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Abstract

The purpose of this report is to investigate some dynamical properties com-
mon to several biological systems. A model is chosen, which consists of a
system of piecewise affine differential equations. Such a model has been previ-
ously studied in the context of gene regulation and neural networks, as well as
biochemical kinetics. Unlike most of these studies, nonuniform decay rates and
several thresholds per variable are assumed, thus considering a more realistic
model. This model is investigated with the aid of a geometric formalism. We
first provide an analysis of a continuous-space, discrete-time dynamical system
equivalent to the initial one, by the way of a transition map. This is similar
to former studies. Especially, the analysis of periodic trajectories is carried out
in the case of multiple thresholds, thus extending previous results, which all
concerned the restricted case of binary systems.
The piecewise affine structure of such models is then used to provide a partition
of the phase space, in terms of explicit cells. Allowed transitions between these
cells define a language on a finite alphabet. Some words are proved to be forbid-
den in this language, thus improving the knowledge on such systems in terms
of symbolic dynamics. More precisely, we show that taking these forbidden
words into account leads to a dynamical system with strictly lower topological
entropy. This holds for a class of systems, characterized by the presence of
a splitting box, with additional conditions. We conclude after an illustrative
three-dimensional example.

1 Introduction

Many biological systems may be described as assemblies of similar constituents evolv-
ing in parallel, and interacting in a structured way. The structure of interactions
is currently modeled by an oriented graph, whose vertices represent elements in the
system. Each edge represents a direct action of its initial vertex on its terminal ver-
tex. Although very complex, and studied in its own right [1], this structure is static,
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and does not suffice to understand the behaviour of the whole system. Moreover,
it may evolve itself as the elements in the system are changing with time. Thus,
dynamical models are necessary in order to capture significant aspects of complex
biological phenomena. Chosing to restrict our attention on deterministic models,
two main types of formulation can be distinguished : models with discrete state
space [26, 37, 6], and models with continuous state space, formulated as ordinary
differential equations [3, 34, 35]. Since the latter lead to very complex nonlinear
dynamics in high-dimensional spaces, and the first one only provides large scale
qualitative insights about the phenomenology of the systems, intermediary formula-
tion are often considered. Namely, systems of piecewise affine differential equations
are more tractable than nonlinear smooth ones, due to their underlying discrete
structure, while they yield finer information than purely discrete representations.
Furthermore, they seem well suited to experimental data, which is often quantita-
tive with non negligible uncertainty, i.e. data is partially qualitative.
The literature about the piecewise linear approach of complex nonlinear phenomena
is huge, and we shall only mention typical works in the field of biology, thus ignor-
ing many aspects such as control theoretic issues, or the many examples occuring
in the context of automatics, electric and electronic circuits, or embedded software.
The main reason for excluding all these very actively studied problems, is that they
generally deal with complex couplings, which would not be suitably described by
the class of models considered in this paper. Actually, the specificity of this class
lies in the fact that the proper linear terms are uncoupled, and that interactions are
only present in the piecewise constant terms of the equations. This may sound quite
restrictive in regard with the much more general class of piecewise linear differential
equations.
Anyway, a lot of phenomena in biology are characterized by strongly localized cou-
pling, that is by interactions of an almost on-off nature. This includes switching
networks like gene transcriptional regulation networks [4, 5, 16, 17, 24], neuron net-
works [15, 14, 28], as well as metabolic and chemical pathways [18], which all are
currently studied examples in mathematical models of biological dynamics. Neural,
metabolic and gene networks models can generally be put in the form of a system of
piecewise affine differential equations, with a diagonal matrix as proper linear term.
This class of model has been investigated in itself, without specially focusing on one
of the different phenomena we just mentioned [8, 21, 36, 15]. Such a class could be
called continuous-time switching networks, but this does not illustrate the piecewise
linearity of the equations, and would enclose a broader range of models. The term
Glass networks has been proposed in [8], which seems appropriate, since Leon Glass
is the first author to have explicitely proposed this model, emphasizing its usefulness
as tractable indicator of the qualitative properties of nonlinear biological systems.
Although the equations studied here are more general than what is usually called a
Glass system, this term will sometimes be used in the sequel. We will use the term
binary systems when referring to systems with only one threshold per variable (i.e.
two discrete states, whence the appellation).
The main contribution of this paper lies in the fact that working hypotheses are light-
ened as compared to previous studies, such as [8, 14, 15, 17, 18, 19, 20, 24, 28, 30].
Namely, several thresholds are allowed for each variable in the system all along this
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work, and degradation rates are not supposed uniform for most of our results. Thus
we deal with a more realistic model than what is usually done, which leads to math-
ematical complications. To circumvent this difficulties, we adopt a geometric point
of view on the dynamics. This approach proves useful with respect to the analysis
of periodic orbits, as well as the symbolic dynamics approach.
On the other hand, a noticeable restriction of the present work is that it concerns
networks without autoregulation. Although severe in terms of biological plausibility,
this assumption is made in all studies cited above. Actually, solutions are not well
defined in systems with autoregulation. Two techniques can be found in the liter-
ature to face this difficulty. The first one consists in studying a smooth dynamical
system with sigmoids, which tends to the piecewise affine system in the limit of
infinite steepness. The analysis can be then carried out using singular perturbation
techniques [34, 35]. The second way to handle this situation, developed in [4, 21], is
to use the Filippov notion of solution for differential equations with discontinuous
right-hand side. Such solutions are defined by the way of differential inclusions, i.e.
they are set-valued. As both techniques are still a current research topic, it seems
reasonable to exclude the situations where they are required.
In section 2, we present the model that motivated this study, and show how it can
be reduced to a discrete-time dynamical system. The latter is rigorously defined
in section 3. Then, section 4 is mainly devoted to the study of periodic orbits,
about which previously known properties are generalized to the multiple thresholds
context. Finally, section 5 concerns symbolic dynamics of the studied system. The
latter is defined formally, and topological entropies of different codings are com-
pared. As a main result, it is shown that the topological entropy of purely discrete
models is strictly greater than that induced by a coding of piecewise affine dynamics.
This inequality holds regardless of precise parameter values, and for a large class of
systems characterized by the presence of a splitting box. This result is illustrated
on a three-dimensional example in section 5.3.

2 Model description

2.1 Equations

The general model studied here is a system of differential equations of the form :

dx

dt
= Γ(x) − Λx, (1)

where x ∈ Rn, Γ : Rn → Rn is piecewise constant, and Λ ∈ Rn×n
+ is diagonal. We

note Γ = (γ1 . . . γn), where γi : Rn → R, and Λii = λi.
Each coordinate xi of vector x represents a characteristic quantity of the ith member
in a finite population of n interacting elements. For example, xi is the concentration
of a protein whose production is induced from gene i, or xi is the voltage of a single
neuron i. Each quantity in this kind of model is bounded, so that the domain in
phase space where dynamics must be confined will be the cube U = [0, 1]n.
Non diagonal elements of Λ being zero, this matrix only describes linear degradation
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of every components in the network. Thus, Λ is not related to coupling or autoreg-
ulation, but rather to the fact that biological systems are usually dissipative, i.e.
state space is globally contracted by the flow. Then, each diagonal element of Λ is
supposed positive.
On the other hand, Γ describes coupling in the system. As it is piecewise constant,
the domain of interest U has to be partitioned. This will be done with n-rectangles,
i.e. products of n bounded intervalls. Such regions will be called boxes, as usually
done in the literature. In each box, Γ takes a constant value, i.e. the production
rate (resp. activity) of all genes (resp. neurons) in the network is constant. Hence
a box is a region in phase space where the dynamics is appropriately described by a
simple linear system.
This choice of a rectangular partition may seem arbitrary, or aimed at simplifying
the analysis and computations. In fact it is biologically relevant, since gene ac-
tivation rates are known to evolve in a switch-like manner, that is they undergo
sudden changes when some regulating protein reaches a threshold value. Neuronal
response to synaptic entries are also of switching nature. In this latter case, the
sudden changes usually appear when a certain linear combination of the xi’s reaches
a threshold. However, a simple change of variable leads to formulation (1), where
each threshold is related to a single variable, as explained in [27].
These thresholds yield the boundaries of boxes ; we note and number them

Θi = {θij | j ∈ Npi
}

in each direction i, with the notation Npi
= {1 · · · pi}.

For sake of biological consistency, when (1) models a gene network, the θij ’s are
often given in an unordered way, thus focusing on the interactions between genes :
θij is the threshold at which gene i activates (resp. inhibits) gene j by increasing
(resp. decreasing) γj ’s value when crossing this threshold from left to right [36,
37]. However, there is always a permutation σ ∈ Spi

, such that the θiσ(j) are in
increasing order. Since we care more with phase space geometric structure than
with dependence between genes (i.e. the interaction graph), we will assume from
now on, that the sets Θi are ordered : θi1 < θi2 < · · · < θipi

.
Then, boxes are explicitely written as :

Ba = Ba1... an =
n∏

i=1

[θiai
, θiai+1], (2)

where the subscript a, belongs to the finite set

A =
n∏

i=1

Npi
(3)

Since this subscript a univoquely determines a box, and since Γ is constant in each
box, it will be convenient to consider this mapping as Γ : A → Rn.
The set A will sometimes be called an alphabet in the sequel. It will be convenient
to note elements of A as strings of the form a = a1 . . . an, instead of vectors. One
advantage of using symbols in the discrete set A is that it underscores the qualita-
tive nature of the model. Each symbol a can be seen as a discrete state in which
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all characteristic quantities of the system are almost constant. As such, it leads to
an automaton model that will be explained more deeply in section 5. Moreover,
as a finite subset of the lattice Nn, it inherits nice geometric features of this lat-
tice. Especially, symbols in A correspond to boxes in U , while straight lines joining
these symbols correspond to facets of boxes. Hence, the geometric structure of A is
somehow ’dual’ to that of the partition of U . This is particularly striking in R2, as
illustrated on figure 1. In arbitrary dimension, this also has practical consequences
that will be exploited in section 5.
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13 23
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21 31

12 32

x1

x2

θ23

θ22

θ21

θ11 θ12 θ13

Figure 1: An example of partition into boxes, when U = [0, 1]2. There are three
thresholds in both directions, hence A = N3 ×N3. After a rescaling, this set can be
superposed on the box partition, so that neighbouring boxes correspond to symbols
differing by ±1 in a single direction.

2.2 Flow

A system of form (1) induces a flow that can be explicitely written. In a given box
Ba, Γ is a constant vector, thus the flow inside this box is :

ϕa(t, x) = x(t) = f + e−Λt(x − f) where f =

(
γi

λi

)

i=1...n

. (4)

Here, the vector f is called focal point, because it is obviously attracting in the
above equation. Hence, depending on its position with respect to Ba, it will be an
asymptotically stable steady state, or the trajectory will encounter the boundary of
the box. In the latter case, Γ is assigned a new value according to certain rules that
will be precised, and constructs a new piece of the trajectory by continuity.
Some results about polytopes will be useful afterwards. In the rest of the paper we
mainly lean on [22, 38] for such kind of properties. The boundary of Ba is formed by
k-faces, which are k-dimensional rectangles, for k ∈ {0 . . . n−1}. When the intersec-
tion happens at a n−1 face, or facet (or wall), there is at most one adjacent box and
the new value of Γ is unambiguous. In the case of lower dimensional faces, there are
several adjacent boxes in general. Let k be the dimension of the face encountered
by ϕa(t, x), i.e. it is given by n − k hyperplane equations of the form xi = θij .
There are 2n−k adjacent boxes sharing this face, including Ba, corresponding to
the above/below position with respect to each of the defining hyperplanes (on the
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boundary of the domain U , there are of course less adjacent boxes). In each of these
neighbouring boxes, the flow has a fixed value, for which the k-dimensional face can
be either attracting or repelling. The resulting flow is not straightforwardly defined
in such regions, as will be precised in section 3.3. The general case requires the
Filippov notion of solution of a differential equation with discontinuous right-hand
side [4, 21]. Until further precisions (sec. 3.3), we can exclude all k-dimensional
faces, for k < n − 1, like is done for example in [15, 14].
With this procedure, one constructs continuous trajectories as far as they do not
cross any face of dimension < n− 1. There are still some degenerate cases for which
this construction is still not well defined. We will make two assumptions that allow
us to neglect these cases. The first one is :

H1 ∀ a ∈ A, f(a) ∈ ⋃
a∈A int(Ba).

Here f is considered as the map Λ−1Γ : A → Rn, and int denotes the inte-
rior. This assumption means that the focal points all lie inside the domain U , and
that none of them is on the boundary of a box. The first aspect implies that U is
positively invariant, and thus can be considered as the only region where relevant
dynamics take place. The second one excludes (rare) cases which would cause tech-
nical complications without improving the model.

The second hypothesis concerns the case of autoregulation. As mentioned in
the introduction, this assumption is certainly too strong in regard with biological
phenomena, but it may lead to the use of generalized solutions in the sense of Fil-
ippov, i.e. differential inclusion, to have a mathematically rigorous definition of the
flow [4, 21]. We neglect this kind of difficulties, by restricting the allowed dispo-
sitions of boxes and their focal points. Observe that two boxes Ba and Ba′ are
adjacent in a single direction (i.e. through a facet) if and only if ‖a − a′‖1 = 1,
or equivalently if and only if there is some i ∈ Nn such that a − a′ = ±ei (ei

being the ith vector of the canonical basis of Rn). Using a discretizing operator
d = (d1 . . .dn) :

⋃
a int(Ba) → A, which maps a point lying inside a box to the

subscript of this box, we can write

H2 ∀i ∈ Nn, ∀ a, a′ ∈ A, a − a′ = ±ei,

(
di(f(a)) − ai

)(
di(f(a′)) − a′i

)
> 0,

or (
di(f(a)) − ai

)
= 0 and

(
di(f(a′)) − a′i

)
(ai − a′i) > 0,

or the same with a and a′ exchanged.

In other words, H2 means that the ith component of the vector field does not
change in sign when crossing a wall in direction i. Autoregulation (i.e. ẋi depends
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on xi) is a necessary, but not a sufficient condition for this configuration to happen.
We thus do not reject all forms of autoregulation here. The situations avoided are
schematically represented in figure 2.

Figure 2: The two possible ambiguities due to autoregulation, often called black wall
(on the left) and white wall (on the right).

2.3 Transition map

Once the flow (4) is given in a box Ba, it is easy to compute the time and position
at which it intersects the boundary of Ba, if ever. The possibility for each facet to
be encountered by the flow depends uniquely on the position of the focal point :
{xi = θiai

} (resp. {xi = θiai+1}) can be crossed if and only if fi < θiai
(resp.

fi > θiai+1). According to this observation, we note

I+
out(a) = {i ∈ Nn|fi > θiai+1}, and I−out(a) = {i ∈ Nn|fi < θiai

},

and Iout(a) = I+
out(a) ∪ I−out(a).

When it is unambiguous, we will omit the dependence on a, as we have already done
implicitely with the focal point.
Since these functions will be useful in the following, we note :

α−i (x) =
fi − θiai

fi − xi
, and α+

i (x) =
fi − θiai+1

fi − xi
.

Now, in each direction i ∈ Iout the time at which ϕ(t, x) encounters the corresponding
hyperplane, for x ∈ Ba, is given by :

τi(x) =
−1

λi
ln

(
α−i (x)

)
if i ∈ I−out, and τi(x) =

−1

λi
ln

(
α+

i (x)
)

if i ∈ I+
out.

This distinction between directions in I+
out and I−out shall occur quite often, leading

to unnecessarily cumbersome discussions. Here this distinction may be avoided by
observing that whenever i ∈ Iout,

τi(x) =
−1

λi
ln(αi(x)) where αi(x) = min(α−i (x), α+

i (x)). (5)
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This can be checked by inspecting the range of α±i for all possible i (see table (6)),
and using the fact that τ(x) must be nonnegative.

i α−i (x) α+
i (x)

∈ I−out [α−i (θiai+1), 1]  ]0, 1] [1, α+
i (θiai

)]

∈ I+
out [1, α−i (θiai+1)] [α+

i (θiai
), 1]  ]0, 1]

6∈ Iout and xi < fi [1, +∞[ ] −∞, α+
i (θiai

)]  R∗−

6∈ Iout and xi > fi ] −∞, α−i (θiai+1)]  R
∗
− [1, +∞[

(6)

The directions that are not in Iout are of no use here, but will be considered in
sections 3.1. Now notice that αi is not defined if xi = fi, which may only happen
for i 6∈ Iout.
Taking the minimum

τ(x) = min
i∈Iout

τi(x). (7)

and reinjecting it in equation (4), we get the exiting point of Ba for the initial
condition x. Since this process is intended to be repeated along trajectories, x will
generally lie on the boundary of the current box, except for the initial condition,
which may however be chosen without loss of generality on a wall. Then we get a
transition map Ma : ∂Ba → ∂Ba , which can be explicited, omitting a :

Mx = ϕ (τ(x), x)
= f + A(x)(x − f).

(8)

Where A(x) is the diagonal matrix whose entries are e−λiτ(x). If q is an escaping di-

rection, i.e. τ = τq, we can also write the entries of A(x) as (αq(x))
λi
λq , for i = 1 . . . n.

We see here that M is nonlinear, but in the special case where

H3 ∀i, j ∈ Nn, λi = λj , i.e. ∃λ ∈ R∗+, Λ = λId.

is fulfilled, A(x) is proportional to the identity matrix as well, and M can be un-
derstood as a projective transformation (see e.g. [38] p.67). Actually, H3 implies
that the flow in each box consists of straight lines directed towards f , and thus
Mx is the intersection of the affine line f + R(x − f) with ∂Ba. The set of all
trajectories in Ba is then the intersection of this box with the polyhedral cone
f + {t(x − f) | t > 0, x ∈ Ba}. These nice aspects explain why this last assumption
is currently done. Formally, (8) may be rewritten quite simply under the latter
assumption :

Mx = f + α(x)(x − f), (9)

where
α(x) = max

i∈Iout

{αi(x)}. (10)

As αi(x) only depends on coordinate xi, we sometimes abusively note αi(xi).
Unless indicated, we suppose in the following that assumptions H1 and H2 are sat-
isfied. The uniform decay rates assumption H3 will not be systematically required,
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unlike most of the previous works concerning equations of the form (1). In partic-
ular, the term Glass networks usually refers to a system of the form (1), with only
one threshold θi distinct from the domain’s boundaries, in each direction i, and the
two hypotheses H1, H3 (see e.g. [8, 25]). More or less explicit versions of H2 are
also very largely assumed in papers dealing with such models.

3 Properties of the transition map

3.1 Local properties

In each box, Iout determines all reachable boxes. Those are adjacent to the current
box through walls supported by hyperplanes of the form {xi = θij}, for i ∈ Iout, and
j ∈ {ai, ai+1} depending on i’s belonging to I−out or I+

out. We introduce the following
notation for such walls :

W+
i (a) = {x | xi = θiai+1} ∩ Ba and W−

i (a) = {x | xi = θiai
} ∩ Ba. (11)

Then, each box can be partitioned in #Iout regions from which a single adjacent box
is reachable. # denotes the cardinal. See figures 3 and 4 for an illustration.
The subscripts a will be omitted in this section, where a single box B is considered.
Due to previous discussions, the only walls through which trajectories may escape
B may be put on the form W+

i (resp. W−
i ), for i ∈ I+

out (resp. i ∈ I−out).
Conversely, any point on a wall of the form W±

i , i ∈ I±out, escapes immediately, as can
be seen from equation (7), where escaping time is clearly zero on the corresponding
escaping wall.
More precisely, from equations (4), (7), the directions i such that τ(x) = τi(x) are
exactly those for which Mx ∈ W±

i .
According to this, we can coarsely partition ∂B into two regions :

• the outcoming region ∂Bout =
⋃

i∈I±out

W±
i = {x ∈ B | τ(x) = 0}

• the incoming region ∂Bin = ∂B \ ∂Bout =
⋃

i∈I±out

W∓
i ∪

⋃

i6∈Iout

(W−
i ∪ W+

i ).

Where, for any set S, S denotes its closure, and for ± ∈ {−, +} the symbol ∓ denotes
the opposite sign. Thus, the incoming and outcoming regions are unions of walls,
which are closed and cover the boundary ∂B. We can observe that ∂Bout∩∂Bin 6= ∅

whenever ∂Bout 6= ∅, and is the union of some n−2-facets of B. Actually, ∂Bin 6= ∅

always holds, due to i ∈ I±out =⇒ W∓
i ⊂ ∂Bout, and i 6∈ Iout =⇒ W−

i ∪ W+
i ⊂

∂Bout.
This first partition only allows a distinction between escaping directions and the
others, and one gets :

∂Bout = ∅ ⇐⇒ f ∈ int(B),

which we recall corresponds to f being an asymptotically stable equilibrium point
with B contained in its attracting basin.
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Moreover, this partition of ∂B can lead to the transition map being bijective.

Proposition 1 Assume H1 is satisfied for a system of form (1).
Let M be the transition map in a box B, as defined in previous section.
Restricting the domain and range of M to ∂Bin and ∂Bout respectively, and abusively
keeping its name unchanged, the following is a homeomorphism, provided ∂Bout 6=
∅ :

M : ∂Bin → ∂Bout

Proof. From its definition, M : x 7→ ϕ(τ(x), x), where ϕ is the flow associated
to an affine dynamical system, is continuous if and only if τ is. This function is
defined as τ(x) = mini∈Iout τi(x). From equation (5) each τi might only be discon-
tinuous if α+

i (x) or α−i (x) is. From table (6), both are defined and continuous on
[θiai

, θiai+1], for i ∈ Iout (furthermore, which among α−i (x) and α+
i (x) is the lowest

does not depend on x for such i). Then, τ is continuous as the minimum of a finite
set of continuous functions.
Injectivity comes from the fact that x and Mx are always on the same orbit of ϕ,
and from monotonicity (w.r.t. time) of all coordinates ϕi of this flow, along any
orbit. Surjectivity will come from the construction of the inverse mapping, which is
defined on ∂Bout.
Note ϕ̃(t, x) = ϕ(−t, x) = f + eΛt(x−f) the flow in reverse time. From positivity of
Λ’s entries, we get that all trajectories given by ϕ̃ diverge to +∞ in each direction,
and hence leave B in finite time. For xi < fi (resp. xi > fi), ϕ̃(t, x) may only en-
counter W−

i (resp. W+
i ) in direction i. This can happen at time τ̃i(x) = 1

λi
ln(α−i (x))

(resp. α+
i (x)). Inspecting table (6) (using the fact that i ∈ I+

out ⇒ xi < fi), we get
a general expression :

τ̃i(x) =
1

λi
ln(max(α−i (x), α+

i (x))) and τ̃(x) = min
i∈Nn

(τ̃i(x))

for the exiting time from x, associated with ϕ̃.
There is a problem when any xi = fi, where none of α±i (x) is defined. Actually, for
xi → fi (from left or right), the quantity max(α−i (x), α+

i (x)) always tends toward
+∞. But for all j ∈ Iout the corresponding τ̃j are always bounded (see table (6)),
and it is assumed here that Iout 6= ∅. Thus, when xi → fi the minimum τ̃ cannot
be given by τ̃i.
Hence, M−1x = ϕ̃(τ̃(x), x) = ϕ(−τ̃(x), x) is a continuous function, which is obvi-
ously defined on ∂Bout. �

Observe that the incoming region can now be defined as ∂Bin = {x ∈ B | τ̃(x) = 0}.
In the special case where H3 is also fulfilled, the inverse mapping can be expressed
as :

M−1y = f + β(y)(y − f). (12)

where

∀i ∈ Nn, βi(y) = max(α−i (y), α+
i (y)), and β(y) = min

i∈Nn

{βi(y)}. (13)
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This results from the definition, M−1x = ϕ(−τ̃(x), x), with Λ proportional to the
identity.

3.2 Partition of boxes

In this section, we shall analyze in some detail the possible configurations that may
happen at a single box, in terms of incoming facets, outgoing facets, and pieces of
trajectories between them. Thus, we consider a single box B, noted without sub-
script for sake of readability. Moreover, we assume that this box B has at least one
escaping direction, i.e. Iout 6= ∅, since otherwise the analysis is of little interest.
Considering a single box could seem much too local, as compared with full orbits,
crossing a possibly high number of successive boxes. But at this local scale, we pro-
vide a geometric description of all possible situations, showing by the way that they
form a combinatorially non trivial set. This description relies on a finer partition of
B than that of previous section.
The proposed partition arises by distinguishing not only which points escape in each
direction of Iout, but also those points that are mapped by M on a given escaping
wall, as well as the points of an escaping wall that are mapped from a given incoming
wall. Escaping walls are of the form W±

j , for j ∈ Iout, where ± has a fixed value for

each j. Thus, we note ±j the unique sign such that j ∈ I
±j

out. The somehow unusual
symbol ∓j is then defined as the opposite of ±j , and will be useful on more than
one occasion. One may observe that ±j = sign(dj(f(a)) − aj).
Since we deal with a single box, a non ambiguous and convenient notation for thresh-
olds in this section will be : θ−i

.
= θiai

and θ+
i

.
= θiai+1. It follows that, for i ∈ Iout,

θ±i

i is the single threshold that may be reached in direction i.
The sets we have described in words can be explicited more formally :

D±ij = W±
i

⋂ M−1(W
±j

j ) for i ∈ Nn \ Iout, j ∈ Iout.

Dij = W∓i

i

⋂ M−1(W
±j

j ) for i, j ∈ Iout.
(14)

and
R±ij = M(W±

i )
⋂

W
±j

j for i ∈ Nn \ Iout, j ∈ Iout.

Rij = M(W∓i

i )
⋂

W
±j

j for i, j ∈ Iout.
(15)

To help memory, note that the letter D stands for domain, while R stands for range
(of M).
When i 6∈ Iout, both walls W+

i and W−
i are subsets of ∂Bin. Accordingly, the su-

perscript ± above means that two sets are defined. For i ∈ Iout, there is no possible
ambiguity in the superscripts of walls : W±i

i ⊂ ∂Bout and W∓i

i ⊂ ∂Bin.
Examples of such sets are depicted in figures 3 and 4, as well as figures 5 and 6, on
3-dimensional examples, with the uniform decay rate assumption H3 (so that these
regions are polytopes).
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1

2

3

f

W+
1

W+
2

Figure 3: A box in R3, with two escaping walls : W +
1 and W+

2 . Thus, Iout = {1, 2},
and ±1 = ±2 = +.

W−

2

W−

3 W+

3W−

1

D22

D21

D−

32 D+

32

D+

31D−

31

W+

2

W+

1

R22

R12

R21

R+

32
D12

R−

32

R+

31R−

31

Figure 4: Partition of ∂Bin (on the left, seen from inside B) and ∂Bout (on the right,
seen from outside B). Dotted lines on the unfolded representation of ∂Bin relate
points that are identical in R3. The scale is aribtrary.
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The fact that these sets form a partition of ∂B is due to M being a bijection.
Actually, from this we get that each point on a wall W±

i ⊂ ∂Bin must be mapped

on a wall in ∂Bout, of the form W
±j

j , hence the sets Dε
ij , with ε ∈ { , +,−}

partition ∂Bin. Conversely each point on ∂Bout has an antecedent on a wall of the
form W±

i ⊂ ∂Bin, so that ∂Bout is partitioned by the sets Rε
ij .

We now consider some properties of these sets. First, it appears that there is a
simple relation between sets in (14) and in (15).

Proposition 2

R±ij = M(D±ij) for i ∈ Nn \ Iout, j ∈ Iout.

Rij = M(Dij) for i, j ∈ Iout.

Moreover, when H3 is true, the polytopal complexes formed respectively with all Dε
ij

and all Rε
ij are combinatorially isomorphic. In particular, each pair of Dε

ij and Rε
ij

are combinatorially isomorphic polytopes.

Proof. Both equalities follow from the fact that M : ∂Bin → ∂Bout is a bijec-
tion. Actually, the injectivity of M implies that M(A ∩ B) = M(A) ∩M(B), for
all subsets A and B in the domain of M. Surjectivity, on the other hand, implies
M(M−1(A)) = A for all subset A in the range of M. The conclusion is a direct
consequence of definitions (14) and (15).

Under H3, we have already seen that all trajectories in a box are straight lines,
and that M is a projective transformation. Since walls are polytopes ((n − 1)-
rectangles), and projective transformations transform polytopes into polytopes [22,
38], the sets defined in (14) and (15) are polytopes.
The combinatorial isomorphism means that the collection of Dε

ij and that of Rε
ij

have the same face structure, in terms of incidence between faces of all dimensions.
This can be seen by observing that M is the projective mapping used in the con-
struction of the so called Schlegel diagram, which preserves combinatorial structure
(see [38], p.132-137). More precisely, for a fixed j, the complex formed of the Rε

ij

and their subfaces is precisely the Schlegel diagram of the polytope B ∩M−1(W
±j

j )

based on the face W
±j

j . The polytopes B ∩M−1(W
±j

j ), j ∈ Iout, partition B, and

their facets are exactly W
±j

j , and all Dε
ij , which allows to conclude.

A more thorough discussion of these constructions can be found in [12]. �

The sets that need a superscript + or − are also simply related :

Proposition 3 D+
ij = D−ij +(θ+

i − θ−i ) ei, where ei is the ith vector of the canonical
basis, and + denotes the Minkowski sum.

Proof. Let x ∈ W−
i , and define x′

.
= x + (θ+

i − θ−i ).
We show now that x belongs to D−ij if and only if x′ belongs to D+

ij .

x ∈ D−ij if and only if the orbit starting at x escapes in direction j, i.e. τ(x) = τj(x).

13



Since x and x′ have identical coordinates, except xi = θ−i and x′i = θ+
i , with i 6∈ Iout

(see (14)), the exit time τ(x) is independent of xi. Hence τ(x) = τ(x′) = τj(x
′), or

equivalently Mx ∈ W
±j

j , i.e. x′ ∈ D+
ij . �

Now a result restricts the possible transitions between incoming and outcoming
walls. The term relint denotes the relative interior, i.e. the interior taken in the
smallest affine subspace containing S. In the rest of the text, interior will mean
relative interior.

Lemma 1 There is at most one i ∈ Iout, such that relint(Dii) (and thus relint(Rii))
is nonempty.

Proof. Suppose i ∈ Nn such that relint(Dii) 6= ∅. Then there is an x∗ in W∓i

i ,
so that x∗i = θ∓i

i , and Mx∗ ∈ W±i

i , so that τ(x∗) = τi(x
∗
i ) = τi(θ

∓i

i ) is a strict
minimum, due to x∗ being in the relative interior of Dii :

∀k ∈ Iout, k 6= i, τi(x
∗
i ) < τk(x

∗
k). (16)

An other property of τi is that τi(θ
∓i

i ) is the maximum value of all τi(xi), for xi ∈
[θ−i , θ+

i ]. This follows from table (6) and monotonicity of α±i functions in each entry
of this table : αi(xi) has a minimum at xi = θ∓i

i . Since τi decreases with respect to
αi one gets :

∀i ∈ Iout, τi(x
∗
i ) = τi(θ

∓i

i ) = max
xi∈[θ

−
i ,θ+

i ]
τi(xi)

From the latter and (16) we derive a necessary condition for relint(Dii) 6= ∅ :

∀k ∈ Iout, k 6= i, max
xi∈[θ

−
i ,θ+

i ]
τi(xi) < max

xk∈[θ
−
k

,θ+
k

]
τk(xk),

which obviously cannot be satisfied by more than one i ∈ Iout. �

Remark 1 From lemma 1, the number of directions such that Dii has nonempty
interior is 0 or 1. The case where it is 0 is rare, in the sense that there is a measure
zero set of parameters leading to it. This set is given by the equality of all maximal
values of the τi functions (which occur at thresholds value of xi), for i ∈ Iout and
#Iout > 2.
When #Iout ∈ {0, 1}, this number is equal to the number of directions i with
nonempty relint(Dii).

The previous lemma indicates that not all transitions are admissible for a fixed set
of parameters. The next result shows that there are no other restrictions of this kind.

Lemma 2 For i ∈ Nn, j ∈ Iout, i 6= j, and ε ∈ { , +,−}, all Dε
ij, (resp. Rε

ij), have
nonempty relative interior.
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Proof. For i 6∈ Iout, from proposition 3, D−ij and D+
ij are obtained from each other

by a translation, so that it is sufficient to consider only one of them. Recall that
∓i is only defined for i ∈ Iout. A practical convention, for i 6∈ Iout, will be to define
∓i as being any of the two signs −, +. Then ∓i being well-defined for i ∈ Nn, the
result will follow if we show that

W∓i

i ∩M−1(W
±j

j ) (17)

is of nonempty interior, for i ∈ Nn and j ∈ Iout.
Again, and whatever i, θ∓i

i is a generic notation that will be useful to avoid enu-
merating several analogous cases.
The interior of a set like (17) is defined by the equality xi = θ∓i

i , and the inequalities
τj(xj) < τk(xk) for k ∈ Iout \ {j}.
From table (6) it appears that the range of the αk functions always takes the form
[α±k

k (θ∓k

k ), 1], when k ∈ I
±k
out. The upper value 1 is given by α

±k

k (θ±k

k ) = 1.
Thresholds being distinct in each direction, the range of any αk is of nonempty inte-
rior. Then, each τk has also a range of nonempty interior, given by [0, −1

λk
ln(α±k

k (θ∓k

k ))].
If

τ∗ = min
k∈Iout

−1

λk
ln(α±k

k (θ∓k

k )),

one gets a positive length intervall [0, τ ∗], which is contained in the range of all τk,
for k ∈ Iout. Since #Iout is finite, we can choose this number of points in the latter
interval : ϑ1 > · · · > ϑ#Iout

. Given such a choice, there is an xj in the domain
of τj such that τj(xj) = ϑ#Iout

. Each other ϑp has an antecedent xp for some τk,
k ∈ Iout \ {j}. Then, τj(xj) = τ(x), and any point x ∈ W−

i with coordinates in Iout

constructed in this way belongs to relint(D−ij). �

Remark 2 The fact that i 6= j, which makes the difference with lemma 1, may not
appear clearly. It is implicitely useful for it allows to choose j in the whole domain
[θ−j , θ+

j ], while xi is of fixed value θ∓i

i .

To conclude this section, one shall in fact provide an explicit description of the
nonempty regions Dε

ij and Rε
ij . This description can be useful from an algorithmic

point of view, since it is a minimal set of inequalities, hence optimal in terms of
memory resources.

Proposition 4 For all but a zero-measure set of parameters (i.e. thresholds and
focal points coordinates) the sets Dε

ij defined in eq. (14), are bounded cells with
piecewise smooth boundary, whose (relative) interior is irredundantly defined by the
following inequalities :





xi = θε
i ,

θ−k < xk < θ+
k , k ∈ (Nn \ Iout) \ {i}

αk(θ
∓k

k ) < αk(xk) < αj(xj)
λk
λj , k ∈ Iout \ {i, j}

αj(xj) < 1.
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With the additional inequations, submitted to condition :

• If Djj 6= ∅, αj(θ
∓j

j ) < αj(xj) has to be added to the system above.

• If i ∈ Iout and Dii 6= ∅, αi(θ
∓i

i )
1
λi < αj(xj)

1
λj , has to be added.

The exponent ε stands for ∓i if i ∈ Iout, and ε ∈ {+,−} otherwise.

Proof. The equality satisfied by xi ensures that Dε
ij ⊂ W ε

i .
In all cases, the variables xk, for k 6∈ Iout, do not influence the exit time. Hence, they
are only submitted to the inequalities θ−k < xk < θ+

k . Reciprocally, these inequalities
must be satisfied to ensure x ∈ B. Of course, when i 6∈ Iout, xi does not appear in
these inequations.

Variables xk, for k ∈ Iout, must on the other hand satisfy two kinds of constraints.
Firstly, they have to be comprised between thresholds θ−k and θ+

k . Since the functions
αk are continuous and monotone with domain [θ−k , θ+

k ] and range [αk(θ
∓k

k ), 1], for all
k ∈ Iout, these threshold inequations can equivalently be written

∀k ∈ Iout \ {i}, αk(θ
∓k

k ) < αk(xk) < αk(θ
±k

k ) = 1. (18)

Secondly, for k 6= j, the corresponding exit time τk(xk) must be higher than τj(xj),

since Dε
ij is part of M−1(W

±j

j ). Remind that exit times are defined in equation (5)

as τk(xk) = − 1
λk

ln(αk(xk)). Thus, τk(xk) > τj(xj) leads to

∀k ∈ Iout \ {j}, αk(xk) < αj(xj)
λk
λj . (19)

From αj(xj) < 1, and the above, we deduce αk(xk) < 1. This latter is hence
removable from (18), for all xk, k ∈ Iout \ {j}, but must be maintained for xj .
For k ∈ Iout, and k 6= i, j, the inequality relating xk and the threshold θ

∓k

k admits
on the other hand no concurrent inequation from those of the form (19). Thus
αk(θ

∓k

k ) < αk(xk) has to be maintained for all k ∈ Iout \ {i}.
Now the last inequality we need to discuss is the one that gives a lower bound for
αj(xj). To achieve this, one has to remind from the proof of lemma 1 that Dkk 6= ∅

admits

∀k′ ∈ Iout \ {k}, αk(θ
∓k

k )
1

λk > αk′(θ
∓k′

k′ )
1

λ
k′ , (20)

as a set of necessary conditions. This lemma ensures moreover that, for almost all
parameter values, there is exactly one k such that Dkk 6= ∅. Thus in the following,
we assume this fact.
We now consider two distinct cases.

• If i 6∈ Iout : the ith variable does not appear in inequations (19).
If Djj = ∅, there is (for almost all parameter values) a k ∈ Iout \ {j} with

Dkk 6= ∅. It follows that αj(θ
∓j

j )
1

λj < αk(θ
∓k

k )
1

λk , and then (18) and (19)

together imply αj(θ
∓j

j ) < αj(xj). This latter inequality has thus to be precised
only if Djj 6= ∅, in which case it is unremovable.
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• If i ∈ Iout : from (19),

αi(θ
∓i

i )
λj

λi < αj(xj), (21)

holds. This competes with

αj(θ
∓j

j ) < αj(xj), (22)

appearing from (18). Now, if Dkk 6= ∅ for some k 6= i, j, both lower bounds

of αj(xj) are smaller than αk(θ
∓k

k )
λj

λk , due to (20). From (19) this quantity is

a lower bound for αj(xj)
1

λj , and thus (21) and (22) are both redundant.
On the other hand, if either Dii 6= ∅ or Djj 6= ∅ (or both when i = j), one
has an irredundant lower bound from (21) or (22), respectively.

�

Observe that in the special case where H3 holds, all inequalities in proposition 4
are affine, and thus the sets they describe are polytopes. We already knew this fact,
but now the polytopes are explicitely described in terms of half-spaces’ intersections.
From a direct count of the inequalities in proposition 4, one can infer the corollary :

Proposition 5 Any set Dε
ij possesses 2 (n−1) facets (which are here (n−2)-faces),

except if i 6∈ Iout or Dii = ∅, and at the same time Djj = ∅, in which case there
are 2(n − 1) − 1 facets .
These facets are obtained by replacing one inequality in the system by an equality.

The notions of k-face, and facet, are usually defined for polytopes. In the corollary
above, they are extended to our piecewise smooth cells in a straightforward way.
From proposition 2, the same holds of course for sets Rε

ij . Furthermore, we provide
an explicit description of the latter, which is directly derived from that of the sets
Dε

ij .

Proposition 6 For fixed i, j, and ε, a set Rε
ij can be described by an irredundant

list of inequations directly obtained from those of Dε
ij, using the translation rules

below. We call x a point in Dε
ij, and y a point in Rε

ij.

(in)equation in Dε
ij ↔ (in)equation in Rε

ij

equality xi = θε
i ↔ yj = θ

±j

j

k 6∈ Iout xk < θ+
k ↔ yk − fk < βi(yi)

−
λk
λi (θ+

k − fk)

xk > θ−k ↔ yk − fk > βi(yi)
−

λk
λi (θ−k − fk)

k ∈ Iout \ {i, j} αk(xk) < αj(xj)
λk
λj ↔ βk(yk) < βk(θ

±k

k )

αk(xk) > αk(θ
∓k

k ) ↔ βk(yk) > βi(yi)
λk
λi

αj(xj) < 1 ↔ βi(yi) > 1

if Djj 6= ∅ αj(xj) > αj(θ
∓j

j ) ↔ βi(yi)
λk
λi < βj(θ

±j

j )

if Dii 6= ∅ αj(xj) > αi(θ
∓i

i )
λj

λi ↔ βi(yi) < βi(θ
±i

i )
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Where the functions βk are given in equation (13), used in the definition of M−1.

Proof. Let x ∈ Dε
ij , and y = Mx ∈ Rε

ij = M(Dε
ij).

The hyperplane equalities xi = θε
i and yj = θ

±j

j arise directly from the definition of
Dε

ij and Rε
ij .

Now, from equation (13) and the definition of M−1, the two following identities are
easily derived :

∀k ∈ Nn,





xk = fk + βi(yi)
λk
λi (yk − fk),

yk = fk + αj(xj)
λk
λi (xk − fk).

(23)

From these one obtains :

∀k ∈ Nn, αj(xj)
λk
λj = βi(yi)

−
λk
λi . (24)

The functions βk are defined in equation (13) for all k ∈ Nn.
As equations (23) show that θ−k < xk < θ+

k is equivalent to

θ+
k − fk > βi(yi)

λk
λi (yk − fk) > θ−k − fk,

the case k ∈ Iout is proved.
All other rules concern k ∈ Iout. Using the notation ∓k introduced at the beginning

of this section leads to : βk(yk) =
θ
∓k
k
−fk

yk−fk
. Then all these rules are obtained using

equations (23) and (24), from which simple calculations show that expressions on
each side of a symbol ↔ are equivalent. The last two rules are special cases of those
above them, but they have been written apart since they do not always apply. �

The proposition 5 can be checked on figures 3 and 4. In these figures, one has
D22 6= ∅. All Dε

ij have 4 facets (here edges since they are 2-dimensional), with the

exception of those with no 2 among their two indices. Namely, D−13 and D+
13 have

three edges. Of course, the same holds with the sets Rε
ij .

Remarkably, these figures are only a particular case, and constructing an example
with all possible instances of Dε

ij sets, in terms of facet numbers, would require more
than 3 dimensions. Actually, it should contain a nonempty Dii, with 2(n−1) facets,
as well as some Djk, j, k ∈ Iout \ {i}, with 2(n − 1) − 1 facets. This requires 3
escaping directions, and corresponds to the example of figures 5 and 6. Thus, to
have at least one non-escaping direction m, such that both D±mi have 2(n− 1) facets
and D±mj , D±mk have only 2(n − 1) − 1, one needs a fourth dimension. This justi-
fies the algebraic description given in propositions 4 and 6. Actually, proposition 5
gives a criterion to distinguish among configurations that are not equivalent from a
combinatorial point of view. The discussion above proves that some of these config-
urations only occur in higher-dimensional spaces, where visualization is out of reach.
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2
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W+
1

f

W+
3

W+
2

Figure 5: A box in R3, with three escaping walls : W +
1 , W+

2 and W+
3 . Dotted lines

relate the vertices of D22 and their images, i.e. the vertices of R22.

W+

3

W−

3 W−

1

W−

2

R32

R12

R31

R23

R13

R22

R21

D22

D21

D32

D12

D13

D23

D31

W+

2

W+

1

Figure 6: Partition of ∂Bin (on the left, seen from inside the box) and ∂Bout (on the
right, seen from outside the box). The scale is arbitrary, but the shape and position
of each set is well represented.
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More than the usefulness of an algebraic formulation, this shows that even when
dealing with a single box, the admissible behaviours form a nontrivial set. The rel-
evance of this section is hence justified a posteriori.

3.3 Extension to the whole state space

The preceding sections allow a rigorous definition of the transition mapping as an
homeomorphism, at the scale of a single box, provided this latter admits escaping
directions. We quickly omitted its superscript, but this local map was initially noted
Ma : ∂Bin

a → ∂Bout
a . We now provide a precise definition of the transition map on

the whole state space. Although local maps are invertible on boxes with nonempty
outgoing domain, boxes with no escaping direction are on the other hand more prob-
lematic. As we will see in this section, it is natural to map the boundary of such
boxes to a single point, whose preimage will then be the whole box boundary. More-
over, the whole domain boundary ∂U is not reachable, due to H1. Hence a global
mapping will not be invertible at all points in general, which leads us to consider
only forward iterates of M in this section.
This application has to be iterated on

⋃
a ∂Ba, which can naturally be seen as the un-

derlying set of a cubical complex, whose elements are faces of the form F =
∏n

i=1 Fi

where each Fi is of one of the following forms : {θiai
}, {θiai+1}, or [θiai

, θiai+1].
These F will be called faces, or thresholds (affine) subspaces in the following. The
dimension of such a face is the number of Fi’s that are not singletons.
H2 implies that any outgoing facet W ⊂ ∂Bout

b , for some b, is part of ∂Bin
a , for Ba

adjacent to Bb at wall W . Actually, W ⊂ ∂Bout
a would contradict the hypothesis,

and the outcoming and incoming regions of a box form a cover of its boundary.
An other possibility would be that W is the facet of no other box than Bb, when
it lies on the boundary of the whole domain U . But H1 implies that in this case
W ⊂ ∂Bin

b . Thus we get : ⋃

a∈A

∂Ba =
⋃

a∈A

∂Bin
a . (25)

Then any point on
⋃

a∈A ∂Ba belongs to ∂Bin
a , for some a ∈ A. If ∂Bout

a 6= ∅, then
Ma is well defined, but this escaping region may also be empty, which we recall
corresponds to f(a) being an asymptotically stable steady state lying in int(Ba). In
such a case, all points in ∂Ba are in the basin of f(a), so that it seems reasonable
to define Ma as the constant map with image f(a). Then {f(a)} has to be added
to the domain of Ma. These focal points being (asymptotically stable) equilibria,
we put Maf(a) = f(a).
After introducing the subset of terminal subscripts :

T .
= {a ∈ A | f(a) ∈ int(Ba)} = {a ∈ A | d(f(a)) = a},

one can define local transition maps in all boxes :

Ma : x ∈ Dom(Ma) 7−→
{

f(a) + A(x)(x − f(a)) if a ∈ A \ T
f(a) if a ∈ T (26)
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where the first case is exactly identical to equation (8). The domain Dom(Ma) =
∂Bin

a for a ∈ A \ T , and Dom(Ma) = ∂Bin
a ∪ {f(a)} for a ∈ T . Thus,

⋃

a∈A

Dom(Ma) =
⋃

a∈A

∂Ba ∪
⋃

a∈T

{f(a)}.

Yet, a global mapping can not be properly defined. Actually, if any x ∈ ⋃
a∈ADom(Ma)

lies in the domain of some local map Ma, the choice of this local map is not always
unique. Ambiguities may happen at some face of codimension 2 (in Rn) or more. In
fact this concerns all faces with codimension > 2, except some on the boundary ∂U .
More precisely, a face F with dimF 6 n−2 is contained in the intersection of 2 affine
hyperplanes or more, of the form Hi = {xi = θi}. Each Hi defines two halfspaces,
of the form H+

i = {xi > θi} and H−i = {xi 6 θi}. Then it is clear that Hi intersects
int(U) if and only if both H−i and H+

i contain a full box. Moreover, assumption H2

guarantees that in such case, any wall W ⊂ Hi has the form ∂Bin
a ∩ ∂Bout

b . If two
of the hyperplanes containing F intersect int(U), then F is part of two walls like
W , i.e. it is a subset of an intersection ∂Bin

a ∩ ∂Bout
b ∩ ∂Bin

c ∩ ∂Bout
d , where the four

boxes are distinct. Hence both maps Ma and Mc could be applied to points in F ,
and a global map can not be defined there. Whatever its dimension, a face F with
no more than one hyperplane Hi intersecting int(U) lies in the incoming region of a
single box, on the other hand. Anyway, it also lies in the boundary ∂U , which from
H1 is globally repelling, and thus can be ignored without loss of information on the
dynamics.
In short, to handle these ambiguities, we may exclude all codimension 2 faces from
the analysis, along with the subset from which those faces can be reached. On such
a domain, a global map can finally be well defined, and written for example with
the aid of characteristic functions (1A(x) = 1 for x ∈ A, 0 otherwise) :

Mx =
∑

a∈A

1Dom(Ma)(x) Max. (27)

And noting F2 the union of all threshold faces of codimension 2 or more, the domain
D on which M and its iterates are well defined may be written :

D =
⋃

a∈A

Dom(Ma) \
⋃

k∈N

M−k(F2) (28)

The notation Mk stands for the kth iterate of M defined in (27), and M−k(F2)
is then the preimage of the set F2. This requires implicitely that previous iterates
are well defined, i.e. belong to D as well. The excluded set is thus the union of all
finite time preimages of codimension 2 faces. As such, its measure is zero, and the
restriction is not too strong.
On the other hand, the domain D is not closed in

⋃
a Dom(Ma), and thus it is not

compact. Actually, a sequence in D that converges to a point in some codimension
2 face is easily contructed. In particular, some orbits in D may have an ω-limit
set that does not belong to D . Typical examples of such orbits are those converg-
ing towards a stable focus lying at the intersection of two walls or more, without
intersecting any such lower dimensional face in finite time (i.e. a finite number of
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iterations).
Remark that D is not open either, since in general its complement

⋃
k M−k(F2) is

not closed. This arises from the fact that the latter is an infinite union of closed set.
As there are only finitely many faces in M’s domain, there is only one possibility for
the previous union to be really infinite, and to preclude closedness. It is the existence
of a periodic or quasiperiodic unstable invariant set U in D , such that some orbits in
a neighbourhood N(U) of this set have their ω-limit set in F2. Then for x ∈ N(U),
one has ω(x) ⊂ F2 and for y ∈ ω(x), converging subsequences of

(
M−ky

)
k

belong

to U , and thus leave
⋃

k M−k(F2). We do not provide an explicit example for such
a configuration here, but it strongly seems realizable. First, stable focus in F2 are
known to be possible, as we already mentioned. Secondly, unstable limit cycles are
also realizable orbits, as will appear more explicitely in proposition 10. Then, there
is no apparent obstruction to the coexistence of these invariant sets, with at least one
trajectory connecting them. We plan to provide such an example in future works.
A last observation is that D is not a connected space. This is clear from the fact
that D is a subset of all walls in phase space, taken without their boundaries. Since
these open walls are disjoint, and D clearly has nonempty intersection with all of
them, it can not be connected. The connected components of D will be explicited
in section 5.
Despite its somehow clumsy topology, the set D is the largest one on which all it-
erates of M are well defined. Moreover, M is continuous on this domain, since it is
essentially

⋃
a Dom(Ma) with all discontinuity points removed.

Now, (D ,M) is a properly defined one-sided discrete dynamical system. The
orbits in this system are of the form {Mkx}k∈N, for some x ∈ D . The iterates of
M are in fact compositions of local maps, which depend on the sequence of walls
that are crossed by the orbits. The next section is devoted to the analysis of such
iterates, in particular along cyclic sequences of walls.

4 Composite maps

We call cycle maps the kth iterate of M along a cyclic sequence of k walls, seen
as a first return map, defined on a subset of a wall. We deal in this section under
assumption H3, since otherwise computations rapidly become untractable, and the
linear algebra tools we use here cannot be invoked.
The task of describing cycle maps’ domains and fixed points has been investigated
in early studies on systems of the form (1), mainly [19, 20, 30]. All these previous
results, as well as some new ones can be found in a work of R. Edwards [8], with re-
cent improvements given in [11] in terms of combining multiple loops. These studies
all concern the case of a single threshold per direction, which is translated to zero :
then, M is a fractional linear mapping, i.e. a linear mapping divided by an affine
1-form. Composition preserves such mappings. Given a cyclic sequence of boxes, it
is shown that the domain on which a return map is well defined is a polyhedral cone.
Furthermore, fixed points of the return maps are closely related to eigenvectors of
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the linear numerator of the return map. Although it is commonly thought that these
results extend to the case of multiple thresholds, this has not been properly proved
yet.
Here, we propose such an extension to the multiple thresholds context. This leads
to deal with fractional affine mappings instead of fractional linear ones. In short,
the main difference with previous results is that one has to consider translations of
eigenspaces, instead of eigenspaces themselves, and keep trace of all crossed thresh-
olds along an orbit, since they are not all the same. This does not only complicates
the formulae and computations, but one also loses some nice features of the binary
case, as discussed at the end of this section.
Recall that since H3 is assumed, in a box Ba the mapping M = Ma writes :

Mx = f(a) + α(x)
(
x − f(a)

)
= f(a) +

θ±ι
ι − fι

xι − fι

(
x − f(a)

)
, (29)

where ι is the escaping direction for x, and θ±ι
ι is either θ−ι

.
= θιaι or θ+

ι
.
= θιaι+1

(the choice being given by the condition α(x) ∈]0, 1[, for example).

4.1 Iterates of the transition map

A matrix formulation of M’s iterates can be obtained from the equation above.
Given a wall W , ` successive iterates of the transition map can follow different
sequences of facets. Accordingly, W can be partitioned into regions corresponding
to specific wall sequences. In particular, if there is a loop of length ` in TG, containing
W , one of these domains correspond to this loop. A necessary condition for a limit
cycle to happen is then naturally that this domain be nonempty.
More explicitely, let a = a0 . . . ak+1 be a finite sequence of symbols in A, such that
there may be some continuous trajectory intersecting successively Ba0 . . . Bak+1 . It
follows that such a trajectory crosses successively the walls W 0 .

= ∂Bout
a0 ∩ ∂Bin

a1 ,
. . .W k .

= ∂Bout
ak ∩ ∂Bin

ak+1 . Then, on the wall W 0 ⊂ ∂Bin
a1 , the domain from which

the sequence a is followed can be written as :

Da

.
=

k⋂

i=0

M−i(W i). (30)

This expression is reminiscent of the definition of the domains Dε
ij(a), in equa-

tion (14). In fact, the latter correspond to the particular case k = 2 in the formula
above, with appropriate a. Note that the word a can not be arbitrary, and that the
set Da may be empty. This will be analysed in more detail in section 5.
Within the framework of binary systems, sets of the form (30) are easily defined
as polyhedral cones. Moreover, the linear inequalitites defining these cones are ob-
tained via a simple rescaling of the linear part of the transition map. Since boxes are
orthant in this context, describing a set of the form Da consists in forcing the sign
pattern of solutions of the linear inequations describing the returning cone. In our
more general context, an explicit description of domains Da is still possible, though
in less simple form. We postpone this description until the end of the section, after
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expliciting iterates of M on a fixed sequence of walls.

As focal points lying inside their own originating box are a special case, for which
M has been defined as a constant map with no change in forward iterates, we as-
sume in the following that all crossed boxes have at least one escaping direction.
On a domain Da (supposed nonempty until further precisions), corresponding to a
fixed list of k walls successively crossed by the flow, Mk can be written unambigu-
ously. Observe that since W 0 = ∂Bout

a0 ∩ ∂Bin
a1 , the symbol of the first box crossed

by orbits originating in Da is a1, and not a0. We note accordingly f 1 . . . fk the focal
points of the successively crossed boxes (i.e. f j = f(aj)), and ι1, . . . , ιk the exit
directions followed along these boxes. This leads to the following expression :

∀x ∈ Da, Mkx = fk + ∆ιk

F (k)(x − f1)

〈F (k)(x − f1), eιk〉
, (31)

where the term ∆ιk above is an abbreviation for θ
±ιk
ιk − fk

ιk
, with the threshold

θ
±ιk
ιk ∈ {θιkaιk

, θιkaιk
+1} being the kth to be crossed. From H1, ∆ιk is clearly

nonzero. Noting transposition with a T , 〈x, y〉 = xT y = yT x is the usual inner
product, introduced here to improve readability.
The matrix F (k) ∈ Rn×n is defined as the right-to-left product :

F (k) =

k−1
←−−∏

j=1

[
(f j − f j+1)eT

ιj
+ ∆ιjId

]

=
[
(fk−1 − fk)eT

ιk−1
+ ∆ιk−1

Id
]
. . .

[
(f1 − f2)eT

ι1
+ ∆1Id

]
,

(32)

for k > 2, and F (1) = Id.
The expression of Mk is easily proved by induction. Actually, supposing it correct
at a step k, and computing Mk+1 on a domain where the escaping direction is ιk+1,
one gets from (29), which also gives the initial step of the induction :

Mk+1x = fk+1 +
∆ιk+1

(Mkx)ιk+1
− fk+1

ιk+1

(
Mkx − fk+1

)
,

and reinjecting eq. (31), i.e. the induction hypothesis,

Mk+1x = fk+1 + ∆ιk+1

fk + ∆ιk
F (k)(x−f1)

〈F (k)(x−f1),eιk
〉
− fk+1

〈
fk + ∆ιk

F (k)(x−f1)

〈F (k)(x−f1),eιk
〉
− fk+1, eιk+1

〉

= fk+1 + ∆ιk+1

(fk − fk+1)eT
ιk

F (k)(x − f1) + ∆ιkF (k)(x − f1)〈
(fk − fk+1)eT

ιk
F (k)(x − f1) + ∆ιkF (k)(x − f1), eιk+1

〉

= fk+1 + ∆ιk+1

F (k+1)(x − f1)

〈F (k+1)(x − f1), eιk+1
〉

with F (k+1) =
[
(fk − fk+1)eT

ιk
+ ∆ιkId

]
F (k), yielding (32).

This matrix is always invertible, as we show now.
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Proposition 7 For all k ∈ N, the n × n matrix F (k) is invertible, as far as H1

holds.

Proof. From equation (32), F (k) is a product of n × n matrices, which are all
diagonal with one nonzero column. Developing along this column, only one minor
is nonzero, yielding for the jth matrix :

det
(
(f j − f j+1)eT

ιj
+ ∆ιjId

)
= (∆ιj )

n−1(∆ιj + f j
ιj
− f j+1

ιj
)

= (θ
±j
ιj − f j

ιj
)n−1(θ

±j
ιj − f j+1

ιj
),

whence the determinant :

det(F (k)) =
k−1∏

j=1

(∆ιj )
n−1(θ

±j
ιj − f j+1

ιj
), (33)

which from assumption H1 is nonzero, whatever k. �

It is implicitely assumed, when writing equation (31) for Mk, that the inner
product 〈F (k)(x−f1), eιk〉 6= 0 in the denominator. As can be seen from an alterna-
tive way of expressing Mk, this condition is always verified. This relies on Edwards
observation, in [8], that the time spent on the continuous trajectory between some
x and its image Mkx can be read directly from Mk, in the case of binary systems.
This property is still valid in our case. Noting τ j(x) = τ(Mj−1x) the time spent in
the jth crossed box, for j = 1 . . . k, the following holds :

exp


−λ

k∑

j=1

τ j(x)


 =

∆ι1 . . .∆ιk

〈F (k)(x − f1), eιk〉
, (34)

where the sum in the exponential is clearly the total time between x and Mkx.
A zero inner product would mean that this time is infinite (and negative !). Such
a pathological case is only possible along a finite sequence of boxes, one of whose
contains its own focal point. But the latter case has been excluded here, as explained
before.
To prove that equation (34) holds, one has to remember that α(x) = e−λτ(x), in
equation (29). Then, for an iterate of M there are two equivalent formulations :

Mjx − f j = e−λτ j(x)(Mj−1x − f j) = ∆ιj

F (j)(x − f1)

〈F (j)(x − f1), eιj 〉
.

Projecting this expression on eιj , the scalar e−λτ j(x) can be expressed as a ratio :

e−λτ j(x) =
∆ιj

〈Mj−1x − f j , eιj 〉
.

From equations (31) and (32) :

Mj−1x−f j =

[
(f j−1 − f j)eT

ιj−1
+ ∆j−1Id

]
F (j−1)(x − f1)

〈F (j−1)(x − f1), eιj−1〉
=

F (j)(x − f1)

〈F (j−1)(x − f1), eιj−1〉
,
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which leads to

e−λτ j(x) =
∆ιj 〈F (j−1)(x − f1), eιj−1〉

〈F (j)(x − f1), eιj 〉
.

Equation (34) is then a product of ratios of the form above.
Hence, one gets an alternative formulation of equation (31) in which the time is
explicit :

Mkx = fk +
exp

(
−λ

∑k
j=1 τ j(x)

)

∆ι1 . . .∆ιk−1

F (k)(x − f1). (35)

Now we have all the ingredients to provide an explicit description of the domains
Da, eq. (30). Inequalities defining this domain are of two kinds : those expressing
the inclusion Da ⊂ W 0, and those expressing that orbits initially follow the sequence
of boxes a. The first are immediate, and the difficulty only comes from the second.
Observe that we will not give an irredundant description, as we were able to do in the
simple case of proposition 4, even if we deal here under the simplifying assumption
H3.

Proposition 8 For a = a0 . . . ak+1, the set Da, as defined in equation (30) is prop-
erly described by the following set of inequalities, for each j ∈ Nk :

∀i ∈ Iout(a
j) \ {ιj},

eT
i

∆i∆ι1 . . .∆ιj

[
∆ιjId − ∆ie

T
ιj

]
F (j)(x − f1) > 0, (36)

along with the 2(n − 1) inequalities defining W 0 ⊃ Da.
The value θ±i

i is the escaping threshold in direction i for the box Baj , ∆i is similar

to the already defined abbreviation of θ±i

i − f
j
i . Since for each i, x− f 1 is multiplied

on the left by a 1×n vector in inequation (36), the system of inequations associated
to each j can be put in matrix form as C(j)(x− f1) > 0, where the lines of C(j) are
given by (36).

Proof. The necessity of inequalities defining W 0 does not need any proof.
Other inequations are equivalent to τi(Mj−1x) > τιj (Mj−1x), i.e. ιj is the escaping
direction in Baj , for initial condition Mj−1x.
Actually, noting xj .

= Mjx for concision, the later inequality on exit times rewrites :

x
j−1
i − f

j
i

∆i
− x

j−1
ιj − f

j
ιj

∆ιj

> 0.

This has clearly to be statisfied by all i ∈ Iout(a
j) \ {ιj}, and is equivalent to :

eT
i

∆i∆ιj

[
∆ιjId − ∆ie

T
ιj

]
(xj−1 − f j) > 0.

Now, from eq. (35) and xj−1 − f j = eλτ j(x)(xj − f j), one gets :

xj−1 − f j =
exp

(
−λ

∑j−1
i=1 τ i(x)

)

∆ι1 . . . ∆ιj−1

F (j)(x − f1),

and since the exponential is positive, inequation (36) follows. �
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4.2 Cyclic maps

Now we turn to the case of cyclic maps. For this, let a0, a1, . . . , a` = a0 be a
periodic list of box symbols, so that Da 6= ∅, for a = a0 . . . a`−1a0. There are then
corresponding periodic sequences of walls, focal points, and exiting directions : W j ,
f j and ιj , with j taken modulo `. Then, for and x ∈ Da ⊂ W 0, the iterated map
M` maps x back on W 0, and writes :

M`x = f0 + ∆ι0

F (`)(x − f1)

〈F (`)(x − f1), eι0〉
, (37)

where the periodicity of the box sequence leads to replacing occurences of ` by 0
above, as well as in the expression of F (`) computed from (32) (but F (`) 6= F (0), of
course).
Now, for nonempty Da the restriction M`|Da

is not strictly speaking a Poincaré
return map in general, since some points may be mapped outside Da, and thus
escape from the loop a when mapped again. However, it is clear that if a limit cycle
exists around a, it must correspond to a fixed point of M` that lies in Da. A practical
way to characterize fixed points of this map is to translate the expression (37) :

M`x − f1 = f0 − f1 + ∆ι0

F (`)(x − f1)

〈F (`)(x − f1), eι0〉
,

which can be put as single fractional term :

M`x − f1 =
1

〈F (`)(x − f1), eι0〉
[
(f0 − f1)eT

ι0
+ ∆ι0Id

]
F (`)(x − f1)

=
F (`+1)(x − f1)

〈F (`)(x − f1), eι0〉
. (38)

Here again, F (`+1) is obtained from eq. (32) with indices taken modulo `.
It appears now that if x∗ is a fixed point of the return map M`, then x∗ − f1 is an
eigenvector of F (`+1), with eigenvalue 〈F (`)(x∗ − f1), eι0〉.
Conversely, if y− f1 is an eigenvector of F (`+1), with eigenvalue µ, y is a fixed point
of M` only if it satisfies :

µ = 〈F (`)(y − f1), eι0〉
as seen by simply combining the two requirements F (`+1)(y − f1) = µ(y − f1)
and M`y = y. Thus, noting Eµ(F (`+1)), or simply Eµ when nonambiguous, the
eigenspace corresponding to an eigenvalue µ, and given a point y ∈ f 1 + Eµ, a fixed
point for M` can be explicited :

x∗ = f1 +
µ

〈F (`)(y − f1), eι0〉
(y − f1), (39)

provided it belongs to Da, and 〈F (`)(y − f1), eι0〉 6= 0.
This latter condition is necessary for a fixed point to belong to the line f 1+R(y−f1).
Actually, the nonzero inner product above is invariant when y is replaced by a point
in the affine line f1 + R(y − f1), and we have shown with eq. (34) that this inner
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product must be nonzero for all images of the return map, hence for fixed points.
In fact, we show now that this condition necessarily holds if f 1 +R(y−f1) intersects

the hyperplane {x | xι0 = θ
±ι0
ι0 }. In particular, it is automatically satisfied if the

point x∗ in equation (39) belongs to Da, which is a subset of the wall W 0, itself
included in the mentioned hyperplane.

Proposition 9 Let µ be an eigenvalue of matrix F (`+1), and (y − f1) ∈ Eµ a

corresponding eigenvector. Suppose H1, and f 1 +R(y − f1)∩ {x | xι0 = θ
±ι0
ι0 } 6= ∅.

Then, 〈F (`)(y − f1), eι0〉 6= 0.

Proof. Suppose 〈F (`)(y − f1), eι0〉 = 0. Then,

F (`+1)(y − f1) =
[
(f0 − f1)eT

ι0
+ ∆ι0Id

]
F (`)(y − f1)

= ∆ι0F
(`)(y − f1),

so that 〈F (`+1)(y−f1), eι0〉 = 0. And since F (`+1)(y−f1) = µ(y−f1) with nonzero
µ (due to proposition 7), this orthogonality equation yields yι0 = f1

ι0
. Such a relation

holds for any point in the affine line f 1 +R(y − f1). In particular, if a point of this
line also belongs to the hyperplane of the proposition’s statement, one is lead to the
equality : yι0 = θ

±ι0
ι0 = f1

ι0
. This contradicts H1. �

We have given a necessary condition on eigenvectors, let us now give one on
eigenvalues. Since this product will appear several times, an abbreviation may be
introduced :

∆
.
=

∏̀

j=1

∆ιj . (40)

Then the the necessary condition is :

µ

∆
> 1 (41)

for a fixed point to be obtained from the eigenspace Eµ. This comes directly from
eq. (34), since transition times must be positive, and the inner product equals the
eigenvalue associated to a candidate fixed point. Then, ∆ and µ must have the same
sign, and the latter must be real and of greater modulus than ∆.
As a noticeable point, the sign of ∆ is fully determined from the parity of the cycle’s
length `. Actually, the sequence of crossed walls is periodic. Then, if the flow crosses

a wall with threshold θ
±ιj
ιj increasingly in direction ιj , which implies ∆ιj < 0, it must

cross the same hyperplane decreasingly at some later point on the same orbit, so
that ∆ιj+m

> 0, for some m. Thus, the full product consists of such pairs, whose
product is negative. Hence ` must be even, and

sign(∆) = (−1)
`
2 .

The case of equality in eq. (41) is to be rejected when looking for fixed points. This
has to be stressed, since ∆ is a potential eigenvalue of F (`+1), with any ei as eigen-
vector, where i is a direction in which no wall is crossed along the cycle. This results
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directly from eq. (32), when at least one i ∈ Nn does not appear as an exit direction
ιj , thus leading to the ith column being nonzero on the diagonal only, with entry ∆.

Up to now, all results we have given concerning cycle maps were already known
(with simpler form) in the binary case, as analyzed in [8]. In the latter work, stability
of fixed points is also investigated. Here again, with slight differences, the results
extend. To show this, we compute the Jacobian of our return map at a point x :

DM`
x =

F (`+1)

〈F (`)(x − f1), eι0〉
− F (`+1)(x − f1)eT

ι0
F (`)

〈F (`)(x − f1), eι0〉2
,

which, at a fixed point x∗, takes the simpler form :

DM`
x∗ =

F (`+1)

〈F (`)(x∗ − f1), eι0〉
− (x∗ − f1)eT

ι0
F (`)

〈F (`)(x∗ − f1), eι0〉
.

Now we apply this Jacobian at x∗ − f1 :

DM`
x∗(x∗ − f1) = (x∗ − f1) − (x∗ − f1) = 0.

Given an other fixed point y∗, one also computes the following :

DM`
x∗(y∗ − x∗) = DM`

x∗(y∗ − f1) − DM`
x∗(x∗ − f1)

=
F (`+1)(y∗ − f1)

〈F (`)(x∗ − f1), eι0〉
− (x∗ − f1)eT

ι0
F (`)(y∗ − f1)

〈F (`)(x∗ − f1), eι0〉

=
〈F (`)(y∗ − f1), eι0〉(y∗ − f1)

〈F (`)(x∗ − f1), eι0〉
− (x∗ − f1)〈F (`)(y∗ − f1), eι0〉

〈F (`)(x∗ − f1), eι0〉

=
〈F (`)(y∗ − f1), eι0〉
〈F (`)(x∗ − f1), eι0〉

(y∗ − x∗).

Hence, x∗ − f1 is an eigenvector of the Jacobian, associated to eigenvalue 0 (we
discuss this degeneracy at the end of this section), and all y∗ − x∗ for fixed points
y∗ 6= x∗, are eigenvectors as well. Moreover, the associated eigenvalues are the ratios
of those of the fixed points themselves, seen as eigenvectors of F (`+1). Thus, if all
eigenvalues of the latter give fixed points of M`, we have all the fixed points of the
Jacobian. This is exactly the situation of the binary case, where the eigenanalysis of
the Jacobian is known from fixed points of the return map. Thus, we refer to [8] for
a discussion about the remaining special cases : eigenvalues of F (`+1) that do not
correspond to admissible fixed points, and eigenvalues with differing algebraic and
geometric multiplicity. Concerning the latter, simple calculations show that when an
eigenvalue has geometric multiplicity > 1, the fixed points given by the associated
eigenspace form an affine subspace. This is just as in the binary case (the proof is
given in [8], and remains unchanged here ; another result is preserved along with its
proof : the fact that straight lines joining fixed points are invariant under M`).
In any case, the key point is preserved : noting µ(x∗) the eigenvalue of F (`+1)

associated to a fixed point x∗, eigenvalues of the Jacobian have modulus of the
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form

∣∣∣∣
µ(y∗)

µ(x∗)

∣∣∣∣, and thus x∗ is (asymptotically) stable if µ(x∗) is a (strict) dominant

eigenvalue of F (`+1).
We can summarize the above discussion in the following proposition :

Proposition 10 Let a = a0 . . . a`−1a0 provide a cyclic sequence of walls in phase
space with nonempty returning domain Da, and a return map written in the form (38).
Assume the matrix F (`+1) has an eigenvector v with real eigenvalue µ. Then, the
point :

x∗ = f1 +
µ

〈F (`)v, eι0〉
v

is a fixed point of the return map, provided

µ

∆
> 1, and x∗ ∈ Da.

Morevoer, it is asymptotically stable if, for any other eigenvalue η of F (`+1) the
following holds :

|µ| > |η|.
If the inequality is weak, x∗ is stable, and it is unstable otherwise.

This proposition is an exact analogue of what is known in the case of binary
systems, the differences being that eigenvectors are translated with f 1, and the
eigenvalue µ can be negative. Moreover it must be of greater modulus than ∆, a
quantity obtained from the thresholds and focal points coordinates involved in the
cycle, instead of being just > 1 like in the binary case.

Remark 3 This resemblance is intuitively not surprising, and has always been con-
sidered true in previous discussions in the literature. Anyway, proving this involves
a different way of writing things than usual. In particular, the return map is usually
reduced to a Rn−1 → Rn−1 application, since at each step a coordinate is known to
be zero. Here, this is not the case, and the same coordinate xi may take different
threshold values along a single orbit. This is why M has been kept all its compo-
nents. This also explains why the Jacobian DM` is noninjective : the dynamics is
essentially n − 1 dimensional, and keeping all n components introduces degeneracy.
Mathematically, the fact to use a somehow superfluous coordinate has to be related
to the use of homogeneous coordinates in the context of projective geometry. In
the latter context, the additional coordinate is usually set to 1, but since here one
deals with a piecewise projective mapping, this homogenization must be reiterated
in each box, using a corresponding threshold value instead of 1.

Finally, in the binary case one important result stands, that is lost here. It is the
fact that trajectories starting from a same ray through the origin stay on this ray
when iterating the mapping M. Hence the long run dynamics can be projected on a
n−1 sphere without loss of information, which has allowed to prove that no chaotic
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dynamics may happen in a 3-dimensional binary system [30], as well as to study
in details a class of 4-dimensional systems [15]. Here there is no apparent way to
extend this property, since threshold hyperplanes do not intersect at a single point.
The domains on which iterates of M are defined, as described in equation (30) and
proposition 8, can be described via paths on an oriented graph. These paths form a
symbolic dynamical system, which provides useful tools to investigate the dynamics
on (D ,M). It is the aim of next section to develop this aspect.

5 The symbolic dynamics approach

In this section, the uniform decay rates assumption H3 is not required.

5.1 The transition graph and its induced codings

The partition of phase space into boxes naturally induces an oriented graph, with
edges representing admissible transitions between boxes. Formally, we denote the
transition graph as TG = (A, E). It is an oriented graph, whose vertices are sub-
scripts of boxes. Edges correspond to pairs of boxes that are successively crossed
by some trajectory, when iterating the transition map M. This includes 1-loops,
corresponding to boxes that are forward invariant (i.e. with a subscript in T ), and
pairs that are adjacent through some n− 1 dimensional threshold hyperplane (i.e. a
single wall), ordered in accordance with the flow lines. As we already observed when
writing H2, Ba and Bb are adjacent through a single wall if and only if a− b = ±ei,
for some i ∈ Nn. Now, the flow lines in a box Ba only escape in directions i ∈ Iout(a),
with monotonicity given by the sign ±i = (di(f(a))−ai) we have introduced in sec-
tion 3.2. This sign ±i depends on the symbol a, whose value will be clear from the
context in the sequel. In short, E can thus be written :

E =
{

(a, a) | a ∈ T
}
∪

{
(a, a ±i ei) | a ∈ A \ T , i ∈ Iout(a)

}
.

Thus, TG describes transitions between boxes that occur through n− 1 dimensional
faces. Trajectories crossing lower dimensional faces are then ignored in this de-
scription, as with the construction of the domain D on which M is defined. A
nice property of TG is that it is naturally embedded on a cubical lattice, herited
from phase space partition through the double correspondence vertices-boxes and
edges-facets. In case of a single threshold per direction, the lattice reduces to a
single n-cube, whose symmetry properties have been used to improve classification
of Glass networks and their dynamics [7, 17].
Attractors of the discrete-time, continuous-space system (D ,M) have a counterpart
in TG. The converse does not hold in general, and the discrete attractors of TG may
be of different nature than those of the original system. Self loops correspond to
asymptotically stable steady states, since they arise at boxes containing their own
focal point. The cases of attracting cycles and foci - both appearing as loops in
TG - have been greatly clarified by several authors [19, 20, 30, 36]. Yet, a complete
characterization of those attractors in TG that have an equivalent in phase space is
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still lacking, and the task remaining in this direction is still a largely open problem.
Classically, TG codes a subset of infinite words on the alphabet A, given by infinite
paths on this graph. This set is given by :

S (TG) =
{
a = (at)t∈N | ∀t ∈ N, (at, at+1) ∈ E

}
⊂ AN.

Such an approach is usually referred to as symbolic dynamics, since A is a finite set
whose elements are symbols representing a subset of state space. Moreover, S can
be seen as a metric space on which discrete dynamics can be defined. We shall give
the sole ingredients of this theory that will be of direct use here, without detailing
its numerous developments. Several textbooks about dynamical systems give an
introduction to this subject ; here we mainly rely on the classical reference [29].
The dynamics is obtained by introducing the shift operator σ : S → S , defined by
(σ(a))t = at+1.
This operator is continuous for several metrics, among which the following will be
convenient :

ρ(a,b) =

{
0 if a = b

2−min{t | at 6= bt} if a 6= b
(42)

Thus, the more initial terms of a and b coincide, the closer they are for ρ. The
space S is compact for ρ, and σ-invariant. As such, it is called a shift space in
the literature. The pair (S , σ) constitutes a discrete dynamical system in the usual
way. Since orbits of this system are associated to words on the alphabet A, whose
elements are in turn representing subsets of the state space of the initial dynamical
system, the trajectories of (S , σ) represent sets of trajectories in (D ,M).
The usual way to compare these two dynamical systems requires an application
φ : D → S , which could lead to a conjugation relation of the form : φ ◦M = σ ◦ φ.
Depending on φ being one-to-one or onto it is respectively said to be an embedding
or a factor map. If it is bijective with continuous inverse (i.e. a homeomorpism), it
is called a (topological) conjugacy. From a topological point of view, two conjugate
dynamical systems behave identically, and thus conjugacy is among the strongest
equivalence relation one may apply to symbolic dynamical systems. Notably, fixed
points, periodic orbits and their period, dense orbits, topological transitivity and
topological entropy are well known invariants for conjugacy.
An application like φ above is clearly linked to the mapping d introduced in sec-
tion 2.2, when formalizing H2. d maps points of

⋃
a int(Ba) onto A. A very simi-

lar mapping is introduced in [36], where it serves as a discrete mapping conserving
asymptotically stable steady states, and limit cycles for some parameter values when
TG essentially consists of a single loop. An other kind of coding has also been used
in the case of complicated trajectories in a specific network, with an attractor having
the shape of a double loop [8, 9, 10] : a symbol was associated to each loop, and it
was shown that a subsequence was not allowed among words on these symbols, for
certain parameter values. Such dynamics were thus related to the so called golden
mean shift (see [29]), and only concerned a subgraph of the whole TG.
Here, D entirely lies in the complement of d’s domain. But it is also contained in
the reunion of all facets of boxes Ba, taken without their boundary. Any of these
open facets is well defined by the two boxes it is part of. On the boundary ∂U of the
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whole domain this would not work as such, but this boundary can not be reached
from the rest of D , so that we can ignore it without much trouble : by D we now
mean D \ ∂U . Then, for all x ∈ D , either there is a unique pair (a, b) such that
x ∈ ∂Bout

a ∩ ∂Bin
b , or some a ∈ T such that x ∈ ∂Ba ∪ {f(a)}. Accordingly, we can

define a mapping Φ : D → E , with

Φ(x) =

{
(a, b) if x ∈ ∂Bout

a ∩ ∂Bin
b

(a, a) if x ∈ ∂Ba ∪ {f(a)}, for a ∈ T .

Thus Φ codes with labels of the edges of TG, instead of vertices. Observe that
Φ−1(a, b) is a practical way to denote the open wall between two adjacent boxes Ba

and Bb, respecting the orientation of the flow.
This leads to consider a new shift space, which is obtained from S through the so
called 2-block map β2, defined by

(β2(a))t =

[
at

at+1

]
∈ E .

This vertical writing of edges will make things clearer when dealing with a full
sequence of pairs. We note S [2] .

= β2(S ) ⊂ EN ; it is a shift space. The shift
operator on S [2] is noted σ[2]. Then, the two symbolic dynamical systems (S , σ)

and (S [2], σ[2]) are conjugate, i.e. β2 is continuous and β2 ◦ σ = σ[2] ◦ β2 (cf. [29]
p.18). Thus, both systems yield the same information, at least topologically. The
latter is more directly related to M’s dynamics, which is from walls to walls, rather
than boxes to boxes, while the first one is more closely related to the dynamics
induced by TG since the vertices of this graph are labeled (with symbols from A),
not its edges.
Now to code the trajectories of (D ,M), we proceed in two steps. First, following [13],
one introduces the mapping ξ : D → DN, defined by :

ξ(x) =
(
x,Mx,M2x, . . .

)
.

As mentioned in section 3.3, M is continuous on D . It is proved in [13] that the
mapping ξ above is then a conjugacy, when restricting the range to ξ(D). This proof
is done using the following metric on DN :

%(x,y) =
∑

k∈N

1

2k

δ(xk, yk)

1 + δ(xk, yk)
,

where δ(·, ·) is any metric on D . The shift operator on DN is noted σD .
The second step is a mapping Φ∞ : DN → S [2], which is naturally induced by Φ :

Φ∞

(
(xk)k∈N

)
=

(
Φ(xk)

)

k∈N

.

This application maps sequences on D to sequences on E , which can be seen as
coding infinite words on an uncountable alphabet, with infinite words on a finite
alphabet. It is thus the step at which an approximation is done in the process of
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coding the dynamics.
The two previous steps provide us with a mapping

φ = Φ∞ ◦ ξ : D → S
[2].

This mapping can be described in more details. For this one extends the definition
of eq. (30) for domains Da when a is an infinite word in S :

Da =
⋂

i∈N

M−i
(
Φ−1(ai, ai+1)

)
. (43)

The resulting domains are then defined by an infinite set of inequalities like those
given in proposition 8. One has moreover the following result

Proposition 11 The mapping φ takes constant values on the domains Da defined
in eq. (43). The latter are exactly the connected components of D , hence φ is con-
tinuous.

Proof. Given ε = (εi)i∈N ∈ S [2], the preimage Φ−1
∞ (ε) is the product of walls :∏

i∈N

Φ−1(εi).

This product is a subset of the range of ξ. Then, noting a = β−1
2 (ε), it follows from

the definitions that the ξ preimage of the product above is exactly Da.
Thus, one gets φ−1(ε) = ξ−1 ◦ Φ−1

∞ (ε) = Da, and the latter are the preimages of
infinite words in S [2] : φ is constant on such domains.
Now, each set Φ−1(a0, a1), for (a0, a1) ∈ E , is either in the relative interior of a wall,
or it is a focal point inside its own box. In either case, it is disjoint from all other
sets of the same form. Thus, connected components of D must be subsets of the
preimages of Φ. For an infinite word a = (a0, a1 . . . ), one has Da ⊂ Φ−1(a0, a1).
Then, from the definition of D , eq.(28) : D =

⋃
a∈ADom(Ma)\⋃

i∈N
M−i(F2), it is

clear that the only obstacles to connectedness of domains Da are the sets M−i(F2).
But faces in F2 are the intersections of two walls or more. Hence in any set inter-
secting M−i(F2) for some i, there are points whose ith iterates lie in distinct walls.
It follows that the connected components are exactly the sets of points following the
same itinerary, i.e. the preimages of φ, which we just proved to be the Das. �

All constructions above may be summarized using the following diagram, in
which all paths commute :

D

M

ξ

φ

ξ(D)  DN
Φ∞

σD

S [2]

σ[2]

S
β2

σ

(44)

Now, the problem is that the left part of the diagram is clearly not a conjugacy,
a fact we have stressed using dotted arrows at the noninvertible step. Actually Φ∞,
and thus φ, are neither one-to-one nor onto in general, as illustrated for instance on
figure 7 and its legend.
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C1

C2

a b c d

Figure 7: Example of a system in R2 with two limit cycles. The phase plane is on
the left, and the transition graph on the right. On this latter, C1 and C2 are obvious
abbreviations for cyclic sequences of walls. a and b are also shorthands for symbols
in A2 = (N4 ×N5)

2. As an illustration of the default of injectivity of the operator φ

it appears here that both coexisiting cycles are attracting for a whole set of orbits
crossing similar sequences of walls. Surjectivity lacks as well, due to the fact that
all words in the language (C1∗aC2∗b)∗ are allowed blocks in S [2](TG), while there
is no continuous trajectory looping around both cycles C1 and C2.

Remark 4 One can see on the transition graph above, that some edges are not ori-
ented. They correspond to white walls in phase plane, which are unavoidable inside
cycles of the plane. White walls are less problematic than black walls, since they are
not reachable in increasing time ; they are unstable surfaces in phase space. This
suggests that our H2 is too strong, and precludes interesting dynamics. A weaker
version of this condition should only forbid black walls. However, most interesting
dynamics appear in higher dimensional spaces, where white walls do not necessarily
occur inside periodic trajectories.

The non-injectivity of φ is an inevitable feature of the system (D ,M), in which
the domains Da associated to admissible itineraries are not reduced to single points.
The fact that φ is not surjective, on the other hand, means that some infinite paths in
the transition graph do not correspond to any admissible trajectory of the continuous
system. According to this, the (generally proper) subset φ(D) ⊂ S [2] is exactly
the space of admissible trajectories in TG, thus it seems worthwhile to study the
subsystem (φ(D), σ[2]). First, one must of course check that this system is well-
defined. From the commuting diagram (44), φ(D) inherits shift-invariance from D ’s
M-invariance. Now, the space φ(D) must be compact in order to get a properly
defined symbolic dynamical system.
Such systems are usually defined as the action of the shift on a shift space. The
latter is equivalently defined as a shift-invariant compact space, or as a subspace
of all infinite words on the alphabet defined by a (possibly infinite) sequence of
forbidden (finite) blocks. The equivalence of these two characterization is proved
in [29], pp. 5-6 and 179. We will prove that the second characterization holds for
φ(D). Note that this implies shift invariance.

Proposition 12 (φ(D), σ[2]) is a symbolic dynamical system, i.e. φ(D) is a shift
space. Hence it is compact.
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Proof. First note that an infinite word ε = ε0. ε1ε2 . . . is in φ(D) if and only if

∃x ∈ D , ∀i ∈ N, εi = Φ ◦Mix

Then, for any ε ∈ S [2], we note a = β−1
2 (ε) = a0.a1a2 . . .

Now, the domain Da is either empty, or not. In the latter case, ε clearly belongs to
φ(D).
If Da = ∅, either there is an i ∈ N, Di .

= Da0...ai = ∅, either all Di are nonempty,
but Da =

⋂
i∈N

Di = ∅. In the first case, a0 . . . ai is a forbidden block in φ(D).

In the second case, the closures Di no longer are subsets of D , but they are compact
(from proposition 4, they are closed piecewise smooth cells). Moreover, from Di ⊃
Di+1, it follows that Di ⊃ Di+1. Then, compacity implies that

⋂
i∈N

Di 6= ∅. Any
point in this intersection is not in Da, and may even be outside D . Note x̄ such a
point. Then,

∃(xi)i ∈
∏

i∈N

Di, lim
i→∞

xi = x̄,

which in turn implies ∃x ∈ D , lim
i→∞

Mix = x̄.

Then, for all i ∈ N, Φ ◦Mix = εi, and thus ε ∈ φ(D).
Finally, φ(D) is fully characterized by the finite blocks with empty domain, which
all are forbidden. �

Now, the dynamics of the two symbolic dynamical systems (φ(D), σ[2]) and

(S [2], σ[2]) may be compared, which is done in the next section in terms of topolog-
ical entropy.

5.2 Comparison of topological entropies

Topological entropy is an important tool in symbolic dynamics. Actually, this quan-
tity is conjugacy invariant, and can be effectively computed for systems described
by an oriented graph. We first recall a few definitions and properties. Proofs and
additional details may be found in chapters 4 and 6 of [29], along with an extensive
bibliography. We will often omit the adjective topological, and simply use the term
entropy in this section.
Let note X a shift space, σX the shift operator on X, and Lk(X) the set of blocks
of length k appearing in X. Then, the entropy of (X, σX) is defined as :

h(X, σX) = lim
k→∞

1

k
log (#Lk(X)) , (45)

where log is conventionally the logarithm with base 2. This quantity is nonnegative,
and its positivity is a common criterion for the existence of a dynamical system.
In case when X is defined by the way of infinite paths on an oriented graph G,
note A the adjacency matrix of G : Aij ∈ {0, 1}, and Aij = 1 iff (i, j) is an edge
in the graph. Define the irreducible components of A as the equivalence classes
for the equivalence relation : i ∼ j if ∃p, q ∈ N, (Ap)ij 6= 0 and (Aq)ji 6= 0. This
corresponds exactly to strongly connected components in G. We note Ai, i = 1 . . . k
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the submatrices of A with all indices in the same equivalence class. If there is a
single class, A is said to be irreducible.
Perron-Frobenius theorem ensures that any matrix with nonnegative entries has a
dominant positive eigenvalue µA, which is simple, and is associated to a nonnegative
eigenvector. Following [29], we call the Perron eigenvalue of A the maximum :
µA

.
= max

i=1...k
µAi

.

Then, the entropy is given by :

h(X, σX) = log µA. (46)

We will need the following lemma, proved in [29] as theorem 4.4.7, p.123.

Lemma 3 Let A be an irreducible matrix, and 0 6 B 6 A, with Bij < Aij for a
pair i, j of indices. Then µB < µA.

Since S and S [2] are conjugate they have the same entropy. As S is exactly the
shift space induced by infinite paths on TG, one simply note : hTG = h(S [2], σ[2]) =
h(S , σ). One also abbreviates : hφ(D) = h(φ(D), σ[2]). Now, from the fact that

φ(D) ⊂ S [2], one can only infer hφ(D) 6 hTG. The next theorem yields a stronger
result when the transition graph contains a splitting box that is ’inside’ the domain,
with certain conditions.
We use [a] to denote the ∼ equivalence class of a, i.e. the set of vertices in the same
strongly connected component of TG as a. Observe that such components are either
single vertices, loops, or more complex structure involving several intersecting loops.
Note also that the adjacency matrix of TG is indexed by A, and not by integers.

Theorem 1 Let TG be the transition graph associated to the dynamical system
(D ,M) obtained from a piecewise affine system of the form (1), and satisfying H1

and H2.
Suppose moreover that there is an a ∈ A, and at least two distinct directions
i1, i2 ∈ Iout(a), such that for j ∈ {1, 2} and ± ∈ {−, +},

a ± eij ∈ [a].

Finally, assume that besides [a], all equivalence classes are either loops, single ver-
tices, or contain a vertex satisfying the same conditions as a.
Then,

hφ(D) < hTG.

Proof. To simplify the discussion, we assume without loss of generality that ±ij =
+, for j ∈ {1, 2}.
Since i1 and i2 are exiting directions for a, and since H2 precludes white walls, the
pairs (a − eij , a) and (a, a + eij ), for both values of j, are edges in TG. All vertices
appearing in these four edges being in the same strongly connected component, there
must be a path from a + eij to a− eij , for both j. Hence, there are necessarily two
loops of the form

a + eij → · · · → a − eij → a → a + eij ,
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which intersect at vertex a.
Note that loops (including single vertices, seen as 1-loops) have zero entropy, since
they only generate periodic words. From its definition, entropy is always nonnega-
tive. Then from eq. (46), the entropy of TG must be log µA[a]

, for the a above, or one
fulfilling the same requirements. From now on, we note [a] the class with maximal
eigenvalue : µA = µA[a]

.

Now, lemma 1 ensures that at most one of the two domains Di1i1 , Di2i2 is
nonempty, where we define these domains as in eq. (14), at the box Ba. This means
exactly that one of the two 2-blocks :

[
a − eij

a

] [
a

a + eij

]
, j ∈ {1, 2},

is a forbidden block in the shift space φ(D). Suppose for example that Di1i1 = ∅.
Since this restricts the allowed 2-blocks, we turn our attention on S [2] instead of
S . As both shift spaces are conjugate, they have common entropy. Moreover, S [2]

can also be described by an oriented graph, whose vertices are given by edges in
TG, and edges are given by those pairs of edges (e, f) in TG such that the terminal
vertex of e is the initial vertex of f .
In this new graph, noted TG

[2], a quick inspection shows that strongly connected
components that are loops or single vertices correspond to connected components of
the same nature in TG, although their number may differ. Similarly, other strongly
components of TG correspond to components in TG

[2] that are not loops. Hence,
the class in TG

[2] which corresponds to [a] is the class [(a − eij , a)] = [(a, a + eij )],
for both values of j.
Note A[2] the adjacency matrix of TG

[2]. Its subscripts are thus pairs of edges. It
admits an irreducible submatrix with indices in the class [(a − eij , a)]. We note it

A
[2]
[a]. In this submatrix, the entries (a− eij , a), (a, a + eij ) are equal to 1 for both j.

Set the entry with indices (a − ei1 , a), (a, a + ei1) to zero. One gets a matrix B
[2]
[a],

such that µ
B

[2]
[a]

< µ
A

[2]
[a]

by virtue of lemma 3.

Since we have supposed Di1i1 = ∅, φ(D) is a subset of the shift space induced by
matrix B[2], obtained from A[2] after setting elements to zero as described above, for
all classes [a] that are not loops nor single vertices. Hence,

hφ(D) 6 log µB[2] . (47)

The Perron eigenvalue of A[2] is the same than that of A, and it is clearly that of

the irreducible component A
[2]
[a]. On the other hand, the Perron eigenvalue of B [2]

is given by one of its irreducible components B
[2]
[b] , where [b] may differ from [a]. In

any case, one gets a sequence of inequalities :

µB[2] = µ
B

[2]
[b]

< µ
A

[2]
[b]

6 µ
A

[2]
[a]

= µA[2] = µA.

Combining these inequalities with (47), one gets :

hφ(D) < log µA = hTG.
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In words, theorem 1 means that dynamics on the transition graph is much more
complicated than dynamics allowed in the continuous dynamical system (D ,M).
It requires special conditions on TG, namely the existence of a particular kind of
splitting box in the ’most complicated’ region of phase space. But it is a very gen-
eral result in the sense that it holds for any parameter values yielding the same
transition graph. Hence, it provides a strict upper bound for the complexity of a
continuous system, which can be read directly from the discrete structure of TG,
without detailed knowledge of parameter values. Furthermore, in the case when TG

is strongly connected, a local information on a vertex a ∈ A provides a result on
entropy, which is a global characteristic of the system. Yet, an other limitation of
this result is that the required kind of splitting box can only happen in a system
with at least two thresholds in at least two directions. This is counterbalanced by
the fact that many biological systems are known to involve several thresholds per
variable.

5.3 Example in R3

We now examine a three dimensional example that will serve as an illustration of
results in this paper. Namely, we consider a transition graph TG which contains
three cycles C1, C2, C3, sharing a single vertex a, and only loops or single vertices as
other strongly connected components. It follows that Ba must have three escaping
directions : Iout(a) = N3, like in figures 5 and 6. In the following, we will abusively
identify cycles in TG and their corresponding sequence of boxes in phase space. To
simplify formulation, let ±i = + for i ∈ N3. We note

Ci = a → ai1 → · · · → ai`−1 → a,

where ai1 = a + ei.
In accordance with lemma 1, we put D11 6= ∅, and D22 = D33 = ∅. In order to
focus on this triple loop structure, we assume moreover that Ba is the only box that
is splitting among those crossed by the three circuits. Thus, no trajectory can escape⋃

i Ci : it is an invariant subset in phase space. As a last assumption, all cycles have
the same length `, so that M` : ∂Bin

a → ∂Bin
a is a properly defined return map.

With these sole assumptions, one can readily illustrate theorem 1. First, a known
fact about entropy is that h(X, σ`) = ` h(X, σ), for any symbolic dynamical system
(X, σ). Hence, the inequality provided in the theorem holds iff the same holds for
`-steps dynamics. For the latter, a transition graph may be formed : TG` has
adjacency matrix A` where A is that of TG. The subset of TG` formed by the
cycles is not strongly connected as

⋃
i Ci. Yet, since σ`(a) = a, and for any pair i, j,

(σ`)−1(aij) = {a1j , a2j , a3j}, strongly connected components take the form :
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a1j

a2j a3j

a

C1

C3C2

Figure 8: Subgraph of TG` corresponding to
⋃

i Ci. Vertex a is fixed, but it can
attain itself through any of the three cycles, as illustrated by the use of three self
loops. For any j ∈ N`−1, the three vertices a1j , a2j , a3j form a graph like that on the
right above.

Associating a label i for cycle Ci, one is lead to a labelling of the edges of the
graph on the left in figure 8, and a labelling of the vertices of the graph on the right.
In both cases, the induced shift space is the full 3-shift (N3)

N. In the following, we
use the vertex labeled graph on the right, for it is more convenient. The entropy of
the full 3-shift is readily computed, yielding log 3. Thus hTG = 1

`
log 3.

Now, since D22 = D33 = ∅, self loops at vertices a2j and a3j are irrelevant with
respect to the dynamics in φ(D). Then, instead of an 3 × 3 adjacency matrix with
all entries equal to 1, one gets an adjacency matrix :




1 1 1
1 0 1
1 1 0


 ,

which has dominant eigenvalue 1+
√

2. It follows that the entropy hφ(D) is bounded

by 1
`
log(1 +

√
2), which is strictly lower than the entropy of the transition graph.

Observe that no explicit values of parameters in (D ,M) has been fixed. The only
requirements concern the boxes in which focal points lie. We also have supposed
D11 6= ∅, but lemma 1 guarantees that there is at most one i with nonempty Dii,
which would have lead us to the same conclusion for any value of i.
Now, it would be interesting to study the continuous dynamics with more detail.
Notably, the upper bound 1

`
log(1 +

√
2) is still positive, which is characteristic of

chaotic systems. With this in mind, we have carried a series of numerical simulations
on an example, with the transition graph of figure 9. All focal points were fixed with
values in agreement with TG, except f(a) = f(222), the focal point of the splitting
box. We simulated about one hundred systems, each with a fixed random value
of f(a), constrained in the box B333. For each value of the focal point, 10 initial
conditions where chosen randomly in B222, and a 200-step simulation carried.
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Figure 10: Three limit cycles of the same system. On the left, the superposed
coordinates of a vector versus time, for three different initial conditions. On the
right, the corresponding orbits in R3, without transients for improved visualization.
Thresholds are {2, 3} in all directions.
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Figure 9: The transition graph chosen for numerical investigations. Edges with no
arrow point towards the cycles. Remark that some of them are not well oriented :
they correspond to white walls in phase space. This is not necessary in R3, provided
there are enough thresholds. As we deal here with an illustrative example, we have
chosen to use no more than 2 threshold per variable. Then, constructing 3 cycles of
length ` = 6 required white walls, which have anyway no influence on the dynamics
inside

⋃
i Ci.

This only lead us to phase portraits composed of one to three limit cycles, with a
majority of portraits with three cycles. A typical example of the latter being shown
in figure 10. Anyway, it is commonly known that chaotic trajectories are not easily
captured by numerical simulation. Moreover, all evidence of chaotic behaviour in
systems like those we study here appeared in dimension 4 or more. With a single
threshold per direction, we already mentioned that chaos is not possible in R3. We
plan to analyse further some typical examples like that of figure 9, we the aid of
tools and results of this paper, as well as more systematic numerical simulations.
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6 Conclusion

Besides extending formerly known results to a more general context, the present
work provides a geometric framework to study systems of the form (1). The main
result obtained with the help of this framework is theorem 1, which states that
the sole transition graph is much too coarse to properly describe dynamics of the
continuous system. The criterion we have chosen to characterize this is topological
entropy, because it can be computed for dynamical systems induced by an oriented
graph. On the other hand, the case when TG is really too approximative, i.e. when
theorem 1 applies, can be read directly on the graph, without knowing precise pa-
rameter values. Hence, it leads to consider TG as a good source of information,
provided it is closely examinated.
As all frameworks, it opens several directions for future research. Among them, the
study of examples like that of section 5.3 must be pursued. Proposition 10 on the
return maps, as well as the explicit description of returning domains Da provided in
proposition 8, shall be useful results for numerical investigation. They have equiva-
lent statements in the binary case, that have already proved their ability to improve
our knowledge of Glass systems.
An other direction concerns topological entropy, and is twofold. First, some addi-
tional information for specific systems may improve theorem 1, which makes little
assumptions on parameter values. More constraining requirements should help to
determine more forbidden blocks in φ(D). Here again, proposition 8 shall help, since
we have seen that forbidden blocks are exactly those finite words a for which Da

is empty. An other work remaining would be a more detailed comparison of the
dynamics in (D ,M) and (φ(D), σ[2]). A first difficulty, is that D is not compact.
Although definitions exist for the topological entropy of noncompact sets [2, 23, 33]
they are less easily computed than that of an oriented graph. A better way to han-
dle this question would be to consider trajectories that intersect lower dimensional
faces. Then, the domain of the dynamics would be compact. Moreover, we have
met twice the presence of white walls inside cycles, which could indicate that ex-
cluding such walls is a too strong hypothesis. There are mainly two approaches to
the problem of dynamics in codimension 2 faces. One consists in comparing the
piecewise affine dynamics with the smooth one it is inspired of. This is done with
tools from singular perturbation theory, the most complete and recent reference on
these techniques being [35]. The other one uses the Filippov notion of solution for
a differential equation with discontinuous right-hand side [4, 21]. The principle is
to replace the differential equations by differential inclusions at lower dimensional
faces. This latter approach seems more closely related to the qualitative flavour of
symbolic dynamics than singular perturbation techniques. Moreover, the mapping
Φ∞ we have used in the process of coding the dynamics sends full sets of trajectories
to infinite words. Hence, extending it to solutions of differential inclusions does not
seem out of reach, at least in principle.
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