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IntrodutionThe �rst part of this report was originally aimed at de�ning oherent terminology andnotations about redution relations and their normalisation. The de�nition of the notionsof normalisation are inspired by a thread reated by René Vestergaard on the TYPESmailing-list, gathering and omparing the various de�nitions. Our �rst purpose here isrede�ning and re-establishing a theory of normalisation that does not rely on lassiallogi and double negation.Negation usually lies in the very de�nition of strong normalisation already, when it isexpressed as �there is no in�nite redution sequene�. The most striking example is theuse of the de�nition in order to prove that a redution relation is strongly normalising. Itusually starts with �suppose an in�nite redution sequene� and ends with a ontradition.We believe that the theory of normalisation is not spei�ally lassial, but the habit ofusing lassial logi has been taken beause of onveniene. Here, we show a theory ofnormalisation that is just as onvenient but onstrutive.In this theory, the indution priniple is no longer a property of strongly normalis-ing relations, but is its very de�nition. In other words, instead of basing the notion ofstrong normalisation on the �niteness of redution sequenes, we base it on the notionon indution: by de�nition, a relation is strongly normalising if it satis�es the indutionpriniple. The latter should hold for every prediate, so the notion of normqlisqtion isbased on seond-order quanti�ation rather than double-negation.We express several indution priniples in that setting, then we re-establish some tra-ditional results, espeially some tehniques to prove strong normalisation. We onstru-tively prove the simulation tehnique and a few re�nements, as well as the terminationof the lexiographi redutions and the multi-set redutions. A onstrutive proof of thelatter has already been given by Wilfried Buhholz and is a speial ase of Coquand'sonstrutive treatment [Coq94℄ of Ramsey theory.The seond part of this report presents two new tehniques for proving strong nor-malisation. The �rst one is fundamentally lassial but applies to any rewrite system,whereas the seond one might hold in intuitionisti logi and applies more spei�ally toaluli that have some onnexion with λ-alulus. When applying the tehniques, a majorpart of the proofs is atually independent from the alulus to whih they are applied.As an example, we show how the former tehnique an be used to prove the nor-malisation of the expliit substitution alulus λx [BR95℄, whih yields a short proof ofPreservation of Strong Normalisation (PSN). Sine the tehnique is generi, we also provethose properties for the expliit substitution alulus λ [Her95℄, and the proof is shorterthan the existing ones in [DU03℄ and [Kik04℄. In both aluli the tehnique also allows usto easily derive the strong normalisation of typed terms from that of typed λ-terms. Un-fortunately, sine our tehnique is fundamentally lassial, it annot draw advantage of theonstrutive proofs of strong normalisation suh as the one in [JM03℄ for the simply-typed
λ-alulus.We also apply the latter tehnique to the PSN property of the expliit substitutionalulus λlxr [KL05℄, a alulus with a full omposition of substitutions, for whih thestandard tehniques all failed. This is a new result.The two tehniques an be ombined in a fruitful way, for instane for proving ut-elimination in various powerful sequent aluli, inluding some type theories suh as thesystems of Barendregt's Cube expressed in sequent alulus.2



1 A onstrutive theory of normalisation1.1 RelationsWe start by establishing some notations about relations and sets.De�nition 1 (Relations) We denote the omposition of relations by · , the identityrelation by Id, and the inverse relation by −1, all de�ned below:Let R : A −→ B and R′ : B −→ C.
• Composition
R · R′ : A −→ C is de�ned as follows: given M ∈ A and N ∈ C,
M(R · R′)N if there exists P ∈ B suh that MRP and PR′N

• IdentityId : A −→ A is de�ned as follows:given M ∈ A and N ∈ A, M IdN if M = N(Note that for higher-order rewrite systems, the above notion of equality is α-onversion)
• Inverse
R−1 : B −→ A is de�ned as follows:given M ∈ B and N ∈ A, MR−1N if NRMIf D ⊆ A, we write R(D) for {M ∈ B| ∃N ∈ D, NRM}, or equivalently

⋃

N∈D{M ∈ B| NRM}. When D is the singleton {M}, we write R(M) for R({M}).Now when A = B we de�ne the relation indued by R through R′, written R′[R], as
R′−1 · R · R′ : C −→ C.We say that a relation R : A −→ B is total if R−1(B) = A.All those notions and notations an be used in the partiular ase when R is a funtion,that is, if ∀M ∈ A, R(M) is of the form {N} (whih we simply write R(M) = N).Remark 1 Notie that omposition is assoiative, and identity relations are neutral forthe omposition operation.Computation in a alulus is desribed by the notion of redution relation, de�ned asfollows.De�nition 2 (Redution relation) A redution relation on A is a relation from A to
A (i.e. a subset of A×A), whih we often write as →.Given a redution relation → on A, we de�ne the set of →-reduible forms (or justreduible forms when the relation is lear) as rf→ = {M ∈ A| ∃N ∈→(M)}. We de�nethe set of normal forms as nf→ = {M ∈ A| →(M) = ∅}.Given a redution relation → on A, we de�ne →n by indution on the natural number
n as follows:
→0= Id
→n+1= → ·→n(= →n · →)
→+ denotes the transitive losure of → (formally, →+=

⋃

n≥1 →
n).

→∗ denotes the transitive and re�exive losure of → (formally, →∗=
⋃

n≥0 →
n).

↔∗ denotes the transitive, re�exive and symmetri losure of →.3



De�nition 3 (Finitely branhing relations) A redution relation → on A is �nitelybranhing if ∀M ∈ A, →(M) is �nite.De�nition 4 Given a redution relation→ on A, we say that a subset T of A is→-stable(or stable under →) if →(T ) ⊆ T .1.2 Normalisation and indutionProving a universally quanti�ed property by indution onsists of verifying that the setof elements having the property is stable, in some sense similar to -yet more subtle than-the one above. Leading to di�erent indution priniples, we de�ne two suh notions ofstability property: being patriarhal and being paternal.De�nition 5 Given a redution relation → on A, we say that
• a subset T of A is →-patriarhal (or just patriarhal when the relation is lear) if
∀N ∈ A, →(N) ⊆ T ⇒ N ∈ T .

• a subset T of A is →-paternal (or just paternal when the relation is lear) if itontains nf→ and is stable under →−1.
• a prediate P on A is patriarhal (resp. paternal) if {M ∈ A| P (M)} is patriarhal(resp. paternal).Lemma 2 Suppose that for any N in A, N ∈ rf→ or N ∈ nf→ and suppose T ⊆ A.If T is paternal, then it is patriarhal.Proof: In order to prove ∀N ∈ A, → (N) ⊆ T ⇒ N ∈ T , a ase analysis is needed:either N ∈ rf→ or N ∈ nf→. In both ases N ∈ T beause T is paternal. ✷Remark 3 Notie that we an obtain from lassial logi the hypothesis for all N in

A, N ∈ rf→ or N ∈ nf→, beause it is an instane of the Law of Exluded Middle. Inintuitionisti logi, assuming that amounts to saying that being reduible is deidable,whih is very often the ase.We would not require this hypothesis if we de�ned that T is paternal whenever
∀N ∈ A, N ∈ T ∨ (N ∈ rf→ ∧ ( → (N) ∩ T = ∅)). This is lassially equivalent tothe de�nition above, but this de�nition also has some disadvantages as we shall see later.Typially, if we want to prove that a prediate holds on some set, we atually provethat it is patriarhal or paternal, depending on the indution priniple we use.Hene, we de�ne normalisation so that normalising elements are those aptured by anindution priniple, whih should hold for every prediate satisfying the orrespondingstability property. We thus get two notions of normalisation: the strongly (resp. weakly)normalising elements are those in every patriarhal (resp. paternal) set.De�nition 6 (Normalising elements) Given a redution relation → on A:

• The set of →-strongly normalising elements isSN→ =
⋂

T is patriarhalT4



• The set of →-weakly normalising elements isWN→ =
⋂

T is paternalTRemark 4 Interestingly enough, WN→ an also be aptured by an indutive de�nition:WN→ =
⋃

n

WN→
nwhere WN→

n is de�ned by indution on the natural number n as follows:WN→
0 = nf→WN→
n+1 = {M ∈ A| ∃n′ ≤ n, M ∈→−1(WN→

n′ )}With the alternative de�nition of paternal suggested in Remark 3, the inlusionWN→ ⊆
⋃

nWN→
n would require the assumption that being reduible by → is deidable.We therefore preferred the �rst de�nition beause we an then extrat from a term M inWN→ a natural number n suh that M ∈ WN→

n , without the hypothesis of deidability.Suh a haraterisation gives us the possibility to prove that all weakly normalisingelements satisfy some property by indution on n. On the other hand, trying to do sowith strong normalisation leads to a di�erent notion, as we shall see below. Hene, welak for SN→ an indution priniple based on natural numbers, whih is the reason whywe built-in a spei� indution priniple in the de�nition of SN→.De�nition 7 The set of →-bounded elements is de�ned asBN→ =
⋃

n

BN→
nwhere BN→

n is de�ned by indution on the natural number n as follows:BN→
0 = nf→BN→
n+1 = {M ∈ A| ∃n′ ≤ n, →(M) ⊆ BN→

n′}But we have the following fat:Remark 5 For some redution relations →, SN→ 6= BN→. For instane, in the followingrelation, M ∈ SN→ but M 6∈ BN→.
M
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. . .
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. . .

. . . Mi,i . . .However, suppose that → is �nitely branhing. Then BN→ is patriarhal.As a onsequene, BN→ = SN→ (the ounter-example ould not be �nitely branhing).Proof: Suppose →(M) ⊆ BN→. Beause → is �nitely branhing, there exists a naturalnumber n suh that →(M) ⊆ BN→
n . Clearly, M ∈ BN→

n+1 ⊆ BN→. ✷5



Remark 6 As a trivial example, all the natural numbers are >-bounded. Indeed, anynatural number n is in BN>
n , whih an be proved by indution.A anonial way of proving a statement ∀M ∈ BN→, P (M) is to prove by indutionon the natural number n that ∀M ∈ BN→

n , P (M). Although we an exhibit no suhnatural number on whih a statement ∀M ∈ SN→, P (M) an be proved by indution, thefollowing indution priniples hold by de�nition of normalisation:Remark 7 Given a prediate P on A,1. Suppose P is patriarhal(that is, ∀M ∈ A, (∀N ∈→(M), P (N)) ⇒ P (M)).Then ∀M ∈ SN→, P (M).2. Suppose P is paternal(that is, ∀M ∈ A, (M ∈ nf→ ∨ ∃N ∈→(M), P (N)) ⇒ P (M)).Then ∀M ∈ WN→, P (M).When we use this remark to prove ∀M ∈ SN→, P (M) (resp. ∀M ∈ WN→, P (M)), we saythat we prove it by raw indution in SN→ (resp. in WN→).De�nition 8 (Strongly normalising relations) Given a redution relation → on Aand a subset T ⊆ A, we say that the redution relation is strongly normalising or ter-minating on T if T ⊆ SN→. If we do not speify T , it means that we take T = A. wemeanRemark 81. If n < n′ then BN→
n ⊆ BN→

n′ ⊆ BN→. In partiular, nf→ ⊆ BN→
n ⊆ BN→.2. BN→ ⊆ SN→ and BN→ ⊆ WN→.Hene, all natural numbers are in SN> and WN>.3. If being reduible is deidable (or if we work in lassial logi), then SN→ ⊆ WN→.Proof:1. By de�nition.2. Both fats an be proved for all BN→

n by indution on n.3. This omes from Remark 2 and thus requires either lassial logi or the partiularinstane of the Law of Exluded Middle stating that for all N ,
Nrf→ ∨ N ∈ nf→

✷
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Lemma 91. SN→ is patriarhal, WN→ is paternal.2. If M ∈ BN→ and → (M) ⊆ BN→.If M ∈ SN→ then → (M) ⊆ SN→.If M ∈ WN→ then either M ∈ nf→ or M ∈→−1(WN→)(whih implies M ∈ rf→ ⇒ M ∈→−1(WN→)).Proof:1. For the �rst statement, let M ∈ A suh that →(M) ⊆ SN→ and let T be patriarhal.We want to prove that M ∈ T . It su�es to prove that →(M) ⊆ T . This is thease, beause →(M) ⊆ SN→ ⊆ T .For the seond statement, �rst notie that nf→ ⊆ WN→. Now let M, N ∈ A suhthat M → N and N ∈ WN→, and let T be paternal. We want to prove that M ∈ T .This is the ase beause N ∈ T and T is paternal.2. The �rst statement is straightforward.For the seond, we show that T = {P ∈ A| →(P ) ⊆ SN→} is patriarhal:Let P ∈ A suh that →(P ) ⊆ T , that is, ∀R ∈→(P ), →(R) ⊆ SN→.Beause SN→ is patriarhal, ∀R ∈→(P ), R ∈ SN→.Hene, →(P ) ⊆ SN→, that is, P ∈ T as required.Now by de�nition of SN→, we get M ∈ T .For the third statement, we prove that T = nf→∪ →−1(WN→) is paternal:Clearly, it su�es to prove that it is stable under →−1. Let P, Q ∈ A suh that
P → Q and Q ∈ T . If Q ∈ nf→ ⊆ WN→, then P ∈→−1 (WN→) ⊆ T . If
Q ∈→−1 (WN→), then, beause WN→ is paternal, we get Q ∈ WN→, so that
P ∈→−1(WN→) ⊆ T as required.Now by de�nition of M ∈ WN→, we get M ∈ T .

✷Notie that this lemma gives the well-known haraterisation of SN→:
M ∈ SN→ if and only if ∀N ∈→(M), N ∈ SN→.Now we re�ne the indution priniple immediately ontained in the de�nition of nor-malisation by relaxing the requirement that the prediate should be patriarhal or pater-nal:Theorem 10 (Indution priniple) Given a prediate P on A,1. Suppose ∀M ∈ SN→, (∀N ∈→(M), P (N)) ⇒ P (M).Then ∀M ∈ SN→, P (M).2. Suppose ∀M ∈ WN→, (M ∈ nf→ ∨ ∃N ∈→(M), P (N)) ⇒ P (M).Then ∀M ∈ WN→, P (M).When we use this theorem to prove a statement P (M) for all M in SN→ (resp. WN→),we just add (∀N ∈→(M), P (N)) (resp. M ∈ nf→ ∨ ∃N ∈→(M), P (N)) to the assump-tions, whih we all the indution hypothesis.We say that we prove the statement by indution in SN→ (resp. in WN→).7



Proof:1. We prove that T = {M ∈ A| M ∈ SN→ ⇒ P (M)} is patriarhal.Let N ∈ A suh that →(N) ⊆ T . We want to prove that N ∈ T :Suppose that N ∈ SN→. By Lemma 9 we get that ∀R ∈→ (N), R ∈ SN→. Byde�nition of T we then get ∀R ∈→(N), P (R). From the main hypothesis we get
P (N). Hene, we have shown N ∈ T .Now by de�nition of M ∈ SN→, we get M ∈ T , whih an be simpli�ed as P (M)as required.2. We prove that T = {M ∈ A| M ∈ WN→ ∧ P (M)} is paternal.Let N ∈ nf→ ⊆ WN→. By the main hypothesis we get P (N).Now let N ∈→−1(T ), that is, there is R ∈ T suh that N → R.We want to prove that N ∈ T :By de�nition of T , we have R ∈ WN→, so N ∈ WN→ (beause WN→ is paternal).We also have P (R), so we an apply the main hypothesis to get P (N). Hene, wehave shown N ∈ T .Now by de�nition of M ∈ WN→, we get M ∈ T , whih an be simpli�ed as P (M)as required.

✷As a �rst appliation of the indution priniple, we prove the following results:Remark 11 M ∈ SN→ if and only if there is no in�nite redution sequene starting from
R (lassially, with the axiom of hoie).Proof:

• only if : Consider the prediate P (M) �having no in�nite redution sequene startingfrom M�. We prove it by indution in SN→. If M starts an in�nite redutionsequene, then there is a N ∈→(M) that also starts an in�nite redution sequene,whih ontradits the indution hypothesis.
• if : Suppose M 6∈ SN→. There is a patriarhal set T in whih M is not. Hene,there is a N ∈→(M) that is not in T , and we re-iterate on it, reating an in�niteredution sequene. This uses the axiom of hoie.

✷Remark 121. If →⊆→′, then nf→ ⊇ nf→′, WN→ ⊇ WN→′, SN→ ⊇ SN→′ ,and for all n, BN→
n ⊇ BN→′

n .2. nf→ = nf→+ , WN→ = WN→+, SN→ = SN→+ , and for all n, BN→+

n = BN→
n .Proof:1. By expanding the de�nitions. 8



2. For eah statement, the right-to-left inlusion is a orollary of point 1.For the �rst statement, it remains to prove that nf→ ⊆ nf→+.Let M ∈ nf→. By de�nition, →(M) = ∅, so learly →+(M) = ∅ as well.For the seond statement, it remains to prove that WN→ ⊆ WN→+ whih we do byindution in WN→:Assume M ∈ WN→ and the indution hypothesis that either M ∈ nf→ or there is
N ∈→(M) suh that N ∈ WN→+. In the former ase, we have M ∈ nf→ = nf→+and nf→+

⊆ WN→+ . In the latter ase, we have N ∈→+(M). Beause of Lemma 9,WN→+ is stable by WN→+−1 , and hene M ∈ WN→+.For the third statement, it remains to prove that SN→ ⊆ SN→+. We prove thestronger statement that ∀M ∈ SN→, →∗(M) ⊆ SN→+ by indution in SN→: assume
M ∈ SN→ and the indution hypothesis ∀N ∈→ (M), →∗ (N) ⊆ SN→+. Clearly,
→+ (M) ⊆ SN→+ . Beause of Lemma 9, SN→+ is →+-patriarhal, so M ∈ SN→+,and hene →∗(M) ⊆ SN→+.The statement BN→

n ⊆ BN→+

n an easily be proved by indution on n.
✷Notie that this result enables us to use a stronger indution priniple: in order to prove

∀M ∈ SN→, P (M), it now su�es to prove
∀M ∈ SN→, (∀N ∈→+(M), P (N)) ⇒ P (M)This indution priniple is alled the transitive indution in SN→.Lemma 13 (Strong normalisation of disjoint union) Suppose that (Ai)i∈I is a fam-ily of sets on some index set I, eah being equipped with a redution relation →i.Suppose that they are pairwise disjoint (∀i, j ∈ I2, i 6= j ⇒ Ai ∩Aj = ∅).Consider the redution relation →=

⋃

i∈I →i on ⋃

i∈I Ai.We have ⋃

i∈I SN→i ⊆ SN→.Proof: It su�es to prove that for all j ∈ I, SN→j ⊆ SN→, whih we do by indution inSN→j . Assume M ∈ SN→j and assume the indution hypothesis →j (M) ⊆ SN→.We must prove M ∈ SN→, so it su�es to prove that for all N suh that M → N wehave N ∈ SN→.By de�nition of the disjoint union, all suh N are in →j (M) so we an apply theindution hypothesis. ✷1.3 Termination by simulation & lexiographi terminationNow that we have established an indution priniple on strongly normalising elements,the question arises of how we an prove strong normalisation. In this subsetion we re-establish in our framework the well-known tehnique of simulation, whih an be foundfor instane in [BN98℄. The basi tehnique to prove that a redution relation on the set Aterminates onsists in mapping the elements of A to elements of a set B equipped with itsown redution relation known to be terminating, and proving that the redution in A anbe simulated by that of B. The mapping is sometimes alled the measure funtion or theweight funtion. We generalise here the tehnique by replaing the weight funtion by a9



relation between A and B. Oddly enough, we were unable to �nd this easy generalisationin the literature. But the main point here is that the simulation tehnique is the typialexample where the proof usually starts with �suppose an in�nite redution sequene�and ends with a ontradition. We show how the use of lassial logi is ompletelyunneessary, provided that we use a onstrutive de�nition of SN suh as ours.De�nition 9 (Strong and Weak Simulation)Let R be a relation between two sets A and B, equipped with the redution relations →Aand →B respetively.
• →B strongly simulates →A through R if (R−1 · →A) ⊆ (→+

B · R−1).In other words, for all M, M ′ ∈ A and for all N ∈ B, if MRN and M →A M ′ thenthere is N ′ ∈ B suh that M ′RN ′ and N →+
B N ′.Notie that when R is a funtion, this implies R[→A] ⊆→+

B .
• →B weakly simulates →A through R if (R−1 · →A) ⊆ (→∗

B · R−1).In other words, for all M, M ′ ∈ A and for all N ∈ B, if MRN and M →A M ′ thenthere is N ′ ∈ B suh that M ′RN ′ and N →∗
B N ′.Notie that when R is a funtion, this implies R[→A] ⊆→∗

B.Theorem 14 (Strong normalisation by strong simulation) Let R be a relation be-tween A and B, equipped with the redution relations →A and →B.If →B strongly simulates →A through R, then R−1(SN→B) ⊆ SN→A.Proof: R−1(SN→B) ⊆ SN→A an be reformulated as
∀N ∈ SN→B , ∀M ∈ A, MRN ⇒ M ∈ SN→Awhih we prove by transitive indution in SN→B . Assume N ∈ SN→B and assume the in-dution hypothesis ∀N ′ ∈→+

B (N), ∀M ′ ∈ A, M ′RN ′ ⇒ M ′ ∈ SN→A. Now let
M ∈ A suh that MRN . We want to prove that M ∈ SN→A. It su�es to prove that
∀M ′ ∈→(M), M ′ ∈ SN→A . Let M ′ be suh that M →A M ′. The simulation hypothesisprovides N ′ ∈→+

B (N) suh that M ′RN ′. We apply the indution hypothesis on N ′, M ′and get M ′ ∈ SN→A as required. ✷The simulation tehnique an be improved by another standard method. It onsists ofsplitting the redution relation into two parts, then proving that the �rst part is stronglysimulated by a �rst auxiliary terminating relation, and then proving that the seondpart is weakly simulated by it and strongly simulated by a seond auxiliary terminatingrelation.In some sense, the two auxiliary terminating relations at as measures that dereaselexiographially.We express this method in our onstrutive framework.Lemma 15 Given two redution relations →, →′, suppose that SN→ is stable under →′.Then SN→∪→′

= SN→∗·→′

∩ SN→ 10



Proof: The left-to-right inlusion is an appliation of Theorem 14: → ∪ →′ stronglysimulates both →∗ · →′ and → through Id.Now we prove the right-to-left inlusion. We �rst prove the following lemma:
∀M ∈ SN→, (→∗ · →′)(M) ⊆ SN→∪→′

⇒ M ∈ SN→∪→′We do this by indution in SN→, so not only assume (→∗ · →′)(M) ⊆ SN→∪→′, but alsoassume the indution hypothesis:
∀N ∈→(M), (→∗ · →′)(N) ⊆ SN→∪→′

⇒ N ∈ SN→∪→′.We want to prove that M ∈ SN→∪→′, so it su�es to prove that both
∀N ∈→′ (M), N ∈ SN→∪→′ and ∀N ∈→ (M), N ∈ SN→∪→′. The former ase is apartiular ase of the �rst hypothesis. The latter ase would be provided by the seondhypothesis (the indution hypothesis) if only we ould prove that (→∗ ·→′)(N) ⊆ SN→∪→′.But this is true beause (→∗ ·→′)(N) ⊆ (→∗ ·→′)(M) and the �rst hypothesis reapplies.Now we prove

∀M ∈ SN→∗·→′

, M ∈ SN→ ⇒ M ∈ SN→∪→′We do this by indution in SN→∗·→′, so not only assume M ∈ SN→, but also assume theindution hypothesis ∀N ∈ (→∗ · →′)(M), N ∈ SN→ ⇒ N ∈ SN→∪→′.Now we an ombine those two hypotheses, beause we know that SN→ is stable under
→′: sine M ∈ SN→, we have (→∗ ·→′)(M) ⊆ SN→, so that the indution hypothesis anbe simpli�ed in ∀N ∈ (→∗ · →′)(M), N ∈ SN→∪→′.This gives us exatly the onditions to apply the above lemma to M . ✷Corollary 16 (Lexiographi termination)Let A1, . . . ,An be sets, respetively equipped with the redution relations →A1

, . . . ,→An
.For 1 ≤ i ≤ n, let →i be the redution relation on A1 × · · · × An de�ned as follows:

(M1, . . . , Mn) →i (N1, . . . , Nn)if Mi →Ai
Ni and for all 1 ≤ j < i, Mj = Nj and for all i < j ≤ n, Nj ∈ SN→AjWe de�ne the lexiographi redution →lex as →1 ∪ . . .∪ →n. We then have:SN→A1 × · · · × SN→An ⊆ SN→lexIn partiular, if →Ai

is terminating on Ai for all 1 ≤ i ≤ n, then →lex is terminating on
A1 × · · · × An.Proof: By indution on n: for n = 1, we onlude from →A1

=→1.Then notie that →An+1
strongly simulates →n+1 through the (n+1)th projetion. Hene,by Theorem 14, if Nn+1 ∈ SN→An+1 then (N1, . . . , Nn+1) ∈ SN→n+1, whih we an alsoformulate as A1 × · · · × An × SN→An+1 ⊆ SN→n+1.A �rst onsequene of this is SN→A1 × · · ·× SN→An+1 ⊆ SN→n+1 (1). A seond one is thatSN→n+1 is stable under →1 ∪ . . .∪ →n (2). Now notie that →1 ∪ . . .∪ →n strongly sim-ulates →∗

n+1 · (→1 ∪ . . .∪ →n) through the projetion that drops the (n+1)th omponent.We an thus apply Theorem 14 to get SN→1∪...∪→n × An+1 ⊆ SN→∗
n+1

·(→1∪...∪→n), whih,ombined with the indution hypothesis, gives SN→A1×· · ·×SN→An+1 ⊆ SN→∗
n+1·(→1∪...∪→n)(3). From (1), (2), and (3) we an now onlude by using Lemma 15. ✷11



Corollary 17 Let A be a set equipped with a redution relation →.For eah natural number n, let →lexn be the lexiographi redution on An.Consider the redution relation →lex= ⋃

n →lexn on the disjoint union ⋃

n A
n.

⋃

n

(SN→)n ⊆ SN→lexProof: It su�es to ombine Corollary 16 with Lemma 13. ✷Corollary 18 Let →A and →′
A be two redution relations on A, and →B be a redutionrelation on B. Suppose

• →′
A is strongly simulated by →B through R

• →A is weakly simulated by →B through R

• SN→A = AThen R−1(SN→B) ⊆ SN→A∪→′
A.(In other words, if MRN and N ∈ SN→B then M ∈ SN→A∪→′

A.)Proof: Clearly, the redution relation →∗
A · →′

A is strongly simulated by →B through
R, so that by Theorem 14 we get R−1(SN→B) ⊆ SN→∗

A
·→′

A.But SN→∗
A
·→′

A = SN→∗
A
·→′

A ∩ SN→A = SN→A∪→′
A, by the Lemma 15 (sine SN→A = A isobviously stable by →′

A). ✷The intuitive idea behind this orollary is that after a ertain number of →A-steps and
→′

A-steps, the only redutions in A that an take plae are those that no longer modifythe enoding in B, that is, →A-steps. Then it su�es to show that →A terminate, so thatno in�nite redution sequene an start from M , as illustrated in Figure 1.1.4 Multi-set terminationNow we de�ne the notions of multi-sets their redutions. We onstrutively prove theirtermination. A lassial proof of the result an be found in [Ter03℄.De�nition 10 (Multi-Sets) Given a set A, a multi-set on A is a total funtion from Ato the natural numbers suh that only a �nite subset of elements are not mapped to 0.Notie that for two suh multi-sets f and g, the funtion f + g mapping any element
M of A to f(M) + g(M) is still a multi-set on A.We de�ne the multi-set {{N1, . . . , Nn}} as f1 + · · · + fn, where for all 1 ≤ i ≤ n, fimaps Ni to 1 and every other element to 0.We write abusively M ∈ f if f(M) 6= 0.De�nition 11 (Multi-Set redution relation) Given → is a redution relation on A,we de�ne the multi-set redution as follows:if f and g are multi-sets on A, we say that f →mul g if there is a M in A suh that

{

f(M) = g(M) + 1
∀N ∈ A, f(N) < g(N) ⇒ M → NIn what follows we always assume that A is a set with a redution relation →.12
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xxxxxxxxxxxxxxxxxxxxxFigure 1: Deriving strong normalisation by simulationLemma 19 If f1, . . . , fn, g are multi-sets on A and f1 + · · · + fn →mul g then there is
1 ≤ i ≤ n and a multi-set f ′

i suh that fi →mul f ′
i and f1+· · ·+fi−1+f ′

i +fi+1+· · ·+fn = g.Proof: We know that there is a M in A suh that
{

f1(M) + · · · + fn(M) = g(M) + 1
∀N ∈ A, f1(N) + · · ·+ fn(N) < g(N) ⇒ M → NAn easy lexiographi indution on two natural numbers p and q shows that if p + q > 0then p > 0 or q > 0. By indution on the natural number n, we extend this result: if

p1+· · ·+pn > 0 then ∃i, pi > 0. We apply this result on f1(M)+· · ·+fn(M) and get some
fi(M) > 0. Obviously there is a unique f ′

i suh that f1+· · ·+fi−1+f ′
i +fi+1+· · ·+fn = g,and we also get fi →mul f ′

i . ✷De�nition 12 Given two sets N and N ′ of multi-sets, we de�ne N + N ′ as
{f + g| f ∈ N , g ∈ N ′}.We de�ne for every M in A its relative multi-sets as all the multi-sets f on A suhthat if N ∈ f then M →∗ N . We denote the set of relative multi-sets as MM .Remark 20 Notie that for any M ∈ A, MM is stable under →mul.Lemma 21 For all M1, . . . , Mn in A,if MM1

∪ . . . ∪MMn
⊆ SN→mul then MM1

+ · · ·+ MMn
⊆ SN→mul.Proof: Let W be the relation between MM1

+ · · ·+MMn
and MM1

×· · ·×MMn
de�nedas: f1 + · · ·+ fnW(f1, . . . , fn) for all f1, . . . , fn in MM1

× · · · ×MMn
.13



We onsider as a redution relation onMM1
×· · ·×MMn

the lexiographi ompositionof →mul. We denote this redution relation as →mullex. By Corollary 16, we know that
MM1

× · · · ×MMn
⊆ SN→mullex . Hene, W−1(SN→mullex) = MM1

+ · · · + MMn
.Now we prove that MM1

+ · · · + MMn
is stable by →mul and that →mullex stronglysimulates→mul throughW. Suppose f1+· · ·+fn →mul g. By Lemma 19 we get a multi-set

f ′
i suh that f1 + · · · + fi−1 + f ′

i + fi+1 + · · ·+ fn = g and fi →mul f ′
i .Hene, f ′

i ∈ MMi
, so that (f1, . . . , fi−1, f

′
i , fi+1, · · · , fn) ∈ MM1

× · · · × MMn
and even

(f1, · · · , fn) →mullex (f1, . . . , fi−1, f
′
i , fi+1, · · · , fn).By Theorem 14 we then get W−1(SN→mullex) ⊆ SN→mul, whih onludes the proofbeause W−1(SN→mullex) = MM1

+ · · ·+ MMn
. ✷Lemma 22 ∀M ∈ SN→,MM ⊆ SN→mulProof: By transitive indution in SN→. Assume that M ∈ SN→ and assume theindution hypothesis ∀N ∈→+(M),MN ⊆ SN→mul.Let us split the redution relation →mul: if f →mul g, let f →mul1 g if f(M) = g(M)and let f →mul2 g if f(M) > g(M). Clearly, if f →mul g then either f →mul1 g or

f →mul1 g. This is an intuitionisti impliation sine the equality of two natural numbersan be deided.Now we prove that →mul1 is terminating on MM .Let W ′ be the following relation (atually, a funtion) between MM to itself: for all
f and g in MM , fWg if g(M) = 0 and for all N 6= M , f(N) = g(N).For a given f ∈ MM , let N1, . . . , Nn be the elements of A that are not mapped to 0by f and that are di�erent from M . Sine f ∈ MM , for all 1 ≤ i ≤ n we know M →+ Ni,and we also know that W ′(f) ∈ MN1

+ · · · + MNn
. Hene, we apply the indutionhypothesis and Lemma 21 to get MN1

+ · · · + MNn
⊆ SN→mul . Hene, W ′(f) ∈ SN→mul.Now notie that →mul strongly simulates →mul1 through W ′, so by Theorem 14,

f ∈ SN→mul1.Now that we know that →′mul is terminating on MM , we notie that the dereasingorder on natural numbers strongly simulates →mul2 and weakly simulates →mul1 throughthe funtion that maps every f ∈ MM to the natural number f(M).Hene, we an apply Corollary 18 to get MM ⊆ SN→mul. ✷Corollary 23 (Multi-Set termination) Let f be a multi-set on A.If for any M ∈ f , M ∈ SN→, then f ∈ SN→mul.Proof: Let M1, . . . , Mn be the elements of A that are not mapped to 0 by f . Clearly,
f ∈ MM1

+ · · · + MMn
. By Lemma 22, MM1

∪ . . .MMn
⊆ SN→mul, and by Lemma 21,

MM1
+ · · ·+ MMn

⊆ SN→mul, so f ∈ SN→mul . ✷1.5 Higher-order syntaxes and rewrite systemsWe now deal with higher-order syntaxes, where the set A is reursively de�ned by a termsyntax possibly involving variable binding and the redution relation → is de�ned as arewrite system. There are several ways to express those systems in a generi way, amongwhih the Expression Redution Systems (ERS) [Kha90℄, the Combinatory RedutionSystems (CRS) [Klo80℄, and the Higher-Order Systems (HRS) [Nip91℄. In the rest of thisreport, we only use from those formalisms the notions of redex, sub-term and ontextual14



losure of the rewrite rules, as well as the notion of impliit substitution suh as M{x = N}(that denotes the term M in whih every ourrene of the variable x has been replaedby the term N). All these de�nitions an be found in [Ter03℄.De�nition 13 (Conventions)The symbol ⊑ denotes the sub-term relation and ⊏ denotes the strit sub-term relation(we also use ⊒ and ⊐ for the inverse relations).By de�nition of terms, A = SN⊐.For a rewrite system R, −→R denotes as usual the ontextual losure of the relationthat ontains every instane of the rewrite rules of R.We identify a rewrite rule h with the rewrite system {h} and for two rewrite systemsR and R′ we write R,R′ for R ∪ R′.A ongruene on A is an equivalene relation that is ontext-losed.Lemma 24 SN−→R ∪⊐ = SN−→R .Proof: This is a typial theorem that is usually proved lassially (using for in-stane the postponing tehnique [Ter03℄). We prove it onstrutively here. The left-to-right inlusion is trivial, by Remark 8. Now for the other diretion, �rst notie thatSN⊐ = A. Beause of the de�nition of a ontextual losure, −→R strongly simulates−→Rthrough ⊑. Also, it weakly simulates ⊐ through ⊑, so we may apply Corollary 18 and get
∀N ∈ SN→R, ∀M ∈ A, M ⊑ N ⇒ M ∈ SN→R∪⊐.In partiular, ∀N ∈ SN→R, M ∈ SN→R∪⊐. ✷Notie that this result enables us to use a stronger indution priniple: in order toprove ∀M ∈ SN−→R , P (M), it now su�es to prove

∀M ∈ SN−→R , (∀N ∈ A, (M−→+R N ∨ N ⊏M) ⇒ P (N)) ⇒ P (M)This indution priniple is alled the transitive indution in SNR with sub-terms and isused in the following setions.We brie�y reall the various indution priniples:In order to prove ∀M ∈ SN−→R , P (M), it su�es to prove
• ∀M ∈ A, (∀N ∈ A, (M −→R N) ⇒ P (N)) ⇒ P (M)(raw indution in SNR), or just
• ∀M ∈ SN−→R , (∀N ∈ A, (M −→R N) ⇒ P (N)) ⇒ P (M)(indution in SNR), or just
• ∀M ∈ SN−→R , (∀N ∈ A, (M−→+R N) ⇒ P (N)) ⇒ P (M)(transitive indution in SNR), or even
• ∀M ∈ SN−→R , (∀N ∈ A, (M−→+R N ∨ N ⊏M) ⇒ P (N)) ⇒ P (M)(transitive indution in SNR with sub-terms)De�nition 14 SNR heneforth denotes SN−→R ∪⊐ = SN−→R .
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2 Of the di�ulty of relating the terminations of λ-aluliIn the rest of this report we develop tehniques that were originally designed for derivingstrong normalisation results from the strong normalisation of typed λ-alulus [Bar84℄.The �rst one turns out to be more general and an be applied to any rewrite system. Itis a useful re�nement of the simulation tehnique, but the main theorem of the tehniqueonly holds in lassial logi.The seond tehnique holds in intuitionisti logi, apart maybe from one externalresult, of whih the provability in intuitioniti logi remains to be heked. The teh-nique was originally designed to prove the strong normalisation of aluli with expliitsubstitutions, suh as λx [BR95℄.We all alulus with expliit substitutions a alulus that uses a set of variables,denoted x, y, . . ., and one of its onstrutors is the following one:If M and N are terms, then 〈M/x〉N is a term, where x is bound in N . The onstrut isalled an expliit substitution and M is alled its body.Of ourse, the tehnique is likely to be adapted to other frameworks, whih ould useDe Bruijn indies [Bar84℄ or expliit substitutions with additional parameters, but theabove framework is plainly su�ient for the examples treated hereafter.Among the aluli with expliit substitutions to whih the tehniques an be appliedare the intuitionisti sequent aluli [Gen35℄.The notion of omputation in sequent aluli is Cut-elimination: the proof of a sequentmay be simpli�ed by eliminating the appliations of the Cut-rule, so that a sequent whihis provable with the Cut-rule is provable without.It turns out that the most natural typing rule for an expliit substitution as expressedabove is preisely a Cut-rule. From that remark, many tehniques aimed at provingnormalisation results about aluli of expliit substitutions atually apply to systemswith Cut-rules suh as sequent aluli. In other words, termination of ut-eliminationproesses an often be derived from termination of expliit substitution aluli.Of ourse, in the ase of sequent aluli, termination of Cut-elimination relies only onthe strong normalisation of typed terms.Another notion takles the strong normalisation of terms with expliit substitutionsthat are not neessarily typed: the property alled Preservation of Strong Normalisation(PSN) [BBLRD96℄. It onerns syntati extensions of λ-alulus with their own redutionrelations and states that if a λ-term is strongly normalising for the β-redution, then it isstill strongly normalising when onsidered as a term of the extended alulus undergoingthe redutions of the latter. In other words, the redution relation should not be too big,although it is often required to be big enough to simulate β-redution. It is typially thease of λx [BR95℄, whih we shall investigate shortly.The de�nition of the PSN property an be slightly generalised for aluli in whih λ-alulus an be embedded (by a one-to-one translation, say A) rather than just inluded.In that ase PSN states that if a λ-term is strongly normalising, then its enoding is alsostrongly normalising. This is the ase for the expliit substitution alulus λlxr introduedin [KL05℄ whih requires terms to be linear and hene is not a syntati extension of λ-alulus. Figure 2 shows the two situations, with the example of λx and λlxr.The basi idea in proving that a term M of a alulus with expliit substitutions is SN16



λx
λ

λlxr
λ A +3Figure 2: Standard and generalised situations for stating PSNis to use Corollary 18, that is, simulating M 's redutions by β-redutions of a stronglynormalising λ-term H(M).For PSN, if M = A(t) where t is the λ-term known to be SNβ by hypothesis, then wewould take H(M) = t.For sequent alulus, it would be a typed (and hene strongly normalising) λ-termthat denotes a proof in natural dedution of the same sequent (using Curry-Howard orre-spondene). The idea of simulating Cut-elimination by β-redutions has been investigatedin [Zu74℄.There is one problem in doing so: an enoding into λ-alulus that allows the simula-tion needs to interpret expliit substitutions by impliit substitutions suh as t{x = u}.But should x not be free in t, all redution steps taking plae within the term of whih uis the enoding would not indue any β-redution in t{x = u}.Therefore, the sub-system that is only weakly simulated, i.e. the one onsisting of allthe redutions that are not neessarily simulated by at least one β-redution, is too bigto be proved terminating (and very often it is not).The two tehniques developed hereafter are designed to overome this problem, in asomewhat general setting. The two aforementioned aluli with expliit substitutions λxand λlxr respetively illustrate how eah an be applied and an provide in partiular aproof of the PSN property.In order to ompare the examples with λ-alulus, we brie�y reall the latter. Thesyntax is de�ned as follows:

M, N ::= x| λx.M | M N

β-redution is de�ned as the following rule:
(λx.M) N −→β M{x = N}The �rst three inferene rules of Figure 3 de�ne the derivable judgements of the simply-typed λ-alulus, whih we note as Γ ⊢NJ M : A. When the two bottom inferene rulesare added, we obtain a typing system haraterising SNβ, and we note those derivablejudgements as Γ ⊢NJ∩ M : A.The following theorem has been proved in [CD78℄:Theorem 25 (Strong Normalisation of λ-alulus)

Γ ⊢NJ∩ M : A if and only if M ∈ SNβ.A proof of the weaker statement that simply-typed λ-alulus is strongly normalising anbe found, for example, in [Bar84℄. 17



Γ, x : A ⊢ x : A

Γ, (x : A) ⊢ M : B

Γ ⊢ λx.M : A → B

Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ M N : B

Γ ⊢ M : A Γ ⊢ M : B

Γ ⊢ M : A ∩ B

Γ ⊢ M : A1 ∩ A2
i ∈ {1, 2}

Γ ⊢ M : AiFigure 3: Typing rules for λ-alulus3 The safeness and minimality tehniqueGiven a rewrite system R on a set of terms A, the safeness and minimality tehniquepresents two subsystems minR and safeR satisfying −→safeR ⊆−→minR ⊆−→R andSNminR = SNR.The intuitive idea is that a redution step is minimal if all the (strit) sub-terms ofthe redex are in SNR. Theorem 27 says that in order to prove that −→R is terminating,we an restrit our attention to minimal redutions only, without loss of generality.Similarly, a redution step is safe if the redex itself is in SNR, whih is a strongerrequirement than minimality. Theorem 28 says that, whatever R, safe redutions alwaysterminate.Those ideas are made preise in the following de�nition:De�nition 15 (Safe and Minimal redutions) Given two rewrite systems h and Rsatisfying −→h ⊂−→R ,
• the (R-)minimal h-system is given by the following sheme of rules:minh : M −→ N for every M −→h N suh that for all P ⊏M , P ∈ SNR
• the (R-)safe h-system is given by the following sheme of rules:safeh : M −→ N for every M −→h N suh that M ∈ SNRIn both rules we ould require M −→h N to be a root redution so that M is the redex,but although the rules above seem stronger than that, they have the same ontextuallosure, so we onsider the de�nition above whih is the simplest.Notie that being safe is stronger than being minimal as we have:

−→safeh ⊆−→minh ⊆−→h ⊆−→R .We also say that a redution step M −→h N is safe (resp. minimal) if M −→safeh N(resp. M −→minh N) and that it is unsafe if not.Obviously if −→h is �nitely branhing, then so are −→safeh and −→minh .Remark 26 We shall onstantly use the following fats:1. −→min(safeh) =−→safe(minh) =−→safeh 18



2. −→safe(h,h′) =−→safeh,safeh′3. −→min(h,h′) =−→minh,minh′Theorem 27 SNminR = SNRIn other words, in order to prove that a term is strongly normalising, it su�es to provethat it is strongly normalising for minimal redutions only. This theorem holds in intu-itionisti logi.Proof: The right-to-left inlusion is trivial. We now prove that SNminR ⊆ SNR, bytransitive indution in SNminR with sub-terms.Let M ∈ SNminR, we have the indution hypothesis that
∀N, (M−→+minR N ∨ N ⊏ M) ⇒ N ∈ SNR.We want to prove that M ∈ SNR, so it su�es to hek that if M −→R N , then
N ∈ SNR.We �rst show that in that ase M −→minR N . Let Q be the R-redex in M , andlet P ⊏ Q. We have P ⊏ M . By the indution hypothesis we get P ∈ SNR, so Q is aminR-redex. By ontextual losure of minimal redution, M −→minR N .Again by the indution hypothesis, we get N ∈ SNR as required. ✷Theorem 28 SNsafeR = AIn other words, safe redutions always terminate. This theorem holds in intuitionistilogi.Proof: Consider the multi-sets of (R)-strongly normalising terms, and onsider themulti-set redutions indued by the redutions (−→R ∪ ⊐)+ on strongly normalisingterms. By Corollary 23, these multi-set redutions are terminating.Considering the mapping φ of every term to the multi-set of its R-strongly normalisingsub-terms, we an hek that the multi-set redutions strongly simulate the safe redutionsthrough φ. Hene, from Theorem 14, we get that safe redutions are terminating. ✷Now the aim of the safeness and minimality tehnique is to prove the strong normali-sation of a system R.We obtain this by the following theorem, whih only holds in lassial logi. Indeed,it relies on the fat that for the rewrite system R, for all term M we have either M ∈ SNRor M 6∈ SNR. This instane of the Law of Exluded Middle is in general not deidable.Theorem 29 Given a system R, if we �nd a subsystem R′ satisfying −→safeR ⊆−→R′

⊆−→minR , suh that we have:
• the strong simulation of −→minR \ −→R′ in a strongly normalising alulus, througha total relation Q

• the weak simulation of −→R′ through Q

• the strong normalisation of −→R′then R is strongly normalising.Proof: This is a diret orollary of Corollary 18. ✷19



B (λx.M) N −→ 〈N/x〉Mx :















Abs 〈N/x〉λy.M −→ λy.〈N/x〉MApp 〈N/x〉M1 M2 −→ 〈N/x〉M1 〈N/x〉M2VarK 〈N/x〉y −→ yVarI 〈N/x〉x −→ NFigure 4: Redution rules for λxNow notie the partiular ase of the tehnique when we take R′ = safeR. By Theo-rem 28 we would diretly have its strong normalisation. Unfortunately, this de�nition isoften too oarse, that is to say, the relation −→R′ is to small, so that −→minR \ −→R′′is often too big to be strongly simulated.Hene, in order to de�ne R′, we use the safeness riterion, but the preise de�nitiondepends on the alulus that is being treated. We give the examples of λx and λ. Theproofs in these examples use lassial logi.3.1 Example: λx
λx [BR95℄ is the syntati extension of λ-alulus with the aforementioned expliit sub-stitution operator:

M, N ::= x| λx.M | M N | M{x = N}Its redution system redues β-redexes into expliit substitutions whih are theneevaluated, as shown in Figure 4.The �rst four inferene rules of Figure 5 de�ne the derivable judgements of simply-typed λx, whih we note as Γ ⊢NJCut M : A. When the three bottom inferene rulesare added, we obtain a typing system haraterising SNB,x [LLD+04℄, and we note thosederivable judgements as Γ ⊢NJCut∩ M : A. The following theorem is proved in [LLD+04℄:
Γ, x : A ⊢ x : A

Γ ⊢ P : A Γ, (x : A) ⊢ M : C

Γ ⊢ 〈P/x〉M : C

Γ, (x : A) ⊢ M : B

Γ ⊢ λx.M : A → B

Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ M N : B

Γ ⊢ M : A Γ ⊢ M : B

Γ ⊢ M : A ∩ B

Γ ⊢ M : A1 ∩ A2
i ∈ {1, 2}

Γ ⊢ M : Ai

Γ ⊢ M : A ∆ ⊢ N : B x 6∈ Γ

Γ ⊢ 〈N/x〉M : AFigure 5: Typing rules for λx20



Theorem 30 (Capturing strongly normalising terms)If M ∈ SNB,x then there is a Γ and a A suh that Γ ⊢NJCut∩ M : A.In the same paper, the onverse (typed terms are strongly normalising) has been proved bya reduibility tehnique. We show here that one appliation of the Safeness and Minimalitytehnique, apart from PSN, is to derive this result from the strong normalisation of λ-alulus with intersetion types (Theorem 25).In this example we take R′ = safeB,minx.Lemma 31 −→safeB,x is terminating.Proof: We use for that a lexiographi path ordering [KL80℄ based on the followingin�nite �rst-order signature and its preedene relation:M < su(−) < bi(−,−) < sub(−,−)where for every M ∈ SNB,x there is a onstant M . Those onstants are all below su(),and the preedene between them is given by N < M if and only if M−→+
B,x N or

N ⊏M . By Remark 24, the preedene is well-founded (terminating).Enode λx as follows:
P(M) = M if M ∈ SNB,xotherwise
P(λx.M) = su(P(M))
P(M N) = bi(P(M),P(N))
P(〈N/x〉M) = sub(P(N),P(M))It is quite easy to hek that (safeB), x-redutions derease P(), so they are terminating.

✷Now onsider the following enoding in λ:H(x) = xH(λx.M) = λx.H(M)H(M N) = H(M) H(N)H(〈N/x〉M) = H(M){x = H(N)} if N ∈ SNB,x
= (λx.H(M)) H(N) if N 6∈ SNB,xLemma 321. If M −→minB N is unsafe then H(M) −→β H(N)2. If M −→minB N is safe then H(M)−→∗

β H(N)3. If M −→minx N then H(M) = H(N)Corollary 33 If H(M) ∈ SNβ then M ∈ SNB,x.Proof: Diret appliation of Theorem 29. ✷
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This results has two obvious orollaries:Considering that on pure terms (that is, substitution-free terms), the enoding into
λ-alulus is the identity, this gives diretly the PSN property for λx.Corollary 34 (Preservation of Strong Normalisation)If t ∈ SNβ then t ∈ SNB,x.It turns out that the above enoding generally preserves typing. Hene, if the typingsystem onsidered in λ-alulus implies strong normalisation, then the original λx-term isalso strongly normalising, by Corollary 33. For instane, we have the following theorem:Theorem 351. If Γ ⊢NJCut M : A then Γ ⊢NJ H(M) : A, so M ∈ SNB,x.2. If Γ ⊢NJCut∩ M : A then Γ ⊢NJ∩ H(M) : A, so M ∈ SNB,x.Often, that kind of strong normalisation result is derived from the PSN property bylifting the expliit substitutions into β-redexes [Her95℄, but this is preisely what theenoding does in the neessary plaes, so that Corollary 33 is a shortut of Herbelin'stehnique.Notie the subtlety of the de�nition for the enoding of an expliit substitution:1. As we have already said, always enoding expliit substitutions as impliit substi-tutions leads to the weak simulation of too many B-steps, so that the system thatis only weakly simulated is too big to be proved terminating.2. On the other hand, always raising 〈N/x〉M into a β-redex would be too strong,beause the substitution 〈N/x〉 an be propagated into the sub-terms of M but the

β-redex annot be moved around, so the simulation theorem would not hold.3. Hene, we needed to de�ne an enoding that is a ompromise of those two, and theside-ondition N ∈ SNB,x is preisely the riterion we need:
• First, the satis�ability of the ondition may only evolve in one diretion, as itmay only beome satis�ed by some redution within N , and not the other wayaround. If it does so, we an simulate this step by reduing the β-redex.
• Now if N 6∈ SNB,x, then the substitution is lifted into a β-redex and for thesame reason as in point 2 we annot simulate the propagation of 〈N/x〉. Sowe need to prove that we need not onsider redution steps that propagate asubstitution of whih the body is not strongly normalising. This is preiselythe point of minimal redution: Theorem 27 says that in order to prove astrong normalisation result, we may assume that all sub-terms of the redex arestrongly normalising.
• If on the ontrary N ∈ SNB,x, then we an indeed simulate its propagation,but for the same reason as in point 1, redution steps within N might only beweakly simulated, but these are preisely what we all safe redutions and wehave proved above that they (together with x-redution) terminate.22



3.2 Example: λAnother example of how this tehniques applies is Herbelin's λ, for whih PSN has longerproofs in [DU03, Kik04℄. Sine λ an be typed by a version alled LJT of the intuitionistisequent alulus and the tehnique provides again a type-preserving enoding of λ intothe simply-typed λ-alulus, we thus prove the strong normalisation of Cut-eliminationin LJT.The syntax of Herbelin's alulus is de�ned as follows:
M, N, A, B ::= λx.M | x l| M l| 〈M/x〉N

l, l′ ::= []| M :: l| l@l′| 〈M/x〉l

λx.M and 〈N/x〉M bind x in M , and 〈M/x〉l binds x in l, thus de�ning the free variablesof terms and lists as well as α-onversion. We use Barendregt's onvention that no variableis free and bound in a term in order to avoid variable apture when reduing it.The redution rules of λ are de�ned in Figure 6, the typing rules are de�ned in Figure 7.B (λx.M) (N :: l) −→ (〈N/x〉M) l

System x:














































































































B1 M [] −→ MB2 (x l) l′ −→ x (l@l′)B3 (M l) l′ −→ M (l@l′)A1 (M :: l′)@l −→ M :: (l′@l)A2 []@l −→ lA3 (l@l′)@l′′ −→ l@(l′@l′′)C1 〈P/y〉λx.M −→ λx.〈P/y〉MC2 〈P/y〉(y l) −→ P 〈P/y〉lC3 〈P/y〉(x l) −→ x 〈P/y〉lC4 〈P/y〉(M l) −→ 〈P/y〉M 〈P/y〉lD1 〈P/y〉[] −→ []D2 〈P/y〉(M :: l) −→ (〈P/y〉M) :: (〈P/y〉l)D3 〈P/y〉(l@l′) −→ (〈P/y〉l)@(〈P/y〉l′)Figure 6: Redution Rules for λTypially, the ase of λ is one of those where the syntax does not inlude that of λ-alulus, but the latter an be enoded [Her95℄. Indeed, it is well-known that the syntaxof λ-alulus an also be desribed as follows:
P := λx.M

M, N, A, B := P | x
−→
M | P N

−→
Mwhere −→

M represents a list of �M-terms� of arbitrary length.The enoding, given in Figure 8, is threefold, one funtion Aλ() for the �P -terms�, aseond one, A(), for the �M-terms�, and a third one, Al(), for lists of �M-terms�:23



Γ; A ⊢LJT l : B (x : A) ∈ Γ Contx
Γ ⊢LJT x l : B

Γ ⊢LJT A : s axiom
Γ; A ⊢LJT [] : A

Γ, (x : A) ⊢LJT M : B
→ r

Γ ⊢LJT λx.M : A → B

Γ ⊢LJT M : A Γ; B ⊢LJT l : C
→ l

Γ; A → B ⊢LJT M :: l : C

Γ ⊢LJT M : A Γ; A ⊢LJT l : B Cut3
Γ ⊢LJT M l : B

Γ; C ⊢LJT l′ : A Γ; A ⊢LJT l : B Cut1
Γ; C ⊢LJT l′@l : B

Γ ⊢LJT P : A Γ, (x : A) ⊢LJT M : C Cut4
Γ ⊢LJT 〈P/x〉M : C

Γ ⊢LJT P : A Γ, (x : A); B ⊢LJT l : C Cut2
Γ; B ⊢LJT 〈P/x〉l : CFigure 7: Typing rules for λAλ(λx.M ) = λx.A(M)A(P ) = Aλ(P )A(x

−→
M) = x Al(

−→
M)A(P N

−→
M) = Aλ(P ) (A(N) :: Al(

−→
M))Al(

−→
∅ ) = []Al(
−−−−−−→
N1 . . . Ni) = A(N1) :: Al(

−−−−−−→
N2 . . . Ni)Figure 8: Enoding λ-alulus into λRemark 36 A(M) is an x-normal formLemma 37 〈A(M)/x〉A(N)−→∗x A(N{x = M})Proof: By indution on N . ✷Finally, we onlude that β-redution is simulated by B, x, so that λ-alulus an beonsidered as a sub-alulus of λ.Theorem 38 If M −→β N then A(M)−→+

B,x A(N)Proof: By indution on M . ✷Now we prove PSN (and SN of typed terms) for λ with the safeness and minimalitytehnique. Again, we onsider a �rst-order syntax equipped with a lexiographi pathordering based on the following preedene:M < su(−) < bi(−,−) < sub(−,−)where for every M ∈ SNB,x (resp. l ∈ SNB,x) there is a onstant M (resp. l). Thoseonstants are all below su(), and the preedene between them is given by N < M if24



and only if M−→+
B,x N or N ⊏ M (and similarly for lists). The preedene is henewell-founded.The enoding goes as follows:
P(M) = M if M ∈ SNB,xotherwise
P(λx.M ) = bi(P(A),P(M))
P(x l) = su(Q(l))
P(M l) = bi(Q(l),P(M))
P(〈M/x〉N) = sub(P(M),P(N))

Q(l) = l if l ∈ SNB,xotherwise
Q(M :: l) = bi(P(M),Q(l))
Q(l@l′) = bi(Q(l),Q(l′))
Q(〈M/x〉l) = sub(P(M),Q(l))Lemma 391. If M −→safeB,x N then P(M) > P(N).2. If l −→safeB,x l′ then Q(l) > Q(l′).Proof: We �rst hek root redutions.Clearly, if M, l ∈ SNB,x the Lemma holds, and this overs the ase of safe redutions.Also, when N, l′ ∈ SNB,x the Lemma holds as well.The remaining ases are when P(M),Q(l) and P(N),Q(l′) are not onstants.For B1,A2, the term P(N) (resp. Q(l′)) is a sub-term of P(M) (resp. Q(l)).For B2,B3,A1, the arguments of bi(, ) derease in the lexiographi order.For Ci′s,Di′s, the symbol at the root of P(N) (resp. Q(l′)) is stritly inferior to thatof P(M) (resp. Q(l)), so we only have to hek that the diret sub-terms of P(N) (resp.

Q(l′)) are smaller than P(M) (resp. Q(l)). Clearly, it is the ase for all sub-terms thatare onstants (namely, those enodings of strongly normalising sub-terms of N or l′). Forthose that are not, it is a routine hek on every rule.The ontextual losure is a straightforward indution on M, l:Again, if M, l ∈ SNB,x or N, l′ ∈ SNB,x, the Lemma holds;otherwise, if the redution is a safeB, x-redution in a diret sub-term of M or l, it su�esto use the indution hypothesis on that sub-term. ✷Corollary 40 The redution relation −→safeB,x is terminating.
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Now we enode λ in λ-alulus as follows:H(λx.M) = λx.H(M)H(x l) = Hz(l){z = x} x freshH(M l) = Hz(l){z = H(M)} z freshH(〈M/x〉N) = H(N){x = H(M)} if M ∈ SNB,xH(〈M/x〉N) = (λx.H(N)) H(M) if M 6∈ SNB,xHy([]) = yHy(M :: l) = Hz(l){z = y H(M)} z freshHy(l@l′) = Hz(l′){z = Hy(l)} z freshHy(〈M/x〉l) = Hy(l){x = H(M)} if M ∈ SNB,xHy(〈M/x〉l) = (λx.Hy(l)) H(M) if M 6∈ SNB,xRemark 41 For all y and l, y ∈ FV (Hy(l))Lemma 421. If M −→minB N is unsafe then H(M) −→β H(N)If l −→minB l′ is unsafe then Hy(l) −→β Hy(l′)2. If M −→minB N is safe then H(M)−→∗
β H(N)If l −→minB l′ is safe then Hy(l)−→∗

β Hy(l′)3. If M −→minx N then H(M) = H(N)If l −→minx l′ then Hy(l) = Hy(l′)Corollary 43 If H(M) ∈ SNβ (resp. Hy(l) ∈ SNβ) then M ∈ SNB,x (resp. l ∈ SNB,x).Proof: Diret appliation of Theorem 29. ✷Now notie that H · A = Id, so that we onlude the following:Corollary 44 (Preservation of Strong Normalisation)If t ∈ SNβ then A(t) ∈ SNB,x.Notie that the preservation of types an be easily shown:Remark 451. If Γ ⊢LJT M : A then Γ ⊢NJ H(M) : A2. If Γ; B ⊢LJT l : A then Γ, y : B ⊢NJ Hy(l) : A if y is freshAnd now by using the fat that typed λ-terms are in SNβ, we diretly get:Corollary 46 (Strong Normalisation of typed terms)1. If Γ ⊢LJT M : A then M ∈ SNB,x.2. If Γ; B ⊢LJT l : A then l ∈ SNB,x. 26



Again, this ould also be done with any typing system suh that the enodings of typedterms by H are typable in a typing system of λ-alulus that entails strong normalisation.This is again the ase with intersetion types: we ould add the three typing rules at thebottom of Figure 5 (as well as three similar rules for lists), and the preservation of typingby the enoding would provide the strong normalisation of the system. We should expetthis system to haraterise SNB,x in λ, but this remains to be heked. Also, sine thetyping systems of λ are in the spirit of sequent alulus, it would be better to replae theelimination rules of the intersetion by a left-introdution of the intersetion, probably inthe stoup. This is ongoing work.4 Simulation in λIThe seond tehnique presented in this setion suggests the enoding of a alulus withexpliit substitutions in Churh-Klop's λI-alulus [Klo80℄ instead of λ-alulus. We referthe reader to [Sor97, Xi97℄ for a survey on di�erent tehniques based on the λI-alulusto infer normalisation properties.On the one hand, λI extends the syntax of λ-alulus with a �memory operator�so that, instead of being thrown away, a term N an be retained and arried along ina onstrut [ − , N ]. With this operator, those bodies of substitutions are enodedthat would otherwise disappear, as explained above. On the other hand, λI restrits λ-abstrations to variables that have at least one free ourrene, so that β-redution nevererases its argument.Doing so requires the enoding in λI to be non-deterministi, i.e. we de�ne a relation
H between the alulus and λI, and the reason for this is that, sine the redutions in
λI are non-erasing redutions, we need to add this memory operator at random plaes inthe enoding, using suh a rule:

M H T
U ∈ λI

M H [T, U ]For instane, λx.x H λx.[x, x] but also λx.x H [λx.x, λz.z], so that both λx.[x, x] and
[λx.x, λz.z] (and also λx.x) are enodings of λx.x.The redution relation of the expliit substitution alulus is split into two parts Yand Z that satisfy the following simulation theorem:
→Y is strongly simulated by −→β,π

→Z is weakly simulated by −→β,πNow it must be proved that every term M an be enoded into a strongly normalisingterm of λI. This depends on the alulus that is being treated, but the following methodgenerally works:1. Enode the term M as a strongly normalising λ-term t, suh that no sub-termis lost, i.e. not using impliit substitutions. For PSN, the original λ-term woulddo, beause it is strongly normalising by hypothesis; for a proof-term of sequentalulus, t would be a λ-term typed in an appropriate typing system, the typingtree of whih is derived from the proof-tree of the sequent (we would get t ∈ SNβusing a theorem stating that typed terms are SNβ).27



2. Using a translation i() from λ-alulus to λI, introdued in this setion, prove thati(t) redues to one of the non-deterministi enodings of M in λI, that is, that thereis a term T suh that M H T and i(t)−→∗
β,π T .In this setion we prove that if a λ-term t is strongly normalising for β-redutions, theni(t) is weakly normalising in λI. The proof simply onsists in simulating an adequateredution sequene that starts from t and ends with a normal form, the enoding of whihis a normal form of λI. What makes this simulation work is the fat that the redutionsequene is provided by a perpetual strategy. Also, weak normalisation implies strongnormalisation in λI [Ned73℄, so that i(t) is strongly normalising, as well as the above

λI-term T .The tehnique is summarised in Figure 9.The alulus λ λI

t ∈ SNβ
i()
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ppppppppppppppppppppppppppppppFigure 9: The general tehnique to prove that M ∈ SNFinally, it remains to prove that the relation Z that is only weakly simulated is nowsmall enough to be terminating.As we shall see, this tehnique works for proving PSN of the expliit substitutionalulus λlxr of [KL05℄. Furthermore, it an be ombined with the safeness and minimalitytehnique whih provides proofs of strong normalisation for various sequent aluli thatrange from propositional logi to a logi as expressive as the Calulus of Construtions,and we believe that it an be applied to many other aluli.4.1 Churh-Klop's λI-alulusDe�nition 16
T, U ::= x| λx.T | T U | [T, U ]with the ondition that x ∈ FV (T ) in λx.T .28



Lemma 47 (Stability by Substitution) If T, U ∈ λI, then T{x = U} ∈ λI.Proof: By indution on T . ✷The redution rules are:
(β) (λx.T ) U → T{x = U}
(π) [T, V ] U → [T U, V ]We denote lists of λI-terms using vetors, and if −→T = T1, . . . , Tn, then U

−→
T denotes

U T1 . . . Tn and [U,
−→
T ] denotes [. . . [U, T1], . . . , Tn].Remark 48 If T −→β,π U then FV (T ) = FV (U) and V {x = T}−→+

β,π V {x = U}provided that x ∈ FV (V ).Lemma 49 (Substitution Lemma)
T{x = U}{y = V } = T{y = V }{x = U{y = V }} (with no variable apture)Proof: By indution on T . ✷4.2 Simulating the perpetual strategyWe may want to use the tehnique of simulation in λI with aluli that annotate λ-abstrations with types, and others that do not. Indeed, one of the appliations is thenormalisation of systems in type theory (possibly with dependent types), so we alsoonsider Π-types. In order to express the tehnique in its most general form, we presentit with a mixed syntax as follows.The annotated?-λ-alulus, that we all λ?-alulus, uses the following syntax:

M, N, A, B ::= x| s| ΠxA.B| λxA.M | λx.M | M Nwhere x ranges over a denumerable set of variables, and s ranges over a set of onstants.The redution rules are
(βt) (λxA.M) N −→ M{x = N}
(β) (λx.M) N −→ M{x = N}Fully annotated terms are those terms that have no onstrut λx.M . The fragment offully annotated terms is stable under βt-redutions, so that β-redutions never apply andhene SNβt

= SNβt,β for that fragment.We de�ne the notion of type-annotation as the smallest transitive, re�exive, ontext-losed relation ✁ suh that λx.M ✁ λxA.M .Notie that for a fully annotated term N , N ✁ P implies N = P .Lemma 50 If M ✁ M ′ and M −→βt,β N then there is a N ′ suh that N ✁ N ′ and
M −→βt,β N .Proof: By indution on M . ✷Corollary 51 If M ✁ M ′ and M ′ ∈ SNβt,β then M ∈ SNβt,β.Proof: By Theorem 14 (−→βt,β strongly simulates itself through ✁). ✷29



De�nition 17 We enode the λ?-alulus into λI as follows:i(x) = xi(λx.t) = λx.i(t) x ∈ FV (t)i(λx.t) = λx.[i(t), x] x /∈ FV (t)i(λxA.t) = [i(λx.t), i(A)]i(t u) = i(t) i(u)i(s) = ℘i(ΠxA.B) = ℘ [i(λx.t), i(A)]where ℘ is a dummy variable that does not appear in the term that is enoded.Lemma 52 For any λ?-terms t and u,1. FV (i(t)) = FV (t)2. i(t){x = i(u)} = i(t{x = u})Proof: Straightforward indution on t. ✷De�nition 18 The relation G between λ?-terms and λI-terms is given by the followingrules:
∀j tj G Tj

Gvar
(x

−→
tj ) G (x

−→
Tj )

A G T B G U x ∈ FV (U)
GΠ

ΠxA.B G ℘ [λx.U, T ]

Gβ1
((λx.t) t′

−→
tj ) G i((λx.t) t′

−→
tj )

t′ G T ′ x /∈ FV (t)
Gβ2

((λx.t) t′
−→
tj ) G (i(λx.t) T ′

−−→i(tj))
Gβt

1
((λxA.t) t′

−→
tj ) G i((λxA.t) t′

−→
tj )

t′ G T ′ A G U x /∈ FV (t)
Gβt

2
((λxA.t) t′

−→
tj ) G ([i(λx.t), U ] T ′ −−→i(tj))

G
s G ℘

t G T N ∈ nfβ,π

Gweak
t G [T, N ]

t G T x ∈ FV (T )
Gλ

λx.t G λx.T

t G T A G U x ∈ FV (T )
Gλt

λxA.t G [λx.T, U ]Lemma 531. If t ∈ nfβt and t G T , then T ∈ nfβ,π.2. For any λ?-term t, t G i(t).Proof:1. By indution on the proof tree assoiated to t G T , one an hek that no β andno π-redex is introdued, sine rules Gβ1, Gβ2, Gβt
1 and Gβt

2 are forbidden by thehypothesis that t is a β-normal form.30



2. By indution on t:
• If t = x

−→
tj , then by indution hypothesis tj G i(tj) for all j and then we anapply Gvar.

• If t = (λx.t′) u
−→
tj , then it su�es to use rules Gβ1.

• If t = (λxA.t′) u
−→
tj , then it su�es to use rules Gβt

1.
• If t = λx.u then by indution hypothesis u G i(u). If x ∈ FV (u), theni(t) = λx.i(u) and t G i(t) by rule Gλ. If x /∈ FV (u), then i(t) = λx.[i(u), x],and thus u G [i(u), x] by rule Gweak and t G i(t) by rule Gλ.
• If t = λxA.u then by indution hypothesis u G i(u) and A G i(A).If x ∈ FV (u), then i(t) = [λx.i(u), i(A)] and t G i(t) by rule Gλt. If x /∈ FV (u),then i(t) = [λx.[i(u), x], i(A)], and thus u G [i(u), x] by rule Gweak and t G i(t)by rule Gλt.
• If t = s, then learly s G ℘.
• If t = ΠxA.B, then by indution hypothesis A G i(A) and B G i(B). If

x ∈ FV (B) then i(ΠxA.B) = ℘ [λx.i(B), i(A)] and t G i(t) by rule GΠ. If
x ∈ FV (B) then i(ΠxA.B) = ℘ [λx.[i(B), x], i(A)], and thus B G [i(B), x] byrule Gweak and t G i(t) by rule GΠ.

✷De�nition 19 We de�ne a redution relation  for λ?-terms by the following rules:
t t′ perp-var

x
−→
tj t −→pj  x

−→
tj t′ −→pj

t t′ perpλ
λx.t λx.t′

t t′ perpλt
1

λxA.t λxA.t′

A A′ perpλt
2

λxA.t λxA′

.t

x ∈ FV (t) ∨ t′ ∈ nfβtβ perpβ1
(λx.t) t′

−→
tj  t{x = t′}

−→
tj

t′  t′′ x /∈ FV (t) perpβ2
(λx.t) t′

−→
tj  (λx.t) t′′

−→
tj

x ∈ FV (t) ∨ t′, A ∈ nfβtβ perpβt
1

(λxA.t) t′
−→
tj  t{x = t′}

−→
tj

t′  t′′ x /∈ FV (t) perpβt
2

(λxA.t) t′
−→
tj  (λxA.t) t′′

−→
tj

A A′ x /∈ FV (t) perpβt
3

(λxA.t) t′
−→
tj  (λxA′

.t) t′
−→
tj

A A′ perpΠ1
ΠxA.B  ΠxA′

.B

B  B′ perpΠ2
ΠxA.B  ΠxA.B′31



Remark 54  ⊆−→βtβIf t is not a βtβ-normal form, then there is a λ?-term t′ suh that t t′.Remark 55 Although we do not need it in the rest of the proof, it is worth mentioningthat, at least in the fragment of the untyped λ-alulus, the relation de�nes a perpetualstrategy w.r.t β-redution, i.e. if M is not β-strongly normalising and M  M ′, thenneither is M ′ [vRSSX99℄.Theorem 56 −→β,π strongly simulates  through G .Proof:perpβ1) (λx.t) t′
−→
tj  t{x = t′}

−→
tj� x ∈ FV (t):The last rule used to prove u G U must be Gβ1 (possibly followed by severalsteps of Gweak), so

U = [λx.i(t) i(t′) −−→i(tj),−→N ]

−→β [i(t){x = i(t′)} −−→i(tj),−→N ]

=Lemma 52 (2) [i(t{x = t′}
−→
tj ),

−→
N ]Then by Lemma 53 (2), t{x = t′}

−→
tj G i(t{x = t′}

−→
tj ) and by rule Gweak,

t{x = t′}
−→
tj G [i(t{x = t′}

−→
tj ),

−→
N ].� x /∈ FV (t):It means that t′ is a β-normal form and t{x = t′}

−→
tj = t

−→
tj . The last ruleused to prove u G U must be Gβ1 or Gβ2 (possibly followed by several stepsof Gweak), so in both ases we have U = [λx.[i(t), x] T ′

−−→i(tj),−→N ] with t′ G T ′(using Lemma 53 (2) in the former ase where T ′ = i(t′)). By Lemma 53 (1),
T ′ is a β, π-normal form. Now U −→β [[i(t){x = T ′}, T ′]

−−→i(tj),−→N ]. But byLemma 52 (1), x /∈ FV (i(t)) so the above term is [[i(t), T ′]
−−→i(tj),−→N ], whihredues by π to [i(t) −−→i(tj), T ′,

−→
N ] = [i(t −→tj ), T ′,

−→
N ]. By Lemma 53 (2) and rule

Gweak, we get t
−→
tj G [i(t −→tj ), T ′,

−→
N ].perpβ2) (λx.t) t′

−→
tj  (λx.t) t′′

−→
tj with t′  t′′ and x /∈ FV (t).The last rule used to prove u G U must be Gβ1 or Gβ2 (possibly followed by severalsteps of Gweak), so in both ases U = [λx.[i(t), x] T ′

−−→i(tj),−→N ] with t′ G T ′ (usingLemma 53 (2) in the former ase where T ′ = i(t′)). By indution hypothesis, thereis a term T ′′ suh that T ′−→+
β,π T ′′ and t′′ G T ′′.Hene, U−→+

β,π [λx.[i(t), x] T ′′
−−→i(tj),−→N ]. By appliation of the rule Gβ2,

(λx.t) t′′
−→
tj G λx.[i(t), x] T ′′

−−→i(tj), and we use rule Gweak to onlude.perpβt
1) (λxA.t) t′

−→
tj  t{x = t′}

−→
tj
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� x ∈ FV (t):The last rule used to prove u G U must be Gβt
1 (possibly followed by severalsteps of Gweak), so

U = [[λx.i(t), i(A)] i(t′) −−→i(tj),−→N ]

−→+
π [λx.i(t) i(t′) −−→i(tj), i(A),

−→
N ]

−→β [i(t){x = i(t′)} −−→i(tj), i(A),
−→
N ]

=Lemma 52 (2) [i(t{x = t′}
−→
tj ), i(A),

−→
N ]Then by Lemma 53 (2), t{x = t′}

−→
tj G i(t{x = t′}

−→
tj ) and by rule Gweak,

t{x = t′}
−→
tj G [i(t{x = t′}

−→
tj ), i(A),

−→
N ].� x /∈ FV (t):It means that t′ and A are β-normal forms and t{x = t′}

−→
tj = t

−→
tj . The lastrule used to prove u G U must be Gβt

1 or Gβt
2 (possibly followed by severalsteps of Gweak), so in both ases we have U = [[λx.[i(t), x], U ′] T ′

−−→i(tj),−→N ] with
A G U ′ and t′ G T ′ (using Lemma 53 (2) in the former ase where U ′ = i(A)and T ′ = i(t′)). By Lemma 53 (1), U ′ and T ′ are β, π-normal forms. Now
U −→π [λx.[i(t), x] T ′

−−→i(tj), U ′,
−→
N ] −→β [[i(t){x = T ′}, T ′]

−−→i(tj), U ′,
−→
N ]. Butby Lemma 52 (1), x /∈ FV (i(t)) so the above term is [[i(t), T ′]

−−→i(tj), U ′,
−→
N ],whih redues by π to [i(t) −−→i(tj), T ′, U ′,

−→
N ] = [i(t −→tj ), T ′, U ′,

−→
N ]. ByLemma 53 (2) and rule Gweak, we get t

−→
tj G [i(t −→tj ), T ′, U ′,

−→
N ].perpβt

2) (λxA.t) t′
−→
tj  (λxA.t) t′′

−→
tj with t′  t′′ and x /∈ FV (t).The last rule used to prove u G U must be Gβt

1 or Gβt
2 (possibly followed by severalsteps of Gweak), so in both ases U = [[λx.[i(t), x], U ′] T ′

−−→i(tj),−→N ] with A G U ′ and
t′ G T ′ (using Lemma 53 (2) in the former ase where U ′ = i(A) and T ′ = i(t′)).By indution hypothesis, there is a term T ′′ suh that T ′−→+

β,π T ′′ and t′′ G T ′′.Hene, U−→+
β,π [[λx.[i(t), x], U ′] T ′′

−−→i(tj),−→N ]. By appliation of the rule Gβt
2,

(λxA.t) t′′
−→
tj G [λx.[i(t), x], U ′] T ′′

−−→i(tj), and we use rule Gweak to onlude.perpβt
3) (λxA.t) t′

−→
tj  (λxA′

.t) t′
−→
tj with A A′ and x /∈ FV (t).The last rule used to prove u G U must be Gβt

1 or Gβt
2 (possibly followed by severalsteps of Gweak), so in both ases U = [[λx.[i(t), x], U ′] T ′

−−→i(tj),−→N ] with A G U ′ and
t′ G T ′ (using Lemma 53 (2) in the former ase where U ′ = i(A) and T ′ = i(t′)).By indution hypothesis, there is a term U ′′ suh that U ′−→+

β,π U ′′ and A′ G U ′′.Hene, U−→+
β,π [[λx.[i(t), x], U ′′] T ′

−−→i(tj),−→N ]. By appliation of the rule Gβt
2,

(λxA′

.t) t′
−→
tj G [λx.[i(t), x], U ′′] T ′

−−→i(tj), and we use rule Gweak to onlude.perpλ) λx.t λx.t′ with t t′.The last rule used to prove u G U must be Gλ, so U = [λx.T,
−→
N ] with t G T . Byindution hypothesis, there is a term T ′ suh that T−→+

β,π T ′ and t′ G T ′. Hene,
U−→+

β,π [λx.T ′,
−→
N ] (with x ∈ FV (T ′)), and we obtain by appliation of rules Gλand Gweak that λx.t′ G [λx.T ′,

−→
N ]. 33



perpλt
1) λxA.t λxA.t′ with t t′.The last rule used to prove u G U must be Gλt, so U = [λx.T, U ′,

−→
N ] with A G U ′and t G T . By indution hypothesis, there is a term T ′ suh that T−→+

β,π T ′and t′ G T ′. Hene, U−→+
β,π [λx.T ′, U ′,

−→
N ] (with x ∈ FV (T ′)), and we obtain byappliation of rules Gλt and Gweak that λxA.t′ G [λx.T ′, U ′,

−→
N ].perpλt

2) λxA.t λxA′

.t with A A′.The last rule used to prove u G U must be Gλt, so U = [λx.T, U ′,
−→
N ] with A G U ′and t G T . By indution hypothesis, there is a term U ′′ suh that U ′−→+

β,π U ′′and A′ G U ′′. Hene, U−→+
β,π [λx.T, U ′′,

−→
N ] (with x ∈ FV (T ′)), and we obtain byappliation of rules Gλt and Gweak that λxA.t′ G [λx.T, U ′′,

−→
N ].perp-var) x

−→
tj t −→pj  x

−→
tj t′ −→pj with t t′.The last rule used to prove u G U must be Gvar, so U = [x

−→
Qj T

−→
Uj,

−→
N ] with

t G T , tj G Qj and pj G Uj . By indution hypothesis, there is a term T ′ suh that
T−→+

β,π T ′ and t′ G T ′. As a onsequene we get U−→+
β,π [x

−→
Qj T ′ −→Uj ,

−→
N ] andby rules Gvar and Gweak we obtain x

−→
tj t′ −→pj G [x

−→
Qj T ′ −→Uj ,

−→
N ].perpΠ1) ΠxA.B  ΠxA′

.B with A A′.The last rule used to prove u G U must be GΠ, so U = [℘ [λx.T, V ],
−→
N ] with B G Tand A G V . By indution hypothesis, there is a term V ′ suh that V −→+

β,π V ′ and
A′ G V ′. As a onsequene we get U−→+

β,π [℘ [λx.T, V ′],
−→
N ] and by appliation ofrules GΠ and Gweak we obtain ΠxA′

.B G [℘ [λx.T, V ′],
−→
N ].perpΠ2) ΠxA.B  ΠxA.B′ with B  B′.The last rule used to prove u G U must be GΠ, so U = [℘ [λx.T, V ],

−→
N ] with B G Tand A G V . By indution hypothesis, there is a term T ′ suh that T−→+

β,π T ′ and
B′ G T ′. As a onsequene we get U−→+

β,π [℘ [λx.T ′, V ],
−→
N ] and by appliation ofrules GΠ and Gweak we obtain ΠxA.B′ G [℘ [λx.T ′, V ],

−→
N ].

✷Corollary 57 If t ∈ WN and t G T then T ∈ WNβ,π.Proof: By indution in WN , the indution hypothesis is:
t ∈ nf ∨ (∃u ∈ (t), ∀U, u G U ⇒ U ∈ WNβ,π).If t ∈ nf , then Lemma 53 (1) gives T ∈ nfβ,π ⊆ WNβ,π.If ∃u ∈ (t), ∀U, u G U ⇒ U ∈ WNβ,π, then by Theorem 56 we get a spei� T ′ suhthat u G T ′ and T−→+

β,π T ′. We an apply the indution hypothesis by taking U = T ′and get T ′ ∈ WNβ,π. But beause WNβ,π is patriarhal, T ∈ WNβ,π as required. ✷Corollary 58 i(SNβtβ) ⊆ WNβ,πProof: Notie that SNβtβ ⊆ SN ⊆ WN . Then Lemma 53 (2) gives ∀t ∈ SNβtβ, t G i(t),and thus, by Theorem 56, i(t) ∈ WNβ,π. ✷34



Theorem 59 (Nederpelt [Ned73℄) WNβ,π ⊆ SNβ,πCorollary 60 For any λ?-term t, if t ∈ SNβtβ, then i(t) ∈ SNβ,π.Proof: By Corollary 58 and Theorem 59. ✷4.3 Example: λlxrInspired by proof-nets and linear logi [Gir87℄, λlxr is an expliit substitution alulusintrodued in [KL05℄ as the �rst suh alulus having the PSN property and full ompo-sition of substitutions. It di�ers from λx or λ by the use of expliit resoure operators:dupliation and erasure, whih respetively orrespond to ontration and weakening ina typed framework. Binding a variable that has no ourrene or more than one is ex-pliitly expressed by the use of these operators. By the use of erasure operators, the setof free variables is preserved by redution, whih orresponds to the notion of interfaepreserving of Interation Nets [Laf90℄. The rewrite system of λlxr simulates β-redution,but the tehniques used to prove PSN for λx and λlxr all fail, so we use the tehnique ofsimulation in λI.For a full presentation of λlxr, we refer the reader to [KL05℄. We only brie�y reallhere the syntax and the redution relation.The syntax of λlxr is given by the following grammar:
t ::= x | λx.t | t t | t〈x = t〉 | Wx(t) | Cy,z

x (t)The abstration λx.t and the substitution t〈x = u〉 bind x in t. The ontration
Cy,z

x (t) binds y and z in t, whereas x is free in the terms x, Cy,z
x (t) and Wx(t).We say that a term is linear if it satis�es the following: in every sub-term, everyvariable has at most one free ourrene, and every binder binds a variable that does havea free ourrene (and hene only one).For instane, the terms Wx(x) and λx.xx are not linear. However, the latter an berepresented in the λlxr-alulus by the linear term λx.Cy,z

x (yz). More generally, every
λ-term an be translated to a linear λlxr-term.We use Φ, ∆, Σ, Π, . . . to denote �nite lists of variables (with no repetition). We use thenotation Wx1,...,xn

(t) for Wx1
(. . .Wxn

(t)), and C
(y1,...,yn),(z1,...,zn)
x1,...,xn (t) for Cy1,z1

x1
(. . . Cyn,zn

xn
(t)).For any term t we de�ne a renaming operation Rx1,...,xn

y1,...,yn
(t) as the result of simultane-ously substituting yi for every free ourrene xi in t where i ∈ 1 . . . n. Thus for instane

Rx,y
x′,y′(Cy,z

w (x(yz))) = Cy,z
w (x′(yz)).We introdue in Figure 10 a ongruene ≡, whih enables us to write �WS(u)�, or�C∆,Π

Φ (t) where Φ := S�, without ordering the variables in S. Besides, we sometimes donot speify what the lists ∆ and Π are, assuming them to be two disjoint lists of freshvariables.The redution relation of the alulus, denoted −→λlxr , is the relation generated bythe redution rules in Figure 11 modulo the ongruene relation in Figure 10. The rulesshould be understood in the prospet of applying them to linear terms. Indeed, it anbe shown that if t is linear and t −→λlxr t′, then t′ is linear and FV (t) = FV (t′). Thefat that linearity is preserved is a essential requirement of the system, so that we anheneforth onsider linear terms only.A basi property of the redution relation is the following:35



Cx,v
w (Cz,y

x (t)) ≡ Cx,y
w (Cz,v

x (t)) if x 6= y, v
Cy,z

x (t) ≡ Cz,y
x (t)

Cy′,z′

x′ (Cy,z
x (t)) ≡ Cy,z

x (Cy′,z′

x′ (t)) if x 6= y′, z′ & x′ 6= y, z
Wx(Wy(t)) ≡ Wy(Wx(t))
t〈x = u〉〈y = v〉 ≡ t〈y = v〉〈x = u〉 if y /∈ FV (u) & x /∈ FV (v) & x 6= y
Cy,z

w (t)〈x = u〉 ≡ Cy,z
w (t〈x = u〉) if x 6= w & y, z 6∈ FV (u)Figure 10: Congruene axioms for λlxr-terms

(B) (λx.t) u −→ t〈x = u〉System x
(Abs) (λy.t)〈x = u〉 −→ λy.t〈x = u〉
(App1) (t v)〈x = u〉 −→ t〈x = u〉 v x ∈ FV (t)
(App2) (t v)〈x = u〉 −→ t v〈x = u〉 x ∈ FV (v)
(V ar) x〈x = u〉 −→ u
(Weak1) Wx(t)〈x = u〉 −→ WFV (u)(t)
(Weak2) Wy(t)〈x = u〉 −→ Wy(t〈x = u〉) x 6= y

(Cont1) Cy,z
x (t)〈x = u〉 −→ C∆,Π

Φ (t〈y = u1〉〈z = u2〉)where Φ := FV (u)
u1 = RΦ

∆(u)
u2 = RΦ

Π(u)
(Comp) t〈y = v〉〈x = u〉 −→ t〈y = v〈x = u〉〉 x ∈ FV (v)System r
(WAbs) λx.Wy(t) −→ Wy(λx.t) x 6= y
(WApp1) Wy(u) v −→ Wy(uv)
(WApp2) u Wy(v) −→ Wy(uv)
(WSubs) t〈x = Wy(u)〉 −→ Wy(t〈x = u〉)

(Merge) Cy,z
w (Wy(t)) −→ Rz

w(t)
(Cross) Cy,z

w (Wx(t)) −→ Wx(C
y,z
w (t)) x 6= y, x 6= z

(CAbs) Cy,z
w (λx.t) −→ λx.Cy,z

w (t)
(CApp1) Cy,z

w (t u) −→ Cy,z
w (t) u y, z ∈ FV (t)

(CApp2) Cy,z
w (t u) −→ t Cy,z

w (u) y, z ∈ FV (u)
(CSubs) Cy,z

w (t〈x = u〉) −→ t〈x = Cy,z
w (u)〉 y, z ∈ FV (u)Figure 11: Redution rules for λlxr-termsTheorem 61 (Lengrand [KL05℄) xr is terminating.Now we an enode λ-alulus in λlxr.
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De�nition 20 The enoding of λ-terms is de�ned by indution as follows:A(x) := xA(λx.t) := λx.A(t) if x ∈ FV (t)A(λx.t) := λx.Wx(A(t)) if x /∈ FV (t)A(tu) := C∆,Π
Φ (RΦ

∆(A(t)) RΦ
Π(A(u))) where Φ := FV (t) ∩ FV (u)In [KL05℄, the following property has been proved:Theorem 62 (Simulating β-redution)If t −→β t′, then A(t)−→+

λlxr WFV (t)\FV (t′)(A(t′)).Now we prove the PSN property in detail.De�nition 21 The relation H between well-formed λlxr-terms and λI is given by thefollowing rules:
x H x

t H T

λx.t H λx.T

t H T u H U

tu H TU

t H T

t H [M, N ]
N ∈ λI

t H T u H U

t〈x = u〉 H T{x = U}

t H T

Cy,z
x (t) H T{y = x}{z = x}

t H T

Wx(t) H T
x ∈ FV (T )The relation H enjoys the following properties.Lemma 63 If t H M , then1. FV (t) ⊆ FV (M)2. M ∈ λI3. x /∈ FV (t) and N ∈ λI implies t H M{x = N}4. t ≡ t′ implies t′ H M5. RΓ

∆(t) H RΓ
∆(M)Proof: Property (1) is a straightforward indution on the proof tree as well as Prop-erty (2) whih also uses Lemma 47. Properties (3) and (5) are also proved by indutionon the tree, using the substitution lemma that holds in λI. For Property (4):

• If t〈x = u〉〈y = v〉 H M with y /∈ FV (u), then M = [[T{x = U},
−→
T ]{y = V },

−→
U ]with t H T , u H U and v H V . We an assume

x /∈ FV (T1) ∪ . . . ∪ FV (Tm) ∪ FV (V )so that M = [[T,
−→
T ]{x = U}{y = V },

−→
U ] = [[T,

−→
T ]{y = V }{x = U{y = V }},

−→
U ].As a onsequene t〈y = v〉〈x = u〉 H M , sine by (3) we get u H U{y = V }.

• The assoiativity and ommutativity of ontration are very similar.
• If Wx(Wy(t)) H M then M = [[T,

−→
T ],

−→
U ] with t H T , y ∈ FV (T ) and

x ∈ FV ([T,
−→
T ]). Then Wy(Wx(t)) H M .

✷37



Theorem 64 (Simulation in λI)1. −→β,π strongly simulates −→B through H .2. −→β,π weakly simulates −→xr through H .Proof:
B) (λx.p) u −→ p〈x = u〉.Then T = [[λx.P,

−→
P ]U,

−→
U ] with p H P and u H U . We then obtain the followingredution sequene T−→∗

π [(λx.P )U,
−→
P ,

−→
U ] −→β [P{x = U},

−→
P ,

−→
U ] = T ′.

Abs) (λy.p)〈x = u〉 −→ λy.p〈x = u〉. Then T = [[λy.P,
−→
P ]{x = U},

−→
U ] with p H P and

u H U . We have T = [λy.(P{x = U}),
−−−−−−−→
P{x = U},

−→
U ].

App1,App2) Similar to the previous ase.
V ar) x〈x = u〉 −→ u. Then T = [[x,

−→
P ]{x = U},

−→
U ] with u H U .We have T = [U,

−−−−−−−→
P{x = U},

−→
U ].

Weak1) Wx(p)〈x = u〉 −→ WFV (u)(p).Then T = [[P,
−→
P ]{x = U},

−→
U ] with p H P , u H U , and x ∈ FV (P ). We have

T = [P{x = U},
−−−−−−−→
P{x = U},

−→
U ]. Sine x /∈ FV (p), then p H P{x = U} byLemma 63 (3), and sine x ∈ FV (P ), FV (U) ⊆ FV (P{x = U}). By Lemma 63 (1)

FV (u) ⊆ FV (U) so that FV (u) ⊆ FV (P{x = U}) onludes the proof.
Weak2) Wy(p)〈x = u〉 −→ Wy(p〈x = u〉).Then T = [[P,

−→
P ]{x = U},

−→
U ] with p H P , u H U , and y ∈ FV (P ). We have

T = [P{x = U},
−−−−−−−→
P{x = U},

−→
U ] and we still have y ∈ FV (P{x = U}).

Cont1) Cy,z
x (p)〈x = u〉 −→ C∆,Π

Γ (p〈y = RΓ
∆(u)〉〈z = RΓ

Π(u)〉).Then T = [[P{y = x}{z = x},
−→
P ]{x = U},

−→
U ] with p H P and u H U . Weobtain the following equality T = [P{y = U}{z = U},

−−−−−−−→
P{x = U},

−→
U ] whih an beexpressed as

T = [P{y = U ′}{z = U ′′}{∆ = Γ}{Π = Γ},
−−−−−−−→
P{x = U},

−→
U ]where U ′ = U{Γ = ∆} and U ′′ = U{Γ = Π}. We obtain RΓ

∆(u) H U ′ and
RΓ

Π(u) H U ′′ by Lemma 63 (5).
Cont2) Cy,z

w (p)〈x = u〉 −→ Cy,z
w (p〈x = u〉).Then T = [[P{y = w}{z = w},

−→
P ]{x = U},

−→
U ] with p H P and u H U . We thenonlude by the following equality T = [P{x = U}{y = w}{z = w},

−−−−−−−→
P{x = U},

−→
U ].

Comp) p〈y = v〉〈x = u〉 −→ p〈y = v〈x = u〉〉 where x ∈ FV (v).Then T = [[P{y = Q},
−→
P ]{x = U},

−→
U ] with t H P , v H Q, and u H U . Wehave T = [P{x = U}{y = Q{x = U}}y,

−−−−−−−→
P{x = U},

−→
U ]. Notie that we obtain

t H P{x = U} by Lemma 63 (3). 38



• WAbs, WApp1, WApp2, Cross are straightforward beause the ondition
x ∈ FV (P ) that is heked by Wx() is just hanged into a side-ondition x ∈ FV (Q)(heked one step later), where x ∈ FV (P ) implies x ∈ FV (Q).

Merge) Cy,z
w (Wy(p)) −→ Rz

w(p).Then T = [[P,
−→
P ]{y = w}{z = w},

−→
U ] with t H P and y ∈ FV (P ). We then havethe following equality T = [[P{z = w},

−−−−−−→
P{z = w}]{y = w},

−→
U ] and it su�es to useLemma 63 (3).

CAbs) Cy,z
w (λx.t) −→ λx.Cy,z

w (p).Then T = [[λx.P,
−→
P ]{y = w}{z = w},

−→
U ] with t H P .We have T = [λx.(P{y = w}{z = w}),
−−−−−−−−−−−−−−→
P{y = w}y{z = w},

−→
U ].

CApp1, CApp2) Similar to the previous ase.Now for the losure under ontext, we use the fat that if P −→β,π P ′ then
P{x = U} −→β,π P ′{x = U}, and if also x ∈ FV (P ) then P{x = U}−→+

β,π P{x = U ′}.The latter is useful for the losure: if p〈x = t〉 H Q and t −→B t′, then
Q = [P{x = T},

−→
U ] with p H P , u H U and by indution hypothesis we get T−→+

β,π T ′suh that t′ H T ′. Sine x ∈ FV (p), x ∈ FV (P ) by Lemma 63 (2), and hene
Q−→+

β,π [P{x = T ′},
−→
U ]. ✷Corollary 65 If t H T and T ∈ SNβ,π, then t ∈ SNλlxr.Proof: Appliation of Corollary 18. ✷We an onlude the proof of PSN by stating the following theorem:Theorem 66 For any λ-term u, A(u) H i(u).Proof: By indution on u:

• x H x trivially holds.
• If u = λx.t , then A(t) H i(t) holds by indution hypothesis. Therefore, we obtain

λx.A(t) H λx.i(t) and λx.Wx(A(t)) H λx.[i(t), x].
• If u = (t u) , then A(t) H i(t) and A(u) H i(u) hold by indution hypothe-sis and RΓ

Π(A(t)) H RΓ
Π(i(t)) and RΓ

Π(A(u)) H RΓ
Π(i(u)) by Lemma 63 (5). Sine

RΓ
Π(i(t)){Π = Γ} = i(t) (and the same for i(u)), we an then onlude

C∆,Π
Γ (RΓ

∆(A(t)) RΓ
Π(A(u))) H i(t) i(u).

✷Corollary 67 (PSN) For any λ-term t, if t ∈ SNβ, then A(t) ∈ SNλlxr.Proof: If t ∈ SNβ, then i(t) ∈ SNβ,π by Corollary 60. As A(t) H i(t) by Theorem 66,then we onlude A(t) ∈ SNλlxr by Corollary 65.
✷39



ConlusionIn this report we have developed a onstrutive theory of normalisation and indutionbased on an original approah that relies on seond-order quanti�ation rather than las-sial logi. We have re-established a few normalisation results in this framework, inludingthe simulation tehnique and a few variants.We have introdued two new developments to the simulation tehnique. The �rstone, alled the Safeness and Minimality tehnique, an be applied to any higher-orderrewrite system. The seond one onerns more spei�ally systems that an be related to
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