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SUMMARY

A magneto-hydrodynamic model of boundary layers at the Core-Mantle Boundary (CMB)

is derived and used to compute the viscous and electromagnetic torques generated by the

Earth’s nutation forcing. The predicted electromagnetic torque alone cannot account for

the dissipation estimated from the observations of the freecore nutation. The presence of

a viscous boundary layer in the electromagnetic skin layer at the CMB, with its additional

dissipative torques, may explain the geodetic data. An apparent Ekman number at the top

of the core between3 and5 10
−11 is inferred depending on the electrical conductivity of

the mantle.

1 INTRODUCTION

Detailed models of coupling at the Core Mantle Boundary (CMB) have been put forward to explain

the more and more accurate measurements of the nutations of the Earth (Wahr, 1981; Dehant & De-

fraigne, 1997; Mathews et al., 2002). The nutations of the Earth induce a differential rotation, about

an equatorial axis, between the mantle and the core (Sasao etal., 1980; Buffett, 1992). This differ-

ential rotation at the CMB generates both a viscous torque (Greenpan, 1968; Loper, 1975; Rochester,

1976) and an electromagnetic torque due to the shear of the poloidal magnetic field lines (Rochester,

1960; Toomre, 1974; Sasao, 1977). Buffett and his colleagues developed sophisticated models of the

electromagnetic torque at the CMB (Buffett, 1992; Buffett,1993; Buffett et al., 2002) in order to fit

the spatial geodetic observations. First, Buffett (1992) introduced a weak magnetic field theory where
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the Lorentz forces associated to the skin magnetic effect are too small to generate any motion in the

boundary layer. His magnetic analysis requires the presence of a very good electrically conducting

layer in the lowermost mantle (same electrical conductivity as the core) to get an adequate amplitude

of the torque. Moreover, Buffett (1992) invoked a enhanced magnetic field at the CMB (4 times larger

than the observed one) to account for the small scales of the magnetic field. The value of the small

scales of the magnetic field at the CMB (spherical harmonic degreel > 13) cannot be measured at the

surface of the Earth because the crustal magnetic field is dominant at these wavelengths (Bloxham,

1995; Stacey, 1992). He estimated their effect using an extrapolation of the low-degree non dipole

part of the poloidal magnetic spectrum to higher degrees. Then, Buffett (1993) investigated the role of

a toroidal magnetic field on the electromagnetic torque at the CMB. Its effects are weak and do not

increase the dissipation of magnetic origin at the CMB. Moreover, his results are rather speculative as

measurements of the toroidal magnetic field in the Earth’s core are not available. Buffett et al. (2002)

improved the 1992’s model by relaxing the weak field approximation. Thus, they solved the inviscid

dynamics of the skin layer in the presence of Lorentz forces.The ratio of the velocity induced by the

Lorentz forces in the skin layer and the velocity jump at the CMB is of the order of the Elsasser num-

ber (defined below). Its value, at the top of the core, is comprised between0.1 and1 so that the weak

field approximation is not valid. The presence of this dynamical effect reduces the amplitude of the

electromagnetic torque at the CMB. This is the reason why, inorder to fit the improved observational

constraints (Mathews et al., 2002), Buffett et al. (2002) invoked the presence of a constant magnetic

field modeling the non dipole component (small scale magnetic field), three times greater than the

dipole value at the CMB. In all their studies, Buffett and hiscolleagues introduced a thin electrically

conducting layer at the base of the mantle. Its presence remains necessary to get the correct amplitude

of the electromagnetic torque.

For rapidly rotating fluids, viscosity plays a role mainly inthin boundary layers, the so-called

Ekman layers (Greenpan, 1968). The depth of these layers is
√

ν/Ω whereν is the kinematic viscosity

of the fluid andΩ the angular velocity of the Earth. As the magnetic skin depthis
√

η/Ω, whereη is

the magnetic diffusivity of the core, the ratio of the two lengths is given by
√

Pm wherePm = ν/η

is the magnetic Prandtl number. Table 1 contains the values of the molecular diffusivities for the core

(Poirier, 1994). We evaluatePm = 4 10−6 in the core, making the viscous layer 500 times thinner

than the magnetic skin layer.

Recent numerical simulations of the geodynamo have been successful in reproducing some fea-

tures of the magnetic field of the Earth (Dormy et al., 2000). They have in common to use a very high

viscosity (Ekman number greater than10−6) so as to avoid numerical resolution problems. Glatzmaier

& Roberts (1995) advocated the use of an eddy viscosity for dynamical core modeling as it is gener-



Geophys. J. Int.: Visco-magnetic Torque at the CMB3

parameter value

R core radius 3.48 106 m

Ω rotation rate of the Earth 7.29 10−5 rad s−1

ρ density 104 kg m−3

η magnetic diffusivity of the core 1.6 m2 s−1

ηM magnetic diffusivity of the mantle 1.6 − 1600 m2 s−1

ν kinematic viscosity of the core 7.0 10−6 m2 s−1

B0 magnetic field at the CMB 0.46 10−3 T

KCMB coupling constant at the CMB −1.85 10−5

E Ekman number ν
ΩR2 8.0 10−15

Em magnetic Ekman number of the coreηΩR2 1.8 10−9

EM
m magnetic Ekman number of the mantleηM

ΩR2 1.8 10−9 − 1.8 10−6

Λ Elsasser numberσB0
2

ρΩ 0.14

Pm magnetic Prandtl numberν
η

4.5 10−6

Table 1. Physical properties and associated dimensionless numbersused in this study.

ally done in numerical modeling of the oceanic or atmospheric sciences (Pedlovsky, 1987). Brito at

al. (2004) have found evidence of apparent viscosity from anexperiment of thermal convection in a

rapidly rotating spherical shell filled with water using a spin-up technique. They interpret their obser-

vations by arguing that turbulent motions in the bulk of the core increase the efficiency of the exchange

of angular momentum between the Ekman layers and the geostrophic volume. These non-linear ef-

fects at small scale may be modeled by an eddy viscosity at large scale. A turbulent viscosity at the

top of the core between10−4 m2 s−1 and10−1 m2 s−1 is possible. Such eddy viscosities increase the

magnetic Prandtl number and decreases the ratio between the”viscous” and magnetic layer depths.

Under these conditions, viscous effects have to be incorporated in the dynamical equation of the layer.

With such a theory, the quality factor of the free core nutation, deduced from the geodetic data, is a

constraint on the apparent viscosity et the top of the core for the diurnal frequency.

Recently, two related studies (Mathews & Guo, 2005; Palmer &Smylie, 2005) have been pub-

lished. Their approaches are very similar to the work presented here and lead also to the prediction

of a viscosity value at the top of the core from nutations data. From their own data analysis, Palmer

& Smylie (2005) use a pure viscous model to infer a viscosity.Mathews & Guo (2005) introduce a

magneto-viscous model similar to ours and determine the viscosity from the observational data analy-

sis of Mathews et al. (2002). Both papers give a value of viscosity which is close to the one proposed

in this paper. However, our analysis proposes a complete calculation with all spectral components of

the magnetic field with different extrapolated tendencies for the hidden part (l > 13) of the magnetic
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field at the CMB. Moreover, a physical description of the magnetic and viscous boundary layers is

shown. We also give a complete study of the variations of the electrical conductivity at the base of

the mantle which enables us to invert the observational datato obtain trade-offs between the mantle

electrical conductivity effect and the viscous effect at the CMB.

This paper presents a derivation of a magneto-hydrodynamicboundary layer attached to the mantle

taking into account the Lorentz, Coriolis and viscous forces (section 2). In section 3, we discuss

the influence of the geometry (small scales) and amplitude ofthe magnetic field at the CMB on the

electromagnetic torque. Section 4 describes the effects ofa viscous layer on the visco-magnetic torques

at the CMB and an Ekman number is estimated at the top of the core. The variations of the electrical

conductivity in the lowermost mantle are studied in section5. A final discussion ends the paper.

2 MATHEMATICAL FORMULATION OF THE TORQUES

At first order (Poincaré, 1910), the response of the rotating fluid core to Earth’s nutations is a rigid

body rotation. This approximation was checked experimentally (Vanyo et al., 1995) and stays valid

for large forcings (Noir et al., 2003). In the computation ofthe torques at the core mantle boundary

(CMB), we may neglect the flow induced by the ellipticity of the CMB (Sasao et al., 1980; Buffett

et al., 2002) and we describe the main flow in the outer core by an angular velocityΩ. We consider

the magnetohydrodynamical equations in the frame of reference (ex, ey, ez) rotating with the fluid

outer core at the angular velocity vectorΩ, ez being defined byez = Ω/Ω. The equations are made

dimensionless usingΩ−1 as time scale,R the radius of the core as length scale and a typical magnitude

of the radial component of the magnetic fieldB0 as magnetic field scale. The magnetic field and the

flow velocity in the core (r < 1) are governed by the following dimensionless equations:

∂B

∂t
+ (v · ∇)B = (B · ∇)v + Em∆B , (1)

Dv

Dt
+ 2ez × v +

∂Ω

∂t
× r + Ω × (Ω × r) = −∇P + EmΛ(∇× B) × B + E∆v , (2)

where

E =
ν

ΩR2

is the Ekman number andν the kinematic viscosity.

Em =
η

ΩR2
=

η

ν
E

is the magnetic Ekman number which is Ekman number over the magnetic Prandtl number (ν/η)

whereη is the magnetic diffusivity.

Λ =
σB0

2

ρΩ
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is the Elsasser number,σ = (µ0η)−1 is the electrical conductivity of the core andρ the density of the

core fluid.

In the above defined frame of coordinates , the motion of the mantle is a rigid body rotationδωM

rotating at−ez defined by :

δωM (t) = δωM [ex cos t − ey sin t]

The angular velocity of the mantle is equatorial (no spin-upcontribution) (Busse, 1968; Noir et al.,

2003). The dimensionless velocity in the mantle is described by:

vM = δωM × r = −rδωM [eθ sin(t + ϕ) + eϕ cos θ cos(t + ϕ)] (3)

where(er, eθ, eϕ) is the spherical coordinate system directly associated to(ex, ey, ez). The magnetic

field in the mantle (r > 1) is then described by the induction equation :

∂B

∂t
+ (vM · ∇)B = (B · ∇)vM + EM

m ∆B (4)

where

EM
m =

ηM

ΩR2

is the magnetic Ekman number of the mantle andηM is the magnetic diffusivity of the mantle.

WhenδωM = 0, the solution of (1) and (4) is a diffusive poloidal magneticfield denotedB0. As

δωM increases, magneto-viscous boundary layers develop around the core mantle boundary (r = 1).

The induced magnetic field in these boundary layers is denoted b. As δωM << 1, we haveb <<

B0 = O(1). The width of the magnetic skin layer at the top of the core (atthe bottom of the mantle)

is of orderEm
1/2 ((EM

m )1/2) which is very small compared to 1. The viscous layer of sizeE1/2 is

even smaller. Consequently, only radial derivatives ofb andv have to be considered in the magneto

hydrodynamic equations in the boundary layers. Moreover,B0 andvM have no radial variation inside

these thin boundary layers. A linearisation of equations (1),(2),(4) with the above boundary layer

assumptions leads to:

∀r < 1,
∂b

∂t
− Em

∂2

∂r2
b = β

∂v

∂r
(5)

∀r < 1,
∂v

∂t
+ 2ez × v − E

∂2

∂r2
v = −∇Π + EmΛ

(

β
∂b

∂r
− B · ∂b

∂r
er

)

(6)

∀r > 1,
∂b

∂t
− EM

m

∂2

∂r2
b = 0 (7)

whereβ(θ, ϕ) = B0(r = 1) · er is the radial component of the imposed magnetic field.

Taking the curl of the motion equation (6) to eliminate pressure and using equation (5) to eliminate

b, we obtain the following equation:

(
∂

∂t
− E

∂2

∂r2
)(

∂

∂t
− Em

∂2

∂r2
)(∇× v) − 2 cos θ(

∂

∂t
− Em

∂2

∂r2
)
∂v

∂r
= EmΛβ2 ∂(∇× v)

∂r
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Under our assumptions,∇× v = −∂vϕ

∂r eθ + ∂vθ
∂r eϕ and it is convenient to use the complex variables

v+ = vθ + ivϕ, andv− = vθ − ivϕ to rewrite the last equation:

∂

∂r

[

(
∂

∂t
− E

∂2

∂r2
)(

∂

∂t
− Em

∂2

∂r2
)v± ± 2i cos θ(

∂

∂t
− Em

∂2

∂r2
)v±

]

= EmΛβ2 ∂3v±
∂r3

, (8)

with the imposed velocity (in terms of complex variables) asboundary condition (r = 1) deduced

from equation (3):

vM± =
iδωM

2
[(1 ∓ cos θ) exp i(t + ϕ) − (1 ± cos θ) exp−i(t + ϕ)] .

The boundary condition imposes a time dependence of the formexp±it which leads to a set of

four differential equations deduced from (8). We use the exponent(±) to denote the sign of the time

dependence. In the following, we solve explicitly the problem for one component of the velocityv(−)
+

and the other three components of the velocity may be easily deduced from it. The equation forv(−)
+

is:

∂

∂r

[

EEm
∂4

∂r4
+ (iE + iEm − 2iEm cos θ − EmΛβ2)

∂2

∂r2
+ 2cos θ − 1

]

v
(−)
+ = 0 .

The associated polynomial function has four rootsZi corresponding to four exponential elementary

solutions which can be written (thanks to M. Greff):

Zi = ±(2EEm)−1/2
[

−iE − Em(i + 2i cos θ + Λβ2)

±
[

−E2 + 2EEm(1 − 2 cos θ − iΛβ2)+

E2
m(4 cos θ − 1 − 2iΛβ2 − 4 cos2 θ + 4i cos θΛβ2 + Λ2β4)

]1/2
]1/2

As the velocity field must vanish far away from the boundary layer (limrE−1/2→−∞
v = 0), both

roots with a positive real value are retained and the solution may be written:

∀r < 1, v
(−)
+ = X1 exp(Z1(r − 1)) + X2 exp(Z2(r − 1)) ,

whereX1andX2 are constants to be determined.

The equation (5) gives us the solution forb
(−)
+ :

∀r < 1, b
(−)
+ = − βZ1

i + EmZ2
1

X1 exp(Z1(r − 1)) − βZ2

i + EmZ2
2

X2 exp(Z2(r − 1)) .

Using limr(EM
m )−1/2→∞

b = 0, the solution for the magnetic field in the mantle may be deduced

directly from (7):

∀r > 1, b
(−)
+ = X3 exp(Z3(r − 1)) ,

whereZ3 = −(1 + i)/
√

2EM
m .

We use the continuity of the velocity, the magnetic field and the electrical currents at the core
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mantle boundary (r = 1) to determine the constantsX1,X2,X3.

X1 + X2 =
iδωM

2
(1 + cos θ) ,

X3 = − βZ1

i + EmZ2
1

X1 −
βZ2

i + EmZ2
2

X2 ,

EM
m X3Z3 = Em

[

− βZ2
1

i + EmZ2
1

X1 −
βZ2

2

i + EmZ2
2

X2

]

.

With the solutions to this set of equations, the velocity andthe magnetic field are fully determined

within the boundary layers. With our scaling, the magnetic torqueΓm scales withρR5Ω2EmΛ and the

viscous torqueΓv with ρR5Ω2E. Here, we use the complex notation by introducingΓ̄ = Γx + iΓy.

The derivation of the viscous torque is given in Appendix A.

Γ̄v = (ex + iey) ·
∫ ∫

S
r× σvdS , (9)

= iπ

∫ π

0
[(1 + cos θ)

∂v
(−)
+

∂r
|(r=1) + (1 − cos θ)

∂v
(−)
−

∂r
|(r=1)] sin θdθ . (10)

The magnetic torque could be calculated by a surface integral (Rochester, 1962) similarly to the

viscous torque. The magnetic torque could be deduced from the perturbed magnetic fieldb at r = 1:

Γ̄m = (ex + iey) ·
∫

r × (βb)dS , (11)

=
i

2

∫ π

0

∫ 2π

0
β[(1 + cos θ)b+ + (1 − cos θ)b−] exp (iϕ) sin θdθdϕ . (12)

It is of some use to introduce the coupling constantK deduced from the torque to compare with

the observed data (Mathews et al., 2002):

K =
Γ̄

iIδωM
,

whereI is the dimensionless moment of inertia of the core.

For a very weak magnetic field (the Lorentz forces tend to vanish) Toomre (1974) predicted that

the torque is pointingπ/4 away from the direction of the imposed angular velocityδω. For very low

Elsasser and Ekman numbers, the solution follows this asymptotic behavior (Im(K) = −Re(K)).

For a large and dipolar magnetic field, we compare successfully our results for a very low Ekman

number (E = 10−16) with the coupling constants found by Buffett (2002) in their inviscid study. In

the limit of large Ekman numbers and low Elsasser numbers, wecheck that the computed torque tends

toward the spin-over torque (Greenpan, 1968).

3 MAGNETIC FIELD AT THE CMB

Even though the magnetic field at the CMB is dominated by the axial dipole component, all spherical

harmonic components contribute to the electromagnetic torque. The spectrum of the observed mag-
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0.0 10.0 20.0 30.0 40.0
lmax

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3
10

5 .Im
(K

m
) 

VMM

WFM

Figure 1. Imaginary part of the electromagnetic coupling constant versus the truncature levellmax of the mag-

netic field at the core boundary. The observed geomagnetic spectra is extrapolated randomly with a power law

(0.959)l for l > 13 and the coupling constant is computed with the non linear visco-magnetic model (VMM) or

with the weak field model (WFM). Each line represents a set of spherical harmonic coefficients sastifying the

spectra dependence. The bold lines show the mean values of both model.

netic energy at the CMB is fitted by a power law in(0.959)l (Stacey, 1992) if one excepts the dipole

component (l = 1). This is a relatively flat magnetic spectrum which has to become stiffer at very

largel to satisfy energetic arguments (Roberts et al., 2003; Christensen & Tilgner, 2004). Taking the

same electrical conductivity for the core and the mantle (Em = EM
m = 1.8 10−9) and a very low

Ekman number (E = 10−16), we compute the electromagnetic coupling constant using the firstlmax

degrees of the magnetic field. Figure 1 illustrates possiblecontributions of the small scales (l > 13) of

the magnetic field to the amplitude of the electromagnetic torque. Different random sets of spherical

harmonic coefficients matching the spectra dependence, give comparable contribution to the torque.

Consequently, the mean value of the coupling constant is representative of what could happen at the

CMB and in the following, we keep only the mean value to present the results.

The contribution of the large degrees of the spherical harmonics of the magnetic field in the visco-

magnetic model is smaller that the one associated with the weak field model (Buffett, 1992). The back

reaction of the Lorentz forces on the flow is to reduce the electromagnetic torque at the boundary.



Geophys. J. Int.: Visco-magnetic Torque at the CMB9

0.0 10.0 20.0 30.0 40.0
lmax

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

 1
05 .Im

(K
m
)

 (0.959)
l

 (1.044)
l

 (1.098)
l

Im(K
CMB

)

Figure 2. Imaginary part of a mean electromagnetic coupling constantversus the truncature levellmax of the

magnetic field at the core boundary. The coupling constant iscomputed with the non linear visco-magnetic

model with three different extrapolated spectra forl > 13.

This effect is emphasised for the small scales of the magnetic field. In some cases (for example, all

coefficients positive), the contribution of the large degree is negligeable and the coupling constant

curve becomes flat (highest curve in Figure 1).

Figure 2 shows that the mean electromagnetic torque associated with the observed magnetic

field at the CMB ((0.959)l) is too low to fit the imaginary part of the observed coupling constant

(−1.85 10−5). Following the ideas of Buffett (1992; 2002), we explore the effect of an increase of the

magnetic field at small scales . We studied two different power laws for the spectra (l > 13): (1.044)l

giving an energy 10 times greater than the standard one at degree 40, and(1.098)l corresponding to an

energy 10 times greater than the standard one at degree 30. Anincrease by a factor 10 in energy at de-

gree 40, increases the overall coupling constant less than afactor 2 which remains too small to match

the observed value. In Figure 2, we see that only the largest spectrum could explain the observed data.

From a geophysical point of view, the largest spectrum is unlikely as it dissipates a large amount of

energy. Using the result of Roberts et al. (2003), we found a ohmic dissipation of0.03TW for l < 40.

Another dissipative process is thus needed to explain the nutation data.
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4 VISCOUS EFFECTS AT THE CMB

In this section, we assume the electrical conductivity in the core and in the mantle to be the same (Buf-

fett et al., 2002) and focus on viscous effects. Figure 3 shows components of the velocity and perturbed

magnetic fields in the boundary layers forEm = EM
m = 1.8 10−9 (see table 1) and different Ekman

numbers. For very low Ekman numbers, the viscous layer is very narrow (E1/2) and the magnetic

field (symmetry and amplitude) is nearly unchanged by the presence of the Ekman layer. For Ekman

numbers comparable to the magnetic Ekman number, the width of the viscous layer becomes as large

as the magnetic skin depth (E
1/2
m ) and magnetic field is induced deeper into the core. Consequently,

the perturbed magnetic field looses its symmetry and its value at the CMB decreases.

This physical behavior is summarised on figure 4. The magnetic torque does not vary for very

low Ekman number (E < 10−11) and both components decrease as the Ekman number approaches

the magnetic Ekman number. As expected, the viscous torque increases with the Ekman number. The

imaginary part of the magnetic and viscous coupling constants become comparable forE ≈ 2. 10−12

while their real parts match for a larger Ekman number (E ≈ 4. 10−10). This difference results directly

from the geometry of the spin over viscous torque which exhibits a very low imaginary part (0.259)

compared to the real one (2.62) (Greenpan, 1968). As a conclusion, the resulting torque atthe CMB is

largely modified by a viscous shear layer forE > 10−12 even if the depth of the viscous layer is much

smaller than the magnetic one (Figure 3a) and its effect barely changes the induced magnetic field at

the boundary (Figure 3b).

In order to fit the imaginary part of the observed coupling constant (−1.85 10−5), an Ekman

number of4. 10−11 is necessary as shown on figure 4. With such a value, the viscous dissipative

process represents 85% of the whole dissipation at the CMB but the real part of the coupling constant

is still dominated (75%) by the magnetic torque.

5 ELECTRICAL CONDUCTIVITY AT THE BOTTOM OF THE MANTLE

In the visco-magnetic model for CMB parameters, the influence of the electrical conductivity of the

lowermost mantle is secondary. Figure 5 shows the evolutionof the coupling constant as the electrical

resistivity is increased up to 10000 times the electrical resistivity of the core for an Ekman number

of 3. 10−11. The imaginary part of the coupling constant varies less than 20% but the real part of the

coupling constant is divided by 3. As expected, for large magnetic Ekman number in the mantle, the

torque is mainly dominated by the viscous part of the torque.

A trade off between viscous and magnetic torque could be found in order to fit the observational

data of nutations. On figure 6, for each value of the electrical conductivity of the mantle (EM
m ), we
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12 B. Deleplace and P. Cardin

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

Ekman number, E

−2.2

−1.8

−1.4

−1.0

−0.6

−0.2

0.2

0.6

1.0

1.4

1.8

2.2
10

5 .C
ou

pl
in

g 
C

on
st

an
t K

Re(Kv)
Im(Kv)
Re(Km)
Im(Km)
Re(K)
Im(K)

Im(K
CMB

) 

E
=

E
m
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plot the Ekman number (E) corresponding to a total torque in agreement with the observational con-

straintIm(KCMB) = −1.85 10−5. For the nearly flat standard spectra(0.959)l (corresponding to the

magnetic field at the CMB), Ekman numbers between2 and5. 10−11 are retrieved from the inversion

whatever the conductivity at the bottom layer of the mantle.For the largest increasing spectra(1.098)l,

Ekman numbers vary more significantly with the conductivityof the lowermost mantle and very low

Ekman numbers are retrieved when the electromagnetic torque becomes significant (comparable elec-

trical conductivity on both sides of the CMB).

The electrical conductivity at the bottom of the mantle is difficult to determine. Theoretical anal-

ysis and experimental measurements indicate that silicaterocks have a lower electrical conductivity

than the liquid metal of the core (Poirier & Le Mouël, 1992; Shankland & Poirier, 1993). Discoveries

of new phases of perovskite, such as post perovskite (Iitakaet al., 2004), or metal alloys of silicates

may change this statement. The resistivity may even presentlateral variations as shown by seismic lat-

eral variations in the lowermost mantle (Lay et al., 1998). Except in the case of both a large electrical

conductivity at the base of the mantle and a large magnitude of a hidden magnetic field at the CMB,

the Ekman number needed to explain the observational data isaround10−11.
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Figure 5. Variations of the coupling constant with the Ekman magneticnumber of the mantle.

6 DISCUSSION

The real part of the coupling constant is not dissipative anddirectly influences the period of the nuta-

tions (Dehant & Defraigne, 1997; Hinderer & Crossley, 2000;Mathews et al., 2002) and could have

been used to determine the nature of the dissipative processat the CMB. But the discrepancy between

the theoretical and observed periods of the free core nutation (FCN) is too large to be explained only

by the dissipative torque at the CMB. Hence, a dynamic ellipticity of a few hundred meters at the

CMB has been introduced to account for this discrepancy. Then, the real part of the coupling constant

cannot be used anymore as an observational constraint to determine the nature of the dissipative torque

at the CMB. It is true, though, that a visco-magnetic dynamicmodel of the CMB reduces the real part

of the coupling constant compared to a weak field model and consequently tends to increase by 10%

the estimate of the dynamic ellipticity at the CMB.

The non-linear model of the magnetic skin layer shows that the small scales of the magnetic field

at the CMB, that cannot be directly inferred from magnetic observations, do not contribute signifi-

cantly to the electromagnetic torque between the core and the mantle. With a flat or decreasing power

magnetic spectrum at the CMB, the electromagnetic torque istoo weak to explain the coupling con-
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Figure 6. Curves in the plan (E, EM
m ) on whichIm(KCMB) = −1.8510−5, for Em = 1.8 10−9 and the three

different spectra for (l > 13). The observed dipole magnetic field at the CMB corresponds to the nearly flat

spectra(0.959)l.

stantIm(KCMB) = −1.85 10−5, even if the electrical conductivity of the lower most mantle is

comparable to the core one.

The visco-magnetic model of the boundary layers at the CMB using the observed geomagnetic

field imposes the presence of viscous dissipative effects. Apparent Ekman numbers between3 and

5 10−11 are needed to fit the observational constraint (corresponding to a turbulent viscosity of

3.5 10−2m2s−1). This observational constraint may change as the quality of the data and their treat-

ment improve (Florsch & Hinderer, 2000). Only a reduction ofthe value ofIm(KCMB) by a factor

3 would make viscous effects unnecessary to explain the observations. However, the recent study of

Palmer & Smylie (2005) gives an Ekman number of7 10−11 using their own analysis of VLBI data

of the free core nutation and a pure viscous model of couplingat the CMB. The agreement is also

very good with the results of Mathews & Guo (2005) which states that an Ekman number larger than

5 10−11 is needed at the CMB. Such values of the Ekman number at the CMBare also compatible

with the dissipation needed to account for the relaxation oftorsional oscillations in the core (Zatman

& Bloxham, 1997; Jault, 2003).

At this stage, we like to see this observational constraint as a measurement of an apparent viscosity
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at the top of the core. The visco-magnetic model suggests an effective viscosity five thousand times

larger than the expected molecular viscosity of iron at the core conditions. We would like to stress than

an apparent viscosity is space and time dependent whereas, it is defined here on the whole surface of

the CMB at the diurnal frequency. Consequently, this value of viscosity (3.5 10−2m2s−1) may not

be generalized to the bulk of the core, at small scales and at different time scales. This is large but

comparable to effective viscosities used in fluid dynamics of the ocean or the atmosphere. In these

fields, a large apparent viscosity is the net result of the turbulent transport due to the small scales of

the flow on the large scale flow. Such an explanation may be valid in the Earth’s core even though we

do not have any evidence for the action of small scales at the CMB. As discussed by Davies & Whaler

(1997), the effective transport of momentum may be generated by convective motions associated to the

dynamo process or by surfacic flows such as topographic winds, unstable boundary layers motions, or

chemical/compositional fluxes.

This work has been financed by the program DyETI and PNP of CNRS/INSU. The authors would

like to thank Thierry Alboussière and Dominique Jault for very helpful comments and suggestions.
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APPENDIX A: TORQUE FORMULATION

The viscous torque is computed from the viscous forces at thecore mantle boundary:

Γv =

∫ ∫

S
r× σvdS

whereσv is the viscous stress tensor. In our geometry and within the boundary layer approach, the

viscous stress on a sphere may be written :σv = σvrθ
eθ + σvrϕeϕ = ∂vθ

∂r eθ +
∂vϕ

∂r eϕ. At r = 1, we

have:

r× σv = (−σvrϕ cos θ cos ϕ − σvrθ
sin ϕ)ex + (−σvrϕ cos θ sin ϕ + σvrθ

cos ϕ)ey + σvrϕ sin ϕ ez

IntroducingΓ̄ = Γx + iΓy, the dimensionless complex viscous torque at the CMB is:

Γ̄v =

∫ π

0

∫ 2π

0
[i

∂vθ

∂r
− cos θ

∂vϕ

∂r
] exp (iϕ) sin θdθdϕ

which in terms ofv+ andv− may be expressed:

Γ̄v =
i

2

∫ π

0

∫ 2π

0
[(1 + cos θ)

∂v+

∂r
+ (1 − cos θ)

∂v−
∂r

] exp (iϕ) sin θdθdϕ

Then taking in account theϕ dependence of the perturbed velocity field, only the partsv
(−)
+ andv

(−)
−

will contribute to the viscous torque. So the viscous torqueis given by the following expression:

Γ̄v = iπ

∫ π

0
[(1 + cos θ)

∂v
(−)
+

∂r
|(r=1) + (1 − cos θ)

∂v
(−)
−

∂r
|(r=1)] sin θdθ

which is the expression shown in equation (10). Equation (11) being similar to equation (9), the deriva-

tion of the magnetic torque is similar to that of the viscous torque.


