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SUMMARY

A magneto-hydrodynamic model of boundary layers at the Core-Mantle Boundary (CMB)

is derived and used to compute the viscous and electromagnetic torques generated by the

Earth’s nutation forcing. The predicted electromagnetic torque alone cannot account for

the dissipation estimated from the observations of the freecore nutation. The presence of

a viscous boundary layer in the electromagnetic skin layer at the CMB, with its additional

dissipative torques, may explain the geodetic data. An apparent Ekman number at the top

of the core between2 and4 10
−11 is inferred depending on the electrical conductivity of

the mantle.

1 INTRODUCTION

Detailed models of coupling at the Core Mantle Boundary (CMB) have been put forward to explain

the more and more accurate measurements of the nutations of the Earth (@warning Citation ‘wahr81’

on page 1 undefined; @warning Citation ‘deha97’ on page 1 undefined; @warning Citation ‘math02’

on page 1 undefined). The nutations of the Earth induce a differential rotation, about an equatorial

axis, between the mantle and the core (@warning Citation ‘sasa80’ on page 1 undefined; @warning

Citation ‘buff92’ on page 1 undefined). This differential rotation at the CMB generates both a viscous

torque (@warning Citation ‘gree68’ on page 1 undefined; @warning Citation ‘lope75’ on page 1

undefined; @warning Citation ‘roch76’ on page 1 undefined) and an electromagnetic torque due to the

shear of the poloidal magnetic field lines (@warning Citation ‘roch60’ on page 1 undefined; @warning
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Citation ‘toom74’ on page 1 undefined; @warning Citation ‘sasa77’ on page 1 undefined). Buffett and

his colleagues developed sophisticated models of the electromagnetic torque at the CMB (@warning

Citation ‘buff92’ on page 1 undefined; @warning Citation ‘buff93’ on page 1 undefined; @warning

Citation ‘buff02’ on page 1 undefined) in order to fit the spatial geodetic observations. First, Buffett

(@warning Citation ‘buff92’ on page 1 undefined) introduceda weak magnetic field theory where

the Lorentz forces associated to the skin magnetic effect are too small to generate any motion in the

boundary layer. His magnetic analysis requires the presence of a very good electrically conducting

layer in the lowermost mantle (same electrical conductivity as the core) to get an adequate amplitude

of the torque. Moreover, Buffett (@warning Citation ‘buff92’ on page 1 undefined) invoked a enhanced

magnetic field at the CMB (4 times larger than the observed one) to account for the small scales of

the magnetic field. The value of the small scales of the magnetic field at the CMB (spherical harmonic

degreel > 13) cannot be measured at the surface of the Earth because the crustal magnetic field is

dominant at these wavelengths (@warning Citation ‘blox95’on page 1 undefined; @warning Citation

‘stac92’ on page 1 undefined). He estimated their effect using an extrapolation of the low-degree non

dipole part of the poloidal magnetic spectrum to higher degrees. Then, Buffett (@warning Citation

‘buff93’ on page 1 undefined) investigated the role of a toroidal magnetic field on the electromagnetic

torque at the CMB. Its effects are weak and do not increase thedissipation of magnetic origin at the

CMB. Moreover, his results are rather speculative as measurements of the toroidal magnetic field in

the Earth’s core are not available. Buffett et al. (@warningCitation ‘buff02’ on page 1 undefined)

improved the 1992’s model by relaxing the weak field approximation. Thus, they solved the inviscid

dynamics of the skin layer in the presence of Lorentz forces.The ratio of the velocity induced by the

Lorentz forces in the skin layer and the velocity jump at the CMB is of the order of the Elsasser number

(defined below). Its value, at the top of the core, is comprised between0.1 and1 so that the weak

field approximation is not valid. The presence of this dynamical effect reduces the amplitude of the

electromagnetic torque at the CMB. This is the reason why, inorder to fit the improved observational

constraints (@warning Citation ‘math02’ on page 1 undefined), Buffett et al. (@warning Citation

‘buff02’ on page 1 undefined) invoked the presence of a constant magnetic field modeling the non

dipole component (small scale magnetic field), three times greater than the dipole value at the CMB.

In all their studies, Buffett and his colleagues introduceda thin electrically conducting layer at the

base of the mantle. Its presence remains necessary to get thecorrect amplitude of the electromagnetic

torque.

For rapidly rotating fluids, viscosity plays a role mainly inthin boundary layers, the so-called

Ekman layers (@warning Citation ‘gree68’ on page 2 undefined). The depth of these layers is
√

ν/Ω

whereν is the kinematic viscosity of the fluid andΩ the angular velocity of the Earth. As the magnetic
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parameter value

R core radius 3.48 106 m

Ω rotation rate of the Earth 7.29 10−5 rad s−1

ρ density 104 kg m−3

η magnetic diffusivity of the core 1.6 m2 s−1

ηM magnetic diffusivity of the mantle 1.6 − 1600 m2 s−1

ν kinematic viscosity of the core 7.0 10−6 m2 s−1

B0 magnetic field at the CMB 0.46 10−3 T

KCMB coupling constant at the CMB −1.85 10−5

E Ekman number ν
ΩR2 8.0 10−15

Em magnetic Ekman number of the coreηΩR2 1.8 10−9

EM
m magnetic Ekman number of the mantleηM

ΩR2 1.8 10−9 − 1.8 10−6

Λ Elsasser numberσB0
2

ρΩ 0.14

Pm magnetic Prandtl numberν
η

4.5 10−6

Table 1. Physical properties and associated dimensionless numbersused in this study.

skin depth is
√

η/Ω, whereη is the magnetic diffusivity of the core, the ratio of the two lengths is

given by
√

Pm wherePm = ν/η is the magnetic Prandtl number. Table 1 contains the values of the

molecular diffusivities for the core (@warning Citation ‘poir94’ on page 2 undefined). We evaluate

Pm = 4 10−6 in the core, making the viscous layer 500 times thinner than the magnetic skin layer.

Recent numerical simulations of the geodynamo have been successful in reproducing some fea-

tures of the magnetic field of the Earth (@warning Citation ‘dorm00’ on page 3 undefined). They have

in common to use a very high viscosity (Ekman number greater than10−6) so as to avoid numerical

resolution problems. Glatzmaier & Roberts (@warning Citation ‘glat95’ on page 3 undefined) advo-

cated the use of an eddy viscosity for dynamical core modeling as it is generally done in numerical

modeling of the oceanic or atmospheric sciences (@warning Citation ‘pedl87’ on page 3 undefined).

Brito at al. (@warning Citation ‘brit04’ on page 3 undefined)have found evidence of apparent vis-

cosity from an experiment of thermal convection in a rapidlyrotating spherical shell filled with water

using a spin-up technique. They interpret their observations by arguing that turbulent motions in the

bulk of the core increase the efficiency of the exchange of angular momentum between the Ekman

layers and the geostrophic volume. These non-linear effects at small scale may be modeled by an

eddy viscosity at large scale. A turbulent viscosity at the top of the core between10−4 m2 s−1 and

10−1 m2 s−1 is possible. Such eddy viscosities increase the magnetic Prandtl number and decreases

the ratio between the ”viscous” and magnetic layer depths. Under these conditions, viscous effects
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have to be incorporated in the dynamical equation of the layer. With such a theory, the quality factor

of the free core nutation, deduced from the geodetic data, isa constraint on the apparent viscosity et

the top of the core for the diurnal frequency.

Recently, two related studies (@warning Citation ‘math05’on page 4 undefined; @warning Cita-

tion ‘palm05’ on page 4 undefined) have been published. Theirapproaches are very similar to the work

presented here and lead also to the prediction of a viscosityvalue at the top of the core from nutations

data. From their own data analysis, Palmer & Smylie (@warning Citation ‘palm05’ on page 4 unde-

fined) use an approximate viscous model to infer a viscosity.Mathews & Guo (@warning Citation

‘math05’ on page 4 undefined) introduce a magneto-viscous model similar to ours and determine the

viscosity from the observational data analysis of Mathews et al. (@warning Citation ‘math02’ on page

4 undefined). Both papers give a value of viscosity which is close to the one proposed in this paper.

However, our analysis proposes a complete calculation withall spectral components of the magnetic

field with different extrapolated tendencies for the hiddenpart (l > 13) of the magnetic field at the

CMB. Moreover, a physical description of the magnetic and viscous boundary layers is shown. We

also give a complete study of the variations of the electrical conductivity at the base of the mantle

which enables us to invert the observational data to obtain trade-offs between the mantle electrical

conductivity effect and the viscous effect at the CMB.

This paper presents a derivation of a magneto-hydrodynamicboundary layer attached to the mantle

taking into account the Lorentz, Coriolis and viscous forces (section 2). In section 3, we discuss

the influence of the geometry (small scales) and amplitude ofthe magnetic field at the CMB on the

electromagnetic torque. Section 4 describes the effects ofa viscous layer on the visco-magnetic torques

at the CMB and an Ekman number is estimated at the top of the core. The variations of the electrical

conductivity in the lowermost mantle are studied in section5. A final discussion ends the paper.

2 MATHEMATICAL FORMULATION OF THE TORQUES

At first order (@warning Citation ‘poin10’ on page 4 undefined), the response of the rotating fluid

core to Earth’s nutations is a rigid body rotation. This approximation was checked experimentally

(@warning Citation ‘vany95’ on page 4 undefined) and stays valid for large forcings (@warning Ci-

tation ‘noir03’ on page 4 undefined). In the computation of the electromagnetic and viscous torques

at the core mantle boundary (CMB), we may neglect the flow induced by the ellipticity of the CMB

(@warning Citation ‘sasa80’ on page 4 undefined; @warning Citation ‘buff02’ on page 4 undefined)

and we describe the main flow in the outer core by an angular velocity Ω. We consider the magneto-

hydrodynamical equations in the frame of reference(ex, ey, ez) rotating with the fluid outer core at

the angular velocity vectorΩ, ez being defined byez = Ω/Ω. The equations are made dimensionless
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usingΩ−1 as time scale,R the radius of the core as length scale and a typical magnitudeof the radial

component of the magnetic fieldB0 as magnetic field scale. The magnetic field and the flow velocity

in the core (r < 1) are governed by the following dimensionless equations:

∂B

∂t
+ (v · ∇)B = (B · ∇)v + Em∆B , (1)

Dv

Dt
+ 2ez × v +

∂Ω

∂t
× r + Ω × (Ω × r) = −∇P + EmΛ(∇× B) × B + E∆v , (2)

where

E =
ν

ΩR2

is the Ekman number andν the kinematic viscosity.

Em =
η

ΩR2
=

η

ν
E

is the magnetic Ekman number which is Ekman number over the magnetic Prandtl number (ν/η)

whereη is the magnetic diffusivity.

Λ =
σB0

2

ρΩ

is the Elsasser number,σ = (µ0η)−1 is the electrical conductivity of the core andρ the density of the

core fluid.

In the above defined frame of coordinates , the motion of the mantle is a rigid body rotationδωM

rotating at−ez defined by :

δωM (t) = δωM [ex cos t − ey sin t]

The angular velocity of the mantle is equatorial (no spin-upcontribution) (@warning Citation ‘buss68’

on page 5 undefined; @warning Citation ‘noir03’ on page 5 undefined). The dimensionless velocity

in the mantle is described by:

vM = δωM × r = −rδωM [eθ sin(t + ϕ) + eϕ cos θ cos(t + ϕ)] (3)

where(er, eθ, eϕ) is the spherical coordinate system directly associated to(ex, ey, ez). The magnetic

field in the mantle (r > 1) is then described by the induction equation :

∂B

∂t
+ (vM · ∇)B = (B · ∇)vM + EM

m ∆B (4)

where

EM
m =

ηM

ΩR2

is the magnetic Ekman number of the mantle andηM is the magnetic diffusivity of the mantle.

WhenδωM = 0, the solution of (1) and (4) is a diffusive poloidal magneticfield denotedB0. As

δωM increases, magneto-viscous boundary layers develop around the core mantle boundary (r = 1).
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The induced magnetic field in these boundary layers is denoted b. As δωM << 1, we haveb <<

B0 = O(1). The width of the magnetic skin layer at the top of the core (atthe bottom of the mantle)

is of orderEm
1/2 ((EM

m )1/2) which is very small compared to 1. The viscous layer of sizeE1/2 is

even smaller. Consequently, only radial derivatives ofb andv have to be considered in the magneto

hydrodynamic equations in the boundary layers. Moreover, we neglect the radial variations ofB0 and

vM inside these thin boundary layers. A linearisation of equations (1),(2),(4) with the above boundary

layer assumptions leads to:

∀r < 1,
∂b

∂t
− Em

∂2

∂r2
b = β

∂v

∂r
(5)

∀r < 1,
∂v

∂t
+ 2ez × v − E

∂2

∂r2
v = −∇Π + EmΛ

(

β
∂b

∂r
− B · ∂b

∂r
er

)

(6)

∀r > 1,
∂b

∂t
− EM

m

∂2

∂r2
b = 0 (7)

whereβ(θ, ϕ) = B0(r = 1) · er is the radial component of the imposed magnetic field.

Taking the curl of the motion equation (6) to eliminate pressure and using equation (5) to eliminate

b, we obtain the following equation:

(
∂

∂t
− E

∂2

∂r2
)(

∂

∂t
− Em

∂2

∂r2
)(∇× v) − 2 cos θ(

∂

∂t
− Em

∂2

∂r2
)
∂v

∂r
= EmΛβ2 ∂(∇× v)

∂r

Under our assumptions,∇× v = −∂vϕ

∂r eθ + ∂vθ
∂r eϕ and it is convenient to use the complex variables

v+ = vθ + ivϕ, andv− = vθ − ivϕ to rewrite the last equation:

∂

∂r

[

(
∂

∂t
− E

∂2

∂r2
)(

∂

∂t
− Em

∂2

∂r2
)v± ± 2i cos θ(

∂

∂t
− Em

∂2

∂r2
)v±

]

= EmΛβ2 ∂3v±
∂r3

, (8)

with the imposed velocity (in terms of complex variables) asboundary condition (r = 1) deduced

from equation (3):

vM± =
iδωM

2
[(1 ∓ cos θ) exp i(t + ϕ) − (1 ± cos θ) exp−i(t + ϕ)] .

The boundary condition imposes a time dependence of the formexp±it which leads to a set of

four differential equations deduced from (8). We use the exponent(±) to denote the sign of the time

dependence and we define:

v± = v
(+)
± exp it + v

(−)
± exp−it

In the following, we solve explicitly the problem for one component of the velocityv(−)
+ and the other

three components of the velocity may be easily deduced from it. The equation forv(−)
+ is:

∂

∂r

[

EEm
∂4

∂r4
+ (iE + iEm − 2iEm cos θ − EmΛβ2)

∂2

∂r2
+ 2cos θ − 1

]

v
(−)
+ = 0 .

The associated polynomial function has four rootsZi corresponding to four exponential elementary
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solutions which can be written (thanks to M. Greff):

Zi = ±(2EEm)−1/2
[

−iE − Em(i − 2i cos θ − Λβ2)

±
[

−E2 + 2EEm(1 − 2 cos θ − iΛβ2)+

E2
m(4 cos θ − 1 − 2iΛβ2 − 4 cos2 θ + 4i cos θΛβ2 + Λ2β4)

]1/2
]1/2

As the velocity field must vanish far away from the boundary layer (limrE−1/2→−∞
v = 0), both

roots with a positive real value are retained and the solution may be written:

∀r < 1, v
(−)
+ = X1 exp(Z1(r − 1)) + X2 exp(Z2(r − 1)) ,

whereX1andX2 are constants to be determined.

The equation (5) gives us the solution forb
(−)
+ :

∀r < 1, b
(−)
+ = − βZ1

i + EmZ2
1

X1 exp(Z1(r − 1)) − βZ2

i + EmZ2
2

X2 exp(Z2(r − 1)) .

Using limr(EM
m )−1/2→∞

b = 0, the solution for the magnetic field in the mantle may be deduced

directly from (7):

∀r > 1, b
(−)
+ = X3 exp(Z3(r − 1)) ,

whereZ3 = −(1 + i)/
√

2EM
m .

We use the continuity of the velocity, the magnetic field and the electrical currents at the core

mantle boundary (r = 1) to determine the constantsX1,X2,X3.

X1 + X2 =
iδωM

2
(1 + cos θ) ,

X3 = − βZ1

i + EmZ2
1

X1 −
βZ2

i + EmZ2
2

X2 ,

EM
m X3Z3 = Em

[

− βZ2
1

i + EmZ2
1

X1 −
βZ2

2

i + EmZ2
2

X2

]

.

With the solutions to this set of equations, the velocity andthe magnetic field are fully determined

within the boundary layers. With our scaling, the magnetic torqueΓm scales withρR5Ω2EmΛ and the

viscous torqueΓv with ρR5Ω2E. Here, we use the complex notation by introducingΓ̄ = Γx + iΓy.

The derivation of the viscous torque is given in Appendix A.

Γ̄v = (ex + iey) ·
∫ ∫

S
r× fvdS , (9)

=
i

2

∫ π

0

∫ 2π

0
[(1 + cos θ)

∂v+

∂r
+ (1 − cos θ)

∂v−
∂r

] exp (iϕ) sin θdθdϕ . (10)

The magnetic torque could be calculated by a surface integral (@warning Citation ‘roch62’ on

page 7 undefined) similarly to the viscous torque. The magnetic torque could be deduced from the
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perturbed magnetic fieldb at r = 1:

Γ̄m = (ex + iey) ·
∫

r × (βb)dS , (11)

=
i

2

∫ π

0

∫ 2π

0
β[(1 + cos θ)b+ + (1 − cos θ)b−] exp (iϕ) sin θdθdϕ . (12)

It is of some use to introduce the coupling constantK deduced from the torque to compare with

the observed data (@warning Citation ‘math02’ on page 8 undefined):

K =
Γ̄

iIδωM
,

whereI is the dimensionless moment of inertia of the core.

Both torques are integrated numerically using a(θ, ϕ) grid whereβ(θ, ϕ) is prescribed.

For a very weak magnetic field (the Lorentz forces tend to vanish) Toomre (@warning Citation

‘toom74’ on page 8 undefined) predicted that the torque is pointing π/4 away from the direction of

the imposed angular velocityδω. For very low Elsasser and Ekman numbers, the solution follows

this asymptotic behavior (Im(K) = −Re(K)). For a large and dipolar magnetic field, we compare

successfully our results for a very low Ekman number (E = 10−16) with the coupling constants found

by Buffett (@warning Citation ‘buff02’ on page 8 undefined) in their inviscid study. In the limit of

large Ekman numbers and low Elsasser numbers, we check that the computed torque tends toward the

spin-over torque (@warning Citation ‘gree68’ on page 8 undefined).

3 MAGNETIC FIELD AT THE CMB

Even though the magnetic field at the CMB is dominated by the axial dipole component, all spherical

harmonic components contribute to the electromagnetic torque. The spatial magnetic power spectrum

(Mauersberger-Lowes spectrum) of the magnetic field at the Earth surface is deduced from obser-

vations (@warning Citation ‘lang82’ on page 8 undefined; @warning Citation ‘voor02’ on page 8

undefined). At the CMB, this spectrum is fitted by the power law1.085 1010 (0.959)lnT 2 (@warning

Citation ‘stac92’ on page 8 undefined) if one excepts the dipole component (l = 1). This is a rela-

tively flat magnetic spectrum which has to become stiffer at very largel to satisfy energetic arguments

(@warning Citation ‘robe03’ on page 8 undefined; @warning Citation ‘chri04’ on page 8 undefined).

Taking the same electrical conductivity for the core and themantle (Em = EM
m = 1.8 10−9) and

a very low Ekman number (E = 10−16), we compute the electromagnetic coupling constant using

the firstlmax degrees of the magnetic field (higher degree coeficients are set to zero). Figure 1 illus-

trates possible contributions of the small scales (l > 13) of the magnetic field to the amplitude of the

electromagnetic torque. Different random sets of spherical harmonic coefficients matching the spectra

dependence, give comparable contribution to the torque (variations lower than 10%). Consequently,
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0.0 10.0 20.0 30.0 40.0
lmax

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3
10

5 .Im
(K

m
) 

VMM

WFM

Figure 1. Imaginary part of the electromagnetic coupling constant versus the truncature levellmax of the mag-

netic field at the core boundary. The observed geomagnetic spectra is extrapolated randomly with a power law

(0.959)l for l > 13 and the coupling constant is computed with the visco-magnetic model (VMM) or with the

weak field model (WFM). Each line represents a set of spherical harmonic coefficients sastifying the spectra

dependence. The bold lines show the mean values of both model.

the mean value of the coupling constant is representative ofwhat could happen at the CMB and in the

following, we keep only the mean value to present the results.

The contribution of the large degrees of the spherical harmonics of the magnetic field in the visco-

magnetic model is smaller that the one associated with the weak field model (@warning Citation

‘buff92’ on page 9 undefined). The back reaction of the Lorentz forces on the flow is to reduce the

electromagnetic torque at the boundary. This effect is emphasised for the small scales of the magnetic

field. In some cases (for example, all coefficients positive), the contribution of the large degree is

negligeable and the coupling constant curve becomes flat (highest curve in Figure 1).

Figure 2 shows that the mean electromagnetic torque associated with the observed magnetic

field at the CMB ((0.959)l) is too low to fit the imaginary part of the observed coupling constant

(−1.85 10−5). Following the ideas of Buffett (@warning Citation ‘buff92’ on page 9 undefined;

@warning Citation ‘buff02’ on page 9 undefined), we explore the effect of an increase of the magnetic

field at small scales . We studied two different power laws forthe spectra (l > 13): (1.044)l giving an
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0.0 10.0 20.0 30.0 40.0
lmax

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

 1
05 .Im

(K
m
)

 (0.959)
l

 (1.044)
l

 (1.098)
l

Im(K
CMB

)

Figure 2. Imaginary part of a mean electromagnetic coupling constantversus the truncature levellmax of the

magnetic field at the core boundary. The coupling constant iscomputed with the visco-magnetic model with

three different extrapolated spectra forl > 13.

magnetic energy 10 times greater than the standard one at degree 40, and(1.098)l corresponding to an

energy 10 times greater than the standard one at degree 30. Anincrease by a factor 10 in energy at de-

gree 40, increases the overall coupling constant less than afactor 2 which remains too small to match

the observed value. In Figure 2, we see that only the(1.098)l spectrum could explain the observed

data. From a geophysical point of view, this spectrum is unlikely as it dissipates a large amount of en-

ergy. Using the result of Roberts et al. (@warning Citation ‘robe03’ on page 9 undefined) (eq 2.7 page

104), we found a ohmic dissipation of0.03TW for l < 40. This is large compared to the dissipation

associated to dipolar component alone which is0.08GW . According to the scaling deduced from nu-

merical dynamos (@warning Citation ‘buff02b’ on page 9 undefined; @warning Citation ‘robe03’ on

page 9 undefined; @warning Citation ‘chri04’ on page 9 undefined) which takes into account the dis-

sipation of the toroidal part of the magnetic field and the contribution of small scales of the magnetic

field, this(1.098)l spectrum is too dissipative. For example, with a dissipation of 1.32GW associated

to the large scale magnetic spectrum, Roberts at al. (@warning Citation ‘robe03’ on page 9 undefined)

estimate a total ohmic power loss between 1 and2TW .

Another dissipative process is thus needed to explain the nutation data.
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4 VISCOUS EFFECTS AT THE CMB

In this section, we assume the electrical conductivity in the core and in the mantle to be the same

(@warning Citation ‘buff02’ on page 11 undefined) and focus on viscous effects. Figure 3 shows

components of the velocity and perturbed magnetic fields in the boundary layers forEm = EM
m =

1.8 10−9 (see table 1) and different Ekman numbers. For very low Ekmannumbers, the viscous layer

is very narrow (E1/2) and the magnetic field (symmetry and amplitude) is nearly unchanged by the

presence of the Ekman layer. For Ekman numbers comparable tothe magnetic Ekman number, the

width of the viscous layer becomes as large as the magnetic skin depth (E1/2
m ) and magnetic field is

induced deeper into the core. Consequently, the perturbed magnetic field looses its symmetry and its

value at the CMB decreases.

This physical behavior is summarised on figure 4. The magnetic torque does not vary for very

low Ekman number (E < 10−11) and both components decrease as the Ekman number approaches

the magnetic Ekman number. As expected, the viscous torque increases with the Ekman number. The

imaginary part of the magnetic and viscous coupling constants become comparable forE ≈ 2. 10−12

while their real parts match for a larger Ekman number (E ≈ 4. 10−10). This difference results directly

from the geometry of the spin over viscous torque which exhibits a very low imaginary part (0.259)

compared to the real one (2.62) (@warning Citation ‘gree68’ on page 11 undefined). As a conclusion,

the resulting torque at the CMB is largely modified by a viscous shear layer forE > 10−12 even if

the depth of the viscous layer is much smaller than the magnetic one (Figure 3a) and its effect barely

changes the induced magnetic field at the boundary (Figure 3b).

In order to fit the imaginary part of the observed coupling constant (−1.85 10−5), an Ekman

number of3. 10−11 is necessary as shown on figure 4. With such a value, the viscous dissipative

process represents 85% of the whole dissipation at the CMB but the real part of the coupling constant

is still dominated (75%) by the magnetic torque.

5 ELECTRICAL CONDUCTIVITY AT THE BOTTOM OF THE MANTLE

In the visco-magnetic model for CMB parameters, the influence of the electrical conductivity of the

lowermost mantle is secondary. Figure 5 shows the evolutionof the coupling constant as the electrical

resistivity is increased up to 10000 times the electrical resistivity of the core for an Ekman number

of 4. 10−11. The imaginary part of the coupling constant varies less than 20% but the real part of the

coupling constant is divided by 3. As expected, for large magnetic Ekman number in the mantle, the

torque is mainly dominated by the viscous part of the torque.

A trade off between viscous and magnetic torque could be found in order to fit the observational



12 B. Deleplace and P. Cardin

−0.0004 −0.0003 −0.0002 −0.0001 0.0000
radius (r−1)

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

ve
lo

ci
ty

 Im
(v

+
(−

) )

E=10
−13

E=10
−11

E=10
−9

E=10
−8

C
M

B

−0.0004 −0.0002 0.0000 0.0002 0.0004
radius  (r−1)

−500

500

1500

2500

3500

4500

5500

6500

7500

m
ag

ne
tic

 fi
el

d 
|b

+
(−

) |

E=10
−13

E=10
−11

E=10
−9

E=10
−8

C
M

B

Figure 3. Velocity Im(v
(−)
+ ) and magnetic|b(−)

+ | perturbed fields at the core-mantle boundary forEm = EM
m =

1.8 10−9 and different Ekman numbers.



Geophys. J. Int.: Visco-magnetic Torque at the CMB13

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

Ekman number, E

−2.2

−1.8

−1.4

−1.0

−0.6

−0.2

0.2

0.6

1.0

1.4

1.8

2.2
10

5  . 
C

ou
pl

in
g 

C
on

st
an

t K
 

Re(Kv)
Im(Kv)
Re(Km)
Im(Km)
Re(K)
Im(K)

Im(K
CMB

) 

E
=

E
m

observed

Figure 4. Variations of the coupling constantK as a function of the Ekman number.Kv (Km) is the viscous

(magnetic) component of the coupling constant

data of nutations. On figure 6, for each value of the electrical conductivity of the mantle (EM
m ), we

plot the Ekman number (E) corresponding to a total torque in agreement with the observational con-

straintIm(KCMB) = −1.85 10−5. For the nearly flat standard spectra(0.959)l (corresponding to the

magnetic field at the CMB), Ekman numbers between2 and5. 10−11 are retrieved from the inversion

whatever the conductivity at the bottom layer of the mantle.For the largest increasing spectra(1.098)l,

Ekman numbers vary more significantly with the conductivityof the lowermost mantle and very low

Ekman numbers are retrieved when the electromagnetic torque becomes significant (comparable elec-

trical conductivity on both sides of the CMB).

The electrical conductivity at the bottom of the mantle is difficult to determine. Theoretical anal-

ysis and experimental measurements indicate that silicaterocks have a lower electrical conductivity

than the liquid metal of the core (@warning Citation ‘poir92’ on page 13 undefined; @warning Cita-

tion ‘shan93’ on page 13 undefined). Discoveries of new phases of perovskite, such as post perovskite

(@warning Citation ‘iita04’ on page 13 undefined), or metal alloys of silicates may change this state-

ment. The resistivity may even present lateral variations as shown by seismic lateral variations in the

lowermost mantle (@warning Citation ‘lay98’ on page 13 undefined). Except in the case of both a
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Figure 5. Variations of the coupling constant with the Ekman magneticnumber of the mantle.

large electrical conductivity at the base of the mantle and alarge magnitude of a hidden magnetic field

at the CMB, the Ekman number needed to explain the observational data is around10−11.

6 DISCUSSION

The real part of the coupling constant is not dissipative anddirectly influences the period of the nu-

tations (@warning Citation ‘deha97’ on page 14 undefined; @warning Citation ‘hind00’ on page 14

undefined; @warning Citation ‘math02’ on page 14 undefined).But the discrepancy between the the-

oretical and observed periods of the free core nutation (FCN) is too large to be explained only by the

real part of the coupling constant associated with the dissipative torque at the CMB. Hence, a dynamic

ellipticity of a few hundred meters at the CMB has been introduced to account for this discrepancy.

Then, the real part of the coupling constant cannot be used anymore as an observational constraint

to determine the nature of the dissipative torque at the CMB.It is true, though, that a visco-magnetic

dynamic model of the CMB reduces the real part of the couplingconstant compared to a weak field

model and consequently tends to increase by 10% the estimateof the dynamic ellipticity at the CMB.

The visco-magnetic model of the magnetic skin layer shows that the small scales of the magnetic

field at the CMB, that cannot be directly inferred from magnetic observations, do not contribute sig-
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nificantly to the electromagnetic torque between the core and the mantle. With a flat or decreasing

power magnetic spectrum at the CMB, the electromagnetic torque is too weak to explain the coupling

constantIm(KCMB) = −1.85 10−5, even if the electrical conductivity of the lower most mantle is

comparable to the core one.

The visco-magnetic model of the boundary layers at the CMB using the observed geomagnetic

field imposes the presence of viscous dissipative effects. Apparent Ekman numbers between2 and

4 10−11 are needed to fit the observational constraint (corresponding to a turbulent viscosity of

3.5 10−2m2s−1). This observational constraint may change as the quality of the data and their treat-

ment improve (@warning Citation ‘flor00’ on page 15 undefined). Only a reduction of the value of

Im(KCMB) by a factor 3 would make viscous effects unnecessary to explain the observations. How-

ever, the recent study of Palmer & Smylie (@warning Citation‘palm05’ on page 15 undefined), if

correct, gives an Ekman number of7 10−11 using their own analysis of VLBI data of the free core

nutation and a pure viscous model of coupling at the CMB. The agreement is also very good with the

results of Mathews & Guo (@warning Citation ‘math05’ on page15 undefined) which states that an

Ekman number larger than5 10−11 is needed at the CMB. Such values of the Ekman number at the
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CMB are also compatible with the dissipation needed to account for the relaxation of torsional oscil-

lations in the core (@warning Citation ‘zatm97’ on page 15 undefined; @warning Citation ‘jaul03’

on page 15 undefined).

At this stage, we like to see this observational constraint as a measurement of an apparent viscosity

at the top of the core. The visco-magnetic model suggests an effective viscosity five thousand times

larger than the expected molecular viscosity of iron at the core conditions. We would like to stress than

an apparent viscosity is space and time dependent whereas, it is defined here on the whole surface of

the CMB at the diurnal frequency. Consequently, this value of viscosity (3.5 10−2m2s−1) may not

be generalized to the bulk of the core, at small scales and at different time scales. This is large but

comparable to effective viscosities used in fluid dynamics of the ocean or the atmosphere. In these

fields, a large apparent viscosity is the net result of the turbulent transport due to the small scales of

the flow on the large scale flow. Such an explanation may be valid in the Earth’s core even though

we do not have any evidence for the action of small scales at the CMB. As discussed by Davies &

Whaler (@warning Citation ‘davi97’ on page 16 undefined), the effective transport of momentum

may be generated by convective motions associated to the dynamo process or by surfacic flows such

as topographic winds, unstable boundary layers motions, orchemical/compositional fluxes.
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APPENDIX A: TORQUE FORMULATION

The viscous torque is computed from the viscous forces at thecore mantle boundary:

Γv =

∫ ∫

S
r × fv dS

wherefv is the viscous force per unit area. In our geometry and withinthe boundary layer approach,

the viscous force on a sphere may be written :fv = fvrθ
eθ + fvrϕeϕ = ∂vθ

∂r eθ +
∂vϕ

∂r eϕ. At r = 1, we

have:

r× fv = (−fvrϕ cos θ cos ϕ − fvrθ
sin ϕ)ex + (−fvrϕ cos θ sin ϕ + fvrθ

cos ϕ)ey + fvrϕ sin θ ez

IntroducingΓ̄ = Γx + iΓy, the dimensionless complex viscous torque at the CMB is:

Γ̄v =

∫ π

0

∫ 2π

0
[i

∂vθ

∂r
− cos θ

∂vϕ

∂r
] exp (iϕ) sin θdθdϕ

which in terms ofv+ andv− may be expressed:

Γ̄v =
i

2

∫ π

0

∫ 2π

0
[(1 + cos θ)

∂v+

∂r
+ (1 − cos θ)

∂v−
∂r

] exp (iϕ) sin θdθdϕ
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which is the expression shown in equation (10). Equation (11) being similar to equation (9), the deriva-

tion of the magnetic torque is similar to that of the viscous torque.


