferred the �rst de�nition be
ause we 
an then extra
t from a term M inWN→ a natural number n su
h that M ∈ WN→

n , without the hypothesis of de
idability.Su
h a 
hara
terisation gives us the possibility to prove that all weakly normalisingelements satisfy some property by indu
tion on n. On the other hand, trying to do sowith strong normalisation leads to a di�erent notion, as we shall see below. Hen
e, wela
k for SN→ an indu
tion prin
iple based on natural numbers, whi
h is the reason whywe built-in a spe
i�
 indu
tion prin
iple in the de�nition of SN→.De�nition 7 The set of →-bounded elements is de�ned asBN→ =
⋃

n

BN→
nwhere BN→

n is de�ned by indu
tion on the natural number n as follows:BN→
0 = nf→BN→
n+1 = {M ∈ A| ∃n′ ≤ n, →(M) ⊆ BN→

n′}But we have the following fa
t:Remark 5 For some redu
tion relations →, SN→ 6= BN→. For instan
e, in the followingrelation, M ∈ SN→ but M 6∈ BN→.
M

uulllllllllllllllll

||yy
yy

yy
yy
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D
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. . . Mi,1

��

. . .

M2,2 . . . Mi,2

��

. . .

. . . Mi,i . . .However, suppose that → is �nitely bran
hing. Then BN→ is patriar
hal.As a 
onsequen
e, BN→ = SN→ (the 
ounter-example 
ould not be �nitely bran
hing).Proof: Suppose →(M) ⊆ BN→. Be
ause → is �nitely bran
hing, there exists a naturalnumber n su
h that →(M) ⊆ BN→
n . Clearly, M ∈ BN→

n+1 ⊆ BN→. ✷5



Remark 6 As a trivial example, all the natural numbers are >-bounded. Indeed, anynatural number n is in BN>
n , whi
h 
an be proved by indu
tion.A 
anoni
al way of proving a statement ∀M ∈ BN→, P (M) is to prove by indu
tionon the natural number n that ∀M ∈ BN→

n , P (M). Although we 
an exhibit no su
hnatural number on whi
h a statement ∀M ∈ SN→, P (M) 
an be proved by indu
tion, thefollowing indu
tion prin
iples hold by de�nition of normalisation:Remark 7 Given a predi
ate P on A,1. Suppose P is patriar
hal(that is, ∀M ∈ A, (∀N ∈→(M), P (N)) ⇒ P (M)).Then ∀M ∈ SN→, P (M).2. Suppose P is paternal(that is, ∀M ∈ A, (M ∈ nf→ ∨ ∃N ∈→(M), P (N)) ⇒ P (M)).Then ∀M ∈ WN→, P (M).When we use this remark to prove ∀M ∈ SN→, P (M) (resp. ∀M ∈ WN→, P (M)), we saythat we prove it by raw indu
tion in SN→ (resp. in WN→).De�nition 8 (Strongly normalising relations) Given a redu
tion relation → on Aand a subset T ⊆ A, we say that the redu
tion relation is strongly normalising or ter-minating on T if T ⊆ SN→. If we do not spe
ify T , it means that we take T = A. wemeanRemark 81. If n < n′ then BN→
n ⊆ BN→

n′ ⊆ BN→. In parti
ular, nf→ ⊆ BN→
n ⊆ BN→.2. BN→ ⊆ SN→ and BN→ ⊆ WN→.Hen
e, all natural numbers are in SN> and WN>.3. If being redu
ible is de
idable (or if we work in 
lassi
al logi
), then SN→ ⊆ WN→.Proof:1. By de�nition.2. Both fa
ts 
an be proved for all BN→

n by indu
tion on n.3. This 
omes from Remark 2 and thus requires either 
lassi
al logi
 or the parti
ularinstan
e of the Law of Ex
luded Middle stating that for all N ,
Nrf→ ∨ N ∈ nf→

✷
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Lemma 91. SN→ is patriar
hal, WN→ is paternal.2. If M ∈ BN→ and → (M) ⊆ BN→.If M ∈ SN→ then → (M) ⊆ SN→.If M ∈ WN→ then either M ∈ nf→ or M ∈→−1(WN→)(whi
h implies M ∈ rf→ ⇒ M ∈→−1(WN→)).Proof:1. For the �rst statement, let M ∈ A su
h that →(M) ⊆ SN→ and let T be patriar
hal.We want to prove that M ∈ T . It su�
es to prove that →(M) ⊆ T . This is the
ase, be
ause →(M) ⊆ SN→ ⊆ T .For the se
ond statement, �rst noti
e that nf→ ⊆ WN→. Now let M, N ∈ A su
hthat M → N and N ∈ WN→, and let T be paternal. We want to prove that M ∈ T .This is the 
ase be
ause N ∈ T and T is paternal.2. The �rst statement is straightforward.For the se
ond, we show that T = {P ∈ A| →(P ) ⊆ SN→} is patriar
hal:Let P ∈ A su
h that →(P ) ⊆ T , that is, ∀R ∈→(P ), →(R) ⊆ SN→.Be
ause SN→ is patriar
hal, ∀R ∈→(P ), R ∈ SN→.Hen
e, →(P ) ⊆ SN→, that is, P ∈ T as required.Now by de�nition of SN→, we get M ∈ T .For the third statement, we prove that T = nf→∪ →−1(WN→) is paternal:Clearly, it su�
es to prove that it is stable under →−1. Let P, Q ∈ A su
h that
P → Q and Q ∈ T . If Q ∈ nf→ ⊆ WN→, then P ∈→−1 (WN→) ⊆ T . If
Q ∈→−1 (WN→), then, be
ause WN→ is paternal, we get Q ∈ WN→, so that
P ∈→−1(WN→) ⊆ T as required.Now by de�nition of M ∈ WN→, we get M ∈ T .

✷Noti
e that this lemma gives the well-known 
hara
terisation of SN→:
M ∈ SN→ if and only if ∀N ∈→(M), N ∈ SN→.Now we re�ne the indu
tion prin
iple immediately 
ontained in the de�nition of nor-malisation by relaxing the requirement that the predi
ate should be patriar
hal or pater-nal:Theorem 10 (Indu
tion prin
iple) Given a predi
ate P on A,1. Suppose ∀M ∈ SN→, (∀N ∈→(M), P (N)) ⇒ P (M).Then ∀M ∈ SN→, P (M).2. Suppose ∀M ∈ WN→, (M ∈ nf→ ∨ ∃N ∈→(M), P (N)) ⇒ P (M).Then ∀M ∈ WN→, P (M).When we use this theorem to prove a statement P (M) for all M in SN→ (resp. WN→),we just add (∀N ∈→(M), P (N)) (resp. M ∈ nf→ ∨ ∃N ∈→(M), P (N)) to the assump-tions, whi
h we 
all the indu
tion hypothesis.We say that we prove the statement by indu
tion in SN→ (resp. in WN→).7



Proof:1. We prove that T = {M ∈ A| M ∈ SN→ ⇒ P (M)} is patriar
hal.Let N ∈ A su
h that →(N) ⊆ T . We want to prove that N ∈ T :Suppose that N ∈ SN→. By Lemma 9 we get that ∀R ∈→ (N), R ∈ SN→. Byde�nition of T we then get ∀R ∈→(N), P (R). From the main hypothesis we get
P (N). Hen
e, we have shown N ∈ T .Now by de�nition of M ∈ SN→, we get M ∈ T , whi
h 
an be simpli�ed as P (M)as required.2. We prove that T = {M ∈ A| M ∈ WN→ ∧ P (M)} is paternal.Let N ∈ nf→ ⊆ WN→. By the main hypothesis we get P (N).Now let N ∈→−1(T ), that is, there is R ∈ T su
h that N → R.We want to prove that N ∈ T :By de�nition of T , we have R ∈ WN→, so N ∈ WN→ (be
ause WN→ is paternal).We also have P (R), so we 
an apply the main hypothesis to get P (N). Hen
e, wehave shown N ∈ T .Now by de�nition of M ∈ WN→, we get M ∈ T , whi
h 
an be simpli�ed as P (M)as required.

✷As a �rst appli
ation of the indu
tion prin
iple, we prove the following results:Remark 11 M ∈ SN→ if and only if there is no in�nite redu
tion sequen
e starting from
R (
lassi
ally, with the axiom of 
hoi
e).Proof:

• only if : Consider the predi
ate P (M) �having no in�nite redu
tion sequen
e startingfrom M�. We prove it by indu
tion in SN→. If M starts an in�nite redu
tionsequen
e, then there is a N ∈→(M) that also starts an in�nite redu
tion sequen
e,whi
h 
ontradi
ts the indu
tion hypothesis.
• if : Suppose M 6∈ SN→. There is a patriar
hal set T in whi
h M is not. Hen
e,there is a N ∈→(M) that is not in T , and we re-iterate on it, 
reating an in�niteredu
tion sequen
e. This uses the axiom of 
hoi
e.

✷Remark 121. If →⊆→′, then nf→ ⊇ nf→′, WN→ ⊇ WN→′, SN→ ⊇ SN→′ ,and for all n, BN→
n ⊇ BN→′

n .2. nf→ = nf→+ , WN→ = WN→+, SN→ = SN→+ , and for all n, BN→+

n = BN→
n .Proof:1. By expanding the de�nitions. 8



2. For ea
h statement, the right-to-left in
lusion is a 
orollary of point 1.For the �rst statement, it remains to prove that nf→ ⊆ nf→+.Let M ∈ nf→. By de�nition, →(M) = ∅, so 
learly →+(M) = ∅ as well.For the se
ond statement, it remains to prove that WN→ ⊆ WN→+ whi
h we do byindu
tion in WN→:Assume M ∈ WN→ and the indu
tion hypothesis that either M ∈ nf→ or there is
N ∈→(M) su
h that N ∈ WN→+. In the former 
ase, we have M ∈ nf→ = nf→+and nf→+

⊆ WN→+ . In the latter 
ase, we have N ∈→+(M). Be
ause of Lemma 9,WN→+ is stable by WN→+−1 , and hen
e M ∈ WN→+.For the third statement, it remains to prove that SN→ ⊆ SN→+. We prove thestronger statement that ∀M ∈ SN→, →∗(M) ⊆ SN→+ by indu
tion in SN→: assume
M ∈ SN→ and the indu
tion hypothesis ∀N ∈→ (M), →∗ (N) ⊆ SN→+. Clearly,
→+ (M) ⊆ SN→+ . Be
ause of Lemma 9, SN→+ is →+-patriar
hal, so M ∈ SN→+,and hen
e →∗(M) ⊆ SN→+.The statement BN→

n ⊆ BN→+

n 
an easily be proved by indu
tion on n.
✷Noti
e that this result enables us to use a stronger indu
tion prin
iple: in order to prove

∀M ∈ SN→, P (M), it now su�
es to prove
∀M ∈ SN→, (∀N ∈→+(M), P (N)) ⇒ P (M)This indu
tion prin
iple is 
alled the transitive indu
tion in SN→.Lemma 13 (Strong normalisation of disjoint union) Suppose that (Ai)i∈I is a fam-ily of sets on some index set I, ea
h being equipped with a redu
tion relation →i.Suppose that they are pairwise disjoint (∀i, j ∈ I2, i 6= j ⇒ Ai ∩Aj = ∅).Consider the redu
tion relation →=

⋃

i∈I →i on ⋃

i∈I Ai.We have ⋃

i∈I SN→i ⊆ SN→.Proof: It su�
es to prove that for all j ∈ I, SN→j ⊆ SN→, whi
h we do by indu
tion inSN→j . Assume M ∈ SN→j and assume the indu
tion hypothesis →j (M) ⊆ SN→.We must prove M ∈ SN→, so it su�
es to prove that for all N su
h that M → N wehave N ∈ SN→.By de�nition of the disjoint union, all su
h N are in →j (M) so we 
an apply theindu
tion hypothesis. ✷1.3 Termination by simulation & lexi
ographi
 terminationNow that we have established an indu
tion prin
iple on strongly normalising elements,the question arises of how we 
an prove strong normalisation. In this subse
tion we re-establish in our framework the well-known te
hnique of simulation, whi
h 
an be foundfor instan
e in [BN98℄. The basi
 te
hnique to prove that a redu
tion relation on the set Aterminates 
onsists in mapping the elements of A to elements of a set B equipped with itsown redu
tion relation known to be terminating, and proving that the redu
tion in A 
anbe simulated by that of B. The mapping is sometimes 
alled the measure fun
tion or theweight fun
tion. We generalise here the te
hnique by repla
ing the weight fun
tion by a9



relation between A and B. Oddly enough, we were unable to �nd this easy generalisationin the literature. But the main point here is that the simulation te
hnique is the typi
alexample where the proof usually starts with �suppose an in�nite redu
tion sequen
e�and ends with a 
ontradi
tion. We show how the use of 
lassi
al logi
 is 
ompletelyunne
essary, provided that we use a 
onstru
tive de�nition of SN su
h as ours.De�nition 9 (Strong and Weak Simulation)Let R be a relation between two sets A and B, equipped with the redu
tion relations →Aand →B respe
tively.
• →B strongly simulates →A through R if (R−1 · →A) ⊆ (→+

B · R−1).In other words, for all M, M ′ ∈ A and for all N ∈ B, if MRN and M →A M ′ thenthere is N ′ ∈ B su
h that M ′RN ′ and N →+
B N ′.Noti
e that when R is a fun
tion, this implies R[→A] ⊆→+

B .
• →B weakly simulates →A through R if (R−1 · →A) ⊆ (→∗

B · R−1).In other words, for all M, M ′ ∈ A and for all N ∈ B, if MRN and M →A M ′ thenthere is N ′ ∈ B su
h that M ′RN ′ and N →∗
B N ′.Noti
e that when R is a fun
tion, this implies R[→A] ⊆→∗

B.Theorem 14 (Strong normalisation by strong simulation) Let R be a relation be-tween A and B, equipped with the redu
tion relations →A and →B.If →B strongly simulates →A through R, then R−1(SN→B) ⊆ SN→A.Proof: R−1(SN→B) ⊆ SN→A 
an be reformulated as
∀N ∈ SN→B , ∀M ∈ A, MRN ⇒ M ∈ SN→Awhi
h we prove by transitive indu
tion in SN→B . Assume N ∈ SN→B and assume the in-du
tion hypothesis ∀N ′ ∈→+

B (N), ∀M ′ ∈ A, M ′RN ′ ⇒ M ′ ∈ SN→A. Now let
M ∈ A su
h that MRN . We want to prove that M ∈ SN→A. It su�
es to prove that
∀M ′ ∈→(M), M ′ ∈ SN→A . Let M ′ be su
h that M →A M ′. The simulation hypothesisprovides N ′ ∈→+

B (N) su
h that M ′RN ′. We apply the indu
tion hypothesis on N ′, M ′and get M ′ ∈ SN→A as required. ✷The simulation te
hnique 
an be improved by another standard method. It 
onsists ofsplitting the redu
tion relation into two parts, then proving that the �rst part is stronglysimulated by a �rst auxiliary terminating relation, and then proving that the se
ondpart is weakly simulated by it and strongly simulated by a se
ond auxiliary terminatingrelation.In some sense, the two auxiliary terminating relations a
t as measures that de
reaselexi
ographi
ally.We express this method in our 
onstru
tive framework.Lemma 15 Given two redu
tion relations →, →′, suppose that SN→ is stable under →′.Then SN→∪→′

= SN→∗·→′

∩ SN→ 10



Proof: The left-to-right in
lusion is an appli
ation of Theorem 14: → ∪ →′ stronglysimulates both →∗ · →′ and → through Id.Now we prove the right-to-left in
lusion. We �rst prove the following lemma:
∀M ∈ SN→, (→∗ · →′)(M) ⊆ SN→∪→′

⇒ M ∈ SN→∪→′We do this by indu
tion in SN→, so not only assume (→∗ · →′)(M) ⊆ SN→∪→′, but alsoassume the indu
tion hypothesis:
∀N ∈→(M), (→∗ · →′)(N) ⊆ SN→∪→′

⇒ N ∈ SN→∪→′.We want to prove that M ∈ SN→∪→′, so it su�
es to prove that both
∀N ∈→′ (M), N ∈ SN→∪→′ and ∀N ∈→ (M), N ∈ SN→∪→′. The former 
ase is aparti
ular 
ase of the �rst hypothesis. The latter 
ase would be provided by the se
ondhypothesis (the indu
tion hypothesis) if only we 
ould prove that (→∗ ·→′)(N) ⊆ SN→∪→′.But this is true be
ause (→∗ ·→′)(N) ⊆ (→∗ ·→′)(M) and the �rst hypothesis reapplies.Now we prove

∀M ∈ SN→∗·→′

, M ∈ SN→ ⇒ M ∈ SN→∪→′We do this by indu
tion in SN→∗·→′, so not only assume M ∈ SN→, but also assume theindu
tion hypothesis ∀N ∈ (→∗ · →′)(M), N ∈ SN→ ⇒ N ∈ SN→∪→′.Now we 
an 
ombine those two hypotheses, be
ause we know that SN→ is stable under
→′: sin
e M ∈ SN→, we have (→∗ ·→′)(M) ⊆ SN→, so that the indu
tion hypothesis 
anbe simpli�ed in ∀N ∈ (→∗ · →′)(M), N ∈ SN→∪→′.This gives us exa
tly the 
onditions to apply the above lemma to M . ✷Corollary 16 (Lexi
ographi
 termination)Let A1, . . . ,An be sets, respe
tively equipped with the redu
tion relations →A1

, . . . ,→An
.For 1 ≤ i ≤ n, let →i be the redu
tion relation on A1 × · · · × An de�ned as follows:

(M1, . . . , Mn) →i (N1, . . . , Nn)if Mi →Ai
Ni and for all 1 ≤ j < i, Mj = Nj and for all i < j ≤ n, Nj ∈ SN→AjWe de�ne the lexi
ographi
 redu
tion →lex as →1 ∪ . . .∪ →n. We then have:SN→A1 × · · · × SN→An ⊆ SN→lexIn parti
ular, if →Ai

is terminating on Ai for all 1 ≤ i ≤ n, then →lex is terminating on
A1 × · · · × An.Proof: By indu
tion on n: for n = 1, we 
on
lude from →A1

=→1.Then noti
e that →An+1
strongly simulates →n+1 through the (n+1)th proje
tion. Hen
e,by Theorem 14, if Nn+1 ∈ SN→An+1 then (N1, . . . , Nn+1) ∈ SN→n+1, whi
h we 
an alsoformulate as A1 × · · · × An × SN→An+1 ⊆ SN→n+1.A �rst 
onsequen
e of this is SN→A1 × · · ·× SN→An+1 ⊆ SN→n+1 (1). A se
ond one is thatSN→n+1 is stable under →1 ∪ . . .∪ →n (2). Now noti
e that →1 ∪ . . .∪ →n strongly sim-ulates →∗

n+1 · (→1 ∪ . . .∪ →n) through the proje
tion that drops the (n+1)th 
omponent.We 
an thus apply Theorem 14 to get SN→1∪...∪→n × An+1 ⊆ SN→∗
n+1

·(→1∪...∪→n), whi
h,
ombined with the indu
tion hypothesis, gives SN→A1×· · ·×SN→An+1 ⊆ SN→∗
n+1·(→1∪...∪→n)(3). From (1), (2), and (3) we 
an now 
on
lude by using Lemma 15. ✷11



Corollary 17 Let A be a set equipped with a redu
tion relation →.For ea
h natural number n, let →lexn be the lexi
ographi
 redu
tion on An.Consider the redu
tion relation →lex= ⋃

n →lexn on the disjoint union ⋃

n A
n.

⋃

n

(SN→)n ⊆ SN→lexProof: It su�
es to 
ombine Corollary 16 with Lemma 13. ✷Corollary 18 Let →A and →′
A be two redu
tion relations on A, and →B be a redu
tionrelation on B. Suppose

• →′
A is strongly simulated by →B through R

• →A is weakly simulated by →B through R

• SN→A = AThen R−1(SN→B) ⊆ SN→A∪→′
A.(In other words, if MRN and N ∈ SN→B then M ∈ SN→A∪→′

A.)Proof: Clearly, the redu
tion relation →∗
A · →′

A is strongly simulated by →B through
R, so that by Theorem 14 we get R−1(SN→B) ⊆ SN→∗

A
·→′

A.But SN→∗
A
·→′

A = SN→∗
A
·→′

A ∩ SN→A = SN→A∪→′
A, by the Lemma 15 (sin
e SN→A = A isobviously stable by →′

A). ✷The intuitive idea behind this 
orollary is that after a 
ertain number of →A-steps and
→′

A-steps, the only redu
tions in A that 
an take pla
e are those that no longer modifythe en
oding in B, that is, →A-steps. Then it su�
es to show that →A terminate, so thatno in�nite redu
tion sequen
e 
an start from M , as illustrated in Figure 1.1.4 Multi-set terminationNow we de�ne the notions of multi-sets their redu
tions. We 
onstru
tively prove theirtermination. A 
lassi
al proof of the result 
an be found in [Ter03℄.De�nition 10 (Multi-Sets) Given a set A, a multi-set on A is a total fun
tion from Ato the natural numbers su
h that only a �nite subset of elements are not mapped to 0.Noti
e that for two su
h multi-sets f and g, the fun
tion f + g mapping any element
M of A to f(M) + g(M) is still a multi-set on A.We de�ne the multi-set {{N1, . . . , Nn}} as f1 + · · · + fn, where for all 1 ≤ i ≤ n, fimaps Ni to 1 and every other element to 0.We write abusively M ∈ f if f(M) 6= 0.De�nition 11 (Multi-Set redu
tion relation) Given → is a redu
tion relation on A,we de�ne the multi-set redu
tion as follows:if f and g are multi-sets on A, we say that f →mul g if there is a M in A su
h that

{

f(M) = g(M) + 1
∀N ∈ A, f(N) < g(N) ⇒ M → NIn what follows we always assume that A is a set with a redu
tion relation →.12
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xxxxxxxxxxxxxxxxxxxxxFigure 1: Deriving strong normalisation by simulationLemma 19 If f1, . . . , fn, g are multi-sets on A and f1 + · · · + fn →mul g then there is
1 ≤ i ≤ n and a multi-set f ′

i su
h that fi →mul f ′
i and f1+· · ·+fi−1+f ′

i +fi+1+· · ·+fn = g.Proof: We know that there is a M in A su
h that
{

f1(M) + · · · + fn(M) = g(M) + 1
∀N ∈ A, f1(N) + · · ·+ fn(N) < g(N) ⇒ M → NAn easy lexi
ographi
 indu
tion on two natural numbers p and q shows that if p + q > 0then p > 0 or q > 0. By indu
tion on the natural number n, we extend this result: if

p1+· · ·+pn > 0 then ∃i, pi > 0. We apply this result on f1(M)+· · ·+fn(M) and get some
fi(M) > 0. Obviously there is a unique f ′

i su
h that f1+· · ·+fi−1+f ′
i +fi+1+· · ·+fn = g,and we also get fi →mul f ′

i . ✷De�nition 12 Given two sets N and N ′ of multi-sets, we de�ne N + N ′ as
{f + g| f ∈ N , g ∈ N ′}.We de�ne for every M in A its relative multi-sets as all the multi-sets f on A su
hthat if N ∈ f then M →∗ N . We denote the set of relative multi-sets as MM .Remark 20 Noti
e that for any M ∈ A, MM is stable under →mul.Lemma 21 For all M1, . . . , Mn in A,if MM1

∪ . . . ∪MMn
⊆ SN→mul then MM1

+ · · ·+ MMn
⊆ SN→mul.Proof: Let W be the relation between MM1

+ · · ·+MMn
and MM1

×· · ·×MMn
de�nedas: f1 + · · ·+ fnW(f1, . . . , fn) for all f1, . . . , fn in MM1

× · · · ×MMn
.13



We 
onsider as a redu
tion relation onMM1
×· · ·×MMn

the lexi
ographi
 
ompositionof →mul. We denote this redu
tion relation as →mullex. By Corollary 16, we know that
MM1

× · · · ×MMn
⊆ SN→mullex . Hen
e, W−1(SN→mullex) = MM1

+ · · · + MMn
.Now we prove that MM1

+ · · · + MMn
is stable by →mul and that →mullex stronglysimulates→mul throughW. Suppose f1+· · ·+fn →mul g. By Lemma 19 we get a multi-set

f ′
i su
h that f1 + · · · + fi−1 + f ′

i + fi+1 + · · ·+ fn = g and fi →mul f ′
i .Hen
e, f ′

i ∈ MMi
, so that (f1, . . . , fi−1, f

′
i , fi+1, · · · , fn) ∈ MM1

× · · · × MMn
and even

(f1, · · · , fn) →mullex (f1, . . . , fi−1, f
′
i , fi+1, · · · , fn).By Theorem 14 we then get W−1(SN→mullex) ⊆ SN→mul, whi
h 
on
ludes the proofbe
ause W−1(SN→mullex) = MM1

+ · · ·+ MMn
. ✷Lemma 22 ∀M ∈ SN→,MM ⊆ SN→mulProof: By transitive indu
tion in SN→. Assume that M ∈ SN→ and assume theindu
tion hypothesis ∀N ∈→+(M),MN ⊆ SN→mul.Let us split the redu
tion relation →mul: if f →mul g, let f →mul1 g if f(M) = g(M)and let f →mul2 g if f(M) > g(M). Clearly, if f →mul g then either f →mul1 g or

f →mul1 g. This is an intuitionisti
 impli
ation sin
e the equality of two natural numbers
an be de
ided.Now we prove that →mul1 is terminating on MM .Let W ′ be the following relation (a
tually, a fun
tion) between MM to itself: for all
f and g in MM , fWg if g(M) = 0 and for all N 6= M , f(N) = g(N).For a given f ∈ MM , let N1, . . . , Nn be the elements of A that are not mapped to 0by f and that are di�erent from M . Sin
e f ∈ MM , for all 1 ≤ i ≤ n we know M →+ Ni,and we also know that W ′(f) ∈ MN1

+ · · · + MNn
. Hen
e, we apply the indu
tionhypothesis and Lemma 21 to get MN1

+ · · · + MNn
⊆ SN→mul . Hen
e, W ′(f) ∈ SN→mul.Now noti
e that →mul strongly simulates →mul1 through W ′, so by Theorem 14,

f ∈ SN→mul1.Now that we know that →′mul is terminating on MM , we noti
e that the de
reasingorder on natural numbers strongly simulates →mul2 and weakly simulates →mul1 throughthe fun
tion that maps every f ∈ MM to the natural number f(M).Hen
e, we 
an apply Corollary 18 to get MM ⊆ SN→mul. ✷Corollary 23 (Multi-Set termination) Let f be a multi-set on A.If for any M ∈ f , M ∈ SN→, then f ∈ SN→mul.Proof: Let M1, . . . , Mn be the elements of A that are not mapped to 0 by f . Clearly,
f ∈ MM1

+ · · · + MMn
. By Lemma 22, MM1

∪ . . .MMn
⊆ SN→mul, and by Lemma 21,

MM1
+ · · ·+ MMn

⊆ SN→mul, so f ∈ SN→mul . ✷1.5 Higher-order syntaxes and rewrite systemsWe now deal with higher-order syntaxes, where the set A is re
ursively de�ned by a termsyntax possibly involving variable binding and the redu
tion relation → is de�ned as arewrite system. There are several ways to express those systems in a generi
 way, amongwhi
h the Expression Redu
tion Systems (ERS) [Kha90℄, the Combinatory Redu
tionSystems (CRS) [Klo80℄, and the Higher-Order Systems (HRS) [Nip91℄. In the rest of thisreport, we only use from those formalisms the notions of redex, sub-term and 
ontextual14




losure of the rewrite rules, as well as the notion of impli
it substitution su
h as M{x = N}(that denotes the term M in whi
h every o

urren
e of the variable x has been repla
edby the term N). All these de�nitions 
an be found in [Ter03℄.De�nition 13 (Conventions)The symbol ⊑ denotes the sub-term relation and ⊏ denotes the stri
t sub-term relation(we also use ⊒ and ⊐ for the inverse relations).By de�nition of terms, A = SN⊐.For a rewrite system R, −→R denotes as usual the 
ontextual 
losure of the relationthat 
ontains every instan
e of the rewrite rules of R.We identify a rewrite rule h with the rewrite system {h} and for two rewrite systemsR and R′ we write R,R′ for R ∪ R′.A 
ongruen
e on A is an equivalen
e relation that is 
ontext-
losed.Lemma 24 SN−→R ∪⊐ = SN−→R .Proof: This is a typi
al theorem that is usually proved 
lassi
ally (using for in-stan
e the postponing te
hnique [Ter03℄). We prove it 
onstru
tively here. The left-to-right in
lusion is trivial, by Remark 8. Now for the other dire
tion, �rst noti
e thatSN⊐ = A. Be
ause of the de�nition of a 
ontextual 
losure, −→R strongly simulates−→Rthrough ⊑. Also, it weakly simulates ⊐ through ⊑, so we may apply Corollary 18 and get
∀N ∈ SN→R, ∀M ∈ A, M ⊑ N ⇒ M ∈ SN→R∪⊐.In parti
ular, ∀N ∈ SN→R, M ∈ SN→R∪⊐. ✷Noti
e that this result enables us to use a stronger indu
tion prin
iple: in order toprove ∀M ∈ SN−→R , P (M), it now su�
es to prove

∀M ∈ SN−→R , (∀N ∈ A, (M−→+R N ∨ N ⊏M) ⇒ P (N)) ⇒ P (M)This indu
tion prin
iple is 
alled the transitive indu
tion in SNR with sub-terms and isused in the following se
tions.We brie�y re
all the various indu
tion prin
iples:In order to prove ∀M ∈ SN−→R , P (M), it su�
es to prove
• ∀M ∈ A, (∀N ∈ A, (M −→R N) ⇒ P (N)) ⇒ P (M)(raw indu
tion in SNR), or just
• ∀M ∈ SN−→R , (∀N ∈ A, (M −→R N) ⇒ P (N)) ⇒ P (M)(indu
tion in SNR), or just
• ∀M ∈ SN−→R , (∀N ∈ A, (M−→+R N) ⇒ P (N)) ⇒ P (M)(transitive indu
tion in SNR), or even
• ∀M ∈ SN−→R , (∀N ∈ A, (M−→+R N ∨ N ⊏M) ⇒ P (N)) ⇒ P (M)(transitive indu
tion in SNR with sub-terms)De�nition 14 SNR hen
eforth denotes SN−→R ∪⊐ = SN−→R .
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2 Of the di�
ulty of relating the terminations of λ-
al
uliIn the rest of this report we develop te
hniques that were originally designed for derivingstrong normalisation results from the strong normalisation of typed λ-
al
ulus [Bar84℄.The �rst one turns out to be more general and 
an be applied to any rewrite system. Itis a useful re�nement of the simulation te
hnique, but the main theorem of the te
hniqueonly holds in 
lassi
al logi
.The se
ond te
hnique holds in intuitionisti
 logi
, apart maybe from one externalresult, of whi
h the provability in intuitioniti
 logi
 remains to be 
he
ked. The te
h-nique was originally designed to prove the strong normalisation of 
al
uli with expli
itsubstitutions, su
h as λx [BR95℄.We 
all 
al
ulus with expli
it substitutions a 
al
ulus that uses a set of variables,denoted x, y, . . ., and one of its 
onstru
tors is the following one:If M and N are terms, then 〈M/x〉N is a term, where x is bound in N . The 
onstru
t is
alled an expli
it substitution and M is 
alled its body.Of 
ourse, the te
hnique is likely to be adapted to other frameworks, whi
h 
ould useDe Bruijn indi
es [Bar84℄ or expli
it substitutions with additional parameters, but theabove framework is plainly su�
ient for the examples treated hereafter.Among the 
al
uli with expli
it substitutions to whi
h the te
hniques 
an be appliedare the intuitionisti
 sequent 
al
uli [Gen35℄.The notion of 
omputation in sequent 
al
uli is Cut-elimination: the proof of a sequentmay be simpli�ed by eliminating the appli
ations of the Cut-rule, so that a sequent whi
his provable with the Cut-rule is provable without.It turns out that the most natural typing rule for an expli
it substitution as expressedabove is pre
isely a Cut-rule. From that remark, many te
hniques aimed at provingnormalisation results about 
al
uli of expli
it substitutions a
tually apply to systemswith Cut-rules su
h as sequent 
al
uli. In other words, termination of 
ut-eliminationpro
esses 
an often be derived from termination of expli
it substitution 
al
uli.Of 
ourse, in the 
ase of sequent 
al
uli, termination of Cut-elimination relies only onthe strong normalisation of typed terms.Another notion ta
kles the strong normalisation of terms with expli
it substitutionsthat are not ne
essarily typed: the property 
alled Preservation of Strong Normalisation(PSN) [BBLRD96℄. It 
on
erns synta
ti
 extensions of λ-
al
ulus with their own redu
tionrelations and states that if a λ-term is strongly normalising for the β-redu
tion, then it isstill strongly normalising when 
onsidered as a term of the extended 
al
ulus undergoingthe redu
tions of the latter. In other words, the redu
tion relation should not be too big,although it is often required to be big enough to simulate β-redu
tion. It is typi
ally the
ase of λx [BR95℄, whi
h we shall investigate shortly.The de�nition of the PSN property 
an be slightly generalised for 
al
uli in whi
h λ-
al
ulus 
an be embedded (by a one-to-one translation, say A) rather than just in
luded.In that 
ase PSN states that if a λ-term is strongly normalising, then its en
oding is alsostrongly normalising. This is the 
ase for the expli
it substitution 
al
ulus λlxr introdu
edin [KL05℄ whi
h requires terms to be linear and hen
e is not a synta
ti
 extension of λ-
al
ulus. Figure 2 shows the two situations, with the example of λx and λlxr.The basi
 idea in proving that a term M of a 
al
ulus with expli
it substitutions is SN16



λx
λ

λlxr
λ A +3Figure 2: Standard and generalised situations for stating PSNis to use Corollary 18, that is, simulating M 's redu
tions by β-redu
tions of a stronglynormalising λ-term H(M).For PSN, if M = A(t) where t is the λ-term known to be SNβ by hypothesis, then wewould take H(M) = t.For sequent 
al
ulus, it would be a typed (and hen
e strongly normalising) λ-termthat denotes a proof in natural dedu
tion of the same sequent (using Curry-Howard 
orre-sponden
e). The idea of simulating Cut-elimination by β-redu
tions has been investigatedin [Zu
74℄.There is one problem in doing so: an en
oding into λ-
al
ulus that allows the simula-tion needs to interpret expli
it substitutions by impli
it substitutions su
h as t{x = u}.But should x not be free in t, all redu
tion steps taking pla
e within the term of whi
h uis the en
oding would not indu
e any β-redu
tion in t{x = u}.Therefore, the sub-system that is only weakly simulated, i.e. the one 
onsisting of allthe redu
tions that are not ne
essarily simulated by at least one β-redu
tion, is too bigto be proved terminating (and very often it is not).The two te
hniques developed hereafter are designed to over
ome this problem, in asomewhat general setting. The two aforementioned 
al
uli with expli
it substitutions λxand λlxr respe
tively illustrate how ea
h 
an be applied and 
an provide in parti
ular aproof of the PSN property.In order to 
ompare the examples with λ-
al
ulus, we brie�y re
all the latter. Thesyntax is de�ned as follows:

M, N ::= x| λx.M | M N

β-redu
tion is de�ned as the following rule:
(λx.M) N −→β M{x = N}The �rst three inferen
e rules of Figure 3 de�ne the derivable judgements of the simply-typed λ-
al
ulus, whi
h we note as Γ ⊢NJ M : A. When the two bottom inferen
e rulesare added, we obtain a typing system 
hara
terising SNβ, and we note those derivablejudgements as Γ ⊢NJ∩ M : A.The following theorem has been proved in [CD78℄:Theorem 25 (Strong Normalisation of λ-
al
ulus)

Γ ⊢NJ∩ M : A if and only if M ∈ SNβ.A proof of the weaker statement that simply-typed λ-
al
ulus is strongly normalising 
anbe found, for example, in [Bar84℄. 17



Γ, x : A ⊢ x : A

Γ, (x : A) ⊢ M : B

Γ ⊢ λx.M : A → B

Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ M N : B

Γ ⊢ M : A Γ ⊢ M : B

Γ ⊢ M : A ∩ B

Γ ⊢ M : A1 ∩ A2
i ∈ {1, 2}

Γ ⊢ M : AiFigure 3: Typing rules for λ-
al
ulus3 The safeness and minimality te
hniqueGiven a rewrite system R on a set of terms A, the safeness and minimality te
hniquepresents two subsystems minR and safeR satisfying −→safeR ⊆−→minR ⊆−→R andSNminR = SNR.The intuitive idea is that a redu
tion step is minimal if all the (stri
t) sub-terms ofthe redex are in SNR. Theorem 27 says that in order to prove that −→R is terminating,we 
an restri
t our attention to minimal redu
tions only, without loss of generality.Similarly, a redu
tion step is safe if the redex itself is in SNR, whi
h is a strongerrequirement than minimality. Theorem 28 says that, whatever R, safe redu
tions alwaysterminate.Those ideas are made pre
ise in the following de�nition:De�nition 15 (Safe and Minimal redu
tions) Given two rewrite systems h and Rsatisfying −→h ⊂−→R ,
• the (R-)minimal h-system is given by the following s
heme of rules:minh : M −→ N for every M −→h N su
h that for all P ⊏M , P ∈ SNR
• the (R-)safe h-system is given by the following s
heme of rules:safeh : M −→ N for every M −→h N su
h that M ∈ SNRIn both rules we 
ould require M −→h N to be a root redu
tion so that M is the redex,but although the rules above seem stronger than that, they have the same 
ontextual
losure, so we 
onsider the de�nition above whi
h is the simplest.Noti
e that being safe is stronger than being minimal as we have:

−→safeh ⊆−→minh ⊆−→h ⊆−→R .We also say that a redu
tion step M −→h N is safe (resp. minimal) if M −→safeh N(resp. M −→minh N) and that it is unsafe if not.Obviously if −→h is �nitely bran
hing, then so are −→safeh and −→minh .Remark 26 We shall 
onstantly use the following fa
ts:1. −→min(safeh) =−→safe(minh) =−→safeh 18



2. −→safe(h,h′) =−→safeh,safeh′3. −→min(h,h′) =−→minh,minh′Theorem 27 SNminR = SNRIn other words, in order to prove that a term is strongly normalising, it su�
es to provethat it is strongly normalising for minimal redu
tions only. This theorem holds in intu-itionisti
 logi
.Proof: The right-to-left in
lusion is trivial. We now prove that SNminR ⊆ SNR, bytransitive indu
tion in SNminR with sub-terms.Let M ∈ SNminR, we have the indu
tion hypothesis that
∀N, (M−→+minR N ∨ N ⊏ M) ⇒ N ∈ SNR.We want to prove that M ∈ SNR, so it su�
es to 
he
k that if M −→R N , then
N ∈ SNR.We �rst show that in that 
ase M −→minR N . Let Q be the R-redex in M , andlet P ⊏ Q. We have P ⊏ M . By the indu
tion hypothesis we get P ∈ SNR, so Q is aminR-redex. By 
ontextual 
losure of minimal redu
tion, M −→minR N .Again by the indu
tion hypothesis, we get N ∈ SNR as required. ✷Theorem 28 SNsafeR = AIn other words, safe redu
tions always terminate. This theorem holds in intuitionisti
logi
.Proof: Consider the multi-sets of (R)-strongly normalising terms, and 
onsider themulti-set redu
tions indu
ed by the redu
tions (−→R ∪ ⊐)+ on strongly normalisingterms. By Corollary 23, these multi-set redu
tions are terminating.Considering the mapping φ of every term to the multi-set of its R-strongly normalisingsub-terms, we 
an 
he
k that the multi-set redu
tions strongly simulate the safe redu
tionsthrough φ. Hen
e, from Theorem 14, we get that safe redu
tions are terminating. ✷Now the aim of the safeness and minimality te
hnique is to prove the strong normali-sation of a system R.We obtain this by the following theorem, whi
h only holds in 
lassi
al logi
. Indeed,it relies on the fa
t that for the rewrite system R, for all term M we have either M ∈ SNRor M 6∈ SNR. This instan
e of the Law of Ex
luded Middle is in general not de
idable.Theorem 29 Given a system R, if we �nd a subsystem R′ satisfying −→safeR ⊆−→R′

⊆−→minR , su
h that we have:
• the strong simulation of −→minR \ −→R′ in a strongly normalising 
al
ulus, througha total relation Q

• the weak simulation of −→R′ through Q

• the strong normalisation of −→R′then R is strongly normalising.Proof: This is a dire
t 
orollary of Corollary 18. ✷19



B (λx.M) N −→ 〈N/x〉Mx :















Abs 〈N/x〉λy.M −→ λy.〈N/x〉MApp 〈N/x〉M1 M2 −→ 〈N/x〉M1 〈N/x〉M2VarK 〈N/x〉y −→ yVarI 〈N/x〉x −→ NFigure 4: Redu
tion rules for λxNow noti
e the parti
ular 
ase of the te
hnique when we take R′ = safeR. By Theo-rem 28 we would dire
tly have its strong normalisation. Unfortunately, this de�nition isoften too 
oarse, that is to say, the relation −→R′ is to small, so that −→minR \ −→R′′is often too big to be strongly simulated.Hen
e, in order to de�ne R′, we use the safeness 
riterion, but the pre
ise de�nitiondepends on the 
al
ulus that is being treated. We give the examples of λx and λ. Theproofs in these examples use 
lassi
al logi
.3.1 Example: λx
λx [BR95℄ is the synta
ti
 extension of λ-
al
ulus with the aforementioned expli
it sub-stitution operator:

M, N ::= x| λx.M | M N | M{x = N}Its redu
tion system redu
es β-redexes into expli
it substitutions whi
h are then
eevaluated, as shown in Figure 4.The �rst four inferen
e rules of Figure 5 de�ne the derivable judgements of simply-typed λx, whi
h we note as Γ ⊢NJCut M : A. When the three bottom inferen
e rulesare added, we obtain a typing system 
hara
terising SNB,x [LLD+04℄, and we note thosederivable judgements as Γ ⊢NJCut∩ M : A. The following theorem is proved in [LLD+04℄:
Γ, x : A ⊢ x : A

Γ ⊢ P : A Γ, (x : A) ⊢ M : C

Γ ⊢ 〈P/x〉M : C

Γ, (x : A) ⊢ M : B

Γ ⊢ λx.M : A → B

Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ M N : B

Γ ⊢ M : A Γ ⊢ M : B

Γ ⊢ M : A ∩ B

Γ ⊢ M : A1 ∩ A2
i ∈ {1, 2}

Γ ⊢ M : Ai

Γ ⊢ M : A ∆ ⊢ N : B x 6∈ Γ

Γ ⊢ 〈N/x〉M : AFigure 5: Typing rules for λx20



Theorem 30 (Capturing strongly normalising terms)If M ∈ SNB,x then there is a Γ and a A su
h that Γ ⊢NJCut∩ M : A.In the same paper, the 
onverse (typed terms are strongly normalising) has been proved bya redu
ibility te
hnique. We show here that one appli
ation of the Safeness and Minimalityte
hnique, apart from PSN, is to derive this result from the strong normalisation of λ-
al
ulus with interse
tion types (Theorem 25).In this example we take R′ = safeB,minx.Lemma 31 −→safeB,x is terminating.Proof: We use for that a lexi
ographi
 path ordering [KL80℄ based on the followingin�nite �rst-order signature and its pre
eden
e relation:
M < su

(−) < bi(−,−) < sub(−,−)where for every M ∈ SNB,x there is a 
onstant 
M . Those 
onstants are all below su

(),and the pre
eden
e between them is given by 
N < 
M if and only if M−→+
B,x N or

N ⊏M . By Remark 24, the pre
eden
e is well-founded (terminating).En
ode λx as follows:
P(M) = 
M if M ∈ SNB,xotherwise
P(λx.M) = su

(P(M))
P(M N) = bi(P(M),P(N))
P(〈N/x〉M) = sub(P(N),P(M))It is quite easy to 
he
k that (safeB), x-redu
tions de
rease P(), so they are terminating.

✷Now 
onsider the following en
oding in λ:H(x) = xH(λx.M) = λx.H(M)H(M N) = H(M) H(N)H(〈N/x〉M) = H(M){x = H(N)} if N ∈ SNB,x
= (λx.H(M)) H(N) if N 6∈ SNB,xLemma 321. If M −→minB N is unsafe then H(M) −→β H(N)2. If M −→minB N is safe then H(M)−→∗

β H(N)3. If M −→minx N then H(M) = H(N)Corollary 33 If H(M) ∈ SNβ then M ∈ SNB,x.Proof: Dire
t appli
ation of Theorem 29. ✷
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This results has two obvious 
orollaries:Considering that on pure terms (that is, substitution-free terms), the en
oding into
λ-
al
ulus is the identity, this gives dire
tly the PSN property for λx.Corollary 34 (Preservation of Strong Normalisation)If t ∈ SNβ then t ∈ SNB,x.It turns out that the above en
oding generally preserves typing. Hen
e, if the typingsystem 
onsidered in λ-
al
ulus implies strong normalisation, then the original λx-term isalso strongly normalising, by Corollary 33. For instan
e, we have the following theorem:Theorem 351. If Γ ⊢NJCut M : A then Γ ⊢NJ H(M) : A, so M ∈ SNB,x.2. If Γ ⊢NJCut∩ M : A then Γ ⊢NJ∩ H(M) : A, so M ∈ SNB,x.Often, that kind of strong normalisation result is derived from the PSN property bylifting the expli
it substitutions into β-redexes [Her95℄, but this is pre
isely what theen
oding does in the ne
essary pla
es, so that Corollary 33 is a short
ut of Herbelin'ste
hnique.Noti
e the subtlety of the de�nition for the en
oding of an expli
it substitution:1. As we have already said, always en
oding expli
it substitutions as impli
it substi-tutions leads to the weak simulation of too many B-steps, so that the system thatis only weakly simulated is too big to be proved terminating.2. On the other hand, always raising 〈N/x〉M into a β-redex would be too strong,be
ause the substitution 〈N/x〉 
an be propagated into the sub-terms of M but the

β-redex 
annot be moved around, so the simulation theorem would not hold.3. Hen
e, we needed to de�ne an en
oding that is a 
ompromise of those two, and theside-
ondition N ∈ SNB,x is pre
isely the 
riterion we need:
• First, the satis�ability of the 
ondition may only evolve in one dire
tion, as itmay only be
ome satis�ed by some redu
tion within N , and not the other wayaround. If it does so, we 
an simulate this step by redu
ing the β-redex.
• Now if N 6∈ SNB,x, then the substitution is lifted into a β-redex and for thesame reason as in point 2 we 
annot simulate the propagation of 〈N/x〉. Sowe need to prove that we need not 
onsider redu
tion steps that propagate asubstitution of whi
h the body is not strongly normalising. This is pre
iselythe point of minimal redu
tion: Theorem 27 says that in order to prove astrong normalisation result, we may assume that all sub-terms of the redex arestrongly normalising.
• If on the 
ontrary N ∈ SNB,x, then we 
an indeed simulate its propagation,but for the same reason as in point 1, redu
tion steps within N might only beweakly simulated, but these are pre
isely what we 
all safe redu
tions and wehave proved above that they (together with x-redu
tion) terminate.22



3.2 Example: λAnother example of how this te
hniques applies is Herbelin's λ, for whi
h PSN has longerproofs in [DU03, Kik04℄. Sin
e λ 
an be typed by a version 
alled LJT of the intuitionisti
sequent 
al
ulus and the te
hnique provides again a type-preserving en
oding of λ intothe simply-typed λ-
al
ulus, we thus prove the strong normalisation of Cut-eliminationin LJT.The syntax of Herbelin's 
al
ulus is de�ned as follows:
M, N, A, B ::= λx.M | x l| M l| 〈M/x〉N

l, l′ ::= []| M :: l| l@l′| 〈M/x〉l

λx.M and 〈N/x〉M bind x in M , and 〈M/x〉l binds x in l, thus de�ning the free variablesof terms and lists as well as α-
onversion. We use Barendregt's 
onvention that no variableis free and bound in a term in order to avoid variable 
apture when redu
ing it.The redu
tion rules of λ are de�ned in Figure 6, the typing rules are de�ned in Figure 7.B (λx.M) (N :: l) −→ (〈N/x〉M) l

System x:











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










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

















































































B1 M [] −→ MB2 (x l) l′ −→ x (l@l′)B3 (M l) l′ −→ M (l@l′)A1 (M :: l′)@l −→ M :: (l′@l)A2 []@l −→ lA3 (l@l′)@l′′ −→ l@(l′@l′′)C1 〈P/y〉λx.M −→ λx.〈P/y〉MC2 〈P/y〉(y l) −→ P 〈P/y〉lC3 〈P/y〉(x l) −→ x 〈P/y〉lC4 〈P/y〉(M l) −→ 〈P/y〉M 〈P/y〉lD1 〈P/y〉[] −→ []D2 〈P/y〉(M :: l) −→ (〈P/y〉M) :: (〈P/y〉l)D3 〈P/y〉(l@l′) −→ (〈P/y〉l)@(〈P/y〉l′)Figure 6: Redu
tion Rules for λTypi
ally, the 
ase of λ is one of those where the syntax does not in
lude that of λ-
al
ulus, but the latter 
an be en
oded [Her95℄. Indeed, it is well-known that the syntaxof λ-
al
ulus 
an also be des
ribed as follows:
P := λx.M

M, N, A, B := P | x
−→
M | P N

−→
Mwhere −→

M represents a list of �M-terms� of arbitrary length.The en
oding, given in Figure 8, is threefold, one fun
tion Aλ() for the �P -terms�, ase
ond one, A(), for the �M-terms�, and a third one, Al(), for lists of �M-terms�:23



Γ; A ⊢LJT l : B (x : A) ∈ Γ Contx
Γ ⊢LJT x l : B

Γ ⊢LJT A : s axiom
Γ; A ⊢LJT [] : A

Γ, (x : A) ⊢LJT M : B
→ r

Γ ⊢LJT λx.M : A → B

Γ ⊢LJT M : A Γ; B ⊢LJT l : C
→ l

Γ; A → B ⊢LJT M :: l : C

Γ ⊢LJT M : A Γ; A ⊢LJT l : B Cut3
Γ ⊢LJT M l : B

Γ; C ⊢LJT l′ : A Γ; A ⊢LJT l : B Cut1
Γ; C ⊢LJT l′@l : B

Γ ⊢LJT P : A Γ, (x : A) ⊢LJT M : C Cut4
Γ ⊢LJT 〈P/x〉M : C

Γ ⊢LJT P : A Γ, (x : A); B ⊢LJT l : C Cut2
Γ; B ⊢LJT 〈P/x〉l : CFigure 7: Typing rules for λAλ(λx.M ) = λx.A(M)A(P ) = Aλ(P )A(x

−→
M) = x Al(

−→
M)A(P N

−→
M) = Aλ(P ) (A(N) :: Al(

−→
M))Al(

−→
∅ ) = []Al(
−−−−−−→
N1 . . . Ni) = A(N1) :: Al(

−−−−−−→
N2 . . . Ni)Figure 8: En
oding λ-
al
ulus into λRemark 36 A(M) is an x-normal formLemma 37 〈A(M)/x〉A(N)−→∗x A(N{x = M})Proof: By indu
tion on N . ✷Finally, we 
on
lude that β-redu
tion is simulated by B, x, so that λ-
al
ulus 
an be
onsidered as a sub-
al
ulus of λ.Theorem 38 If M −→β N then A(M)−→+

B,x A(N)Proof: By indu
tion on M . ✷Now we prove PSN (and SN of typed terms) for λ with the safeness and minimalityte
hnique. Again, we 
onsider a �rst-order syntax equipped with a lexi
ographi
 pathordering based on the following pre
eden
e:
M < su

(−) < bi(−,−) < sub(−,−)where for every M ∈ SNB,x (resp. l ∈ SNB,x) there is a 
onstant 
M (resp. 
l). Those
onstants are all below su

(), and the pre
eden
e between them is given by 
N < 
M if24



and only if M−→+
B,x N or N ⊏ M (and similarly for lists). The pre
eden
e is hen
ewell-founded.The en
oding goes as follows:
P(M) = 
M if M ∈ SNB,xotherwise
P(λx.M ) = bi(P(A),P(M))
P(x l) = su

(Q(l))
P(M l) = bi(Q(l),P(M))
P(〈M/x〉N) = sub(P(M),P(N))

Q(l) = 
l if l ∈ SNB,xotherwise
Q(M :: l) = bi(P(M),Q(l))
Q(l@l′) = bi(Q(l),Q(l′))
Q(〈M/x〉l) = sub(P(M),Q(l))Lemma 391. If M −→safeB,x N then P(M) > P(N).2. If l −→safeB,x l′ then Q(l) > Q(l′).Proof: We �rst 
he
k root redu
tions.Clearly, if M, l ∈ SNB,x the Lemma holds, and this 
overs the 
ase of safe redu
tions.Also, when N, l′ ∈ SNB,x the Lemma holds as well.The remaining 
ases are when P(M),Q(l) and P(N),Q(l′) are not 
onstants.For B1,A2, the term P(N) (resp. Q(l′)) is a sub-term of P(M) (resp. Q(l)).For B2,B3,A1, the arguments of bi(, ) de
rease in the lexi
ographi
 order.For Ci′s,Di′s, the symbol at the root of P(N) (resp. Q(l′)) is stri
tly inferior to thatof P(M) (resp. Q(l)), so we only have to 
he
k that the dire
t sub-terms of P(N) (resp.

Q(l′)) are smaller than P(M) (resp. Q(l)). Clearly, it is the 
ase for all sub-terms thatare 
onstants (namely, those en
odings of strongly normalising sub-terms of N or l′). Forthose that are not, it is a routine 
he
k on every rule.The 
ontextual 
losure is a straightforward indu
tion on M, l:Again, if M, l ∈ SNB,x or N, l′ ∈ SNB,x, the Lemma holds;otherwise, if the redu
tion is a safeB, x-redu
tion in a dire
t sub-term of M or l, it su�
esto use the indu
tion hypothesis on that sub-term. ✷Corollary 40 The redu
tion relation −→safeB,x is terminating.
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Now we en
ode λ in λ-
al
ulus as follows:H(λx.M) = λx.H(M)H(x l) = Hz(l){z = x} x freshH(M l) = Hz(l){z = H(M)} z freshH(〈M/x〉N) = H(N){x = H(M)} if M ∈ SNB,xH(〈M/x〉N) = (λx.H(N)) H(M) if M 6∈ SNB,xHy([]) = yHy(M :: l) = Hz(l){z = y H(M)} z freshHy(l@l′) = Hz(l′){z = Hy(l)} z freshHy(〈M/x〉l) = Hy(l){x = H(M)} if M ∈ SNB,xHy(〈M/x〉l) = (λx.Hy(l)) H(M) if M 6∈ SNB,xRemark 41 For all y and l, y ∈ FV (Hy(l))Lemma 421. If M −→minB N is unsafe then H(M) −→β H(N)If l −→minB l′ is unsafe then Hy(l) −→β Hy(l′)2. If M −→minB N is safe then H(M)−→∗
β H(N)If l −→minB l′ is safe then Hy(l)−→∗

β Hy(l′)3. If M −→minx N then H(M) = H(N)If l −→minx l′ then Hy(l) = Hy(l′)Corollary 43 If H(M) ∈ SNβ (resp. Hy(l) ∈ SNβ) then M ∈ SNB,x (resp. l ∈ SNB,x).Proof: Dire
t appli
ation of Theorem 29. ✷Now noti
e that H · A = Id, so that we 
on
lude the following:Corollary 44 (Preservation of Strong Normalisation)If t ∈ SNβ then A(t) ∈ SNB,x.Noti
e that the preservation of types 
an be easily shown:Remark 451. If Γ ⊢LJT M : A then Γ ⊢NJ H(M) : A2. If Γ; B ⊢LJT l : A then Γ, y : B ⊢NJ Hy(l) : A if y is freshAnd now by using the fa
t that typed λ-terms are in SNβ, we dire
tly get:Corollary 46 (Strong Normalisation of typed terms)1. If Γ ⊢LJT M : A then M ∈ SNB,x.2. If Γ; B ⊢LJT l : A then l ∈ SNB,x. 26



Again, this 
ould also be done with any typing system su
h that the en
odings of typedterms by H are typable in a typing system of λ-
al
ulus that entails strong normalisation.This is again the 
ase with interse
tion types: we 
ould add the three typing rules at thebottom of Figure 5 (as well as three similar rules for lists), and the preservation of typingby the en
oding would provide the strong normalisation of the system. We should expe
tthis system to 
hara
terise SNB,x in λ, but this remains to be 
he
ked. Also, sin
e thetyping systems of λ are in the spirit of sequent 
al
ulus, it would be better to repla
e theelimination rules of the interse
tion by a left-introdu
tion of the interse
tion, probably inthe stoup. This is ongoing work.4 Simulation in λIThe se
ond te
hnique presented in this se
tion suggests the en
oding of a 
al
ulus withexpli
it substitutions in Chur
h-Klop's λI-
al
ulus [Klo80℄ instead of λ-
al
ulus. We referthe reader to [Sor97, Xi97℄ for a survey on di�erent te
hniques based on the λI-
al
ulusto infer normalisation properties.On the one hand, λI extends the syntax of λ-
al
ulus with a �memory operator�so that, instead of being thrown away, a term N 
an be retained and 
arried along ina 
onstru
t [ − , N ]. With this operator, those bodies of substitutions are en
odedthat would otherwise disappear, as explained above. On the other hand, λI restri
ts λ-abstra
tions to variables that have at least one free o

urren
e, so that β-redu
tion nevererases its argument.Doing so requires the en
oding in λI to be non-deterministi
, i.e. we de�ne a relation
H between the 
al
ulus and λI, and the reason for this is that, sin
e the redu
tions in
λI are non-erasing redu
tions, we need to add this memory operator at random pla
es inthe en
oding, using su
h a rule:

M H T
U ∈ λI

M H [T, U ]For instan
e, λx.x H λx.[x, x] but also λx.x H [λx.x, λz.z], so that both λx.[x, x] and
[λx.x, λz.z] (and also λx.x) are en
odings of λx.x.The redu
tion relation of the expli
it substitution 
al
ulus is split into two parts Yand Z that satisfy the following simulation theorem:
→Y is strongly simulated by −→β,π

→Z is weakly simulated by −→β,πNow it must be proved that every term M 
an be en
oded into a strongly normalisingterm of λI. This depends on the 
al
ulus that is being treated, but the following methodgenerally works:1. En
ode the term M as a strongly normalising λ-term t, su
h that no sub-termis lost, i.e. not using impli
it substitutions. For PSN, the original λ-term woulddo, be
ause it is strongly normalising by hypothesis; for a proof-term of sequent
al
ulus, t would be a λ-term typed in an appropriate typing system, the typingtree of whi
h is derived from the proof-tree of the sequent (we would get t ∈ SNβusing a theorem stating that typed terms are SNβ).27



2. Using a translation i() from λ-
al
ulus to λI, introdu
ed in this se
tion, prove thati(t) redu
es to one of the non-deterministi
 en
odings of M in λI, that is, that thereis a term T su
h that M H T and i(t)−→∗
β,π T .In this se
tion we prove that if a λ-term t is strongly normalising for β-redu
tions, theni(t) is weakly normalising in λI. The proof simply 
onsists in simulating an adequateredu
tion sequen
e that starts from t and ends with a normal form, the en
oding of whi
his a normal form of λI. What makes this simulation work is the fa
t that the redu
tionsequen
e is provided by a perpetual strategy. Also, weak normalisation implies strongnormalisation in λI [Ned73℄, so that i(t) is strongly normalising, as well as the above

λI-term T .The te
hnique is summarised in Figure 9.The 
al
ulus λ λI

t ∈ SNβ
i()

+3 i(t)
β,π∗

��
M

Y Z∗
��

H +3

08
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ppppppppppppppppppppppppppppppFigure 9: The general te
hnique to prove that M ∈ SNFinally, it remains to prove that the relation Z that is only weakly simulated is nowsmall enough to be terminating.As we shall see, this te
hnique works for proving PSN of the expli
it substitution
al
ulus λlxr of [KL05℄. Furthermore, it 
an be 
ombined with the safeness and minimalityte
hnique whi
h provides proofs of strong normalisation for various sequent 
al
uli thatrange from propositional logi
 to a logi
 as expressive as the Cal
ulus of Constru
tions,and we believe that it 
an be applied to many other 
al
uli.4.1 Chur
h-Klop's λI-
al
ulusDe�nition 16
T, U ::= x| λx.T | T U | [T, U ]with the 
ondition that x ∈ FV (T ) in λx.T .28



Lemma 47 (Stability by Substitution) If T, U ∈ λI, then T{x = U} ∈ λI.Proof: By indu
tion on T . ✷The redu
tion rules are:
(β) (λx.T ) U → T{x = U}
(π) [T, V ] U → [T U, V ]We denote lists of λI-terms using ve
tors, and if −→T = T1, . . . , Tn, then U

−→
T denotes

U T1 . . . Tn and [U,
−→
T ] denotes [. . . [U, T1], . . . , Tn].Remark 48 If T −→β,π U then FV (T ) = FV (U) and V {x = T}−→+

β,π V {x = U}provided that x ∈ FV (V ).Lemma 49 (Substitution Lemma)
T{x = U}{y = V } = T{y = V }{x = U{y = V }} (with no variable 
apture)Proof: By indu
tion on T . ✷4.2 Simulating the perpetual strategyWe may want to use the te
hnique of simulation in λI with 
al
uli that annotate λ-abstra
tions with types, and others that do not. Indeed, one of the appli
ations is thenormalisation of systems in type theory (possibly with dependent types), so we also
onsider Π-types. In order to express the te
hnique in its most general form, we presentit with a mixed syntax as follows.The annotated?-λ-
al
ulus, that we 
all λ?-
al
ulus, uses the following syntax:

M, N, A, B ::= x| s| ΠxA.B| λxA.M | λx.M | M Nwhere x ranges over a denumerable set of variables, and s ranges over a set of 
onstants.The redu
tion rules are
(βt) (λxA.M) N −→ M{x = N}
(β) (λx.M) N −→ M{x = N}Fully annotated terms are those terms that have no 
onstru
t λx.M . The fragment offully annotated terms is stable under βt-redu
tions, so that β-redu
tions never apply andhen
e SNβt

= SNβt,β for that fragment.We de�ne the notion of type-annotation as the smallest transitive, re�exive, 
ontext-
losed relation ✁ su
h that λx.M ✁ λxA.M .Noti
e that for a fully annotated term N , N ✁ P implies N = P .Lemma 50 If M ✁ M ′ and M −→βt,β N then there is a N ′ su
h that N ✁ N ′ and
M −→βt,β N .Proof: By indu
tion on M . ✷Corollary 51 If M ✁ M ′ and M ′ ∈ SNβt,β then M ∈ SNβt,β.Proof: By Theorem 14 (−→βt,β strongly simulates itself through ✁). ✷29



De�nition 17 We en
ode the λ?-
al
ulus into λI as follows:i(x) = xi(λx.t) = λx.i(t) x ∈ FV (t)i(λx.t) = λx.[i(t), x] x /∈ FV (t)i(λxA.t) = [i(λx.t), i(A)]i(t u) = i(t) i(u)i(s) = ℘i(ΠxA.B) = ℘ [i(λx.t), i(A)]where ℘ is a dummy variable that does not appear in the term that is en
oded.Lemma 52 For any λ?-terms t and u,1. FV (i(t)) = FV (t)2. i(t){x = i(u)} = i(t{x = u})Proof: Straightforward indu
tion on t. ✷De�nition 18 The relation G between λ?-terms and λI-terms is given by the followingrules:
∀j tj G Tj

Gvar
(x

−→
tj ) G (x

−→
Tj )

A G T B G U x ∈ FV (U)
GΠ

ΠxA.B G ℘ [λx.U, T ]

Gβ1
((λx.t) t′

−→
tj ) G i((λx.t) t′

−→
tj )

t′ G T ′ x /∈ FV (t)
Gβ2

((λx.t) t′
−→
tj ) G (i(λx.t) T ′

−−→i(tj))
Gβt

1
((λxA.t) t′

−→
tj ) G i((λxA.t) t′

−→
tj )

t′ G T ′ A G U x /∈ FV (t)
Gβt

2
((λxA.t) t′

−→
tj ) G ([i(λx.t), U ] T ′ −−→i(tj))

G

s G ℘

t G T N ∈ nfβ,π

Gweak
t G [T, N ]

t G T x ∈ FV (T )
Gλ

λx.t G λx.T

t G T A G U x ∈ FV (T )
Gλt

λxA.t G [λx.T, U ]Lemma 531. If t ∈ nfβt and t G T , then T ∈ nfβ,π.2. For any λ?-term t, t G i(t).Proof:1. By indu
tion on the proof tree asso
iated to t G T , one 
an 
he
k that no β andno π-redex is introdu
ed, sin
e rules Gβ1, Gβ2, Gβt
1 and Gβt

2 are forbidden by thehypothesis that t is a β-normal form.30



2. By indu
tion on t:
• If t = x

−→
tj , then by indu
tion hypothesis tj G i(tj) for all j and then we 
anapply Gvar.

• If t = (λx.t′) u
−→
tj , then it su�
es to use rules Gβ1.

• If t = (λxA.t′) u
−→
tj , then it su�
es to use rules Gβt

1.
• If t = λx.u then by indu
tion hypothesis u G i(u). If x ∈ FV (u), theni(t) = λx.i(u) and t G i(t) by rule Gλ. If x /∈ FV (u), then i(t) = λx.[i(u), x],and thus u G [i(u), x] by rule Gweak and t G i(t) by rule Gλ.
• If t = λxA.u then by indu
tion hypothesis u G i(u) and A G i(A).If x ∈ FV (u), then i(t) = [λx.i(u), i(A)] and t G i(t) by rule Gλt. If x /∈ FV (u),then i(t) = [λx.[i(u), x], i(A)], and thus u G [i(u), x] by rule Gweak and t G i(t)by rule Gλt.
• If t = s, then 
learly s G ℘.
• If t = ΠxA.B, then by indu
tion hypothesis A G i(A) and B G i(B). If

x ∈ FV (B) then i(ΠxA.B) = ℘ [λx.i(B), i(A)] and t G i(t) by rule GΠ. If
x ∈ FV (B) then i(ΠxA.B) = ℘ [λx.[i(B), x], i(A)], and thus B G [i(B), x] byrule Gweak and t G i(t) by rule GΠ.

✷De�nition 19 We de�ne a redu
tion relation  for λ?-terms by the following rules:
t t′ perp-var

x
−→
tj t −→pj  x

−→
tj t′ −→pj

t t′ perpλ
λx.t λx.t′

t t′ perpλt
1

λxA.t λxA.t′

A A′ perpλt
2

λxA.t λxA′

.t

x ∈ FV (t) ∨ t′ ∈ nfβtβ perpβ1
(λx.t) t′

−→
tj  t{x = t′}

−→
tj

t′  t′′ x /∈ FV (t) perpβ2
(λx.t) t′

−→
tj  (λx.t) t′′

−→
tj

x ∈ FV (t) ∨ t′, A ∈ nfβtβ perpβt
1

(λxA.t) t′
−→
tj  t{x = t′}

−→
tj

t′  t′′ x /∈ FV (t) perpβt
2

(λxA.t) t′
−→
tj  (λxA.t) t′′

−→
tj

A A′ x /∈ FV (t) perpβt
3

(λxA.t) t′
−→
tj  (λxA′

.t) t′
−→
tj

A A′ perpΠ1
ΠxA.B  ΠxA′

.B

B  B′ perpΠ2
ΠxA.B  ΠxA.B′31



Remark 54  ⊆−→βtβIf t is not a βtβ-normal form, then there is a λ?-term t′ su
h that t t′.Remark 55 Although we do not need it in the rest of the proof, it is worth mentioningthat, at least in the fragment of the untyped λ-
al
ulus, the relation de�nes a perpetualstrategy w.r.t β-redu
tion, i.e. if M is not β-strongly normalising and M  M ′, thenneither is M ′ [vRSSX99℄.Theorem 56 −→β,π strongly simulates  through G .Proof:perpβ1) (λx.t) t′
−→
tj  t{x = t′}

−→
tj� x ∈ FV (t):The last rule used to prove u G U must be Gβ1 (possibly followed by severalsteps of Gweak), so

U = [λx.i(t) i(t′) −−→i(tj),−→N ]

−→β [i(t){x = i(t′)} −−→i(tj),−→N ]

=Lemma 52 (2) [i(t{x = t′}
−→
tj ),

−→
N ]Then by Lemma 53 (2), t{x = t′}

−→
tj G i(t{x = t′}

−→
tj ) and by rule Gweak,

t{x = t′}
−→
tj G [i(t{x = t′}

−→
tj ),

−→
N ].� x /∈ FV (t):It means that t′ is a β-normal form and t{x = t′}

−→
tj = t

−→
tj . The last ruleused to prove u G U must be Gβ1 or Gβ2 (possibly followed by several stepsof Gweak), so in both 
ases we have U = [λx.[i(t), x] T ′

−−→i(tj),−→N ] with t′ G T ′(using Lemma 53 (2) in the former 
ase where T ′ = i(t′)). By Lemma 53 (1),
T ′ is a β, π-normal form. Now U −→β [[i(t){x = T ′}, T ′]

−−→i(tj),−→N ]. But byLemma 52 (1), x /∈ FV (i(t)) so the above term is [[i(t), T ′]
−−→i(tj),−→N ], whi
hredu
es by π to [i(t) −−→i(tj), T ′,

−→
N ] = [i(t −→tj ), T ′,

−→
N ]. By Lemma 53 (2) and rule

Gweak, we get t
−→
tj G [i(t −→tj ), T ′,

−→
N ].perpβ2) (λx.t) t′

−→
tj  (λx.t) t′′

−→
tj with t′  t′′ and x /∈ FV (t).The last rule used to prove u G U must be Gβ1 or Gβ2 (possibly followed by severalsteps of Gweak), so in both 
ases U = [λx.[i(t), x] T ′

−−→i(tj),−→N ] with t′ G T ′ (usingLemma 53 (2) in the former 
ase where T ′ = i(t′)). By indu
tion hypothesis, thereis a term T ′′ su
h that T ′−→+
β,π T ′′ and t′′ G T ′′.Hen
e, U−→+

β,π [λx.[i(t), x] T ′′
−−→i(tj),−→N ]. By appli
ation of the rule Gβ2,

(λx.t) t′′
−→
tj G λx.[i(t), x] T ′′

−−→i(tj), and we use rule Gweak to 
on
lude.perpβt
1) (λxA.t) t′

−→
tj  t{x = t′}

−→
tj

32



� x ∈ FV (t):The last rule used to prove u G U must be Gβt
1 (possibly followed by severalsteps of Gweak), so

U = [[λx.i(t), i(A)] i(t′) −−→i(tj),−→N ]

−→+
π [λx.i(t) i(t′) −−→i(tj), i(A),

−→
N ]

−→β [i(t){x = i(t′)} −−→i(tj), i(A),
−→
N ]

=Lemma 52 (2) [i(t{x = t′}
−→
tj ), i(A),

−→
N ]Then by Lemma 53 (2), t{x = t′}

−→
tj G i(t{x = t′}

−→
tj ) and by rule Gweak,

t{x = t′}
−→
tj G [i(t{x = t′}

−→
tj ), i(A),

−→
N ].� x /∈ FV (t):It means that t′ and A are β-normal forms and t{x = t′}

−→
tj = t

−→
tj . The lastrule used to prove u G U must be Gβt

1 or Gβt
2 (possibly followed by severalsteps of Gweak), so in both 
ases we have U = [[λx.[i(t), x], U ′] T ′

−−→i(tj),−→N ] with
A G U ′ and t′ G T ′ (using Lemma 53 (2) in the former 
ase where U ′ = i(A)and T ′ = i(t′)). By Lemma 53 (1), U ′ and T ′ are β, π-normal forms. Now
U −→π [λx.[i(t), x] T ′

−−→i(tj), U ′,
−→
N ] −→β [[i(t){x = T ′}, T ′]

−−→i(tj), U ′,
−→
N ]. Butby Lemma 52 (1), x /∈ FV (i(t)) so the above term is [[i(t), T ′]

−−→i(tj), U ′,
−→
N ],whi
h redu
es by π to [i(t) −−→i(tj), T ′, U ′,

−→
N ] = [i(t −→tj ), T ′, U ′,

−→
N ]. ByLemma 53 (2) and rule Gweak, we get t

−→
tj G [i(t −→tj ), T ′, U ′,

−→
N ].perpβt

2) (λxA.t) t′
−→
tj  (λxA.t) t′′

−→
tj with t′  t′′ and x /∈ FV (t).The last rule used to prove u G U must be Gβt

1 or Gβt
2 (possibly followed by severalsteps of Gweak), so in both 
ases U = [[λx.[i(t), x], U ′] T ′

−−→i(tj),−→N ] with A G U ′ and
t′ G T ′ (using Lemma 53 (2) in the former 
ase where U ′ = i(A) and T ′ = i(t′)).By indu
tion hypothesis, there is a term T ′′ su
h that T ′−→+

β,π T ′′ and t′′ G T ′′.Hen
e, U−→+
β,π [[λx.[i(t), x], U ′] T ′′

−−→i(tj),−→N ]. By appli
ation of the rule Gβt
2,

(λxA.t) t′′
−→
tj G [λx.[i(t), x], U ′] T ′′

−−→i(tj), and we use rule Gweak to 
on
lude.perpβt
3) (λxA.t) t′

−→
tj  (λxA′

.t) t′
−→
tj with A A′ and x /∈ FV (t).The last rule used to prove u G U must be Gβt

1 or Gβt
2 (possibly followed by severalsteps of Gweak), so in both 
ases U = [[λx.[i(t), x], U ′] T ′

−−→i(tj),−→N ] with A G U ′ and
t′ G T ′ (using Lemma 53 (2) in the former 
ase where U ′ = i(A) and T ′ = i(t′)).By indu
tion hypothesis, there is a term U ′′ su
h that U ′−→+

β,π U ′′ and A′ G U ′′.Hen
e, U−→+
β,π [[λx.[i(t), x], U ′′] T ′

−−→i(tj),−→N ]. By appli
ation of the rule Gβt
2,

(λxA′

.t) t′
−→
tj G [λx.[i(t), x], U ′′] T ′

−−→i(tj), and we use rule Gweak to 
on
lude.perpλ) λx.t λx.t′ with t t′.The last rule used to prove u G U must be Gλ, so U = [λx.T,
−→
N ] with t G T . Byindu
tion hypothesis, there is a term T ′ su
h that T−→+

β,π T ′ and t′ G T ′. Hen
e,
U−→+

β,π [λx.T ′,
−→
N ] (with x ∈ FV (T ′)), and we obtain by appli
ation of rules Gλand Gweak that λx.t′ G [λx.T ′,

−→
N ]. 33



perpλt
1) λxA.t λxA.t′ with t t′.The last rule used to prove u G U must be Gλt, so U = [λx.T, U ′,

−→
N ] with A G U ′and t G T . By indu
tion hypothesis, there is a term T ′ su
h that T−→+

β,π T ′and t′ G T ′. Hen
e, U−→+
β,π [λx.T ′, U ′,

−→
N ] (with x ∈ FV (T ′)), and we obtain byappli
ation of rules Gλt and Gweak that λxA.t′ G [λx.T ′, U ′,

−→
N ].perpλt

2) λxA.t λxA′

.t with A A′.The last rule used to prove u G U must be Gλt, so U = [λx.T, U ′,
−→
N ] with A G U ′and t G T . By indu
tion hypothesis, there is a term U ′′ su
h that U ′−→+

β,π U ′′and A′ G U ′′. Hen
e, U−→+
β,π [λx.T, U ′′,

−→
N ] (with x ∈ FV (T ′)), and we obtain byappli
ation of rules Gλt and Gweak that λxA.t′ G [λx.T, U ′′,

−→
N ].perp-var) x

−→
tj t −→pj  x

−→
tj t′ −→pj with t t′.The last rule used to prove u G U must be Gvar, so U = [x

−→
Qj T

−→
Uj,

−→
N ] with

t G T , tj G Qj and pj G Uj . By indu
tion hypothesis, there is a term T ′ su
h that
T−→+

β,π T ′ and t′ G T ′. As a 
onsequen
e we get U−→+
β,π [x

−→
Qj T ′ −→Uj ,

−→
N ] andby rules Gvar and Gweak we obtain x

−→
tj t′ −→pj G [x

−→
Qj T ′ −→Uj ,

−→
N ].perpΠ1) ΠxA.B  ΠxA′

.B with A A′.The last rule used to prove u G U must be GΠ, so U = [℘ [λx.T, V ],
−→
N ] with B G Tand A G V . By indu
tion hypothesis, there is a term V ′ su
h that V −→+

β,π V ′ and
A′ G V ′. As a 
onsequen
e we get U−→+

β,π [℘ [λx.T, V ′],
−→
N ] and by appli
ation ofrules GΠ and Gweak we obtain ΠxA′

.B G [℘ [λx.T, V ′],
−→
N ].perpΠ2) ΠxA.B  ΠxA.B′ with B  B′.The last rule used to prove u G U must be GΠ, so U = [℘ [λx.T, V ],

−→
N ] with B G Tand A G V . By indu
tion hypothesis, there is a term T ′ su
h that T−→+

β,π T ′ and
B′ G T ′. As a 
onsequen
e we get U−→+

β,π [℘ [λx.T ′, V ],
−→
N ] and by appli
ation ofrules GΠ and Gweak we obtain ΠxA.B′ G [℘ [λx.T ′, V ],

−→
N ].

✷Corollary 57 If t ∈ WN and t G T then T ∈ WNβ,π.Proof: By indu
tion in WN , the indu
tion hypothesis is:
t ∈ nf ∨ (∃u ∈ (t), ∀U, u G U ⇒ U ∈ WNβ,π).If t ∈ nf , then Lemma 53 (1) gives T ∈ nfβ,π ⊆ WNβ,π.If ∃u ∈ (t), ∀U, u G U ⇒ U ∈ WNβ,π, then by Theorem 56 we get a spe
i�
 T ′ su
hthat u G T ′ and T−→+

β,π T ′. We 
an apply the indu
tion hypothesis by taking U = T ′and get T ′ ∈ WNβ,π. But be
ause WNβ,π is patriar
hal, T ∈ WNβ,π as required. ✷Corollary 58 i(SNβtβ) ⊆ WNβ,πProof: Noti
e that SNβtβ ⊆ SN ⊆ WN . Then Lemma 53 (2) gives ∀t ∈ SNβtβ, t G i(t),and thus, by Theorem 56, i(t) ∈ WNβ,π. ✷34



Theorem 59 (Nederpelt [Ned73℄) WNβ,π ⊆ SNβ,πCorollary 60 For any λ?-term t, if t ∈ SNβtβ, then i(t) ∈ SNβ,π.Proof: By Corollary 58 and Theorem 59. ✷4.3 Example: λlxrInspired by proof-nets and linear logi
 [Gir87℄, λlxr is an expli
it substitution 
al
ulusintrodu
ed in [KL05℄ as the �rst su
h 
al
ulus having the PSN property and full 
ompo-sition of substitutions. It di�ers from λx or λ by the use of expli
it resour
e operators:dupli
ation and erasure, whi
h respe
tively 
orrespond to 
ontra
tion and weakening ina typed framework. Binding a variable that has no o

urren
e or more than one is ex-pli
itly expressed by the use of these operators. By the use of erasure operators, the setof free variables is preserved by redu
tion, whi
h 
orresponds to the notion of interfa
epreserving of Intera
tion Nets [Laf90℄. The rewrite system of λlxr simulates β-redu
tion,but the te
hniques used to prove PSN for λx and λlxr all fail, so we use the te
hnique ofsimulation in λI.For a full presentation of λlxr, we refer the reader to [KL05℄. We only brie�y re
allhere the syntax and the redu
tion relation.The syntax of λlxr is given by the following grammar:
t ::= x | λx.t | t t | t〈x = t〉 | Wx(t) | Cy,z

x (t)The abstra
tion λx.t and the substitution t〈x = u〉 bind x in t. The 
ontra
tion
Cy,z

x (t) binds y and z in t, whereas x is free in the terms x, Cy,z
x (t) and Wx(t).We say that a term is linear if it satis�es the following: in every sub-term, everyvariable has at most one free o

urren
e, and every binder binds a variable that does havea free o

urren
e (and hen
e only one).For instan
e, the terms Wx(x) and λx.xx are not linear. However, the latter 
an berepresented in the λlxr-
al
ulus by the linear term λx.Cy,z

x (yz). More generally, every
λ-term 
an be translated to a linear λlxr-term.We use Φ, ∆, Σ, Π, . . . to denote �nite lists of variables (with no repetition). We use thenotation Wx1,...,xn

(t) for Wx1
(. . .Wxn

(t)), and C
(y1,...,yn),(z1,...,zn)
x1,...,xn (t) for Cy1,z1

x1
(. . . Cyn,zn

xn
(t)).For any term t we de�ne a renaming operation Rx1,...,xn

y1,...,yn
(t) as the result of simultane-ously substituting yi for every free o

urren
e xi in t where i ∈ 1 . . . n. Thus for instan
e

Rx,y
x′,y′(Cy,z

w (x(yz))) = Cy,z
w (x′(yz)).We introdu
e in Figure 10 a 
ongruen
e ≡, whi
h enables us to write �WS(u)�, or�C∆,Π

Φ (t) where Φ := S�, without ordering the variables in S. Besides, we sometimes donot spe
ify what the lists ∆ and Π are, assuming them to be two disjoint lists of freshvariables.The redu
tion relation of the 
al
ulus, denoted −→λlxr , is the relation generated bythe redu
tion rules in Figure 11 modulo the 
ongruen
e relation in Figure 10. The rulesshould be understood in the prospe
t of applying them to linear terms. Indeed, it 
anbe shown that if t is linear and t −→λlxr t′, then t′ is linear and FV (t) = FV (t′). Thefa
t that linearity is preserved is a essential requirement of the system, so that we 
anhen
eforth 
onsider linear terms only.A basi
 property of the redu
tion relation is the following:35



Cx,v
w (Cz,y

x (t)) ≡ Cx,y
w (Cz,v

x (t)) if x 6= y, v
Cy,z

x (t) ≡ Cz,y
x (t)

Cy′,z′

x′ (Cy,z
x (t)) ≡ Cy,z

x (Cy′,z′

x′ (t)) if x 6= y′, z′ & x′ 6= y, z
Wx(Wy(t)) ≡ Wy(Wx(t))
t〈x = u〉〈y = v〉 ≡ t〈y = v〉〈x = u〉 if y /∈ FV (u) & x /∈ FV (v) & x 6= y
Cy,z

w (t)〈x = u〉 ≡ Cy,z
w (t〈x = u〉) if x 6= w & y, z 6∈ FV (u)Figure 10: Congruen
e axioms for λlxr-terms

(B) (λx.t) u −→ t〈x = u〉System x
(Abs) (λy.t)〈x = u〉 −→ λy.t〈x = u〉
(App1) (t v)〈x = u〉 −→ t〈x = u〉 v x ∈ FV (t)
(App2) (t v)〈x = u〉 −→ t v〈x = u〉 x ∈ FV (v)
(V ar) x〈x = u〉 −→ u
(Weak1) Wx(t)〈x = u〉 −→ WFV (u)(t)
(Weak2) Wy(t)〈x = u〉 −→ Wy(t〈x = u〉) x 6= y

(Cont1) Cy,z
x (t)〈x = u〉 −→ C∆,Π

Φ (t〈y = u1〉〈z = u2〉)where Φ := FV (u)
u1 = RΦ

∆(u)
u2 = RΦ

Π(u)
(Comp) t〈y = v〉〈x = u〉 −→ t〈y = v〈x = u〉〉 x ∈ FV (v)System r
(WAbs) λx.Wy(t) −→ Wy(λx.t) x 6= y
(WApp1) Wy(u) v −→ Wy(uv)
(WApp2) u Wy(v) −→ Wy(uv)
(WSubs) t〈x = Wy(u)〉 −→ Wy(t〈x = u〉)

(Merge) Cy,z
w (Wy(t)) −→ Rz

w(t)
(Cross) Cy,z

w (Wx(t)) −→ Wx(C
y,z
w (t)) x 6= y, x 6= z

(CAbs) Cy,z
w (λx.t) −→ λx.Cy,z

w (t)
(CApp1) Cy,z

w (t u) −→ Cy,z
w (t) u y, z ∈ FV (t)

(CApp2) Cy,z
w (t u) −→ t Cy,z

w (u) y, z ∈ FV (u)
(CSubs) Cy,z

w (t〈x = u〉) −→ t〈x = Cy,z
w (u)〉 y, z ∈ FV (u)Figure 11: Redu
tion rules for λlxr-termsTheorem 61 (Lengrand [KL05℄) xr is terminating.Now we 
an en
ode λ-
al
ulus in λlxr.
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De�nition 20 The en
oding of λ-terms is de�ned by indu
tion as follows:A(x) := xA(λx.t) := λx.A(t) if x ∈ FV (t)A(λx.t) := λx.Wx(A(t)) if x /∈ FV (t)A(tu) := C∆,Π
Φ (RΦ

∆(A(t)) RΦ
Π(A(u))) where Φ := FV (t) ∩ FV (u)In [KL05℄, the following property has been proved:Theorem 62 (Simulating β-redu
tion)If t −→β t′, then A(t)−→+

λlxr WFV (t)\FV (t′)(A(t′)).Now we prove the PSN property in detail.De�nition 21 The relation H between well-formed λlxr-terms and λI is given by thefollowing rules:
x H x

t H T

λx.t H λx.T

t H T u H U

tu H TU

t H T

t H [M, N ]
N ∈ λI

t H T u H U

t〈x = u〉 H T{x = U}

t H T

Cy,z
x (t) H T{y = x}{z = x}

t H T

Wx(t) H T
x ∈ FV (T )The relation H enjoys the following properties.Lemma 63 If t H M , then1. FV (t) ⊆ FV (M)2. M ∈ λI3. x /∈ FV (t) and N ∈ λI implies t H M{x = N}4. t ≡ t′ implies t′ H M5. RΓ

∆(t) H RΓ
∆(M)Proof: Property (1) is a straightforward indu
tion on the proof tree as well as Prop-erty (2) whi
h also uses Lemma 47. Properties (3) and (5) are also proved by indu
tionon the tree, using the substitution lemma that holds in λI. For Property (4):

• If t〈x = u〉〈y = v〉 H M with y /∈ FV (u), then M = [[T{x = U},
−→
T ]{y = V },

−→
U ]with t H T , u H U and v H V . We 
an assume

x /∈ FV (T1) ∪ . . . ∪ FV (Tm) ∪ FV (V )so that M = [[T,
−→
T ]{x = U}{y = V },

−→
U ] = [[T,

−→
T ]{y = V }{x = U{y = V }},

−→
U ].As a 
onsequen
e t〈y = v〉〈x = u〉 H M , sin
e by (3) we get u H U{y = V }.

• The asso
iativity and 
ommutativity of 
ontra
tion are very similar.
• If Wx(Wy(t)) H M then M = [[T,

−→
T ],

−→
U ] with t H T , y ∈ FV (T ) and

x ∈ FV ([T,
−→
T ]). Then Wy(Wx(t)) H M .
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Theorem 64 (Simulation in λI)1. −→β,π strongly simulates −→B through H .2. −→β,π weakly simulates −→xr through H .Proof:
B) (λx.p) u −→ p〈x = u〉.Then T = [[λx.P,

−→
P ]U,

−→
U ] with p H P and u H U . We then obtain the followingredu
tion sequen
e T−→∗

π [(λx.P )U,
−→
P ,

−→
U ] −→β [P{x = U},

−→
P ,

−→
U ] = T ′.

Abs) (λy.p)〈x = u〉 −→ λy.p〈x = u〉. Then T = [[λy.P,
−→
P ]{x = U},

−→
U ] with p H P and

u H U . We have T = [λy.(P{x = U}),
−−−−−−−→
P{x = U},

−→
U ].

App1,App2) Similar to the previous 
ase.
V ar) x〈x = u〉 −→ u. Then T = [[x,

−→
P ]{x = U},

−→
U ] with u H U .We have T = [U,

−−−−−−−→
P{x = U},

−→
U ].

Weak1) Wx(p)〈x = u〉 −→ WFV (u)(p).Then T = [[P,
−→
P ]{x = U},

−→
U ] with p H P , u H U , and x ∈ FV (P ). We have

T = [P{x = U},
−−−−−−−→
P{x = U},

−→
U ]. Sin
e x /∈ FV (p), then p H P{x = U} byLemma 63 (3), and sin
e x ∈ FV (P ), FV (U) ⊆ FV (P{x = U}). By Lemma 63 (1)

FV (u) ⊆ FV (U) so that FV (u) ⊆ FV (P{x = U}) 
on
ludes the proof.
Weak2) Wy(p)〈x = u〉 −→ Wy(p〈x = u〉).Then T = [[P,

−→
P ]{x = U},

−→
U ] with p H P , u H U , and y ∈ FV (P ). We have

T = [P{x = U},
−−−−−−−→
P{x = U},

−→
U ] and we still have y ∈ FV (P{x = U}).

Cont1) Cy,z
x (p)〈x = u〉 −→ C∆,Π

Γ (p〈y = RΓ
∆(u)〉〈z = RΓ

Π(u)〉).Then T = [[P{y = x}{z = x},
−→
P ]{x = U},

−→
U ] with p H P and u H U . Weobtain the following equality T = [P{y = U}{z = U},

−−−−−−−→
P{x = U},

−→
U ] whi
h 
an beexpressed as

T = [P{y = U ′}{z = U ′′}{∆ = Γ}{Π = Γ},
−−−−−−−→
P{x = U},

−→
U ]where U ′ = U{Γ = ∆} and U ′′ = U{Γ = Π}. We obtain RΓ

∆(u) H U ′ and
RΓ

Π(u) H U ′′ by Lemma 63 (5).
Cont2) Cy,z

w (p)〈x = u〉 −→ Cy,z
w (p〈x = u〉).Then T = [[P{y = w}{z = w},

−→
P ]{x = U},

−→
U ] with p H P and u H U . We then
on
lude by the following equality T = [P{x = U}{y = w}{z = w},

−−−−−−−→
P{x = U},

−→
U ].

Comp) p〈y = v〉〈x = u〉 −→ p〈y = v〈x = u〉〉 where x ∈ FV (v).Then T = [[P{y = Q},
−→
P ]{x = U},

−→
U ] with t H P , v H Q, and u H U . Wehave T = [P{x = U}{y = Q{x = U}}y,

−−−−−−−→
P{x = U},

−→
U ]. Noti
e that we obtain

t H P{x = U} by Lemma 63 (3). 38



• WAbs, WApp1, WApp2, Cross are straightforward be
ause the 
ondition
x ∈ FV (P ) that is 
he
ked by Wx() is just 
hanged into a side-
ondition x ∈ FV (Q)(
he
ked one step later), where x ∈ FV (P ) implies x ∈ FV (Q).

Merge) Cy,z
w (Wy(p)) −→ Rz

w(p).Then T = [[P,
−→
P ]{y = w}{z = w},

−→
U ] with t H P and y ∈ FV (P ). We then havethe following equality T = [[P{z = w},

−−−−−−→
P{z = w}]{y = w},

−→
U ] and it su�
es to useLemma 63 (3).

CAbs) Cy,z
w (λx.t) −→ λx.Cy,z

w (p).Then T = [[λx.P,
−→
P ]{y = w}{z = w},

−→
U ] with t H P .We have T = [λx.(P{y = w}{z = w}),
−−−−−−−−−−−−−−→
P{y = w}y{z = w},

−→
U ].

CApp1, CApp2) Similar to the previous 
ase.Now for the 
losure under 
ontext, we use the fa
t that if P −→β,π P ′ then
P{x = U} −→β,π P ′{x = U}, and if also x ∈ FV (P ) then P{x = U}−→+

β,π P{x = U ′}.The latter is useful for the 
losure: if p〈x = t〉 H Q and t −→B t′, then
Q = [P{x = T},

−→
U ] with p H P , u H U and by indu
tion hypothesis we get T−→+

β,π T ′su
h that t′ H T ′. Sin
e x ∈ FV (p), x ∈ FV (P ) by Lemma 63 (2), and hen
e
Q−→+

β,π [P{x = T ′},
−→
U ]. ✷Corollary 65 If t H T and T ∈ SNβ,π, then t ∈ SNλlxr.Proof: Appli
ation of Corollary 18. ✷We 
an 
on
lude the proof of PSN by stating the following theorem:Theorem 66 For any λ-term u, A(u) H i(u).Proof: By indu
tion on u:

• x H x trivially holds.
• If u = λx.t , then A(t) H i(t) holds by indu
tion hypothesis. Therefore, we obtain

λx.A(t) H λx.i(t) and λx.Wx(A(t)) H λx.[i(t), x].
• If u = (t u) , then A(t) H i(t) and A(u) H i(u) hold by indu
tion hypothe-sis and RΓ

Π(A(t)) H RΓ
Π(i(t)) and RΓ

Π(A(u)) H RΓ
Π(i(u)) by Lemma 63 (5). Sin
e

RΓ
Π(i(t)){Π = Γ} = i(t) (and the same for i(u)), we 
an then 
on
lude

C∆,Π
Γ (RΓ

∆(A(t)) RΓ
Π(A(u))) H i(t) i(u).

✷Corollary 67 (PSN) For any λ-term t, if t ∈ SNβ, then A(t) ∈ SNλlxr.Proof: If t ∈ SNβ, then i(t) ∈ SNβ,π by Corollary 60. As A(t) H i(t) by Theorem 66,then we 
on
lude A(t) ∈ SNλlxr by Corollary 65.
✷39



Con
lusionIn this report we have developed a 
onstru
tive theory of normalisation and indu
tionbased on an original approa
h that relies on se
ond-order quanti�
ation rather than 
las-si
al logi
. We have re-established a few normalisation results in this framework, in
ludingthe simulation te
hnique and a few variants.We have introdu
ed two new developments to the simulation te
hnique. The �rstone, 
alled the Safeness and Minimality te
hnique, 
an be applied to any higher-orderrewrite system. The se
ond one 
on
erns more spe
i�
ally systems that 
an be related to
λ-
al
ulus, and uses Chur
h-Klop's λI-
al
ulus.For the two introdu
ed te
hniques, whi
h 
an be 
ombined, examples of appli
ationshave been given with the 
al
uli λx [BR95℄, λ [Her95℄, and λlxr [KL05℄.Normalisation results have been inferred from the te
hniques, among whi
h the prop-erty 
alled Preservation of Strong Normalisation. The latter was known for λx and λ, butthe Safeness and Minimality te
hnique shortens the existing proofs for λ [DU03, Kik04℄.The PSN property in λlxr is a new result, whi
h makes it the �rst 
al
ulus of expli
itsubstitutions with full 
omposition that satis�es it (together with a 
al
ulus in [Pol04℄that has been developed simultaneously and independently).We should 
he
k that Nederpelt's result that weak normalisation in λI implies strongnormalisation 
an be proved 
onstru
tively, so that the whole te
hnique of simulation in
λI is 
onstru
tive.Also, the examples for the safeness and minimality te
hnique rely on a few exter-nal results su
h as the termination of the lexi
ographi
 path ordering [KL80℄, whi
h hasbeen proven in a framework with traditional de�nitions of normalisation. The latter are
lassi
ally equivalent to ours, so that we 
an 
lassi
ally use them.However, although the Safeness and Minimality te
hnique is 
lassi
al, it would beinteresting to prove the LPO te
hnique in our 
onstru
tive framework, whi
h is left asfuture work.A
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