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Abstract

In this article we propose a new symbolic-numeric algorithm to find
positive equilibria of a n-dimensional dynamical system. This algorithm
implies a symbolic manipulation of ODE in order to give a local approxi-
mation of differential equations with power-law dynamics (S-systems). A
numerical calculus is then needed to converge towards an equilibrium, giv-
ing at the same time a S-system approximating the initial system around
this equilibrium. This algorithm is applied to a real biological example in
14 dimensions which is a subsystem of a metabolic pathway in Arabidopsis
Thaliana.

1 Introduction

The modelling and study of biological or biochemical systems has become an
exciting challenge in applied mathematics. The complexity of real biological
dynamical systems lies essentially in the non-linearities of the dynamics as well
as in the huge dimension of systems, often leading to a numerical approach.
However, as the understanding of cellular mechanisms grows, it has become
obvious that the modelling step strongly needs symbolic tools in order to ma-
nipulate more and more information and data, and to improve computational
tools. Therefore a new area emerged, called ”systems biology”. It involves dif-
ferent fields of applied mathematics, from computer algebra (see for instance
[10]) to numerical computation ([7]).

In the past decades, a lot of different frameworks have been developped to
study behaviors of complex biochemical processes. Let us cite here three of
them: the discrete networks (see the work of R. Thomas [15]), the piecewise lin-
ear systems (the so-called Glass networks [6], see also [5]) and sigmoidal switch
systems ([12]). The main goal of all these approaches is to propose a (more
or less) generic class of dynamical systems, either discrete or differential, that
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model some behaviors of complex interaction systems. Once this class is clearly
defined, its mathematical relevance generally allows both theoretical and nu-
merical analysis.

The class of systems we use in this paper is the set of S-systems (see [1], [16],
[17]). The basic idea of this model is to represent interactions between bio-
chemical species with power-law dynamics. Their mathematical expression is
quite general, but sufficiently simple to allow theoretical and practical investi-
gations. We propose in this article a symbolic-numeric algorithm that is based
upon S-systems theory. Its goal is to compute the positive equilibria of a n-
dimensional system of ordinary differential equations (ODE). As it converges
towards an equilibrium, it provides a S-system that approaches the original
dynamics around this equilibrium. As we will see, the local approximation of
some dynamics with power-laws can be made symbolically in any point of the
phase space. It can also include treatment of symbolic parameters. However,
iterating this process in order to converge towards equilibria needs a numerical
computation, which prevents the use of pure symbolic tools to the end.

In the following, we give a definition of the S-system class as it can be found
in the litterature(see for instance [16]). We then propose a symbolic-numeric
algorithm that computes an iteration leading to the positive equilibria of a dy-
namical system. We will see an application of this algorithm on a biological
example in dimension 14. We finally conclude with some remarks on our algo-
rithm and some future works.

2 S-systems

2.1 Definition

We give here a definition of the class of S-systems.

Definition 2.1 A n-dimensional S-system S(a, 3, G, H) is a dynamical system
defined by the n differential equations:

n n
. . s .
xi:aiHac?” —ﬁiH%” ,i=1...n
j=1

j=1

with o = (ag,...,an) € (RL)" , B=(61...0n) € (RL)”

and G = (gij)i7j:1,,,n € Mn(R)7 H= (hij)i,jzl...n € Mn(R)

R% denotes the set of strictly positive real numbers and My (R) denotes the set
of real square matrices of order n.

Let us introduce the vector field F' defined on Q = (R%)™:
fl(.’L'l, e ,.Tn)
fulz1, ..., 20)



with:

n n
filzy ... mp) :ai]:[x?” —Bi]:[x?”, i=1...n
Jj=1 Jj=1
F is C' and therefore locally lipschitz on the open 2. Cauchy-Lipschitz theorem
ensures the existence and unicity of a maximal solution of S(«, 3,G, H) in 2,
given any initial condition x(0) = 2° € Q.

This definition of S-systems with power-law differential equations is strongly
linked with equations of chemical kinetics. As an example, if we consider the
following chemical pathway:

A+2BB B 3py+E

then the mass-action law applied to species C' gives the equation:

% = kiab® — kad’e
(capital letters design species and small letters design concentrations)
Therefore in definition 2.1, coefficients «; and (3; are sometimes called kinetic
rates while g;; and h;; are called kinetic orders.

S-systems are part of a broader formalism known as quasi-monomial (QM)
systems (see [2]). An interesting result shows that QM systems can be expressed
in the form of Lotka-Volterra quadratic systems (see [2] for details).

2.2 Equilibrium points

The study of the phase portrait of a S-system S(«, 3, G, H) begins with the
search for equilibrium points in €. To find them, we have to solve the system:

n n
o [[=99 =: [[«}7. i=1...n (1)
j=1 j=1

In this paper we will use the following notation:
Given a vector € (R%)™ and a real square matrix A = (a;;)

the vector 24 € (R%)" by:

ij=1. . W€ define
g=1...

With this notation, we can express equation (1) as follows:

)

where b is the vector (51/aq, ..., Bn/am).
Taking the neperian logarithm, this equation leads to:

(G—H)lnz =1nbd



(the logarithm is applied to all components of vector, i.e. Inx is the n-dimensional
vector (Inzq,...,Inz,)). Posing y = Inx, we are brought back to the resolution
of a n-dimensional linear system in y.

We have therefore the following proposition:

Proposition 2.1 A S-system S(a, 8,G, H) has a unique equilibrium T in
(i.e. a positive equilibrium) if and only if the matriz (G — H) is invertible. T
can be calculated by the formula:

F=pCE-m (2)

2.3 Stability analysis of the equilibrium

The stability analysis of the equilibrium Z uses the study of the spectrum of
Jr(Z) (the jacobian of F' in Z). The question we tackle here is to find some
relationship between the stability of Z and some properties of the matrix G — H.
As a motivating example, let us consider the one-dimensional case. A one-
dimensional S-system is expressed by a single differential equation:

S(a,B.g.h) : &= f(zx) = az? — fa"

where o, 3 > 0 and g,h € R. The positive equilibrium Z of (S) exists and is
unique if and only if ¢ — h # 0. In this case, an obvious calculation leads to:

of
ox

so the stability of  depends directly on the sign of g — h: it is asymptotically
stable if ¢ — h < 0 and unstable if g — h > 0, regardless of parameters « and .

In the n-dimensional case, the stability depends on the sign of the real parts
of the jacobian’s eigenvalues. Derivating the functions f;(z1 ..., x,), we obtain,
fori,j=1...n:

(@) = a2~ (g — h)

Ofi v i TT ~ai
(@) == || 70" (945 — hij) (3)
azj 1,]_ ]};[1 k J J

As in one-dimensional case, we thus obtain a formula that links the jacobian of
F in x with the matrix G — H. However, it is not trivial to link the spectrum
of Jp(Z) with the spectrum of G — H.

Let us recall here the definition of stability of matrices:

Definition 2.2 A real square matriz A of order n is said to be stable (resp.
semi-stable) if all its eigenvalues \;, i = 1...n, have a negative (resp. non
positive) real part.

We could hope that the stability of matrix G — H was sufficient to deduce the
stability of . However this is not true, as we can see in the following example.
For n = 2, consider the S-system:

[ & = 3zy* - 22t
sv:{§ Z W



we have:

o= ()= () e (4 2) (1 %)

The matrix G — H is equal to:

-3 2
G- M= ( 2 >
Its characteristic polynomial is x(\) = (A + 1)? so the matrix is stable.
Since G — H is invertible, there is a unique equilibrium: = = (%, ﬁ).VVe can
calculate the two eigenvalues A1 and Ay of Jp(Z). We find that A, A2 > 0,
implying that Z is an unstable node. As a result, in spite of the stability of
matrix G — H, the equilibrium z is unstable.
The stability of G — H is therefore insufficient to deduce the stability of Z.
We need a stronger property known as sign stability (see [9],[11]).

Definition 2.3 Two real square matrices of order n, A = (a;j) and

ij=1...n
B = (bij)ijzl...n’ have the same sign pattern if:

Vi, j=1...n, sgn(a;;) = sgn(bi;)

The function sgn is the classical signum function:

+1 ifx>0
Ve e R, sgn(x) = 0 ifx=0
-1 ifzx<0

Definition 2.4 A real square matriz A of order n is said to be sign stable (resp.
sign semi-stable) if all the matrices that have the same sign pattern are stable
(resp. semi-stable) in the sense of definition 2.2.

In [9] we find a characterization of the sign semi-stability:

Theorem 2.1 (Quirk-Ruppert-Maybee)
A real square matriz A = (aij;) 1s sign semi-stable if and only if it satisfies
the following three conditions:

(ii) Vi#j, aijaj; <0
(iii) for each sequence of k > 3 distinct indices iy, ... i,
we have: ai(l)i(g) ce ai(k,l)i(k)ai(k)i(l) =0

i,j=1...n

(The third condition is equivalent to the fact that the directed graph associated
to A admits no k-cycle for k > 3)

With this notion, we can formulate the following proposition, which links the

stability of the equilibrium z of a S-system with the sign semi-stability of matrix
G — H:



Proposition 2.2 Let consider a n-dimensional S-system S(«,3,G,H). We
assume that G — H is invertible and we note T the unique positive equilibrium
of (S). We also assume that T is hyperbolic (i.e. none of the eigenvalues of the
Jjacobian of F in T have zero real part).

If the matriz G — H is sign semi-stable (i.e. if it verifies the three conditions
of theorem 2.1) then, regardless of parameters « and (3, the equilibrium T is
asymptotically stable.

PROOF.

Let us note J the Jacobian of F'in  and P the matrix G — H. The equation 3

yields:

Ofi ~ Vi
(7) =

= DPij
aSCj SCj

with v; = a; [[5_; Z3*. As; > 0 and Z; > 0 for all ¢ and j, matrices J and P

have the same sign pattern. We can thus deduce that J is semi-stable and as =
is supposed hyperbolic, it is asymptotically stable.

O

Let us remark that the latter equation gives, in matricial notation:
J=IpPD™!
where I' and D are diagonal matrices:

Y1 Z1

Tn Tn

so sgn(det(J)) = sgn(det(P)). As we have supposed that P is invertible, we
deduce that J is also invertible and does not have null eigenvalues. So we
supposed the hyperbolicity of z in order to avoid imaginary eigenvalues of J.
We can easily verify in the previous example that G — H is stable but not sign
semi-stable (gaz — hoo =1 > 0).

3 Local approximation of dynamical system us-
ing S-systems
In this part, we propose an algorithm for approaching the equilibria of a dy-

namical system using S-systems. Simultaneously, we obtain a S-system that
approximates the initial system around the equilibrium.



3.1 Monomial approximation of a positive vector field

(see [17],[14],[16]).
Let’s consider the positive vector field F' : (R*)™ — (R%)™.

filze, ..., 2)
F(z) = 5
fulz1, ... 20)
We will suppose F' sufficiently smooth on (R )™.

Let us define the following change of variables: y = Inx, and express the loga-
rithm of F(z) as a function G of the new variable y:

InF(z) = InF(e¥) = G(y)

The function G is sufficiently smooth on R™. Given any arbitrary point y° € R”,
let us write the Taylor expansion of g; (for ¢ = 1...n) in the neighborhood of
y? at the first order:

. g dg;
Vi=1...n, gi(y) = g: (") + > (v; — y?)aj
j=1

J

(y°) +ollly = 4"

We introduce the functions g;(y) for i =1...n:

~ S 9gi
Vi=1..n, Giy) =giw") + Y _(w; — )5 (")
=1 Yi
and the functions f; = exp(gi(y)):
filz) Y i
= eoexp (> (y; - 9)69‘@0)
j=1 Yi
n 9 )
= o) [[exp <(yj _ ?)89‘( 0)>
j=1 Yi




and:

agi 0 y
E%;;(y) = E;;;(ln(ji(e )
19,
— 1 Vi %(ey)
_ % Ofi

Therefore, we have defined a vector field F= ( ﬁ) _

=1l...n

Fo)= (][5 (4)

i=1...n

ai@®) = fila®) [

with: i=1 (5)
¥ 9f;
C(0) — J P00
90t = oy ae,

The basic idea is to use the monomial vector field F as an approximation of F’
in a neighborhood of x°.

Definition 3.1 Let F' be a smooth n-dimensional vector field, F : (R} )" —
(RE)™ and 20 any vector of (R)™. We call S-approzimation of F in 20 the

vector field F defined by equations (4) and (5).
The following proposition is basic for what follows:

Proposition 3.1 Let F be a positive vector field and F its S-approximation in

x0. The following equalities hold:

o F(20) = F(2°)

afz‘ oiafi 0
al'j (:C )7 axj (ZL' )

(or, which is equivalent: Jp(2°) = Jz(2°))

e Vi j=1...n,

3.2 Finding equilibria of a dynamical system

We consider a n-dimensional dynamical system of the form:
(S) &=V(x) -V (z)

where z lies in (R*%.)™ and V", V'~ are positive vector fields. V7, V™ : (RL)" —
(R7)"™. For i = 1...n, the term v;" () is the production term of the variable

%



z; and v; (z) the decay term of x;. We propose an algorithm for finding an
equilibrium point of (S) that lies in (R% )™. Meanwhile, we get a S-system that
approximates the system (S) around this equilibrium.

Given a point 2% in (R%)", we introduce the fields V* and V~ which are
the S-approximations of the fields V* and V'~ in 2°. Let us consider the n-

dimensional S-system:
(S,0) &=V*ta) -V (a)

using (4) and (5), we obtain:

n n
(Sypo) : x'i:ai]:[zg”fﬂi]:[z?”, i=1...n
i=1

j=1
where: .
a; = v+(x0)]:[(x?)_g”
ot (6)
Bi = vy () @)
j=1
and: 0 N
'Tj avz 0
gi = ()
! U;_(xo) Ox; (7)
9T () o

If the matrix G — H is invertible, the system (S,0) admits a unique equilib-
rium x., € (R )™:
g =BG

with b = (B1/a1,...,Bn/an). This point z., depends on the initial point 29
where we made our approximation. Let z! = z., be the new initial point where
we make our new S-approximation. The algorithm (1) computes the iteration
of that process.

3.3 Correctness of the algorithm

Let’s describe the first iteration.

Let 2° € (R%)™. With formulae (6) and (7), we define the quantities o (2?),
Bi(z%), gi;(2°) and h;;(2°).They depend on the choice of the initial point x°.
We assume that the constructed matrices G(2°) and H (z") verify the condition:
det(G — H) # 0. Thanks to this assumption, there exists a unique equilibrium
point of the system (S,0). We will denote it z', and we define the function
W : (R%)™ — (R%)™ that, to each 2° € (R% )™ associates the point z!.

Our algorithm is iterative, in the sense that it computes:

(1){ 2% e (Ry)”

2"t = (")



This iterative process converges towards fixed points of ¥. However we do not
a priori know if all fixed points of ¥ are indeed limits of (I). In other words,
we must find which fixed points are attracting.

The correctness of the algorithm (1) is a consequence of the two following lem-
mas:

Lemma 3.1 The equilibria of initial system (S) are the fized points of the func-
tion ¥

Lemma 3.2 Given a fized point T of U, there exists some initial points 20 that
lead to T by the iteration (I). In other words, the positive equilibria of (S) are
the attracting fized points of V.

PROOF.

(First lemma) Let z € (R%.)" such that det(G(z) — H()) is different from zero.
(for convenience, we will omit the dependency in Z, and note for instance G in
place of G(Z)). Using equation (2), we have:

w(z) =@ (8)
where b is the vector (8;/ci);_; .-
Therefore:
V(z)=z < bCe-M" =3z
— b=zC"H)
= Vizl...n,&: :Eg”'_h”
Q; .
j=1
— Vi=1...n, ﬁiHa’C?” :aZHQ’c?”
j=1 j=1

By definition, o; [T}_, f?” (vesp. 6; [T, j?”) is the S-approximation of V'

(resp. V™) in Z. Proposition 3.1 implies then:
V(z)=2 <+ V@)=V (2)
Thus, the equilibria of (S) are the fixed points of the function V.

O

In order to prove the second lemma, we will use the following fixed point
criterion:
If the function ¥ is a contraction on the open set W and if T € W is a fized
point of VU, then T is the unique fized point of ¥ in W and it is attracting, that
is to say, for all x° € W, the iteration (I) converges towards T. PROOF.
(Second lemma) Let Z be a fixed point of ¥. We assume that det(G(z)—H (Z)) #
0. The continuity of the determinant implies that there exists a neighboorhood
W of Z in which det(G — H) # 0. To prove that Z is attracting, it is sufficient

10



to show that W is contracting in a neighboorhood of z. For that, we show that
the jacobian of ¥ in Z is zero.
Using (6) and (7) and posing:

Ut = log(V")
U~ = log(V")

+ -—1 V'
P = G-H

we obtain, for all z € W:

pi; Y (@)
(@)
\I/z-(w)—H

v; (@)

where (p(-fl)) is the inverse of the matrix P =G — H.
ij=1..n

ij
(*1):

Let’s calculate p;;

pij = Gij — hij
_ 1 81)1.Jr 1 Ov;
- (EG%‘ Ea%‘)
B ouf  Ou;
- (5%‘ ez >
aui

xT;
J

in matricial notation: P = J,(z)A where J,(z) is the jacobian of the function
U evaluated in x and A is the diagonal matrix:

Z1
A =

Tn

Therefore P~1 = A~ (J,(2))™" = A1 (J,-1(z)) (u™! is the reciprocal func-
tion of u) and so:

_ 1 du;t

Vi,j=1... (D -

“J ™ w €T; al'j

with (8) we have, fori =1...n and x € W:
= 1 ou;t
v, = x ——uy; L
@ =« exp (i) G (o))

= x;exp fzmau; (z)

X, axj

j=1

11



Deriving this (and omitting the dependency in ), we get, for k # i:

ov; = 32ui_1 " ui(x) 8ui_1
= |2 w exp | =) ==
=1 j=1 E J

uj(z) 6u;1

exp | —

n

i=1 iz 8zj

As we have shown that the fixed points of ¥ are the equilibria of (S), we deduce
that Vk = 1...n, ug(Z) = 0, therefore:

J\p(f) =0

We deduce that ¥ is contracting in a neighboorhood of Z, and then that Z is
attracting. This concludes the proof of the second lemma and the correctness
of the algorithm.

O

3.4 An example with multiple positive equilibria

We present here the application of our algorithm for a dynamical system having
multiple positive equilibrium points. It is a system known as biological switch

(see [3]).
Let’s consider the two dimensional dynamical system:
. 3
T = W — X
. 6.75 9)
Y7 335448 Y

It represents the temporal evolution of two positive quantities z and y with
linear decay and sigmoidal production (we use here the Hill function H™ (z) =
n
T often used by biologists to model sigmoidal interactions). As we can
z
see on figure 1, This system shows three equilibrium points. The values of these
points can be calculated:

0.697 1.5 2.802
P1N< 1.818) P2_<1.0> P3N<0.266>
We can show that P2 is unstable whereas P1 and P3 are stable (cf. [3]).
Applying our program in Maple, we found three different initial conditions
each of which tends towards one of the three equilibrium points (see figure 1
and numerical results below). The convergence appears to be fast since we need

only 4 iterations to approach the equilibria with a precision of 107°. We will
discuss about the convergence speed in part 5.1.

12



Figure 1: nullclines of system (9). (The dash line represents fi(z,y) = 0 and
the solid one represents fa(z,y) = 0). The central equilibrium P2 can be shown
to be unstable while the two others, P1 and P3 are stable. The arrows represent
the three experimentations described in the text.

e With initial condition 2° = (2,2), algorithm finished in 4 iterations and
found P2 with a precision of 1075, The numerical S-system obtained is
given by:

& = 1500y ' —=x
{ gy = 1837z 1% —y

e With initial condition 2° = (0.2,1.5), algorithm finished in 4 iterations
and found P1 with a precision of 107°. The numerical S-system obtained
is given by:

T = 1745y 19 — 2
{ g = 1.64727027 —y

e With initial condition 2° = (2,0.2), algorithm finished in 4 iterations and
found P3 with a precision of 1075, The numerical S-system obtained is
given by:

& = 2352y 01382 o
gy = 38792726y

13



3.5 Stability analysis of approximate S-systems

Consider the n-dimensional dynamical system:

dx -
{ == F(z) =V (z) -V~ (2) (10)
z e (RY)"

Algorithm 1 ensures that, given any initial condition 2° in (R%)™, unless we fall
in a degenerate case, we produce a sequence (z?)en (with 27 € (R%)") that
tends towards a limit point & € (R%)™ which is an equilibrium of (10). More
precisely, ¢ = (@) (20),

Meanwhile, at each step, it provides us with a S-system S, (ay, 84, G4, Hy) which
comes from the S-approximations of functions V™ and V'~ in 2¢. Thus, we have:

a; = az?)
By = Bx9)
Gy = (ggj)i,j:L,,n with: gg]. = gi(z9)
Hy = (h?j)iyjzlmn with: hgj = hij(29)

where «, (3, gi; and h;; are the functions defined in (5). If we assume that V'
and V'~ are at least C', we deduce that these sequences converge, as ¢ tends to
oo, towards:

~ def ~
a, — a@ = a

~ def =~
By — B@ = 8
G, — G@ Y &
H, — H() def H

Let (S) be the following S-system:
S):di=a [[27 - B[}, i=1...n (11)
j=1 j=1

We want to know in what sense the system (11) approach the system (10). An
answer is given by the following proposition:

Proposition 3.2 F is supposed C" (r > 1). The equilibrium T of (10) is an
equilibrium of (11). Moreover, if T is hyperbolic, then the flow generated by (11)
is topologically conjugate to the flow generated by (10) in a neighborhood of .

PROOF.

The first assertion is obvious with proposition 3.1. Let prove the second as-
sertion: it is a direct consequence of the Hartman-Grobman theorem (see for
instance [18]).

Proposition 3.1 shows that systems (10) and (11) have the same linearized dy-
namical systems in . Thanks to the Hartman-Grobman theorem, we know that
these systems are topologically conjugate to their linearized dynamical systems.
By transitivity of the topological conjugation, we deduce that (10) and (11) are
topologically conjugate around z.

14
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This proposition implies that the stability of T for system (11) is the same that
the stability of T for system (10). As an exemple, let us consider the following
2-dimensional dynamical system:

B T 22y

24y (B+ax)(d+yP

(o) G+ o+
5% 2xy

v o= 34z (z+1)(y+2)

We find the equilibrium point Z ~ (1.2301, 1.6950) and the matrix G- H:

5 —0.709 —2.812
G- H= ( 0.261  —2.541 )

Thanks to theorem 2.1, we see that G- His sign semi-stable. The point Z, as
equilibrium of (Ez) is hence stable.

4 Application to a biological example

We present here a current work we are doing in collaboration with G. Curien (see
[4]). The goal of this work is to understand the metabolic system responsible for
the synthesis of aminoacids in Arabidopsis Thaliana. So far, we have focused
our study on a subsystem of 14 variables, with 9 symbolic parameters. The
differential equations present several strongly nonlinear terms due to allosteric
control of some enzymes ; in particular, Hill functions and compositions of Hill
functions. Since the latter are rational functions, seeking positive equilibria is
equivalent to solving a polynomial system. Algebraic manipulations have led
us to a simplified system with 5 polynomial equations in 5 variables. Because
of the complexity of these equations, we were not able to achieve the resolution
of this system with purely symbolic computations and manipulating symbolic
parameters (we used Maple 8 and 9). That is why symbolic-numeric methods
appeared as a satisfactory way to tackle this problem. As it is a system of equa-
tions coming from biochemical kinetics, S-systems seemed to be an appropriate
tool in this work.

In wvivo, this system exhibits a stationnary behavior. Giving realistic values of
parameters, we managed, thanks to our algorithm, to find this positive equi-
librium. We now have to study the S-approximation of the system near this
equilibrium, with different realistic sets of parameters. An interesting idea is
also to propose a piecewise S-approximation of the system in order to reproduce
its behavior in a wider zone of the phase space. This work is in progress.

15



5 Discussions and concluding remarks

5.1 Convergence of our algorithm

The algorithm described above computes the iterations of a vectorial function
U on an initial point 20 € (R%)™, in order to converge towards a fixed point
of U. As the jacobian of ¥ is the null matrix in those fixed points, we know
that the convergence speed is very fast (up to four or five iterations in all the
examples presented, for a precision of 107 or 107°). As a matter of fact, we
are in a case where the speed of convergence is the best possible. Indeed, if the
function W is K-contractant, one can easily verify that the convergence of the
iteration is in K™ (where n is the number of iterations). Since Jg(Z) = 0, then
we can find a neighborhood of & wherein ¥ is K-contractant for any 0 < K < 1.
However, even if the speed of convergence is very fast, the algorithm behaviour
is strongly dependent on the choice of initial point 2°. Indeed, if initial system
has multiple positive equilibria, each of them have distinct basins of attraction.
We cannot a priori know in which of these basins is the point 2°. We even
cannot ensure that 20 actually lye in one of them. In fact, the study of basins of
attractions of such iterations is a complex issue. The boundaries of such basins
can be quite complicated, even fractals [8]. As an example, we launched our
algorithm for the switch system (equations (9)) with initial conditions taken on
a grid of ]0,4]2. To vizualize the three basins, we colored the initial points (fig
2).

5.2 interaction between symbolic and numerical calculus

As we said in the introduction, a large part of research concerning the analy-
sis of biological phenomena uses both symbolic and numerical techniques. The
S-systems as we described represent a large class of systems, yet their simple
mathematical expression allows symbolic manipulations, providing a practical
framework of study. Algorithm 1, as presented here needs numerical estimations
of symbolic parameters. Nevertheless the technique of S-approximation (def 3.1)
consists of symbolic manipulations (in particular, we use symbolic computation
of partial derivatives). It can be calculated in any point of the phase space and
can include symbolic parameters.

S-approximation gives a computable and rather good approximation of ODE
systems (see [17] for a comparison between power-law approximation and lin-
earization). A very interesting idea is therefore to use the context information
(given for instance by biologists) of a particular system in order to create a
piecewise S-approximation of this system. This should provide a global approx-
imation interpolating the system in some critical points in the phase space (see

[13]).
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Figure 2: Basins of attraction of points P1 (dark), P2 (white) and P3 (grey).
We obtained these graphs by applying algorithm 1 for system (9) with initial
conditions taken in a regular grid of ]0, 4].
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Algorithm 1 Search of an equilibrium point of system (.5)
Require:

X =2 € (R%)" (initial condition)
VT, V= : positive vector fields defined over (R% )"
e>0 : precision

Ensure: unless we fall in a degenerate case, we find a point y close to a positive
equilibrium of (S) with the precision e. Meanwhile, we obtain the S-system
(Sy) that approximate system (S) around this equilibrium.

repeat
Y =X
for i =1 ton do
for j =1 ton do
_ X oy
P X,
Xj av:
hij =
v; (X) 0X;
end for

bi := B/
end for
if det(G — H) # 0 then
X = p(G-H)"
else
degenerate case: algorithm terminated — restart the algorithm with a
new initial condition
end if
until | X —Y |<e
Result := X
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