N

N

Induction principles as the foundation of the theory of
normalisation: Concepts and Techniques
Stéphane Lengrand

» To cite this version:

Stéphane Lengrand. Induction principles as the foundation of the theory of normalisation: Concepts
and Techniques. 2005. hal-00004358v1

HAL Id: hal-00004358
https://hal.science/hal-00004358v1

Preprint submitted on 4 Mar 2005 (v1), last revised 5 Mar 2005 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00004358v1
https://hal.archives-ouvertes.fr

Induction principles
as the foundation of the theory of normalisation:
Concepts & Techniques

Technical report

PPS, Université Denis Diderot, Paris VII
School of Computer Science, University of St Andrews

Stéphane Lengrand
4th March 2005

Contents
Introduction

1 A constructive theory of normalisation
1.1 Relations.
1.2 Normalisation and induction 0L,
1.3 Termination by simulation & lexicographic termination
1.4 Multi-set termination L0 Lo
1.5 Higher-order syntaxes and rewrite systems

2 Of the difficulty of relating the terminations of \-calculi

3 The safeness and minimality technique
3.1 Example: Ax. oo
3.2 Example: X

4 Simulation in A/
4.1 Church-Klop’s AM-calculus
4.2 Simulating the perpetual strategyo,
4.3 Example: Mxr . .. oo

Conclusion

Bibliography

16

18
20
23

27
28
29
35

40

40

Introduction

The first part of this report was originally aimed at defining coherent terminology and
notations about reduction relations and their normalisation. The definition of the notions
of normalisation are inspired by a thread created by René Vestergaard on the TYPES
mailing-list, gathering and comparing the various definitions. Our first purpose here is
redefining and re-establishing a theory of normalisation that does not rely on classical
logic and double negation.

Negation usually lies in the very definition of strong normalisation already, when it is
expressed as “there is no infinite reduction sequence”. The most striking example is the
use of the definition in order to prove that a reduction relation is strongly normalising. It
usually starts with “suppose an infinite reduction sequence” and ends with a contradiction.
We believe that the theory of normalisation is not specifically classical, but the habit of
using classical logic has been taken because of convenience. Here, we show a theory of
normalisation that is just as convenient but constructive.

In this theory, the induction principle is no longer a property of strongly normalis-
ing relations, but is its very definition. In other words, instead of basing the notion of
strong normalisation on the finiteness of reduction sequences, we base it on the notion
on induction: by definition, a relation is strongly normalising if it satisfies the induction
principle. The latter should hold for every predicate, so the notion of normgqlisqtion is
based on second-order quantification rather than double-negation.

We express several induction principles in that setting, then we re-establish some tra-
ditional results, especially some techniques to prove strong normalisation. We construc-
tively prove the simulation technique and a few refinements, as well as the termination
of the lexicographic reductions and the multi-set reductions. A constructive proof of the
latter has already been given by Wilfried Buchholz and is a special case of Coquand’s
constructive treatment [Coq94| of Ramsey theory.

The second part of this report presents two new techniques for proving strong nor-
malisation. The first one is fundamentally classical but applies to any rewrite system,
whereas the second one might hold in intuitionistic logic and applies more specifically to
calculi that have some connexion with A-calculus. When applying the techniques, a major
part of the proofs is actually independent from the calculus to which they are applied.

As an example, we show how the former technique can be used to prove the nor-
malisation of the explicit substitution calculus Ax [BR95]|, which yields a short proof of
Preservation of Strong Normalisation (PSN). Since the technique is generic, we also prove
those properties for the explicit substitution calculus A |[Her95|, and the proof is shorter
than the existing ones in [DUO03| and [Kik04]. In both calculi the technique also allows us
to easily derive the strong normalisation of typed terms from that of typed A-terms. Un-
fortunately, since our technique is fundamentally classical, it cannot draw advantage of the
constructive proofs of strong normalisation such as the one in [JMO03| for the simply-typed
A-calculus.

We also apply the latter technique to the PSN property of the explicit substitution
calculus Alxr [KLO05], a calculus with a full composition of substitutions, for which the
standard techniques all failed. This is a new result.

The two techniques can be combined in a fruitful way, for instance for proving cut-
elimination in various powerful sequent calculi, including some type theories such as the
systems of Barendregt’s Cube expressed in sequent calculus.

1 A constructive theory of normalisation

1.1 Relations

We start by establishing some notations about relations and sets.

Definition 1 (Relations) We denote the composition of relations by -, the identity
relation by Id, and the inverse relation by ~!, all defined below:

Let R: A— Band R : B—C.

e Composition
R-R : A— Cis defined as follows: given M € A and N € C,
M(R - R')N if there exists P € B such that MRP and PR'N

e Identity
Id : A — A is defined as follows:
given M € Aand N € A, MIdN if M = N
(Note that for higher-order rewrite systems, the above notion of equality is a-
conversion)

e Inverse
R1: B — Ais defined as follows:
given M € Band N € A, MR™'N if NRM

If D C A, we write R(D) for {M € B| N € D,NRM}, or equivalently
UnepiM € Bl NRM}. When D is the singleton {M}, we write R(M) for R({M}).

Now when A = B we define the relation induced by R through R', written R'[R], as
RtPR-R:C—C.

We say that a relation R : A — B is total if R™}(B) = A.

All those notions and notations can be used in the particular case when R is a function,

that is, if VM € A, R(M) is of the form {N} (which we simply write R(M) = N).

Remark 1 Notice that composition is associative, and identity relations are neutral for
the composition operation.

Computation in a calculus is described by the notion of reduction relation, defined as
follows.

Definition 2 (Reduction relation) A reduction relation on A is a relation from A to
A (i.e. a subset of A x A), which we often write as —-.

Given a reduction relation — on A, we define the set of —-reducible forms (or just
reducible forms when the relation is clear) as rf = {M € A| AN € —(M)}. We define
the set of normal forms as nf " ={M € A —(M) = 0}.

Given a reduction relation — on A, we define —" by induction on the natural number

n as follows:
—0=1d
_yn+l
—™T denotes the transitive closure of — (formally, —=*=J, ., —").

—* denotes the transitive and reflexive closure of — (formally, —*=], ., —")-

—* denotes the transitive, reflexive and symmetric closure of —.

:—)-—>"(:—>"-—>)

Definition 3 (Finitely branching relations) A reduction relation — on A is finitely
branching it VM € A, — (M) is finite.

Definition 4 Given a reduction relation — on A, we say that a subset 7 of A is —-stable
(or stable under —) if —(7) C 7.

1.2 Normalisation and induction

Proving a universally quantified property by induction consists of verifying that the set
of elements having the property is stable, in some sense similar to -yet more subtle than-
the one above. Leading to different induction principles, we define two such notions of
stability property: being patriarchal and being paternal.

Definition 5 Given a reduction relation — on A, we say that

e a subset 7 of A is —-patriarchal (or just patriarchal when the relation is clear) if
VNeA —-(N)CT=NecT.

e a subset 7 of A is —-paternal (or just paternal when the relation is clear) if it

contains nf~ and is stable under — L.

e a predicate P on A is patriarchal (resp. paternal) if {M € A| P(M)} is patriarchal
(resp. paternal).

Lemma 2 Suppose that for any N in A, N € rf” or N € nf" and suppose T C A.
If T is paternal, then it is patriarchal.

Proof: In order to prove VN € A, —(N) C 7 = N € 7, a case analysis is needed:
either N € rf” or N € nf. In both cases N € T because 7 is paternal. O

Remark 3 Notice that we can obtain from classical logic the hypothesis for all N in
A, N € rf 7 or N € nf, because it is an instance of the Law of Excluded Middle. In
intuitionistic logic, assuming that amounts to saying that being reducible is decidable,
which is very often the case.

We would not require this hypothesis if we defined that 7 is paternal whenever
VN € AN e TV(Ned A(—=(N)nT = 0)). This is classically equivalent to
the definition above, but this definition also has some disadvantages as we shall see later.

Typically, if we want to prove that a predicate holds on some set, we actually prove
that it is patriarchal or paternal, depending on the induction principle we use.

Hence, we define normalisation so that normalising elements are those captured by an
induction principle, which should hold for every predicate satisfying the corresponding
stability property. We thus get two notions of normalisation: the strongly (resp. weakly)
normalising elements are those in every patriarchal (resp. paternal) set.

Definition 6 (Normalising elements) Given a reduction relation — on A:
e The set of —-strongly normalising elements is

SN~ = ﬂ T

7 is patriarchal

e The set of —-weakly normalising elements is
WN™ = N 7

7 is paternal

Remark 4 Interestingly enough, WN™ can also be captured by an inductive definition:

WN™ = [JWN,

where WN, " is defined by induction on the natural number n as follows:
WN," = nf"
WN,, = {M € A 3n' < n, M € -1 (WN;)}
With the alternative definition of paternal suggested in Remark 3, the inclusion
WN™ C J,, WN, would require the assumption that being reducible by — is decidable.

We therefore preferred the first definition because we can then extract from a term M in
WN™ a natural number n such that M € WN_’, without the hypothesis of decidability.

Such a characterisation gives us the possibility to prove that all weakly normalising
elements satisfy some property by induction on n. On the other hand, trying to do so
with strong normalisation leads to a different notion, as we shall see below. Hence, we
lack for SN an induction principle based on natural numbers, which is the reason why
we built-in a specific induction principle in the definition of SN,

Definition 7 The set of —-bounded elements is defined as

BN~ = BN,

where BN” is defined by induction on the natural number n as follows:

BN, = nf~
BN, = {M € A| In' < n, —(M) C BN}

But we have the following fact:

Remark 5 For some reduction relations —, SN~ # BN™". For instance, in the following
relation, M € SN™ but M ¢ BN,

M, My, s M;; e
l l
My 5 . M
l

However, suppose that — is finitely branching. Then BN~ is patriarchal.
As a consequence, BN = SN (the counter-example could not be finitely branching).

Proof: Suppose — (M) C BN™. Because — is finitely branching, there exists a natural
number n such that — (M) € BN,". Clearly, M € BN, ;, C BN™". O

5

Remark 6 As a trivial example, all the natural numbers are >-bounded. Indeed, any
natural number n is in BN, which can be proved by induction.

A canonical way of proving a statement VM € BN™, P(M) is to prove by induction
on the natural number n that VM € BN, , P(M). Although we can exhibit no such
natural number on which a statement VM € SN, P(M) can be proved by induction, the
following induction principles hold by definition of normalisation:

Remark 7 Given a predicate P on A,

1. Suppose P is patriarchal
(that is, VM € A, (VN € — (M), P(N)) = P(M)).
Then VM € SN, P(M).

2. Suppose P is paternal
(that is, VM € A, (M € nf~ V3IN € —-(M),P(N)) = P(M)).
Then VM € WN™, P(M).

When we use this remark to prove VM € SN™, P(M) (resp. VM € WN™, P(M)), we say
that we prove it by raw induction in SN~ (resp. in WN™),

Definition 8 (Strongly normalising relations) Given a reduction relation — on A
and a subset 7 C A, we say that the reduction relation is strongly normalising or ter-
minating on 7 if 7 C SN™. If we do not specify 7, it means that we take 7 = A. we
mean

Remark 8
1. If n < n’ then BN, C BN_; C BN™". In particular, nf~ C BN~ C BN™".

2. BN C SN and BN™” C WN™.
Hence, all natural numbers are in SN~ and WN~.

3. If being reducible is decidable (or if we work in classical logic), then SN™ C WN™".
Proof:

1. By definition.

2. Both facts can be proved for all BN~ by induction on n.

3. This comes from Remark 2 and thus requires either classical logic or the particular
instance of the Law of Excluded Middle stating that for all /V,

Nrf7 vV N enf”

Lemma 9
1. SN is patriarchal, WN™ is paternal.

2. If M € BN” and — (M) C BN™.
If M € SN~ then — (M) C SN™.
If M € WN™ then either M € nf~ or M € - (WN™)
(which implies M € rf~ = M € -1 (WN™)).

Proof:

1. For the first statement, let M € A such that — (M) C SN~ and let 7 be patriarchal.
We want to prove that M € 7. It suffices to prove that — (M) C 7. This is the
case, because — (M) C SN~ C 7.

For the second statement, first notice that nf~ C WN™. Now let M, N € A such
that M — N and N € WN™", and let 7 be paternal. We want to prove that M € 7.
This is the case because N € 7 and 7 is paternal.

2. The first statement is straightforward.
For the second, we show that 7 = {P € A| —(P) C SN} is patriarchal:
Let P € A such that —(P) C 7, that is, VR € —(P), —(R) CSN™.
Because SN is patriarchal, VR € —(P), R € SN™.
Hence, —(P) C SN, that is, P € 7 as required.
Now by definition of SN™, we get M € 7.
For the third statement, we prove that 7 = nf U —~!(WN7) is paternal:
Clearly, it suffices to prove that it is stable under —~!. Let P, € A such that
P— Qand Q € 7. fQ € nf" C WN™, then P € -~ (WN™) C 7. If
Q € —"1 (WN7), then, because WN™ is paternal, we get Q@ € WN™, so that
P e —"Y(WN™) C 7T as required.
Now by definition of M € WN™, we get M € 7T.

Notice that this lemma gives the well-known characterisation of SN™:
M € SN if and only if VN € —(M), N € SN™".

Now we refine the induction principle immediately contained in the definition of nor-
malisation by relaxing the requirement that the predicate should be patriarchal or pater-
nal:

Theorem 10 (Induction principle) Given a predicate P on A,

1. Suppose VM € SN, (VN € —(M), P(N)) = P(M).
Then VM € SN~ , P(M).

2. Suppose VM € WN~, (M € nf” vV 3IN € —-(M), P(N)) = P(M).
Then YM € WN™ P(M).

When we use this theorem to prove a statement P(M) for all M in SN (resp. WN™),
we just add (VN € — (M), P(N)) (resp. M € nf V3N € — (M), P(N)) to the assump-
tions, which we call the induction hypothesis.

We say that we prove the statement by induction in SN (resp. in WN™).

7

Proof:

1. We prove that T = {M € A| M € SN™ = P(M)} is patriarchal.
Let N € A such that —(N) C 7. We want to prove that N € 7
Suppose that N € SN”. By Lemma 9 we get that VR € — (N),R € SN™. By
definition of 7 we then get VR € — (N), P(R). From the main hypothesis we get
P(N). Hence, we have shown N € 7.
Now by definition of M € SN, we get M € 7, which can be simplified as P(M)
as required.

2. We prove that 7 = {M € Al M € WN™ A P(M)} is paternal.
Let N € nf 7 C WN™. By the main hypothesis we get P(N).
Now let N € —~1(7), that is, there is R € 7 such that N — R.
We want to prove that N € 7T
By definition of 7, we have R € WN™, so N € WN™ (because WN™ is paternal).
We also have P(R), so we can apply the main hypothesis to get P(N). Hence, we
have shown N € 7.
Now by definition of M € WN™, we get M € T, which can be simplified as P(M)
as required.

As a first application of the induction principle, we prove the following results:

Remark 11 M € SN if and only if there is no infinite reduction sequence starting from
R (classically, with the axiom of choice).

Proof:

e only if: Consider the predicate P(M) “having no infinite reduction sequence starting
from M”. We prove it by induction in SN™. If M starts an infinite reduction
sequence, then there isa N € — (M) that also starts an infinite reduction sequence,
which contradicts the induction hypothesis.

e if: Suppose M ¢ SN™. There is a patriarchal set 7 in which M is not. Hence,
there is a N € — (M) that is not in 7, and we re-iterate on it, creating an infinite
reduction sequence. This uses the axiom of choice.

Remark 12

1. If =C—', then nf~ D nf~, WN~ D WN~", SN~ D SN~
and for all n, BN;” D BN;”",

2. nf” =nf" , WN~ =WN~", SN~ =SN~", and for all n, BN;"" = BN
Proof:

1. By expanding the definitions.

2. For each statement, the right-to-left inclusion is a corollary of point 1.
For the first statement, it remains to prove that nf~ C nf.
Let M € nf~. By definition, — (M) = 0, so clearly —* (M) = () as well.
For the second statement, it remains to prove that WN™ C WN~" which we do by
induction in WN™:
Assume M € WN™ and the induction hypothesis that either M € nf™ or there is
N € — (M) such that N € WN™". In the former case, we have M € nf~ = nf~"
and nf~" C WN™". In the latter case, we have N € —T(M). Because of Lemma 9,

WN~" is stable by WN_’+_1, and hence M € WN™".

For the third statement, it remains to prove that SN C SN~ We prove the
stronger statement that VM € SN, —*(M) C SN~ by induction in SN™": assume
M € SN™ and the induction hypothesis VN € — (M), —*(N) C SN™". Clearly,
—T (M) C SN™". Because of Lemma 9, SN~ is —*_patriarchal, so M € SN~
and hence —*(M) C SN™".

The statement BN~ C BN;’Jr can easily be proved by induction on n.

O

Notice that this result enables us to use a stronger induction principle: in order to prove
VM € SN, P(M), it now suffices to prove

VM € SN™, (VYN € = (M), P(N)) = P(M)
This induction principle is called the transitive induction in SN .

Lemma 13 (Strong normalisation of disjoint union) Suppose that (A;)ic; is a fam-
ily of sets on some index set I, each being equipped with a reduction relation —;.
Suppose that they are pairwise disjoint (Vi,j € I*,i #j= A4 NA; =0).

Consider the reduction relation —=J;c; — on U, Ai.

We have | J,.; SN~ C SN™.

Proof: It suffices to prove that for all 7 € I, SN™7 C SN, which we do by induction in
SN™7. Assume M € SN/ and assume the induction hypothesis —;(M) C SN™".

We must prove M € SN, so it suffices to prove that for all N such that M — N we
have N € SN

By definition of the disjoint union, all such N are in —; (M) so we can apply the
induction hypothesis. O

1.3 Termination by simulation & lexicographic termination

Now that we have established an induction principle on strongly normalising elements,
the question arises of how we can prove strong normalisation. In this subsection we re-
establish in our framework the well-known technique of simulation, which can be found
for instance in |BN98|. The basic technique to prove that a reduction relation on the set A
terminates consists in mapping the elements of A to elements of a set B equipped with its
own reduction relation known to be terminating, and proving that the reduction in A can
be simulated by that of B. The mapping is sometimes called the measure function or the
weight function. We generalise here the technique by replacing the weight function by a

relation between A and B. Oddly enough, we were unable to find this easy generalisation
in the literature. But the main point here is that the simulation technique is the typical
example where the proof usually starts with “suppose an infinite reduction sequence”
and ends with a contradiction. We show how the use of classical logic is completely
unnecessary, provided that we use a constructive definition of SN such as ours.

Definition 9 (Strong and Weak Simulation)
Let R be a relation between two sets A and B, equipped with the reduction relations — 4
and —g respectively.

o — g strongly simulates — 4 through R if (R™'-—4) C (=} -R™1).

In other words, for all M, M’ € A and for all N € B, if MRN and M —_4 M’ then
there is N' € B such that M'RN" and N —} N'.

Notice that when R is a function, this implies R[— 4] C—.

e — 5 weakly simulates — 4 through R if (R™' - —4) C (= - R™).

In other words, for all M, M’ € A and for all N € B, if MRN and M —_4 M’ then
there is N’ € B such that M'RN’ and N —5 N'.

Notice that when R is a function, this implies R[— 4] C—.

Theorem 14 (Strong normalisation by strong simulation) Let R be a relation be-
tween A and B, equipped with the reduction relations — 4 and —g.
If —g strongly simulates — 4 through R, then R~ (SN”8) C SN,

Proof: R'(SN7#) C SN™4 can be reformulated as
VN € SN78 VM € A, MRN = M € SN+

which we prove by transitive induction in SN™”5. Assume N € SN7# and assume the in-
duction hypothesis VN’ €—% (N),YM' € A, M'RN’' = M’ € SN, Now let
M € A such that MRN. We want to prove that M € SN™4. It suffices to prove that
VM' € — (M), M’ € SNTA. Let M’ be such that M — 4 M'. The simulation hypothesis
provides N’ €=} (N) such that M'RN’. We apply the induction hypothesis on N’, M’
and get M’ € SN™4 as required. O

The simulation technique can be improved by another standard method. It consists of
splitting the reduction relation into two parts, then proving that the first part is strongly
simulated by a first auxiliary terminating relation, and then proving that the second
part is weakly simulated by it and strongly simulated by a second auxiliary terminating
relation.

In some sense, the two auxiliary terminating relations act as measures that decrease
lexicographically.

We express this method in our constructive framework.

!/

Lemma 15 Given two reduction relations —, —', suppose that SN~ is stable under —'.

Then SN~Y~" = SN~ A SN~

10

Proof: The left-to-right inclusion is an application of Theorem 14: — U —' strongly
simulates both —* - —’ and — through Id.
Now we prove the right-to-left inclusion. We first prove the following lemma:

VM c SN—>7 (_)* . —>,>(M> g SN—>U_,/ = M e SN—>U—>/

We do this by induction in SN, so not only assume (—*-—/ M) C SNV, but also
assume the induction hypothesis:

VYN € — (M), (=*- =/ N) TSN~ = N e SN~V

We want to prove that M € SN_’U_’I, so it suffices to prove that both
VYN € —' (M),N € SN~ and YN € — (M),N € SN~Y~". The former case is a
particular case of the first hypothesis. The latter case would be provided by the second
hypothesis (the induction hypothesis) if only we could prove that (—*-—/{N) C SN~V
But this is true because (—*-—'(N) C (—*-—' M) and the first hypothesis reapplies.

Now we prove

VM eSN™"' M eSN~” = M e SN~

We do this by induction in SN~ """, so not only assume M € SN, but also assume the
induction hypothesis YN € (—* - —/)(M),N € SN” = N € SN~

Now we can combine those two hypotheses, because we know that SN is stable under
—': since M € SN™°, we have (—*-—')(M) C SN, so that the induction hypothesis can
be simplified in VN € (—* - —')(M), N € SN~V

This gives us exactly the conditions to apply the above lemma to M. O

Corollary 16 (Lexicographic termination)
Let Ay, ..., A, be sets, respectively equipped with the reduction relations — 4,,...,— 4
For 1 <i <mn, let —; be the reduction relation on A; x --- X A, defined as follows:

nt

(Ml,...,Mn) — (Nl,...,Nn)

if M — 4, N; and for all 1 < j < i, M; = N; and for alli < j <n, N; € SN~

We define the lexicographic reduction —jex as —1 U...U —,. We then have:
SN™”AL % «.. x SN”An C SNt

In particular, if — 4, is terminating on A; for all 1 < i < n, then —ex is terminating on

A x - x A,

Proof: By induction on n: for n = 1, we conclude from — 4,=—1.

Then notice that — 4,,, strongly simulates —,,1 through the (n+1)" projection. Hence,
by Theorem 14, if N3 € SN”4»+1 then (Ny,..., N,yq) € SN which we can also
formulate as A; x --- x A,, x SN”4n+1 C SN+,

A first consequence of this is SN™”41 x -+ x SN”4n+1 C SN7#! (1). A second one is that
SN™”"+! is stable under —; U...U —, (2). Now notice that —; U...U —,, strongly sim-
ulates —7 ;- (—1 U...U —,) through the projection that drops the (n+1)" component.
We can thus apply Theorem 14 to get SN”1V-U=n x A, | C SNTn+1(T100=0) “which,
combined with the induction hypothesis, gives SN ™41 x - - - x SN 4nt1 C SN n1(11U=n)
(3). From (1), (2), and (3) we can now conclude by using Lemma 15. O

11

Corollary 17 Let A be a set equipped with a reduction relation —.
For each natural number n, let — ey, be the lexicographic reduction on A™.
Consider the reduction relation —je=J,, —1exn 0 the disjoint union J, A".

LJisnyr € she

n

Proof: It suffices to combine Corollary 16 with Lemma 13. O

Corollary 18 Let — 4 and —'4 be two reduction relations on A, and —p be a reduction
relation on B. Suppose

o —', is strongly simulated by —p through R

o — 4 15 weakly simulated by —g through R
o SN"A=A

Then R™Y(SN™8) C SN~AY~4
(In other words, if MRN and N € SN™5 then M € SN~AY"4)

Proof: Clearly, the reduction relation —% - —/; is strongly simulated by —p through

R, so that by Theorem 14 we get R™*(SN™”%) C SN~ 4,

But SN”4 ™4 = SN™4 4 SN™”4 = SN_’AU_“A, by the Lemma 15 (since SN™4 = A is
obviously stable by —/,). O
The intuitive idea behind this corollary is that after a certain number of — 4-steps and
—',-steps, the only reductions in A that can take place are those that no longer modify
the encoding in B, that is, — 4-steps. Then it suffices to show that — 4 terminate, so that
no infinite reduction sequence can start from M, as illustrated in Figure 1.

1.4 Multi-set termination

Now we define the notions of multi-sets their reductions. We constructively prove their
termination. A classical proof of the result can be found in [Ter03].

Definition 10 (Multi-Sets) Given a set A, a multi-set on A is a total function from A
to the natural numbers such that only a finite subset of elements are not mapped to 0.

Notice that for two such multi-sets f and g, the function f + ¢ mapping any element
M of Ato f(M)+ g(M) is still a multi-set on A.

We define the multi-set {{Ny,..., N,}} as fi + -+ + fn, where for all 1 <i <n, f;
maps N; to 1 and every other element to 0.

We write abusively M € f if f(M) # 0.

Definition 11 (Multi-Set reduction relation) Given — is a reduction relation on A,
we define the multi-set reduction as follows:
if f and g are multi-sets on A, we say that f — ., ¢ if there is a M in A such that

{f(M):g(M)H
YN € A, f(N) < g(N) = M — N

In what follows we always assume that A is a set with a reduction relation —.

12

Ax Bx*
R
M, N,
A B+
M; £ N;
Ax Bx*
R
M, Ny
A B+
| |
| |
y . v
M; N}
lA* /
R
M,
|
| Ax
y

Figure 1: Deriving strong normalisation by simulation

Lemma 19 If fi,..., fu, g are multi-sets on A and f1 + -+ f, —mu g then there is
1 <i < nand a multi-set f such that f; —my f and fi+- -+ fia+fi+fin+ - +fa=g9.

Proof: We know that there is a M in A such that

{ AM) + -+ fu(M) = g(M) + 1
VN € A, fi(N) + -+ fu(N) < g(N) = M — N

An easy lexicographic induction on two natural numbers p and ¢ shows that if p4+ ¢ > 0
then p > 0 or ¢ > 0. By induction on the natural number n, we extend this result: if
p1+- - +p, > 0 then Ji, p; > 0. We apply this result on fi(M)+-- -+ f,,(M) and get some
fi(M) > 0. Obviously there is a unique f/ such that fi+---+f; 1+ f/+fisi+ -+ u =9,
and we also get f; —mu f/. O

Definition 12 Given two sets N and N’ of multi-sets, we define N + N’ as
{f+alfeN geN}

We define for every M in A its relative multi-sets as all the multi-sets f on A such
that if N € f then M —* N. We denote the set of relative multi-sets as M.

Remark 20 Notice that for any M € A, M, is stable under — .

Lemma 21 For all My, ..., M, in A,
if My UL UMy, ©SNT™ then My, + -+ -+ My, C SN

Proof: Let W be the relation between My, +-- -4+ My, and My, X -+ - X My, defined
as: f1++fnw(fl>>fn) forallflw"?fn inMMl X‘.‘XMMTL.

13

We consider as a reduction relation on M, x- - - x My, the lexicographic composition
of — . We denote this reduction relation as —ex. By Corollary 16, we know that
Mg X oo x My, © SNTmle Hence, WHSNT™) = My, + -+ + My,

Now we prove that My, + --- + My, is stable by —n, and that — e strongly
simulates —, through W. Suppose fi+-- -+ fi —=mu g- By Lemma 19 we get a multi-set
fisuch that fi+---+ fii+ fi+ fiss +- -+ fa=g and f; —mu f].

Hence, f/ € My, so that (fi,..., fic1, fl, fiv1, 5 fu) € May, X -+ X My, and even
(fh T 7fn> 7 mullex (fl, oy fics f{, Jivt, o 7fn)

By Theorem 14 we then get W~!(SN”m!=) C SN”m which concludes the proof

because W™H(SNTmle) = My + -+« + My, . O

Lemma 22 VM € SN, M, C SN~

Proof: By transitive induction in SN™. Assume that M € SN and assume the
induction hypothesis VN € —T (M), My C SN

Let us split the reduction relation —my: if f —mu g, let f —nun g if f(M) = g(M)
and let f —que g if f(M) > g(M). Clearly, if f —nu ¢ then either f —u1 g or
f —mun ¢g- This is an intuitionistic implication since the equality of two natural numbers
can be decided.

Now we prove that — 1 is terminating on M ;.

Let W be the following relation (actually, a function) between M, to itself: for all
fand g in My, fWg if g(M) =0 and for all N # M, f(N) = g(N).

For a given f € My, let Ny,..., N, be the elements of A that are not mapped to 0
by f and that are different from M. Since f € M, for all 1 <i < n we know M —* N,
and we also know that W(f) € My, + --- + My,. Hence, we apply the induction
hypothesis and Lemma 21 to get My, + -+ My, € SN7™'. Hence, W'(f) € SN™m.

Now notice that —, strongly simulates — .1 through W', so by Theorem 14,
f € SN7mui,

Now that we know that —/ is terminating on M,,, we notice that the decreasing
order on natural numbers strongly simulates — 0 and weakly simulates — ;1 through
the function that maps every f € M, to the natural number f(M).

Hence, we can apply Corollary 18 to get My, C SN7mul, O

Corollary 23 (Multi-Set termination) Let f be a multi-set on A.
If for any M € f, M € SN, then f € SN~

Proof: Let My,..., M, be the elements of A that are not mapped to 0 by f. Clearly,
fe My, +---+ My, By Lemma 22, My, U... My, € SNT™ and by Lemma 21,
My, + -+ My, CSNT™ 5o f e SN |

1.5 Higher-order syntaxes and rewrite systems

We now deal with higher-order syntaxes, where the set A is recursively defined by a term
syntax possibly involving variable binding and the reduction relation — is defined as a
rewrite system. There are several ways to express those systems in a generic way, among
which the Expression Reduction Systems (ERS) [Kha90]|, the Combinatory Reduction
Systems (CRS) |Klo80|, and the Higher-Order Systems (HRS) [Nip91|. In the rest of this
report, we only use from those formalisms the notions of redex, sub-term and contextual

14

closure of the rewrite rules, as well as the notion of implicit substitution such as M{x = N}
(that denotes the term M in which every occurrence of the variable x has been replaced
by the term N). All these definitions can be found in [Ter03].

Definition 13 (Conventions)
The symbol C denotes the sub-term relation and C denotes the strict sub-term relation
(we also use J and 1 for the inverse relations).

By definition of terms, A = SN-.

For a rewrite system R, —g denotes as usual the contextual closure of the relation
that contains every instance of the rewrite rules of R.

We identify a rewrite rule h with the rewrite system {h} and for two rewrite systems
R and R we write R,R’ for RUR'.

A congruence on A is an equivalence relation that is context-closed.

Lemma 24 SN—RYZ = SN—R,

Proof: This is a typical theorem that is usually proved classically (using for in-
stance the postponing technique |Ter03|). We prove it constructively here. The left-
to-right inclusion is trivial, by Remark 8. Now for the other direction, first notice that
SN-' = A. Because of the definition of a contextual closure, —g strongly simulates —g
through C. Also, it weakly simulates T through C, so we may apply Corollary 18 and get
VN € SN"R VM € A, M C N = M € SN7RrRY=,
In particular, YN € SN”®R, M € SNTRY=, O
Notice that this result enables us to use a stronger induction principle: in order to
prove VM € SN™ R | P(M), it now suffices to prove

VM e SNT® (VN e A (M—T R NVNLC M)= P(N))= P(M)

This induction principle is called the transitive induction in SNT with sub-terms and is
used in the following sections.

We briefly recall the various induction principles:
In order to prove VM € SN™ R | P(M), it suffices to prove

e VM€ A (VN €A (M—g N)= P(N)) = P(M)

(raw induction in SN®), or just

e VM € SN™® (VN € A, (M —g N) = P(N)) = P(M)

(induction in SN®), or just

o VM € SN® (VN € A, (M—*g N) = P(N)) = P(M)

.. . . . R
(transitive induction in SN™), or even

e VM eSN™® (VNe A (M—T s NVNLC M)= P(N))= P(M)

(transitive induction in SN® with sub-terms)

Definition 14 SNR henceforth denotes SN™R Y= = SN—®

15

2 Of the difficulty of relating the terminations of -
calculi

In the rest of this report we develop techniques that were originally designed for deriving
strong normalisation results from the strong normalisation of typed A-calculus [Bar84].

The first one turns out to be more general and can be applied to any rewrite system. It
is a useful refinement of the simulation technique, but the main theorem of the technique
only holds in classical logic.

The second technique holds in intuitionistic logic, apart maybe from one external
result, of which the provability in intuitionitic logic remains to be checked. The tech-
nique was originally designed to prove the strong normalisation of calculi with explicit
substitutions, such as Ax [BR95].

We call calculus with explicit substitutions a calculus that uses a set of variables,
denoted x,vy, ..., and one of its constructors is the following one:

If M and N are terms, then (M/z)N is a term, where z is bound in N. The construct is
called an explicit substitution and M is called its body.

Of course, the technique is likely to be adapted to other frameworks, which could use
De Bruijn indices |Bar84| or explicit substitutions with additional parameters, but the
above framework is plainly sufficient for the examples treated hereafter.

Among the calculi with explicit substitutions to which the techniques can be applied
are the intuitionistic sequent calculi [Gen35].

The notion of computation in sequent calculi is Cut-elimination: the proof of a sequent
may be simplified by eliminating the applications of the Cut-rule, so that a sequent which
is provable with the Cut-rule is provable without.

It turns out that the most natural typing rule for an explicit substitution as expressed
above is precisely a Cut-rule. From that remark, many techniques aimed at proving
normalisation results about calculi of explicit substitutions actually apply to systems
with Cut-rules such as sequent calculi. In other words, termination of cut-elimination
processes can often be derived from termination of explicit substitution calculi.

Of course, in the case of sequent calculi, termination of Cut-elimination relies only on
the strong normalisation of typed terms.

Another notion tackles the strong normalisation of terms with explicit substitutions
that are not necessarily typed: the property called Preservation of Strong Normalisation
(PSN) [BBLRDY96]. It concerns syntactic extensions of A-calculus with their own reduction
relations and states that if a A-term is strongly normalising for the g-reduction, then it is
still strongly normalising when considered as a term of the extended calculus undergoing
the reductions of the latter. In other words, the reduction relation should not be too big,
although it is often required to be big enough to simulate G-reduction. It is typically the
case of Ax [BR95|, which we shall investigate shortly.

The definition of the PSN property can be slightly generalised for calculi in which \-
calculus can be embedded (by a one-to-one translation, say A) rather than just included.
In that case PSN states that if a A-term is strongly normalising, then its encoding is also
strongly normalising. This is the case for the explicit substitution calculus Alxr introduced
in |[KLO5| which requires terms to be linear and hence is not a syntactic extension of A-
calculus. Figure 2 shows the two situations, with the example of Ax and Alxr.

The basic idea in proving that a term M of a calculus with explicit substitutions is SN

16

AX Mxr

A———[]

Figure 2: Standard and generalised situations for stating PSN

is to use Corollary 18, that is, simulating M’s reductions by [-reductions of a strongly
normalising \-term H(M).

For PSN, if M = A(t) where ¢ is the A-term known to be SN? by hypothesis, then we
would take H(M) = t.

For sequent calculus, it would be a typed (and hence strongly normalising) A-term
that denotes a proof in natural deduction of the same sequent (using Curry-Howard corre-
spondence). The idea of simulating Cut-elimination by [-reductions has been investigated
in [Zuc74].

There is one problem in doing so: an encoding into A-calculus that allows the simula-
tion needs to interpret explicit substitutions by implicit substitutions such as t{z = u}.
But should z not be free in ¢, all reduction steps taking place within the term of which
is the encoding would not induce any (G-reduction in t{x = u}.

Therefore, the sub-system that is only weakly simulated, i.e. the one consisting of all
the reductions that are not necessarily simulated by at least one S-reduction, is too big
to be proved terminating (and very often it is not).

The two techniques developed hereafter are designed to overcome this problem, in a
somewhat general setting. The two aforementioned calculi with explicit substitutions Ax
and Alxr respectively illustrate how each can be applied and can provide in particular a
proof of the PSN property.

In order to compare the examples with A-calculus, we briefly recall the latter. The
syntax is defined as follows:

M,N =x| AXx. M| M N
B-reduction is defined as the following rule:
(Ae.M) N —3 M{x = N}

The first three inference rules of Figure 3 define the derivable judgements of the simply-
typed A-calculus, which we note as I' Fy; M : A. When the two bottom inference rules
are added, we obtain a typing system characterising SN”, and we note those derivable
judgements as I' Fyyn M : A.

The following theorem has been proved in |[CD78]:

Theorem 25 (Strong Normalisation of A\-calculus)
L Fyn M 2 A if and only if M € SN°,

A proof of the weaker statement that simply-typed A-calculus is strongly normalising can
be found, for example, in [Bar84].

17

Mz:AkFz: A

C(z:A)FM:B 'FM:A—B 'EN:A
'-XeM:A—B '-MN:B

''EM:A I'-M:B '-M:A NA,
''EM:ANB ' M: A

ie{1,2}

Figure 3: Typing rules for A-calculus

3 The safeness and minimality technique

Given a rewrite system R on a set of terms A, the safeness and minimality technique
presents two subsystems minR and safeR satisfying —qer C——mink C——r and
SN™"R = SNR.

The intuitive idea is that a reduction step is minimal if all the (strict) sub-terms of
the redex are in SN¥. Theorem 27 says that in order to prove that —sg is terminating,
we can restrict our attention to minimal reductions only, without loss of generality.

Similarly, a reduction step is safe if the redex itself is in SN, which is a stronger
requirement than minimality. Theorem 28 says that, whatever R, safe reductions always
terminate.

Those ideas are made precise in the following definition:

Definition 15 (Safe and Minimal reductions) Given two rewrite systems h and R
satisfying —, C—r ,

e the (R-)minimal h-system is given by the following scheme of rules:

minh: M — N for every M —, N such that for all P = M, P € SNF

e the (R-)safe h-system is given by the following scheme of rules:

safeh: M — N for every M —y, N such that M € SN

In both rules we could require M —}, N to be a root reduction so that M is the redex,
but although the rules above seem stronger than that, they have the same contextual
closure, so we consider the definition above which is the simplest.

Notice that being safe is stronger than being minimal as we have:
—safeh S minh &—h C—r -

We also say that a reduction step M —, N is safe (resp. minimal) if M —gen N
(resp. M —minn V) and that it is unsafe if not.

Obviously if —, is finitely branching, then so are — gt and — pinn -

Remark 26 We shall constantly use the following facts:
L. ~min(safeh) = 7safe(minh) = 7safeh

18

2. *safe(h,h’) — safeh,safeh’

3. min(h,h’) = minh,minh’

Theorem 27 SN™"R = SNR

In other words, in order to prove that a term is strongly normalising, it suffices to prove
that it is strongly normalising for minimal reductions only. This theorem holds in intu-
itronistic logic.

Proof: The right-to-left inclusion is trivial. We now prove that SN™"® C SN, by
transitive induction in SN™"R with sub-terms.

Let M € SN™"R we have the induction hypothesis that
VN,(M—"*minr NVN C M) = N € SNR,

We want to prove that M € SNF, so it suffices to check that if M —g N, then
N € SNR.

We first show that in that case M — .k N. Let) be the R-redex in M, and
let P T Q. We have P — M. By the induction hypothesis we get P € SNR, so Q is a
minR-redex. By contextual closure of minimal reduction, M —,;,r V.

Again by the induction hypothesis, we get N € SN as required. O

Theorem 28 SNk — 4
In other words, safe reductions always terminate. This theorem holds in intuitionistic
logic.

Proof: Consider the multi-sets of (R)-strongly normalising terms, and consider the
multi-set reductions induced by the reductions (—g U)" on strongly normalising
terms. By Corollary 23, these multi-set reductions are terminating.

Considering the mapping ¢ of every term to the multi-set of its R-strongly normalising
sub-terms, we can check that the multi-set reductions strongly simulate the safe reductions
through ¢. Hence, from Theorem 14, we get that safe reductions are terminating. O

Now the aim of the safeness and minimality technique is to prove the strong normali-
sation of a system R.

We obtain this by the following theorem, which only holds in classical logic. Indeed,
it relies on the fact that for the rewrite system R, for all term M we have either M € SNF
or M ¢ SNR. This instance of the Law of Excluded Middle is in general not decidable.

Theorem 29 Given a system R, if we find a subsystem R satisfying —safer C—p'
C——minr , Such that we have:

e the strong simulation of — minr \ —r i1 a strongly normalising calculus, through
a total relation Q

e the weak simulation of — g through Q
e the strong normalisation of — g

then R is strongly normalising.

Proof: This is a direct corollary of Corollary 18. O

19

B (Ae.M) N — (N/x)M

Abs (N/x) \y.M — Xy (N/x)M

App (N/x)My My — (N/x)M; (N/x)M,
VarK (N/z)y — vy

Varl (N/x)x — N

Figure 4: Reduction rules for Ax

Now notice the particular case of the technique when we take R" = safeR. By Theo-
rem 28 we would directly have its strong normalisation. Unfortunately, this definition is
often too coarse, that is to say, the relation —g/ is to small, so that —;,r \ —r~”
is often too big to be strongly simulated.

Hence, in order to define R’, we use the safeness criterion, but the precise definition
depends on the calculus that is being treated. We give the examples of Ax and X. The
proofs in these examples use classical logic.

3.1 Example: \x

Ax |BR95| is the syntactic extension of A-calculus with the aforementioned explicit sub-
stitution operator:

M,N :=z| \Xe. M| M N| M{z = N}

Its reduction system reduces (-redexes into explicit substitutions which are thence
evaluated, as shown in Figure 4.

The first four inference rules of Figure 5 define the derivable judgements of simply-
typed Ax, which we note as I' Fnycue M : A. When the three bottom inference rules
are added, we obtain a typing system characterising SN?* [LLD*04], and we note those
derivable judgements as T Fyjcun M @ A. The following theorem is proved in [LLDT04]:

'EP:A T,(z:AFM:C
Ie:AFz: A T+ (P/x)M:C
C(z:A)FM:B 'FM:A—B 'EN:A
'-Xe.M:A— B '-MN:B
'EM:A '-M:B ' M:A NA,
ie{l,2}
'-M:ANnB '+ M: A
'-M:A AFN:B x ¢l
I'E(N/x)M : A

Figure 5: Typing rules for Ax

20

Theorem 30 (Capturing strongly normalising terms)
If M € SNB* then there is a T and a A such that T Fpycun M : A.

In the same paper, the converse (typed terms are strongly normalising) has been proved by
a reducibility technique. We show here that one application of the Safeness and Minimality
technique, apart from PSN, is to derive this result from the strong normalisation of \-
calculus with intersection types (Theorem 25).

In this example we take R" = safe B, minx.

Lemma 31 — g px 15 terminating.

Proof: We use for that a lezicographic path ordering |[KL80| based on the following
infinite first-order signature and its precedence relation:

M < succ(—) < bi(—, =) < sub(—, —)

where for every M € SN®* there is a constant ¢™. Those constants are all below succ(),
and the precedence between them is given by ¢¥ < ¢™ if and only if M—Tt5, N or
N C M. By Remark 24, the precedence is well-founded (terminating).

Encode Ax as follows:

P(M) = M if M € SNP*
otherwise

P(Ax.M) = succ(P(M))

P(M N) = bi(P(M),P(N))

P((N/x)yM) = sub(P(N),P(M))

It is quite easy to check that (safeB),x-reductions decrease P(), so they are terminating.

O
Now consider the following encoding in A:
H(x) =z
H(A\z. M) = H(M)
HI(M N) = () H(N)
H(N/z)M) = H(M){z =H(N)} if N € SNB*
= (Az.H(M)) H(N) if N ¢ SNP*
Lemma 32
1. If M — pming N is unsafe then H(M) —5 H(N)
2. If M — ming N is safe then H(M)—"5 H(N)
3. If M — pminx N then H(M) = H(N)
Corollary 33 If H(M) € SN’ then M € SNP~.
Proof: Direct application of Theorem 29. O

21

This results has two obvious corollaries:
Considering that on pure terms (that is, substitution-free terms), the encoding into
A-calculus is the identity, this gives directly the PSN property for Ax.

Corollary 34 (Preservation of Strong Normalisation)
Ift € SNP then t € SNP~.

It turns out that the above encoding generally preserves typing. Hence, if the typing
system considered in A-calculus implies strong normalisation, then the original Ax-term is
also strongly normalising, by Corollary 33. For instance, we have the following theorem:

Theorem 35
1. IfT bpycur M 2 A then T Fpy H(M) = A, so M € SN
2. If T Foycun M 2 A then T bFpyn H(M) : A, so M € SNP™,

Often, that kind of strong normalisation result is derived from the PSN property by
lifting the explicit substitutions into (-redexes |Her95|, but this is precisely what the
encoding does in the necessary places, so that Corollary 33 is a shortcut of Herbelin’s
technique.

Notice the subtlety of the definition for the encoding of an explicit substitution:

1. As we have already said, always encoding explicit substitutions as implicit substi-
tutions leads to the weak simulation of too many B-steps, so that the system that
is only weakly simulated is too big to be proved terminating.

2. On the other hand, always raising (N/xz)M into a (-redex would be too strong,
because the substitution (N/x) can be propagated into the sub-terms of M but the
(-redex cannot be moved around, so the simulation theorem would not hold.

3. Hence, we needed to define an encoding that is a compromise of those two, and the
side-condition N € SNZ* is precisely the criterion we need:

e First, the satisfiability of the condition may only evolve in one direction, as it
may only become satisfied by some reduction within N, and not the other way
around. If it does so, we can simulate this step by reducing the g-redex.

e Now if N ¢ SN®* then the substitution is lifted into a 3-redex and for the
same reason as in point 2 we cannot simulate the propagation of (N/z). So
we need to prove that we need not consider reduction steps that propagate a
substitution of which the body is not strongly normalising. This is precisely
the point of minimal reduction: Theorem 27 says that in order to prove a
strong normalisation result, we may assume that all sub-terms of the redex are
strongly normalising.

e If on the contrary N € SN®* then we can indeed simulate its propagation,
but for the same reason as in point 1, reduction steps within N might only be
weakly simulated, but these are precisely what we call safe reductions and we
have proved above that they (together with x-reduction) terminate.

22

3.2 Example: \

Another example of how this techniques applies is Herbelin’s), for which PSN has longer
proofs in [DU03, Kik04]. Since A can be typed by a version called LJT of the intuitionistic
sequent calculus and the technique provides again a type-preserving encoding of \ into
the simply-typed A-calculus, we thus prove the strong normalisation of Cut-elimination
in LJT.

The syntax of Herbelin’s calculus is defined as follows:

M,N,A,B == e.M|xl| MI (M/z)N
LU == M= lQl| (M/x)l

Az.M and (N/z)M bind z in M, and (M /z)l binds x in [, thus defining the free variables
of terms and lists as well as a-conversion. We use Barendregt’s convention that no variable
is free and bound in a term in order to avoid variable capture when reducing it.

The reduction rules of X are defined in Figure 6, the typing rules are defined in Figure 7.

B (Ax.M) (N :l) — (N/x)yM)I

(Bl M]] M
B2 (x))V — x (lQl")
B3 (MI)U . M (lal)

Al (M : 1)@l — M :: (I'Ql)
A2 [j@l — 1
A3 (lal"al” — lQ('al”)

SYSLEM XN 1 (Pl Ae M — Az (PJy)M
C2 (P/y)(yl) — P (P/y)l
G (Ply)xl) — x(P/y)l
C4 (Ply)(M1) — (P/y)M (P/y)l

DL (P/y)[] —
D2 (P/y)(M 1) — ((P/y)M) = ((P/y)])
[D3 (P/y)@ial’) — (P/y)h)a((P/y)l)

Figure 6: Reduction Rules for A

Typically, the case of A is one of those where the syntax does not include that of \-
calculus, but the latter can be encoded [Her95|. Indeed, it is well-known that the syntax
of A-calculus can also be described as follows:

P:=X\x.M
— —
M,N,A,B:=Plxz M|PNM

N
where M represents a list of “M-terms” of arbitrary length.

The encoding, given in Figure 8, is threefold, one function Ay() for the “P-terms”, a
second one, A(), for the “M-terms”, and a third one, A;(), for lists of “M-terms™:

23

F;Al_LJTlIB (Z’A)EF Fl_LJTAIS]
Cont, axiom
F"LJTJIZZB F;A}_LJTHIA
F,(m:A)I—LJTM:B FI_LJTM:A F;BI_LJTZ:C
—r —
'yt daM:A— B IMA—- By M1 C
Fl_LJTMIA F;Al_LJTlIB F;Ol_LJTl/ZA F;A"LJTZZB
Cuts Cuty
Fl_LJTMlIB F;Cl_LJT l,@lB
Fl_LJTPIA F,(IIA)"LJTMZOC Fl_LJTPZA F,(xA),BI—LJTlCC
ut ut
T bt (Pla)M: C ! ;B Fur (P/a)l: C ?

Figure 7: Typing rules for A

Az M) = o.A(M)

A(P) = AD)

Az M) = xA(M)

AP N M) = A(P) (AW) = A(M))
A(D) =

AN, ... N) = AN,):A(N, ... N,

Figure 8: Encoding A-calculus into A

Remark 36 A(M) is an x-normal form

Lemma 37 (A(M)/2)A(N)—*, A(N{z = M})

Proof: By induction on N. O

Finally, we conclude that g-reduction is simulated by B, x, so that A-calculus can be
considered as a sub-calculus of \.

Theorem 38 If M —3 N then A(M)—" g A(N)

Proof: By induction on M. O

Now we prove PSN (and SN of typed terms) for A with the safeness and minimality
technique. Again, we consider a first-order syntax equipped with a lexicographic path
ordering based on the following precedence:

M < succ(—) < bi(—, =) < sub(—, —)

where for every M € SN?* (resp. 1 € SN®*) there is a constant ¢ (resp. c!). Those
constants are all below succ(), and the precedence between them is given by ¢ < c¢™ if

24

and only if M—T 5, N or N C M (and similarly for lists).

well-founded.

The encoding goes as follows:

The precedence is hence

P(M) = M if M € SNP>
otherwise
P(Ax.M) = bi(P(A),P(M
Pz) = succ(Q()
P(M 1) bi(Q(1), P(M
P({M/z)N) = sub(P(M),P
Q(l) = if [€ SNP>
otherwise
QM 1) = bi(P(M),Q
Qlal’) = bi(Q(), ('
Q((M/x)l) = sub(P(M),Q

Lemma 39

1. If M —gpepx N then P(M) > P(N).

2. If |l —garepx U then Q(1) > Q(V').

Proof: We first check root reductions.
Clearly, if M, 1 € SN®* the Lemma holds, and this covers the case of safe reductions.

Also, when N, I’ € SNP* the Lemma holds as well.
The remaining cases are when P(

M), Q(I) and P(N), Q(I') are not constants.
For B1, A2, the term P(N) (resp. Q(I')) is a sub-term of P(M

) (resp. Q(1)).

For B2, B3, Al, the arguments of bi(,) decrease in the lexicographic order.
For Ci's, Di’s, the symbol at the root of P(N) (resp. Q(I')) is strictly inferior to that

of P(M
Q(1")) are smaller than P(M

) (resp. Q(l)), so we only have to check that the direct sub-terms of P(NN) (resp.
) (resp. Q(I)). Clearly, it is the case for all sub-terms that

are constants (namely, those encodings of strongly normalising sub-terms of N or [’). For

those that are not, it is a routine check on every rule.

The contextual closure is a straightforward induction on M, I:
Again, if M, 1 € SN®* or N,I’ € SN?*, the Lemma holds;
otherwise, if the reduction is a safe B, x-reduction in a direct sub-term of M or [, it suffices

to use the induction hypothesis on that sub-term.

a

Corollary 40 The reduction relation — s fepx S terminating.

25

Now we encode \ in A-calculus as follows:

H(Azx.M) = Az.H(M)

H(x 1) H*(D){z =z} x fresh

H(M 1) H*(){z = H(M)} =z fresh
H(M/z)N) = H(N){z =H(M)} if M € SNP*
H(M/2)N) = (Az.H(N))H(M) if M ¢ SNP~
H*(1]) =y

HY(M :: 1) = H*(){z=yH(M)} =z fresh
HY(1Ql") = H*(I"N{z=HY(])} =z fresh
HY((M/z)1) HY(){z = H(M)} if M € SN&*
HY(M/x)l) = (Aa.HY(D) H(M) if M ¢ SNP~

Remark 41 For all y and [, y € FV(HY(]))

Lemma 42

1. If M — pming N is unsafe then H(M) —5 H(N)
If |l — minp U is unsafe then H(l) —z H/(I')

2. If M — ming N is safe then H(M)—"*5 H(N)
If |l — minp U is safe then H'(1)—"*5 H(I')

3 If M —pine N then H(M) = H(N)
If | — inx ' then H(1) = HY(I')

Corollary 43 If HM) € SN° (resp. H'(1) € SN°) then M € SN (resp. | € SNP>).

Proof: Direct application of Theorem 29.

Now notice that H- A = Id, so that we conclude the following:

Corollary 44 (Preservation of Strong Normalisation)
Ift € SN® then A(t) € SNP~.

Notice that the preservation of types can be easily shown:
Remark 45

1. Tyt M Athen Ty H(M) - A

2. fT; Byt l: Athen I'yy : BEyy HY(I) : Aif y is fresh

And now by using the fact that typed A-terms are in SN?, we directly get:

Corollary 46 (Strong Normalisation of typed terms)
1. If T b7 M : A then M € SNB™.

2. IfT;BFrl: A thenl e SN,

26

O

Again, this could also be done with any typing system such that the encodings of typed
terms by H are typable in a typing system of A-calculus that entails strong normalisation.
This is again the case with intersection types: we could add the three typing rules at the
bottom of Figure 5 (as well as three similar rules for lists), and the preservation of typing
by the encoding would provide the strong normalisation of the system. We should expect
this system to characterise SNZ> in X, but this remains to be checked. Also, since the
typing systems of X are in the spirit of sequent calculus, it would be better to replace the
elimination rules of the intersection by a left-introduction of the intersection, probably in
the stoup. This is ongoing work.

4 Simulation in \/

The second technique presented in this section suggests the encoding of a calculus with
explicit substitutions in Church-Klop’s AI-calculus |[K1o80| instead of A-calculus. We refer
the reader to |Sor97, Xi97| for a survey on different techniques based on the A/-calculus
to infer normalisation properties.

On the one hand, Al extends the syntax of A-calculus with a “memory operator”
so that, instead of being thrown away, a term N can be retained and carried along in
a construct [— ,N|. With this operator, those bodies of substitutions are encoded
that would otherwise disappear, as explained above. On the other hand, AI restricts A-
abstractions to variables that have at least one free occurrence, so that g-reduction never
erases its argument.

Doing so requires the encoding in Al to be non-deterministic, i.e. we define a relation
‘H between the calculus and AI, and the reason for this is that, since the reductions in
Al are non-erasing reductions, we need to add this memory operator at random places in
the encoding, using such a rule:

MHT

— _Uel
M H [T, U]

For instance, Ax.x H Az.[z,z] but also Ax.x H [A\z.z, A\z.z], so that both A\z.[z,z]| and
[Az.x, \z.z] (and also A\z.z) are encodings of \z.z.

The reduction relation of the explicit substitution calculus is split into two parts Y
and Z that satisfy the following simulation theorem:
—y is strongly simulated by —g »
—z is weakly simulated by — g3~

Now it must be proved that every term M can be encoded into a strongly normalising
term of AI. This depends on the calculus that is being treated, but the following method
generally works:

1. Encode the term M as a strongly normalising A-term ¢, such that no sub-term
is lost, i.e. not using implicit substitutions. For PSN, the original A-term would
do, because it is strongly normalising by hypothesis; for a proof-term of sequent
calculus, ¢ would be a A-term typed in an appropriate typing system, the typing
tree of which is derived from the proof-tree of the sequent (we would get ¢t € SNA
using a theorem stating that typed terms are SNﬂ).

27

2. Using a translation i() from A-calculus to AI, introduced in this section, prove that
i(t) reduces to one of the non-deterministic encodings of M in AI, that is, that there
is a term 7" such that M H T and i(t)—"p. T.

In this section we prove that if a A\-term t is strongly normalising for §-reductions, then
i(t) is weakly normalising in AI. The proof simply consists in simulating an adequate
reduction sequence that starts from ¢ and ends with a normal form, the encoding of which
is a normal form of A/. What makes this simulation work is the fact that the reduction
sequence is provided by a perpetual strategy. Also, weak normalisation implies strong
normalisation in A\ [Ned73|, so that i(t) is strongly normalising, as well as the above
Al-term T
The technique is summarised in Figure 9.

The calculus A AN

te SNﬁLﬂ(ﬂ

/8771-*
H
M T
Y Zx B,
H
Nl Ul
Y Zx B,
N, K Ui
Z* H
H
Nz’—i—j
Z*

Figure 9: The general technique to prove that M & SN

Finally, it remains to prove that the relation Z that is only weakly simulated is now
small enough to be terminating.

As we shall see, this technique works for proving PSN of the explicit substitution
calculus A, of [KL05|. Furthermore, it can be combined with the safeness and minimality
technique which provides proofs of strong normalisation for various sequent calculi that
range from propositional logic to a logic as expressive as the Calculus of Constructions,
and we believe that it can be applied to many other calculi.

4.1 Church-Klop’s Al-calculus

Definition 16
T,U w:=z| \e.T| T U| [T,U]

with the condition that x € FV(T) in Az.T.

28

Lemma 47 (Stability by Substitution) If T,U € A, then T{x = U} € Al.

Proof: By induction on T O
The reduction rules are:

(B) OaT)U — T{z=U)}
(r) [T.V]U —[TU,V]

We denote lists of A\I-terms using vectors, and if T = Ti,...,T,, then U T denotes
ﬁ
UT,... T, and [U, T'| denotes [...[U,T1],...,T,)].

Remark 48 If T —3, U then FV(T) = FV(U) and V{z = T}—" 5, V{z = U}
provided that x € FV (V).

Lemma 49 (Substitution Lemma)
T{z=UHy=V}=T{y=V}{zr =U{y =V}} (with no variable capture)

Proof: By induction on 7. O

4.2 Simulating the perpetual strategy

We may want to use the technique of simulation in A/ with calculi that annotate \-
abstractions with types, and others that do not. Indeed, one of the applications is the
normalisation of systems in type theory (possibly with dependent types), so we also
consider II-types. In order to express the technique in its most general form, we present
it with a mixed syntax as follows.

The annotated?-\-calculus, that we call \’-calculus, uses the following syntax:

M, N, A, B := z| s| Ta®*.B| \e*.M| \e.M| M N

where x ranges over a denumerable set of variables, and s ranges over a set of constants.
The reduction rules are

BH AAM)N — M{x= N}
(B) Ma.M)N — M{x=N}

Fully annotated terms are those terms that have no construct Az.M. The fragment of
fully annotated terms is stable under S'-reductions, so that 3-reductions never apply and
hence SN® = SN? for that fragment.

We define the notion of type-annotation as the smallest transitive, reflexive, context-
closed relation <1 such that \z.M <1 Az?.M.

Notice that for a fully annotated term N, N < P implies N = P.

Lemma 50 If M < M’ and M —pt 3 N then there is a N' such that N < N' and
M —>ﬁt7ﬁ N.

Proof: By induction on M. O

Corollary 51 If M < M" and M’ € SN°"P then M € SN°*P.

Proof: By Theorem 14 (—p: 3 strongly simulates itself through <). O

29

Definition 17 We encode the \’-calculus into A as follows:

i(z) =z

i(Az.t) = Az.i(t) xr € FV(t)
i(Az.t) = \z.[i(t), x] x ¢ FV(t)
iAztt) = [i(Ax.t),i(A)]

i(tu) =i(t) i(u)

i(s) =p

i(Tlz2.B) = g [i(A\x.t),i(A)]

where @ is a dummy variable that does not appear in the term that is encoded.

Lemma 52 For any N -terms t and u,
1. FV(i(t)) = FV(t)
2. i(t){x =i(u)} = i(t{x = u})

Proof: Straightforward induction on ¢. O

Definition 18 The relation G between \’-terms and AI-terms is given by the following
rules:

Vi t;GT; AGT BGU ze€FV(U)
— —— Gvar gll
(x ;)G (zT)) Mz*.B G o MU, T]
/ — . / — gﬁl t/ g T, v ¢ FV(t)
— __gp 'GT AGU x¢ FV(t) t
(et ¢) Giata) 1 8)) (A t) ¢ 1) G ([i(Aat), U] T" (1)) 9w
B,
gc t g T N € nf
sG p [GITN Gweak
tGT e FV(T) tGT AGU x¢€FV(T)
GA y G
et G \o.T Azt G (M. T, U]

Lemma 53
1. Ift e nf andt G T, then T € nf’™.
2. For any N'-term t, t G i(t).

Proof:

1. By induction on the proof tree associated to t G T', one can check that no 8 and
no m-redex is introduced, since rules G3;, GB2, GG, and GB3, are forbidden by the
hypothesis that ¢ is a S-normal form.

30

2. By induction on t:

e Ift =1 t_;, then by induction hypothesis ¢; G i(¢;) for all j and then we can
apply Gvar.

o Ift =zt u t_;, then it suffices to use rules Gf3.

o Ift = N\t u t_;, then it suffices to use rules G3¢;.

e If t = Az.u then by induction hypothesis u G i(u). If x € FV(u), then
i(t) = Az.i(u) and t G i(t) by rule GA. If x ¢ FV(u), then i(t) = Az.[i(u), z],
and thus u G [i(u), z] by rule Gweak and t G i(t) by rule GA.

o If t = Az?u then by induction hypothesis v G i(u) and A G i(A).
If z € FV(u), then i(t) = [Ax.i(u),i(A)] and t G i(t) by rule GA\'. If z ¢ FV (u),
then i(t) = [Az.[i(u), z],i(A)], and thus u G [i(u), z] by rule Gweak and ¢ G i(t)
by rule GAL.

o If t = s, then clearly s G p.

e If t = TIz*.B, then by induction hypothesis A G i(A) and B G i(B). If
v € FV(B) then i(Ilz*.B) = ¢ [M\x.i(B),i(A)] and t G i(t) by rule GII. If
x € FV(B) then i(lz*.B) = p [A2.[i(B),],i(A)], and thus B G [i(B), z] by
rule Gweak and ¢ G i(t) by rule GII.

Definition 19 We define a reduction relation ~» for A\’-terms by the following rules:

t~s t~s t!
— — perp-var ———— perp\
xtjtp; ~xt;t p; Azt~ Azt
t o~ A~ A
perp)\ﬁ perp)\g

Azt~ At Azt~ At

ze FV({)Vt €nf®?

perpf3
Nat)t' t, »t{z =t} 1, '
otz FV(E) ;
perp
Aat) t' 1 ~ Axt)t' &, ?
z € FV({)VH, Acnf? 5
perp
Nt o=t} 1, '
t'~t" x ¢ FV(t) g
perp
M)t~ Attt ?
Aw A zd FV() p
- er
T =L e
A~ A B~ B’
perplly perplly

24 B ~ Iz .B Iz B ~ [z2. B’

31

Remark 54 ~~C—pip
If ¢ is not a $!B-normal form, then there is a A’-term ¢’ such that ¢ ~» ¢’.

Remark 55 Although we do not need it in the rest of the proof, it is worth mentioning
that, at least in the fragment of the untyped A-calculus, the relation ~~ defines a perpetual
strategy w.r.t G-reduction, i.e. if M is not (-strongly normalising and M ~» M’, then
neither is M’ [vRSSX99|.

Theorem 56 — g, strongly simulates ~ through G .
Proof:
perpf31) (Az.t) t’ t_; ~ e =t} t_;

—x € FV(t):
The last rule used to prove u G U must be G3; (possibly followed by several
steps of Gweak), so

U = Izi(t) i(1) i(Tj’)_@]H
— i(t){z=i(t)}i(t;), N

=Lemma 52 (2) i(t{r =1'} t_;), ﬁ]
Then by Lemma 53 (2), t{z =1t} t_; G i(t{x =t'} t;) and by rule Gweak,
He =t} 8 G lilte = ¢} 1), N

— x ¢ FV(t):

It means that ¢’ is a f-normal form and t{z = t'} t_; =t t_; The last rule
used to prove u G U must be GB; or GF, (possibly followed by several steps
of Gweak), so in both cases we have U = [Az.[i(t),z] T" i_(?j_)),]_V}] with ¢ G T"
(using Lemma 53 (2) in the former case where 7" = i(t')). By Lemma 53 (1),
T"is a @, m-normal form. Now U —4 [[i(t){z = T"},T"] |(t—])>,ﬁ] But by
Lemma 52 (1), = ¢ EX_/)(i(t))_)so the above term is [[i(t), 7] i_(?j_)),]_\f)], which

reduces by 7 to [i(t) i(t;), T, N| = [i(t t_;),T’, ﬁ] By Lemma 53 (2) and rule

Gweak, we get ¢ t_; g li(t t_;),T’,].
e g / "
perpfy) (Az.t)t' t; ~ (Ax.t)t" t; with ¢’ ~¢" and x ¢ FV(t).
The last rule used to prove u G U must be G3; or G/, (_R(fsﬂly followed by several
steps of Gweak), so in both cases U = [Az.[i(t), x| T" i(t;), N| with ¢ G T" (using

Lemma 53 (2) in the former case where 7" = i(t')). By induction hypothesis, there
is a term 7" such that 7"—" 5. 7" and t" G T".

Hence, U—"g5, [Az.[i(t), 2] T”i_(?j_):]_\f}]. By application of the rule Gf,
-

(A\x.t) t” t_; G Ax.[i(t),x] T"i(t;), and we use rule Gweak to conclude.

!

=l

perpB'y) (Aett) ' ~ t{z =} 1

32

perpf3’,)

perp3’y)

perp)

— x € FV(t):
The last rule used to prove v G U must be G3*; (possibly followed by several
steps of Gweak), so

U:

B
—Lemma 52 (2)

— —
t

Then by Lemma 53 (2), t{x =t} t; G i(t{x =t} t;) and by rule Gweak,
te =1}) G li(t{r = £}).i(4), N
—x & FV(t):
It means that ¢ and A are S-normal forms and t{z = t'} t_; =t t_; The last
rule used to prove u G U must be GG, or GG, (possibly followed by several
steps of Gweak), so in both cases we have U = [[Az.[i(¢), z], U] T' i(t—j)>,]_V}] with
AGU and t' G T (using Lemma 53 (2) in the former case where U’ = i(A)
and 7" = i(t')). By Lemma 53 (1), U’ and 7" are [, m-normal forms. Now
— - — N
U—, [Aa.[i(t),z] T"i(t;), U, N] —5 [[i(t){z =T}, T i(t)), QN] But
by Lemma 52 (1), x ¢ FV(i(t)) so the above term is [[i(t),7"] i(tj),U’,N)],
— — — =
which reduces by = to [i(t) i(t;),T,U,N|] = |i(tt;),T",U,N]. By
Lemma 53 (2) and rule Gweak, we get ¢ t_; g it t_;),T’, U, ﬁ]
Az 4) U T, ~ (AeAt) 7 1 with ¢/ ~ " and z ¢ FV(t).
The last rule used to prove u G U must be G, or G, (possibly followed by several
steps of Gweak), so in both cases U = [[Az.[i(t),z|, U] T" i(t—j)>, ﬁ] with A G U’ and
t" G T'" (using Lemma 53 (2) in the former case where U’ = i(A) and T" = i(t")).
By induction hypothesis, there is a term 7" such that 7"—*5, T” and " G T".

Hence, U:>+@Jr [[)\x.[i(t),x],U’]ﬂ |(t—J)>,N)] By application of the rule G3%,,
(Azdt) ¢ t; G [\e.[i(t),z],U’] T" i(t;), and we use rule Gweak to conclude.

(Ax?t) ¢ t_; s (A t) ¥ t_; with A~ A" and x ¢ FV (t).
The last rule used to prove u G U must be G3%; or G3%, (possibly followed by several
—

steps of Gweak), so in both cases U = [[Az.[i(t), z], U'] T" i(t;), ﬁ] with A G U’ and

t" G T'" (using Lemma 53 (2) in the former case where U’ = i(A) and T = i(t")).

By induction hypothesis, there is a term U” such that U'—* 5, U” and A" G U".
—

Hence, U:ﬂr@m [[)\x.[i(t),x],U”]l’> i(tj),ﬁ]. By application of the rule G3',,
Az t) ¢ t; G \afi(t),], U"] T"i(t;), and we use rule Gweak to conclude.

M.t~ Azt with t ~ t'.

The last rule used to prove u G U must be G, so U = [A\z.T, ﬁ] with t G T. By
induction hypothesis, there is a term 7" such that T—" 5, 7" and ¢’ G T". Hence,
U—"T g [Ax.T,]_V}] (with x € FV(T")), and we obtain by application of rules GA
and Gweak that Az.t' G [Az.T", ﬁ]

33

perpAj)

perpA})

perp-var)

perpll;)

perplls)

At~ A\pdt with ¢~ 1
The last rule used to prove v G U must be G\, so U = [\a.T, U, N)] with A G U’
and t G T. By induction hypothesis, there is a term 7" such that T—" 5, T"
H
and ¢’ G T'. Hence, U—" 5, [A\x.T",U’, N| (with x € FV(T")), and we obtain by
ﬁ
application of rules GA* and Gweak that A\z?4.¢’ G [A\x.T',U’, N].

ArA b~ et with A~ A
The last rule used to prove v G U must be G\, so U = [\.T, U,]_V}] with A G U’
and t G T. By induction hypothesis, there is a term U” such that U'—*5 . U”
ﬁ
and A’ G U". Hence, U—" 5 [\x.T,U", N] (with z € FV(T")), and we obtain by
H
application of rules GA* and Gweak that A\z?.¢' G [A\x. T, U", N].

2 D~ a b,) with t s ¢

— — — .
The last rule used to prove w G U must be Gvar, so U = [z Q; T U;, N| with
tGT,t; G Q,and p; G U;. By induction hypothesis, there is a term 7" such that

T—" 3, T and t' G T'. As a consequence we get U—"5 . [z @) T [7;, ﬁ] and
. — . — — =
by rules Gvar and Gweak we obtain x ¢; ¢ p; G [x Q; T" U;, N1.

[IzA.B ~ [z .B with A ~ A’

The last rule used to prove v G U must be GII, so U = [p [A\z.T, V], ﬁ] with BG T
and A G V. By induction hypothesis, there is a term V' such that V—75, V" and
A" G V' As a consequence we get U—" 5. [p [\a.T, V'], ﬁ] and by application of
rules GIT and Gweak we obtain Ilz#".B G [p [\2.T, V], N)]

[lz4.B ~ [z4.B' with B ~ B'.

The last rule used to prove v G U must be GII, so U = [p [A\z.T, V], ﬁ] with BG T
and A G V. By induction hypothesis, there is a term 7" such that T—%5 ;. 7" and
B' G T'. As a consequence we get U—" 5 [p [\e.T", V], ﬁ] and by application of
rules GIT and Gweak we obtain Ilz*.B’ G [p [\z.T", V], N)]

Corollary 57 Ift € WN™ and t G T then T € WN*T™.

Proof: By induction in WN™, the induction hypothesis is:
tenf” Vv (3ue~(t),YU,uG U= Uec WN>™).

If t € nf™, then Lemma 53 (1) gives T € nf>™ C WNA™,

If Ju € ~(t),YU,u G U = U € WN?™ then by Theorem 56 we get a specific 7" such
that w G 7" and T—" 4 T'. We can apply the induction hypothesis by taking U = T"
and get 7" € WN?™. But because WN?™ is patriarchal, T € WN?™ as required. O

Corollary 58 i(SN*?) C WN*™

Proof: Notice that SN C SN™ C WN™. Then Lemma 53 (2) gives Vt € SN?? ¢ G i(t),
and thus, by Theorem 56, i(t) € WN?™. O

34

Theorem 59 (Nederpelt [Ned73]) WN*™ C SN*™

Corollary 60 For any X -term t, if t € SN®®, then i(t) € SN°™.
Proof: By Corollary 58 and Theorem 59. O

4.3 Example: \xr

Inspired by proof-nets and linear logic |Gir87|, Alxr is an explicit substitution calculus
introduced in [KLO5| as the first such calculus having the PSN property and full compo-
sition of substitutions. It differs from Ax or A by the use of explicit resource operators:
duplication and erasure, which respectively correspond to contraction and weakening in
a typed framework. Binding a variable that has no occurrence or more than one is ex-
plicitly expressed by the use of these operators. By the use of erasure operators, the set
of free variables is preserved by reduction, which corresponds to the notion of interface
preserving of Interaction Nets |[Laf90|. The rewrite system of Alxr simulates [-reduction,
but the techniques used to prove PSN for Ax and Alxr all fail, so we use the technique of
simulation in A[.

For a full presentation of Alxr, we refer the reader to [KL05|. We only briefly recall
here the syntax and the reduction relation.

The syntax of Alxr is given by the following grammar:

to=x| et |tt|t{x=1t) | Wu(t) | C¥*(¢)

The abstraction Az.t and the substitution ¢(x = wu) bind x in t. The contraction
C¥*(t) binds y and z in ¢, whereas x is free in the terms x, C¥*(t) and W, ().

We say that a term is linear if it satisfies the following: in every sub-term, every
variable has at most one free occurrence, and every binder binds a variable that does have
a free occurrence (and hence only one).

For instance, the terms W,(x) and A\z.zz are not linear. However, the latter can be
represented in the Alxr-calculus by the linear term Ax.C¥*(yz). More generally, every
A-term can be translated to a linear Alxr-term.

We use @, A, 3, 11, . . . to denote finite lists of variables (with no repetition). We use the
notation W, .. (1) for Wy, (... Wi, (1)), and G52 Ghem)) for Cvra (L. o (1)),

For any term t we define a renaming operation Rj o (t) as the result of simultane-
ously substituting y; for every free occurrence x; in t where ¢ € 1...n. Thus for instance
R (O (2(y2))) = Ci (2 (y2)).

We introduce in Figure 10 a congruence =, which enables us to write “Ws(u)”, or
“Cﬁ’n(t) where ® := §”, without ordering the variables in S. Besides, we sometimes do
not specify what the lists A and II are, assuming them to be two disjoint lists of fresh
variables.

The reduction relation of the calculus, denoted —), , is the relation generated by
the reduction rules in Figure 11 modulo the congruence relation in Figure 10. The rules
should be understood in the prospect of applying them to linear terms. Indeed, it can
be shown that if ¢ is linear and ¢ —, t/, then ¢’ is linear and FV(t) = FV(t'). The
fact that linearity is preserved is a essential requirement of the system, so that we can
henceforth consider linear terms only.

A basic property of the reduction relation is the following:

35

Cur(ezv() = Cpr(Cpr@t) itz Fyv

CYA(t) = (1)

CUP(Cr(t) = Cr(CL7(t) ifxty,d &’ #yz

WON0) = W)

tlx=uly=v) = tly=v){e=u) ify¢g¢ FV(u)&ax¢ FV(v)&z#y
Cri(tx=u) = Cl(t{x=u)) frxtwkyz¢FV(u)

(B) (Ax.t) u — t{r=u)

System x

(Abs) (Ay.t){x = u) — Ayt = u)

(Appl) (t v){x = u) — tlr=uyv r e FV(t)
(App2) (t v){z = u) — tu(r=u) x € FV(v)
(Var) x(r = u) — u

(Weakl) W, (t){x = u) — Wryw(t)

(Weak?) Wy(tz=u) — Wy(te =) v Ay
(Contl) Cy*(t)w=u) — Cyll(tly=w)(z = us))

System r

(WAbs) Ax.W,(t) — W,(\z.1) T #y
(W Appl) W, () o s Wy(uo)

(WApp2) u W,(v — W, (uv)

(WSubs) t{x = Wy(u)) — Wy(t{z = u))

(CAbs) C¥*(Ax.t) — \x.C¥*(t)

(CAppl) C¥*(t u) — C%*(t)u y,z € FV(t)
(CApp2) CY%*(t u) — t C¥%*(u) y,z € FV(u)
(CSubs) CY*(tH{x=u)) — ta=C%(u)) y,z€ FV(u)

Figure 11: Reduction rules for Alxr-terms

Theorem 61 (Lengrand [KLO5|) xr is terminating.

Now we can encode \-calculus in Alxr.

36

Definition 20 The encoding of A-terms is defined by induction as follows:

A(x) =z

A(Ax.t) = Ix.A(t) it v € FV(t)

Adz.t) = Ix.W.(A(t)) it v ¢ FV(t)

A(tu) = CP™(RI(A®1)) RE(A(w)) where ® := FV(t) N FV (u)

In [KLO05], the following property has been proved:

Theorem 62 (Simulating (-reduction)
Ift —3 t/, then A(t)—)J'_)\/X, WFV(t)\FV(t’)(A(t,))

Now we prove the PSN property in detail.

Definition 21 The relation H between well-formed Alxr-terms and AI is given by the
following rules:

tHT tHT wHU tHT

N e
tHe et Haad tu H TU FH M, N C

tHT uwHU tHT tHT
tlx=u)yHT{zx=U} CY*(t)HT{y =x}{z =2} W.(t)HT

The relation H enjoys the following properties.

x e FV(T)

Lemma 63 Ift H M, then
1. FV(t) C FV(M)
2. M e\l
3. v ¢ FV(t) and N € X\ impliest H M{x = N}
4. t =1t impliest' H M
5. RL(t) H Ry (M)

Proof: Property (1) is a straightforward induction on the proof tree as well as Prop-
erty (2) which also uses Lemma 47. Properties (3) and (5) are also proved by induction
on the tree, using the substitution lemma that holds in AI. For Property (4):

o If t{x =u)(y =v) H M with y ¢ FV(u), then M = [T{z = U}, T){y = V}, U]
witht HT, uH U and v H V. We can assume

x¢ FV(TY)U...UFV(T,)UFV(V)

so that M = [T, T){x = UHy = V}, U] = [T, Ty = VHz = U{y = V}}, T .
As a consequence t(y = v)(x = u) H M, since by (3) we get u H U{y = V'}.

e The associativity and commutativity of contraction are very similar.

o If W,(W,(t)) H M then M = [[I,T),U] with t H T, y € FV(T) and
z € FV([T, T]). Then W,(W,(t)) H M.

37

Theorem 64 (Simulation in \J)

1. —p, strongly simulates —p through H .
2. — s, weakly simulates —, through H .
Proof:
B) (Az.p) u — p(r = u).
— —
Then T' = [[Ax.P, P|U, U] with p H P and u H U. We then obtain the following
— — — =
reduction sequence T—*; [(Az.P)U, P, U] —p [P{z=U}, P, U|=1T"
Abs) (A\y.p)(z = u) — Ay.p(r = u). Then T = [[\y.P, 1_3)]{33 =U}, ﬁ] with p H P and
- U
uH U. We have T' = [A\y.(P{z =U}), P{x = U}, U].
Appl,App2) Similar to the previous case.
Var) z(x = u) — wu. Then T = [[z,]_3>]{x =U}, (_f] with u H U.
We have T = [U, P{z = U}, U).
Weakl) W,(p){x = u) — Wev () (p)_}
Then T' = [[P, Pl[{x = U}, U] with p H P, w H U, and z € FV(P). We have
S LI I
T = [P{x = U},P{x=U},U]|. Since v ¢ FV(p), then p H P{zx=U} by
Lemma 63 (3), and since z € FV(P), FV(U) C FV(P{x = U}). By Lemma 63 (1)
FV(u) C FV(U) so that FV(u) C FV(P{x = U}) concludes the proof.
Weak2) Wy(p)(z = u) — Wy(p(z = u)).
Then T' = [[P, P[{x = U}, U] with p H P, w H U, and y € FV(P). We have
AL
T =[P{x=U}, P{x =U}, U] and we still have y € FV(P{z = U}).
Contl) C¥*(p){x = u) — Cp"(p(y = Ry (u))(z = Riz(w))).
= —
Then T = [[P{y = z}{z = z}, P{x = U}, U] with p H P and u H U. We
_g
obtain the following equality 7' = [P{y = U}{z = U}, P{z = U}, U] which can be
expressed as
N
T=[Ply=UHz=U"HA=THII =T}, P{z = U}, U]
where U’ = U{l' = A} and U” = U{l' = II}. We obtain RY(u) H U’ and
R (u) H U” by Lemma 63 (5).
Cont2) C*(p)(x = u) — CPF(plr = u)).

Then T = [[P{y = w}{z = w},l_a]{x = U},(_f] with p H P and v H U. We then
ANy
conclude by the following equality 7' = [P{z = U}{y = wi{z = w}, P{lx = U}, U].

Comp) ply = v){x = u) — p{y = v{x = u)) where x € FV (v).

Then T = [[P{y = Q}, P){x = U}, U] with t H P, v H Q, and u H U. We

e —

have T' = [P{z = UH{y = Q{z = U}}y,P{z = U},ﬁ]. Notice that we obtain
t H P{x = U} by Lemma 63 (3).

38

o WAbs, WAppl, WApp2, Cross are straightforward because the condition
x € FV(P) that is checked by W,() is just changed into a side-condition x € FV(Q)
(checked one step later), where x € FV(P) implies x € FV(Q).

Merge) C3*(Wy(p)) —= Ry (p)- .
Then T' = [[P, P{y = w}{z = w}, U] with t H P and y € FV(P). We then have
_

the following equality 7' = [[P{z = w}, P{z = w}|{y = w}, ﬁ] and it suffices to use
Lemma 63 (3).

CAbs) C¥%*(A\x.t) — Ax.CY%*(p).
Then T = [[\z.P, Pl{y = w}{z = w}, U] with ¢ H P.
We have T' = [A\z.(P{y = w}{z = w}), P{y = wly{z = w}, U].

C'Appl, C App2) Similar to the previous case.

Now for the closure under context, we use the fact that if P —j3, P’ then
P{z =U} —p, P{r=U},andifalsox € FV(P) then P{x =U}—"5,. P{x =U"}.
The latter is useful for the closure: if p(ea=t) H @ and t —p t/, then

= [P{x =T}, ﬁ] with p H P, w H U and by induction hypothesis we get T—* 5. T"
such that ¢ H T'. Since z € FV(p), v € FV(P) by Lemma 63 (2), and hence

Q—tpn [Plz=T"},T). =
Corollary 65 Ift HT and T € SN*™, then t € SN
Proof: Application of Corollary 18. O
We can conclude the proof of PSN by stating the following theorem:
Theorem 66 For any \-term u, A(u) H i(u).

Proof: By induction on w:
e 1 H x trivially holds.

o If u = Az.t, then A(t) H i(t) holds by induction hypothesis. Therefore, we obtain
Az A(t) H Ax.i(t) and e W, (A(t)) H A\x.[i(t), x].

o If w = (t uw), then A(t) H i(t) and A(u) H i(u) hold by induction hypothe-
sis and Ri(A(t)) H Ry(i(t)) and RE(A(u)) H Rj(i(u)) by Lemma 63 (5). Since
g(H({0 = T} = i(t) (and the same for i(u)), we can then conclude

Cr (R (A1) Riy(A(w))) Hi(t) i(u).

Corollary 67 (PSN) For any A-term t, if t € SN°, then A(t) € SN

Proof: If t € SN, then i(t) € SN®™ by Corollary 60. As A(t) H i(t) by Theorem 66,

then we conclude A(t) € SN* by Corollary 65.
O

39

Conclusion

In this report we have developed a constructive theory of normalisation and induction
based on an original approach that relies on second-order quantification rather than clas-
sical logic. We have re-established a few normalisation results in this framework, including
the simulation technique and a few variants.

We have introduced two new developments to the simulation technique. The first
one, called the Safeness and Minimality technique, can be applied to any higher-order
rewrite system. The second one concerns more specifically systems that can be related to
A-calculus, and uses Church-Klop’s Al-calculus.

For the two introduced techniques, which can be combined, examples of applications
have been given with the calculi Ax [BR95], A [Her95], and Alxr [KLO5].

Normalisation results have been inferred from the techniques, among which the prop-
erty called Preservation of Strong Normalisation. The latter was known for Ax and X, but
the Safeness and Minimality technique shortens the existing proofs for A [DU03, Kik04].
The PSN property in Alxr is a new result, which makes it the first calculus of explicit
substitutions with full composition that satisfies it (together with a calculus in [Pol04]
that has been developed simultaneously and independently).

We should check that Nederpelt’s result that weak normalisation in Al implies strong
normalisation can be proved constructively, so that the whole technique of simulation in
Al is constructive.

Also, the examples for the safeness and minimality technique rely on a few exter-
nal results such as the termination of the lexicographic path ordering [K1.80|, which has
been proven in a framework with traditional definitions of normalisation. The latter are
classically equivalent to ours, so that we can classically use them.

However, although the Safeness and Minimality technique is classical, it would be
interesting to prove the LPO technique in our constructive framework, which is left as
future work.

Acknowledgements

The author is grateful to Delia Kesner, Roy Dyckhoff, Alexandre Miquel and Ralph
Matthes for their valuable comments and remarks.

References

[Bar84] H. P. Barendregt. The Lambda-Calculus, its syntax and semantics. Studies
in Logic and the Foundation of Mathematics. Elsevier Science Publishers B.
V. (North-Holland), Amsterdam, 1984. Second edition.

[BBLRD96| Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. Av, a calculus
of explicit substitutions which preserves strong normalisation. Journal of
Functional Programming, 6(5):699-722, Sept. 1996.

[BNOg| F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University
Press, 1998.

40

[BRY5]

ICD78]

|Coq94|

[DU03]

|Gen35)|

Girg7]
|Her95|
[TMO3]

[Kha90]

[Kik04]

[KL80)]

[KLO5]

[K1080]

[Lafoo]

[LLD*04]

R. Bloo and K. H. Rose. Preservation of strong normalisation in named
lambda calculi with explicit substitution and garbage collection. In CSN 95

Computer Science in the Netherlands, pages 62 72, Koninklijke Jaarbeurs,
Utrecht, Nov. 1995.

M. Coppo and M. Dezani-Ciancaglini. A new type assignment for lambda-
terms. Archive f. math. Logic u. Grundlagenforschung, 19:139-156, 1978.

T. Coquand. An analysis of Ramsey’s theorem. Information and Computa-
tion, 110(2):297 304, 1994.

R. Dyckhoff and C. Urban. Strong normalization of Herbelin’s explicit sub-
stitution calculus with substitution propagation. Journal of Logic and Com-
putation, 13(5):689 706, 2003.

G. Gentzen. Investigations into logical deduction. In Gentzen collected works,
pages 68-131. Ed M. E. Szabo, North Holland, (1969), 1935.

J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1-101, 1987.
H. Herbelin. Séquents qu’on calcule. PhD thesis, Université Paris 7, 1995.

F. Joachimski and R. Matthes. Short proofs of normalization for the simply-
typed lambda-calculus, permutative conversions and Godel’s T . Archive for
Mathematical Logic, 42(1):59 87, 2003.

7. Khasidashvili. Expression reduction systems. In Proceedings of IN Vekua
Institute of Applied Mathematics, volume 36, Thilisi, 1990.

K. Kikuchi. A direct proof of strong normalization for an extended Herbelin’s
calculus. In Y. Kameyama and P. J. Stuckey, editors, Proceedings of
the 7th International Symposium on Functional and Logic Programming
(FLOPS’0/), volume 2998 of Lecture Notes in Computer Science, pages 244
259. Springer-Verlag, Apr. 2004.

S. Kamin and J.-J. Lévy. Attempts for generalizing the recursive path or-
derings. Handwritten paper, University of Illinois, 1980.

D. Kesner and S. Lengrand. Extending the explicit substitution paradigm.
In J. Giesl, editor, 16th International Conference on Rewriting Techniques
and Applications, volume 3467 of Lecture Notes in Computer Science, pages
407 422. Springer-Verlag, Apr. 2005.

J.-W. Klop. Combinatory Reduction Systems, volume 127 of Mathematical
Centre Tracts. CWI, Amsterdam, 1980. PhD Thesis.

Y. Lafont. Interaction nets. In 17th Annual ACM Symposium on Principles
of Programming Languages (POPL), pages 95 108. ACM, 1990.

S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini, and S. van
Bakel. Intersection types for explicit substitutions. Information and Com-
putation, 189(1):17-42, 2004.

41

[Ned73]

[Nip91]

[Pol04]

[Sor97]

| Ter03|

[VRSSX99|

[Xi97]

[Zuc74]

R. Nederpelt. Strong Normalization in a Typed Lambda Calculus with Lambda
Structured Types. PhD thesis, Eindhoven University of Technology, 1973.

T. Nipkow. Higher-order critical pairs. In 6th Annual IEEE Symposium on
Logic in Computer Science (LICS), pages 342 349. IEEE Computer Society
Press, July 1991.

E. Polonovski. Substitutions explicites, logique et normalisation. Thése de
doctorat, Université Paris 7, 2004.

M. H. Sorensen. Strong normalization from weak normalization in typed
lambda-calculi. landC, 37:35 71, 1997.

Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 2003.

F. van Raamsdonk, P. Severi, M. H. B. Sgrensen, and H. Xi. Perpetual reduc-
tions in A-calculus. Information and Computation, 149(2):173-225, 15 Mar.
1999.

H. Xi. Weak and strong beta normalisations in typed lambda-calculi. In
P. de Groote, editor, Proceedings of the 3th International Conference on
Typed Lambda Calculus and Applications, volume 1210 of Lecture Notes in
Computer Science, pages 390 404. Springer-Verlag, Apr. 1997.

J. Zucker. Correspondence between cut-elimination and normalization. An-
nals of Mathematical Logic, 7:1 156, 1974.

42

