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Abstract. The purpose of this report is to investigate some dynamical properties common to sev-

eral biological systems. A model is chosen, which consists of a system of piecewise affine differential

equations. Such a model has been previously studied in the context of gene regulation and neural

networks, as well as biochemical kinetics. Unlike most of these studies, nonuniform decay rates and

several thresholds per variable are assumed, thus considering a more realistic model. This model is

investigated with the aid of a geometric formalism. We first provide an analysis of a continuous-

space, discrete-time dynamical system equivalent to the initial one, by the way of a transition map.

This is similar to former studies. Especially, the analysis of periodic trajectories is carried out in

the case of multiple thresholds, thus extending previous results, which all concerned the restricted

case of binary systems.

The piecewise affine structure of such models is then used to provide a partition of the phase space,

in terms of explicit cells. Allowed transitions between these cells define a language on a finite al-

phabet. Some words are proved to be forbidden in this language, thus improving the knowledge on

such systems in terms of symbolic dynamics. More precisely, we show that taking these forbidden

words into account leads to a dynamical system with strictly lower topological entropy. This holds

for a class of systems, characterized by the presence of a splitting box, with additional conditions.

We conclude after an illustrative three-dimensional example.
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1. Introduction

Many biological systems may be described as assemblies of similar constituents evolving

in parallel, and interacting in a structured way. The structure of interactions is currently

modeled by an oriented graph, whose vertices represent elements in the system. Each edge

represents a direct action of its initial vertex on its terminal vertex. Although very complex,

and studied in its own right [1], this structure is static, and does not suffice to understand

the behaviour of the whole system. Moreover, it may evolve itself as the elements in the

system are changing with time. Thus, dynamical models are necessary in order to capture

significant aspects of complex biological phenomena. Chosing to restrict our attention on

deterministic models, two main types of formulation can be distinguished : models with dis-

crete state space [26,37,6], and models with continuous state space, formulated as ordinary

differential equations [3,34,35]. Since the latter lead to very complex nonlinear dynamics

in high-dimensional spaces, and the first one only provides large scale qualitative insights

about the phenomenology of the systems, intermediary formulation are often considered.

Namely, systems of piecewise affine differential equations are more tractable than nonlinear

smooth ones, due to their underlying discrete structure, while they yield finer information

than purely discrete representations. Furthermore, they seem well suited to experimental

data, which is often quantitative with non negligible uncertainty, i.e. data is partially qual-

itative.

The literature about the piecewise linear approach of complex nonlinear phenomena is huge,

and we shall only mention typical works in the field of biology, thus ignoring many aspects

such as control theoretic issues, or the many examples occuring in the context of automat-

ics, electric and electronic circuits, or embedded software. The main reason for excluding

all these very actively studied problems, is that they generally deal with complex couplings,

which would not be suitably described by the class of models considered in this paper. Ac-

tually, the specificity of this class lies in the fact that the proper linear terms are uncoupled,
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and that interactions are only present in the piecewise constant terms of the equations. This

may sound quite restrictive in regard with the much more general class of piecewise linear

differential equations.

Anyway, a lot of phenomena in biology are characterized by strongly localized coupling,

that is by interactions of an almost on-off nature. This includes switching networks like gene

transcriptional regulation networks [4,5,16,17,24], neuron networks [15,14,28], as well as

metabolic and chemical pathways [18], which all are currently studied examples in math-

ematical models of biological dynamics. Neural, metabolic and gene networks models can

generally be put in the form of a system of piecewise affine differential equations, with a

diagonal matrix as proper linear term. This class of model has been investigated in itself,

without specially focusing on one of the different phenomena we just mentioned [8,21,36,15].

Such a class could be called continuous-time switching networks, but this does not illustrate

the piecewise linearity of the equations, and would enclose a broader range of models. The

term Glass networks has been proposed in [8], which seems appropriate, since Leon Glass

is the first author to have explicitely proposed this model, emphasizing its usefulness as

tractable indicator of the qualitative properties of nonlinear biological systems. Although

the equations studied here are more general than what is usually called a Glass system,

this term will sometimes be used in the sequel. We will use the term binary systems when

referring to systems with only one threshold per variable (i.e. two discrete states, whence

the appellation).

The main contribution of this paper lies in the fact that working hypotheses are lightened as

compared to previous studies, such as [8,14,15,17–20,24,28,30]. Namely, several thresholds

are allowed for each variable in the system all along this work, and degradation rates are

not supposed uniform for most of our results. Thus we deal with a more realistic model

than what is usually done, which leads to mathematical complications. To circumvent this

difficulties, we adopt a geometric point of view on the dynamics. This approach proves useful
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with respect to the analysis of periodic orbits, as well as the symbolic dynamics approach.

On the other hand, a noticeable restriction of the present work is that it concerns networks

without autoregulation. Although severe in terms of biological plausibility, this assumption

is made in all studies cited above. Actually, solutions are not well defined in systems with

autoregulation. Two techniques can be found in the literature to face this difficulty. The

first one consists in studying a smooth dynamical system with sigmoids, which tends to the

piecewise affine system in the limit of infinite steepness. The analysis can be then carried

out using singular perturbation techniques [34,35]. The second way to handle this situation,

developed in [4,21], is to use the Filippov notion of solution for differential equations with

discontinuous right-hand side. Such solutions are defined by the way of differential inclu-

sions, i.e. they are set-valued. As both techniques are still a current research topic, it seems

reasonable to exclude the situations where they are required.

In section 2, we present the model that motivated this study, and show how it can be reduced

to a discrete-time dynamical system. The latter is rigorously defined in section 3. Then, sec-

tion 4 is mainly devoted to the study of periodic orbits, about which previously known

properties are generalized to the multiple thresholds context. Finally, section 5 concerns

symbolic dynamics of the studied system. The latter is defined formally, and topological

entropies of different codings are compared. As a main result, it is shown that the topolog-

ical entropy of purely discrete models is strictly greater than that induced by a coding of

piecewise affine dynamics. This inequality holds regardless of precise parameter values, and

for a large class of systems characterized by the presence of a splitting box. This result is

illustrated on a three-dimensional example in section 5.3.
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2. Model description

2.1. Equations

The general model studied here is a system of differential equations of the form :

dx

dt
= Γ (x) − Λx, (1)

where x ∈ Rn, Γ : Rn → Rn is piecewise constant, and Λ ∈ Rn×n
+ is diagonal. We note

Γ = (γ1 . . . γn), where γi : Rn → R, and Λii = λi.

Each coordinate xi of vector x represents a characteristic quantity of the ith member in a

finite population of n interacting elements. For example, xi is the concentration of a protein

whose production is induced from gene i, or xi is the voltage of a single neuron i. Each

quantity in this kind of model is bounded, so that the domain in phase space where dynam-

ics must be confined will be the cube U = [0, 1]n.

Non diagonal elements of Λ being zero, this matrix only describes linear degradation of

every components in the network. Thus, Λ is not related to coupling or autoregulation, but

rather to the fact that biological systems are usually dissipative, i.e. state space is globally

contracted by the flow. Then, each diagonal element of Λ is supposed positive.

On the other hand, Γ describes coupling in the system. As it is piecewise constant, the

domain of interest U has to be partitioned. This will be done with n-rectangles, i.e. products

of n bounded intervalls. Such regions will be called boxes, as usually done in the literature.

In each box, Γ takes a constant value, i.e. the production rate (resp. activity) of all genes

(resp. neurons) in the network is constant. Hence a box is a region in phase space where the

dynamics is appropriately described by a simple linear system.

This choice of a rectangular partition may seem arbitrary, or aimed at simplifying the anal-

ysis and computations. In fact it is biologically relevant, since gene activation rates are

known to evolve in a switch-like manner, that is they undergo sudden changes when some

regulating protein reaches a threshold value. Neuronal response to synaptic entries are also
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of switching nature. In this latter case, the sudden changes usually appear when a certain

linear combination of the xi’s reaches a threshold. However, a simple change of variable leads

to formulation (1), where each threshold is related to a single variable, as explained in [27].

These thresholds yield the boundaries of boxes ; we note and number them

Θi = {θij | j ∈ Npi
}

in each direction i, with the notation Npi
= {1 · · · pi}.

For sake of biological consistency, when (1) models a gene network, the θij ’s are often given

in an unordered way, thus focusing on the interactions between genes : θij is the threshold

at which gene i activates (resp. inhibits) gene j by increasing (resp. decreasing) γj ’s value

when crossing this threshold from left to right [36,37]. However, there is always a permutation

σ ∈Spi
, such that the θiσ(j) are in increasing order. Since we care more with phase space

geometric structure than with dependence between genes (i.e. the interaction graph), we

will assume from now on, that the sets Θi are ordered : θi1 < θi2 < · · · < θipi
.

Then, boxes are explicitely written as :

Ba = Ba1... an
=

n∏

i=1

[θiai
, θiai+1], (2)

where the subscript a, belongs to the finite set

A =

n∏

i=1

Npi
(3)

Since this subscript a univoquely determines a box, and since Γ is constant in each box, it

will be convenient to consider this mapping as Γ : A → Rn.

The set A will sometimes be called an alphabet in the sequel. It will be convenient to note

elements of A as strings of the form a = a1 . . . an, instead of vectors. One advantage of using

symbols in the discrete set A is that it underscores the qualitative nature of the model. Each

symbol a can be seen as a discrete state in which all characteristic quantities of the system

are almost constant. As such, it leads to an automaton model that will be explained more
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deeply in section 5. Moreover, as a finite subset of the lattice Nn, it inherits nice geometric

features of this lattice. Especially, symbols in A correspond to boxes in U , while straight

lines joining these symbols correspond to facets of boxes. Hence, the geometric structure

of A is somehow ’dual’ to that of the partition of U . This is particularly striking in R2, as

illustrated on figure 1. In arbitrary dimension, this also has practical consequences that will

be exploited in section 5.

11

13 23

22

11

21 31

12 32

x1

x2

θ23

θ22

θ21

θ11 θ12 θ13

Fig. 1. An example of partition into boxes, when U = [0, 1]2. There are three thresholds in both

directions, hence A = N3 × N3. After a rescaling, this set can be superposed on the box partition,

so that neighbouring boxes correspond to symbols differing by ±1 in a single direction.

2.2. Flow

A system of form (1) induces a flow that can be explicitely written. In a given box Ba, Γ is

a constant vector, thus the flow inside this box is :

ϕa(t, x) = x(t) = f + e−Λt(x − f) where f =

(
γi

λi

)

i=1...n

. (4)

Here, the vector f is called focal point, because it is obviously attracting in the above equa-

tion. Hence, depending on its position with respect to Ba, it will be an asymptotically stable

steady state, or the trajectory will encounter the boundary of the box. In the latter case,

Γ is assigned a new value according to certain rules that will be precised, and constructs a

new piece of the trajectory by continuity.

Some results about polytopes will be useful afterwards. In the rest of the paper we mainly
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lean on [22,38] for such kind of properties. The boundary of Ba is formed by k-faces, which

are k-dimensional rectangles, for k ∈ {0 . . . n−1}. When the intersection happens at a n−1

face, or facet (or wall), there is at most one adjacent box and the new value of Γ is unam-

biguous. In the case of lower dimensional faces, there are several adjacent boxes in general.

Let k be the dimension of the face encountered by ϕa(t, x), i.e. it is given by n−k hyperplane

equations of the form xi = θij . There are 2n−k adjacent boxes sharing this face, including

Ba, corresponding to the above/below position with respect to each of the defining hyper-

planes (on the boundary of the domain U , there are of course less adjacent boxes). In each

of these neighbouring boxes, the flow has a fixed value, for which the k-dimensional face

can be either attracting or repelling. The resulting flow is not straightforwardly defined in

such regions, as will be precised in section 3.3. The general case requires the Filippov notion

of solution of a differential equation with discontinuous right-hand side [4,21]. Until further

precisions (sec. 3.3), we can exclude all k-dimensional faces, for k < n − 1, like is done for

example in [15,14].

With this procedure, one constructs continuous trajectories as far as they do not cross any

face of dimension < n− 1. There are still some degenerate cases for which this construction

is still not well defined. We will make two assumptions that allow us to neglect these cases.

The first one is :

H1 ∀ a ∈ A, f(a) ∈ ⋃
a∈A int(Ba).

Here f is considered as the map Λ−1Γ : A → Rn, and int denotes the interior. This

assumption means that the focal points all lie inside the domain U , and that none of them

is on the boundary of a box. The first aspect implies that U is positively invariant, and

thus can be considered as the only region where relevant dynamics take place. The second

one excludes (rare) cases which would cause technical complications without improving the
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model.

The second hypothesis concerns the case of autoregulation. As mentioned in the intro-

duction, this assumption is certainly too strong in regard with biological phenomena, but it

may lead to the use of generalized solutions in the sense of Filippov, i.e. differential inclu-

sion, to have a mathematically rigorous definition of the flow [4,21]. We neglect this kind

of difficulties, by restricting the allowed dispositions of boxes and their focal points. Ob-

serve that two boxes Ba and Ba′ are adjacent in a single direction (i.e. through a facet)

if and only if ‖a − a′‖1 = 1, or equivalently if and only if there is some i ∈ Nn such that

a − a′ = ±ei (ei being the ith vector of the canonical basis of Rn). Using a discretizing

operator d = (d1 . . .dn) :
⋃

a int(Ba) → A, which maps a point lying inside a box to the

subscript of this box, we can write

H2 ∀i ∈ Nn, ∀ a, a′ ∈ A, a − a′ = ±ei,

(
di(f(a)) − ai

)(
di(f(a′)) − a′i

)
> 0,

or

(
di(f(a)) − ai

)
= 0 and

(
di(f(a′)) − a′i

)
(ai − a′i) > 0,

or the same with a and a′ exchanged.

In other words, H2 means that the ith component of the vector field does not change in

sign when crossing a wall in direction i. Autoregulation (i.e. ẋi depends on xi) is a neces-

sary, but not a sufficient condition for this configuration to happen. We thus do not reject

all forms of autoregulation here. The situations avoided are schematically represented in

figure 2.
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Fig. 2. The two possible ambiguities due to autoregulation, often called black wall (on the left) and

white wall (on the right).

2.3. Transition map

Once the flow (4) is given in a box Ba, it is easy to compute the time and position at which it

intersects the boundary of Ba, if ever. The possibility for each facet to be encountered by the

flow depends uniquely on the position of the focal point : {xi = θiai
} (resp. {xi = θiai+1})

can be crossed if and only if fi < θiai
(resp. fi > θiai+1). According to this observation, we

note

I+
out(a) = {i ∈ Nn|fi > θiai+1}, and I−out(a) = {i ∈ Nn|fi < θiai

},

and Iout(a) = I+
out(a) ∪ I−out(a).

When it is unambiguous, we will omit the dependence on a, as we have already done im-

plicitely with the focal point.

Since these functions will be useful in the following, we note :

α−i (x) =
fi − θiai

fi − xi

, and α+
i (x) =

fi − θiai+1

fi − xi

.

Now, in each direction i ∈ Iout the time at which ϕ(t, x) encounters the corresponding

hyperplane, for x ∈ Ba, is given by :

τi(x) =
−1

λi

ln
(
α−i (x)

)
if i ∈ I−out, and τi(x) =

−1

λi

ln
(
α+

i (x)
)

if i ∈ I+
out.

This distinction between directions in I+
out and I−out shall occur quite often, leading to un-

necessarily cumbersome discussions. Here this distinction may be avoided by observing that

whenever i ∈ Iout,

τi(x) =
−1

λi

ln(αi(x)) where αi(x) = min(α−i (x), α+
i (x)). (5)
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This can be checked by inspecting the range of α±i for all possible i (see table (6)), and using

the fact that τ(x) must be nonnegative.

i α−i (x) α+
i (x)

∈ I−out [α−i (θiai+1), 1]  ]0, 1] [1, α+
i (θiai

)]

∈ I+
out [1, α−i (θiai+1)] [α+

i (θiai
), 1]  ]0, 1]

6∈ Iout and xi < fi [1,+∞[ ] −∞, α+
i (θiai

)]  R∗−

6∈ Iout and xi > fi ] −∞, α−i (θiai+1)]  R
∗
− [1,+∞[

(6)

The directions that are not in Iout are of no use here, but will be considered in sections 3.1.

Now notice that αi is not defined if xi = fi, which may only happen for i 6∈ Iout.

Taking the minimum

τ(x) = min
i∈Iout

τi(x). (7)

and reinjecting it in equation (4), we get the exiting point of Ba for the initial condition x.

Since this process is intended to be repeated along trajectories, x will generally lie on the

boundary of the current box, except for the initial condition, which may however be chosen

without loss of generality on a wall. Then we get a transition map Ma : ∂Ba → ∂Ba , which

can be explicited, omitting a :

Mx = ϕ (τ(x), x)

= f + A(x)(x − f).

(8)

Where A(x) is the diagonal matrix whose entries are e−λiτ(x). If q is an escaping direction,

i.e. τ = τq, we can also write the entries of A(x) as (αq(x))
λi
λq , for i = 1 . . . n.

We see here that M is nonlinear, but in the special case where

H3 ∀i, j ∈ Nn, λi = λj , i.e. ∃λ ∈ R∗+, Λ = λId.
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is fulfilled, A(x) is proportional to the identity matrix as well, and M can be understood as

a projective transformation (see e.g. [38] p.67). Actually, H3 implies that the flow in each

box consists of straight lines directed towards f , and thus Mx is the intersection of the affine

line f +R(x − f) with ∂Ba. The set of all trajectories in Ba is then the intersection of this

box with the polyhedral cone f + {t(x− f) | t > 0, x ∈ Ba}. These nice aspects explain why

this last assumption is currently done. Formally, (8) may be rewritten quite simply under

the latter assumption :

Mx = f + α(x)(x − f), (9)

where

α(x) = max
i∈Iout

{αi(x)}. (10)

As αi(x) only depends on coordinate xi, we sometimes abusively note αi(xi).

Unless indicated, we suppose in the following that assumptions H1 and H2 are satisfied.

The uniform decay rates assumption H3 will not be systematically required, unlike most

of the previous works concerning equations of the form (1). In particular, the term Glass

networks usually refers to a system of the form (1), with only one threshold θi distinct from

the domain’s boundaries, in each direction i, and the two hypotheses H1, H3 (see e.g. [8,

25]). More or less explicit versions of H2 are also very largely assumed in papers dealing

with such models.

3. Properties of the transition map

3.1. Local properties

In each box, Iout determines all reachable boxes. Those are adjacent to the current box

through walls supported by hyperplanes of the form {xi = θij}, for i ∈ Iout, and j ∈

{ai, ai+1} depending on i’s belonging to I−out or I+
out. We introduce the following notation
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for such walls :

W+
i (a) = {x | xi = θiai+1} ∩ Ba and W−

i (a) = {x | xi = θiai
} ∩ Ba. (11)

Then, each box can be partitioned in #Iout regions from which a single adjacent box is

reachable. # denotes the cardinal. See figures 3 and 4 for an illustration.

The subscripts a will be omitted in this section, where a single box B is considered. Due to

previous discussions, the only walls through which trajectories may escape B may be put

on the form W+
i (resp. W−

i ), for i ∈ I+
out (resp. i ∈ I−out).

Conversely, any point on a wall of the form W±
i , i ∈ I±out, escapes immediately, as can be

seen from equation (7), where escaping time is clearly zero on the corresponding escaping

wall.

More precisely, from equations (4), (7), the directions i such that τ(x) = τi(x) are exactly

those for which Mx ∈ W±
i .

According to this, we can coarsely partition ∂B into two regions :

– the outcoming region ∂Bout =
⋃

i∈I
±
out

W±
i = {x ∈ B | τ(x) = 0}

– the incoming region ∂Bin = ∂B \ ∂Bout =
⋃

i∈I±
out

W∓
i ∪

⋃

i6∈Iout

(W−
i ∪ W+

i ).

Where, for any set S, S denotes its closure, and for ± ∈ {−,+} the symbol ∓ denotes

the opposite sign. Thus, the incoming and outcoming regions are unions of walls, which

are closed and cover the boundary ∂B. We can observe that ∂Bout ∩ ∂Bin 6= ∅ whenever

∂Bout 6= ∅, and is the union of some n − 2-facets of B. Actually, ∂Bin 6= ∅ always holds,

due to i ∈ I±out =⇒ W∓
i ⊂ ∂Bout, and i 6∈ Iout =⇒ W−

i ∪ W+
i ⊂ ∂Bout.

This first partition only allows a distinction between escaping directions and the others, and

one gets :

∂Bout = ∅ ⇐⇒ f ∈ int(B),

which we recall corresponds to f being an asymptotically stable equilibrium point with B

contained in its attracting basin.
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Moreover, this partition of ∂B can lead to the transition map being bijective.

Proposition 1 Assume H1 is satisfied for a system of form (1).

Let M be the transition map in a box B, as defined in previous section.

Restricting the domain and range of M to ∂Bin and ∂Bout respectively, and abusively keep-

ing its name unchanged, the following is a homeomorphism, provided ∂Bout 6= ∅ :

M : ∂Bin → ∂Bout

Proof. From its definition, M : x 7→ ϕ(τ(x), x), where ϕ is the flow associated to

an affine dynamical system, is continuous if and only if τ is. This function is defined as

τ(x) = mini∈Iout
τi(x). From equation (5) each τi might only be discontinuous if α+

i (x)

or α−i (x) is. From table (6), both are defined and continuous on [θiai
, θiai+1], for i ∈ Iout

(furthermore, which among α−i (x) and α+
i (x) is the lowest does not depend on x for such

i). Then, τ is continuous as the minimum of a finite set of continuous functions.

Injectivity comes from the fact that x and Mx are always on the same orbit of ϕ, and from

monotonicity (w.r.t. time) of all coordinates ϕi of this flow, along any orbit. Surjectivity will

come from the construction of the inverse mapping, which is defined on ∂Bout.

Note ϕ̃(t, x) = ϕ(−t, x) = f + eΛt(x − f) the flow in reverse time. From positivity of Λ’s

entries, we get that all trajectories given by ϕ̃ diverge to +∞ in each direction, and hence

leave B in finite time. For xi < fi (resp. xi > fi), ϕ̃(t, x) may only encounter W−
i (resp.

W+
i ) in direction i. This can happen at time τ̃i(x) = 1

λi
ln(α−i (x)) (resp. α+

i (x)). Inspecting

table (6) (using the fact that i ∈ I+
out ⇒ xi < fi), we get a general expression :

τ̃i(x) =
1

λi

ln(max(α−i (x), α+
i (x))) and τ̃(x) = min

i∈Nn

(τ̃i(x))

for the exiting time from x, associated with ϕ̃.

There is a problem when any xi = fi, where none of α±i (x) is defined. Actually, for xi → fi

(from left or right), the quantity max(α−i (x), α+
i (x)) always tends toward +∞. But for all
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j ∈ Iout the corresponding τ̃j are always bounded (see table (6)), and it is assumed here

that Iout 6= ∅. Thus, when xi → fi the minimum τ̃ cannot be given by τ̃i.

Hence, M−1x = ϕ̃(τ̃(x), x) = ϕ(−τ̃(x), x) is a continuous function, which is obviously de-

fined on ∂Bout. �

Observe that the incoming region can now be defined as ∂Bin = {x ∈ B | τ̃(x) = 0}.

In the special case where H3 is also fulfilled, the inverse mapping can be expressed as :

M−1y = f + β(y)(y − f). (12)

where

∀i ∈ Nn, βi(y) = max(α−i (y), α+
i (y)), and β(y) = min

i∈Nn

{βi(y)}. (13)

This results from the definition, M−1x = ϕ(−τ̃(x), x), with Λ proportional to the identity.

3.2. Partition of boxes

In this section, we shall analyze in some detail the possible configurations that may happen at

a single box, in terms of incoming facets, outgoing facets, and pieces of trajectories between

them. Thus, we consider a single box B, noted without subscript for sake of readability.

Moreover, we assume that this box B has at least one escaping direction, i.e. Iout 6= ∅, since

otherwise the analysis is of little interest.

Considering a single box could seem much too local, as compared with full orbits, crossing

a possibly high number of successive boxes. But at this local scale, we provide a geometric

description of all possible situations, showing by the way that they form a combinatorially

non trivial set. This description relies on a finer partition of B than that of previous section.

The proposed partition arises by distinguishing not only which points escape in each direction

of Iout, but also those points that are mapped by M on a given escaping wall, as well as

the points of an escaping wall that are mapped from a given incoming wall. Escaping walls
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are of the form W±
j , for j ∈ Iout, where ± has a fixed value for each j. Thus, we note ±j

the unique sign such that j ∈ I
±j

out. The somehow unusual symbol ∓j is then defined as

the opposite of ±j , and will be useful on more than one occasion. One may observe that

±j = sign(dj(f(a)) − aj).

Since we deal with a single box, a non ambiguous and convenient notation for thresholds in

this section will be : θ−i
.
= θiai

and θ+
i

.
= θiai+1. It follows that, for i ∈ Iout, θ±i

i is the single

threshold that may be reached in direction i.

The sets we have described in words can be explicited more formally :

D±ij = W±
i

⋂
M−1(W

±j

j ) for i ∈ Nn \ Iout, j ∈ Iout.

Dij = W∓i

i

⋂ M−1(W
±j

j ) for i, j ∈ Iout.

(14)

and

R±ij = M(W±
i )

⋂
W
±j

j for i ∈ Nn \ Iout, j ∈ Iout.

Rij = M(W∓i

i )
⋂

W
±j

j for i, j ∈ Iout.

(15)

To help memory, note that the letter D stands for domain, while R stands for range (of M).

When i 6∈ Iout, both walls W+
i and W−

i are subsets of ∂Bin. Accordingly, the superscript

± above means that two sets are defined. For i ∈ Iout, there is no possible ambiguity in the

superscripts of walls : W±i

i ⊂ ∂Bout and W∓i

i ⊂ ∂Bin.

Examples of such sets are depicted in figures 3 and 4, as well as figures 5 and 6, on 3-

dimensional examples, with the uniform decay rate assumption H3 (so that these regions

are polytopes).

The fact that these sets form a partition of ∂B is due to M being a bijection. Actually, from

this we get that each point on a wall W±
i ⊂ ∂Bin must be mapped on a wall in ∂Bout, of

the form W
±j

j , hence the sets Dε
ij , with ε ∈ { ,+,−} partition ∂Bin. Conversely each point

on ∂Bout has an antecedent on a wall of the form W±
i ⊂ ∂Bin, so that ∂Bout is partitioned
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1

2

3

f

W+

1

W+

2

Fig. 3. A box in R3, with two escaping walls : W +
1 and W+

2 . Thus, Iout = {1, 2}, and ±1 = ±2 = +.

W−
2

W−
3 W+

3W−
1

D22

D21

D−32 D+
32

D+
31D−31

W+
2

W+
1

R22

R12

R21

R+
32

D12

R−32

R+
31R−31

Fig. 4. Partition of ∂Bin (on the left, seen from inside B) and ∂Bout (on the right, seen from

outside B). Dotted lines on the unfolded representation of ∂Bin relate points that are identical in

R3. The scale is aribtrary.

by the sets Rε
ij .

We now consider some properties of these sets. First, it appears that there is a simple relation

between sets in (14) and in (15).

Proposition 2

R±ij = M(D±ij) for i ∈ Nn \ Iout, j ∈ Iout.

Rij = M(Dij) for i, j ∈ Iout.

Moreover, when H3 is true, the polytopal complexes formed respectively with all Dε
ij and all

Rε
ij are combinatorially isomorphic. In particular, each pair of Dε

ij and Rε
ij are combinato-

rially isomorphic polytopes.
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Proof. Both equalities follow from the fact that M : ∂Bin → ∂Bout is a bijection. Actually,

the injectivity of M implies that M(A ∩ B) = M(A) ∩M(B), for all subsets A and B in

the domain of M. Surjectivity, on the other hand, implies M(M−1(A)) = A for all subset

A in the range of M. The conclusion is a direct consequence of definitions (14) and (15).

Under H3, we have already seen that all trajectories in a box are straight lines, and that

M is a projective transformation. Since walls are polytopes ((n − 1)-rectangles), and pro-

jective transformations transform polytopes into polytopes [22,38], the sets defined in (14)

and (15) are polytopes.

The combinatorial isomorphism means that the collection of Dε
ij and that of Rε

ij have the

same face structure, in terms of incidence between faces of all dimensions. This can be

seen by observing that M is the projective mapping used in the construction of the so

called Schlegel diagram, which preserves combinatorial structure (see [38], p.132-137). More

precisely, for a fixed j, the complex formed of the Rε
ij and their subfaces is precisely the

Schlegel diagram of the polytope B ∩ M−1(W
±j

j ) based on the face W
±j

j . The polytopes

B ∩M−1(W
±j

j ), j ∈ Iout, partition B, and their facets are exactly W
±j

j , and all Dε
ij , which

allows to conclude.

A more thorough discussion of these constructions can be found in [12]. �

The sets that need a superscript + or − are also simply related :

Proposition 3 D+
ij = D−ij + (θ+

i − θ−i ) ei, where ei is the ith vector of the canonical basis,

and + denotes the Minkowski sum.

Proof. Let x ∈ W−
i , and define x′

.
= x + (θ+

i − θ−i ).

We show now that x belongs to D−ij if and only if x′ belongs to D+
ij .

x ∈ D−ij if and only if the orbit starting at x escapes in direction j, i.e. τ(x) = τj(x). Since x

and x′ have identical coordinates, except xi = θ−i and x′i = θ+
i , with i 6∈ Iout (see (14)), the
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exit time τ(x) is independent of xi. Hence τ(x) = τ(x′) = τj(x
′), or equivalently Mx ∈ W

±j

j ,

i.e. x′ ∈ D+
ij . �

Now a result restricts the possible transitions between incoming and outcoming walls. The

term relint denotes the relative interior, i.e. the interior taken in the smallest affine subspace

containing S. In the rest of the text, interior will mean relative interior.

Lemma 1. There is at most one i ∈ Iout, such that relint(Dii) (and thus relint(Rii)) is

nonempty.

Proof. Suppose i ∈ Nn such that relint(Dii) 6= ∅. Then there is an x∗ in W∓i

i , so that

x∗i = θ∓i

i , and Mx∗ ∈ W±i

i , so that τ(x∗) = τi(x
∗
i ) = τi(θ

∓i

i ) is a strict minimum, due to

x∗ being in the relative interior of Dii :

∀k ∈ Iout, k 6= i, τi(x
∗
i ) < τk(x∗k). (16)

An other property of τi is that τi(θ
∓i

i ) is the maximum value of all τi(xi), for xi ∈ [θ−i , θ+
i ].

This follows from table (6) and monotonicity of α±i functions in each entry of this table :

αi(xi) has a minimum at xi = θ∓i

i . Since τi decreases with respect to αi one gets :

∀i ∈ Iout, τi(x
∗
i ) = τi(θ

∓i

i ) = max
xi∈[θ−

i
,θ+

i
]
τi(xi)

From the latter and (16) we derive a necessary condition for relint(Dii) 6= ∅ :

∀k ∈ Iout, k 6= i, max
xi∈[θ−

i
,θ+

i
]
τi(xi) < max

xk∈[θ−
k

,θ+
k

]
τk(xk),

which obviously cannot be satisfied by more than one i ∈ Iout. �

Remark 1 From lemma 1, the number of directions such that Dii has nonempty interior

is 0 or 1. The case where it is 0 is rare, in the sense that there is a measure zero set of
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parameters leading to it. This set is given by the equality of all maximal values of the τi

functions (which occur at thresholds value of xi), for i ∈ Iout and #Iout > 2.

When #Iout ∈ {0, 1}, this number is equal to the number of directions i with nonempty

relint(Dii).

The previous lemma indicates that not all transitions are admissible for a fixed set of pa-

rameters. The next result shows that there are no other restrictions of this kind.

Lemma 2. For i ∈ Nn, j ∈ Iout, i 6= j, and ε ∈ { ,+,−}, all Dε
ij , (resp. Rε

ij), have

nonempty relative interior.

Proof. For i 6∈ Iout, from proposition 3, D−ij and D+
ij are obtained from each other by a

translation, so that it is sufficient to consider only one of them. Recall that ∓i is only defined

for i ∈ Iout. A practical convention, for i 6∈ Iout, will be to define ∓i as being any of the two

signs −,+. Then ∓i being well-defined for i ∈ Nn, the result will follow if we show that

W∓i

i ∩M−1(W
±j

j ) (17)

is of nonempty interior, for i ∈ Nn and j ∈ Iout.

Again, and whatever i, θ∓i

i is a generic notation that will be useful to avoid enumerating

several analogous cases.

The interior of a set like (17) is defined by the equality xi = θ∓i

i , and the inequalities

τj(xj) < τk(xk) for k ∈ Iout \ {j}.

From table (6) it appears that the range of the αk functions always takes the form [α±k

k (θ∓k

k ), 1],

when k ∈ I±k

out. The upper value 1 is given by α±k

k (θ±k

k ) = 1.

Thresholds being distinct in each direction, the range of any αk is of nonempty interior.
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Then, each τk has also a range of nonempty interior, given by [0, −1
λk

ln(α±k

k (θ∓k

k ))]. If

τ∗ = min
k∈Iout

−1

λk

ln(α±k

k (θ∓k

k )),

one gets a positive length intervall [0, τ ∗], which is contained in the range of all τk, for

k ∈ Iout. Since #Iout is finite, we can choose this number of points in the latter inter-

val : ϑ1 > · · · > ϑ#Iout
. Given such a choice, there is an xj in the domain of τj such that

τj(xj) = ϑ#Iout
. Each other ϑp has an antecedent xp for some τk, k ∈ Iout \ {j}. Then,

τj(xj) = τ(x), and any point x ∈ W−
i with coordinates in Iout constructed in this way

belongs to relint(D−ij). �

Remark 2 The fact that i 6= j, which makes the difference with lemma 1, may not appear

clearly. It is implicitely useful for it allows to choose j in the whole domain [θ−j , θ+
j ], while

xi is of fixed value θ∓i

i .

To conclude this section, one shall in fact provide an explicit description of the nonempty

regions Dε
ij and Rε

ij . This description can be useful from an algorithmic point of view, since

it is a minimal set of inequalities, hence optimal in terms of memory resources.

Proposition 4 For all but a zero-measure set of parameters (i.e. thresholds and focal points

coordinates) the sets Dε
ij defined in eq. (14), are bounded cells with piecewise smooth bound-

ary, whose (relative) interior is irredundantly defined by the following inequalities :




xi = θε
i ,

θ−k < xk < θ+
k , k ∈ (Nn \ Iout) \ {i}

αk(θ∓k

k ) < αk(xk) < αj(xj)
λk
λj , k ∈ Iout \ {i, j}

αj(xj) < 1.
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With the additional inequations, submitted to condition :

– If Djj 6= ∅, αj(θ
∓j

j ) < αj(xj) has to be added to the system above.

– If i ∈ Iout and Dii 6= ∅, αi(θ
∓i

i )
1

λi < αj(xj)
1

λj , has to be added.

The exponent ε stands for ∓i if i ∈ Iout, and ε ∈ {+,−} otherwise.

Proof. The equality satisfied by xi ensures that Dε
ij ⊂ W ε

i .

In all cases, the variables xk, for k 6∈ Iout, do not influence the exit time. Hence, they are

only submitted to the inequalities θ−k < xk < θ+
k . Reciprocally, these inequalities must be

satisfied to ensure x ∈ B. Of course, when i 6∈ Iout, xi does not appear in these inequations.

Variables xk, for k ∈ Iout, must on the other hand satisfy two kinds of constraints.

Firstly, they have to be comprised between thresholds θ−k and θ+
k . Since the functions αk

are continuous and monotone with domain [θ−k , θ+
k ] and range [αk(θ∓k

k ), 1], for all k ∈ Iout,

these threshold inequations can equivalently be written

∀k ∈ Iout \ {i}, αk(θ∓k

k ) < αk(xk) < αk(θ±k

k ) = 1. (18)

Secondly, for k 6= j, the corresponding exit time τk(xk) must be higher than τj(xj), since

Dε
ij is part of M−1(W

±j

j ). Remind that exit times are defined in equation (5) as τk(xk) =

− 1
λk

ln(αk(xk)). Thus, τk(xk) > τj(xj) leads to

∀k ∈ Iout \ {j}, αk(xk) < αj(xj)
λk
λj . (19)

From αj(xj) < 1, and the above, we deduce αk(xk) < 1. This latter is hence removable

from (18), for all xk, k ∈ Iout \ {j}, but must be maintained for xj .

For k ∈ Iout, and k 6= i, j, the inequality relating xk and the threshold θ∓k

k admits on the

other hand no concurrent inequation from those of the form (19). Thus αk(θ∓k

k ) < αk(xk)

has to be maintained for all k ∈ Iout \ {i}.
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Now the last inequality we need to discuss is the one that gives a lower bound for αj(xj).

To achieve this, one has to remind from the proof of lemma 1 that Dkk 6= ∅ admits

∀k′ ∈ Iout \ {k}, αk(θ∓k

k )
1

λk > αk′(θ
∓k′

k′ )
1

λ
k′ , (20)

as a set of necessary conditions. This lemma ensures moreover that, for almost all parameter

values, there is exactly one k such that Dkk 6= ∅. Thus in the following, we assume this fact.

We now consider two distinct cases.

– If i 6∈ Iout : the ith variable does not appear in inequations (19).

If Djj = ∅, there is (for almost all parameter values) a k ∈ Iout \ {j} with Dkk 6= ∅. It

follows that αj(θ
∓j

j )
1

λj < αk(θ∓k

k )
1

λk , and then (18) and (19) together imply αj(θ
∓j

j ) <

αj(xj). This latter inequality has thus to be precised only if Djj 6= ∅, in which case it is

unremovable.

– If i ∈ Iout : from (19),

αi(θ
∓i

i )
λj
λi < αj(xj), (21)

holds. This competes with

αj(θ
∓j

j ) < αj(xj), (22)

appearing from (18). Now, if Dkk 6= ∅ for some k 6= i, j, both lower bounds of αj(xj)

are smaller than αk(θ∓k

k )
λj
λk , due to (20). From (19) this quantity is a lower bound for

αj(xj)
1

λj , and thus (21) and (22) are both redundant.

On the other hand, if either Dii 6= ∅ or Djj 6= ∅ (or both when i = j), one has an

irredundant lower bound from (21) or (22), respectively.

�

Observe that in the special case where H3 holds, all inequalities in proposition 4 are

affine, and thus the sets they describe are polytopes. We already knew this fact, but now
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the polytopes are explicitely described in terms of half-spaces’ intersections.

From a direct count of the inequalities in proposition 4, one can infer the corollary :

Proposition 5 Any set Dε
ij possesses 2 (n− 1) facets (which are here (n− 2)-faces), except

if i 6∈ Iout or Dii = ∅, and at the same time Djj = ∅, in which case there are 2(n − 1) − 1

facets .

These facets are obtained by replacing one inequality in the system by an equality.

The notions of k-face, and facet, are usually defined for polytopes. In the corollary above,

they are extended to our piecewise smooth cells in a straightforward way.

From proposition 2, the same holds of course for sets Rε
ij . Furthermore, we provide an explicit

description of the latter, which is directly derived from that of the sets Dε
ij .

Proposition 6 For fixed i, j, and ε, a set Rε
ij can be described by an irredundant list of

inequations directly obtained from those of Dε
ij , using the translation rules below. We call x

a point in Dε
ij , and y a point in Rε

ij.

(in)equation in Dε
ij ↔ (in)equation in Rε

ij

equality xi = θε
i ↔ yj = θ

±j

j

k 6∈ Iout xk < θ+
k ↔ yk − fk < βi(yi)

−
λk
λi (θ+

k − fk)

xk > θ−k ↔ yk − fk > βi(yi)
−

λk
λi (θ−k − fk)

k ∈ Iout \ {i, j} αk(xk) < αj(xj)
λk
λj ↔ βk(yk) < βk(θ±k

k )

αk(xk) > αk(θ∓k

k ) ↔ βk(yk) > βi(yi)
λk
λi

αj(xj) < 1 ↔ βi(yi) > 1

if Djj 6= ∅ αj(xj) > αj(θ
∓j

j ) ↔ βi(yi)
λk
λi < βj(θ

±j

j )

if Dii 6= ∅ αj(xj) > αi(θ
∓i

i )
λj
λi ↔ βi(yi) < βi(θ

±i

i )

Where the functions βk are given in equation (13), used in the definition of M−1.
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Proof. Let x ∈ Dε
ij , and y = Mx ∈ Rε

ij = M(Dε
ij).

The hyperplane equalities xi = θε
i and yj = θ

±j

j arise directly from the definition of Dε
ij and

Rε
ij .

Now, from equation (13) and the definition of M−1, the two following identities are easily

derived :

∀k ∈ Nn,





xk = fk + βi(yi)
λk
λi (yk − fk),

yk = fk + αj(xj)
λk
λi (xk − fk).

(23)

From these one obtains :

∀k ∈ Nn, αj(xj)
λk
λj = βi(yi)

−
λk
λi . (24)

The functions βk are defined in equation (13) for all k ∈ Nn.

As equations (23) show that θ−k < xk < θ+
k is equivalent to

θ+
k − fk > βi(yi)

λk
λi (yk − fk) > θ−k − fk,

the case k ∈ Iout is proved.

All other rules concern k ∈ Iout. Using the notation ∓k introduced at the beginning of this

section leads to : βk(yk) =
θ
∓k
k
−fk

yk−fk
. Then all these rules are obtained using equations (23)

and (24), from which simple calculations show that expressions on each side of a symbol ↔

are equivalent. The last two rules are special cases of those above them, but they have been

written apart since they do not always apply. �

The proposition 5 can be checked on figures 3 and 4. In these figures, one has D22 6= ∅. All

Dε
ij have 4 facets (here edges since they are 2-dimensional), with the exception of those with

no 2 among their two indices. Namely, D−13 and D+
13 have three edges. Of course, the same

holds with the sets Rε
ij .
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1

2

3

W+
1

f

W+
3

W+
2

Fig. 5. A box in R3, with three escaping walls : W +
1 , W+

2 and W+
3 . Dotted lines relate the vertices

of D22 and their images, i.e. the vertices of R22.

Remarkably, these figures are only a particular case, and constructing an example with all

possible instances of Dε
ij sets, in terms of facet numbers, would require more than 3 dimen-

sions. Actually, it should contain a nonempty Dii, with 2(n− 1) facets, as well as some Djk,

j, k ∈ Iout \{i}, with 2(n−1)−1 facets. This requires 3 escaping directions, and corresponds

to the example of figures 5 and 6. Thus, to have at least one non-escaping direction m,

such that both D±mi have 2(n − 1) facets and D±mj , D±mk have only 2(n − 1) − 1, one needs

a fourth dimension. This justifies the algebraic description given in propositions 4 and 6.

Actually, proposition 5 gives a criterion to distinguish among configurations that are not

equivalent from a combinatorial point of view. The discussion above proves that some of

these configurations only occur in higher-dimensional spaces, where visualization is out of

reach.

More than the usefulness of an algebraic formulation, this shows that even when dealing

with a single box, the admissible behaviours form a nontrivial set. The relevance of this

section is hence justified a posteriori.
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W+
3

W−
3 W−

1

W−
2

R32

R12

R31

R23

R13

R22

R21

D22

D21

D32

D12

D13

D23

D31

W+
2

W+
1

Fig. 6. Partition of ∂Bin (on the left, seen from inside the box) and ∂Bout (on the right, seen from

outside the box). The scale is arbitrary, but the shape and position of each set is well represented.

3.3. Extension to the whole state space

The preceding sections allow a rigorous definition of the transition mapping as an homeo-

morphism, at the scale of a single box, provided this latter admits escaping directions. We

quickly omitted its superscript, but this local map was initially noted Ma : ∂Bin
a → ∂Bout

a .

We now provide a precise definition of the transition map on the whole state space. Although

local maps are invertible on boxes with nonempty outgoing domain, boxes with no escaping

direction are on the other hand more problematic. As we will see in this section, it is natural

to map the boundary of such boxes to a single point, whose preimage will then be the whole

box boundary. Moreover, the whole domain boundary ∂U is not reachable, due to H1. Hence

a global mapping will not be invertible at all points in general, which leads us to consider

only forward iterates of M in this section.

This application has to be iterated on
⋃

a ∂Ba, which can naturally be seen as the underlying

set of a cubical complex, whose elements are faces of the form F =
∏n

i=1 Fi where each Fi is

of one of the following forms : {θiai
}, {θiai+1}, or [θiai

, θiai+1]. These F will be called faces,

or thresholds (affine) subspaces in the following. The dimension of such a face is the number

of Fi’s that are not singletons.

H2 implies that any outgoing facet W ⊂ ∂Bout
b , for some b, is part of ∂Bin

a , for Ba adjacent

to Bb at wall W . Actually, W ⊂ ∂Bout
a would contradict the hypothesis, and the outcoming
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and incoming regions of a box form a cover of its boundary. An other possibility would be

that W is the facet of no other box than Bb, when it lies on the boundary of the whole

domain U . But H1 implies that in this case W ⊂ ∂Bin
b . Thus we get :

⋃

a∈A

∂Ba =
⋃

a∈A

∂Bin
a . (25)

Then any point on
⋃

a∈A ∂Ba belongs to ∂Bin
a , for some a ∈ A. If ∂Bout

a 6= ∅, then Ma

is well defined, but this escaping region may also be empty, which we recall corresponds to

f(a) being an asymptotically stable steady state lying in int(Ba). In such a case, all points

in ∂Ba are in the basin of f(a), so that it seems reasonable to define Ma as the constant

map with image f(a). Then {f(a)} has to be added to the domain of Ma. These focal points

being (asymptotically stable) equilibria, we put Maf(a) = f(a).

After introducing the subset of terminal subscripts :

T .
= {a ∈ A | f(a) ∈ int(Ba)} = {a ∈ A | d(f(a)) = a},

one can define local transition maps in all boxes :

Ma : x ∈ Dom(Ma) 7−→





f(a) + A(x)(x − f(a)) if a ∈ A \ T

f(a) if a ∈ T
(26)

where the first case is exactly identical to equation (8). The domain Dom(Ma) = ∂Bin
a for

a ∈ A \ T , and Dom(Ma) = ∂Bin
a ∪ {f(a)} for a ∈ T . Thus,

⋃

a∈A

Dom(Ma) =
⋃

a∈A

∂Ba ∪
⋃

a∈T

{f(a)}.

Yet, a global mapping can not be properly defined. Actually, if any x ∈ ⋃
a∈ADom(Ma)

lies in the domain of some local map Ma, the choice of this local map is not always unique.

Ambiguities may happen at some face of codimension 2 (in Rn) or more. In fact this concerns

all faces with codimension > 2, except some on the boundary ∂U . More precisely, a face F

with dimF 6 n − 2 is contained in the intersection of 2 affine hyperplanes or more, of the

form Hi = {xi = θi}. Each Hi defines two halfspaces, of the form H+
i = {xi > θi} and
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H−i = {xi 6 θi}. Then it is clear that Hi intersects int(U) if and only if both H−i and H+
i

contain a full box. Moreover, assumption H2 guarantees that in such case, any wall W ⊂ Hi

has the form ∂Bin
a ∩ ∂Bout

b . If two of the hyperplanes containing F intersect int(U), then F

is part of two walls like W , i.e. it is a subset of an intersection ∂Bin
a ∩∂Bout

b ∩∂Bin
c ∩∂Bout

d ,

where the four boxes are distinct. Hence both maps Ma and Mc could be applied to points

in F , and a global map can not be defined there. Whatever its dimension, a face F with

no more than one hyperplane Hi intersecting int(U) lies in the incoming region of a single

box, on the other hand. Anyway, it also lies in the boundary ∂U , which from H1 is globally

repelling, and thus can be ignored without loss of information on the dynamics.

In short, to handle these ambiguities, we may exclude all codimension 2 faces from the

analysis, along with the subset from which those faces can be reached. On such a domain, a

global map can finally be well defined, and written for example with the aid of characteristic

functions (1A(x) = 1 for x ∈ A, 0 otherwise) :

Mx =
∑

a∈A

1Dom(Ma)(x) Max. (27)

And noting F2 the union of all threshold faces of codimension 2 or more, the domain D on

which M and its iterates are well defined may be written :

D =
⋃

a∈A

Dom(Ma) \
⋃

k∈N

M−k(F2) (28)

The notation Mk stands for the kth iterate of M defined in (27), and M−k(F2) is then

the preimage of the set F2. This requires implicitely that previous iterates are well defined,

i.e. belong to D as well. The excluded set is thus the union of all finite time preimages of

codimension 2 faces. As such, its measure is zero, and the restriction is not too strong.

On the other hand, the domain D is not closed in
⋃

a Dom(Ma), and thus it is not compact.

Actually, a sequence in D that converges to a point in some codimension 2 face is easily

contructed. In particular, some orbits in D may have an ω-limit set that does not belong

to D . Typical examples of such orbits are those converging towards a stable focus lying at
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the intersection of two walls or more, without intersecting any such lower dimensional face

in finite time (i.e. a finite number of iterations).

Remark that D is not open either, since in general its complement
⋃

k M−k(F2) is not

closed. This arises from the fact that the latter is an infinite union of closed set. As there

are only finitely many faces in M’s domain, there is only one possibility for the previous

union to be really infinite, and to preclude closedness. It is the existence of a periodic or

quasiperiodic unstable invariant set U in D , such that some orbits in a neighbourhood N(U)

of this set have their ω-limit set in F2. Then for x ∈ N(U), one has ω(x) ⊂ F2 and for

y ∈ ω(x), converging subsequences of
(
M−ky

)
k

belong to U , and thus leave
⋃

k M−k(F2).

We do not provide an explicit example for such a configuration here, but it strongly seems

realizable. First, stable focus in F2 are known to be possible, as we already mentioned.

Secondly, unstable limit cycles are also realizable orbits, as will appear more explicitely in

proposition 10. Then, there is no apparent obstruction to the coexistence of these invariant

sets, with at least one trajectory connecting them. We plan to provide such an example in

future works.

A last observation is that D is not a connected space. This is clear from the fact that D is a

subset of all walls in phase space, taken without their boundaries. Since these open walls are

disjoint, and D clearly has nonempty intersection with all of them, it can not be connected.

The connected components of D will be explicited in section 5.

Despite its somehow clumsy topology, the set D is the largest one on which all iterates

of M are well defined. Moreover, M is continuous on this domain, since it is essentially

⋃
a Dom(Ma) with all discontinuity points removed.

Now, (D ,M) is a properly defined one-sided discrete dynamical system. The orbits in

this system are of the form {Mkx}k∈N, for some x ∈ D . The iterates of M are in fact

compositions of local maps, which depend on the sequence of walls that are crossed by the
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orbits. The next section is devoted to the analysis of such iterates, in particular along cyclic

sequences of walls.

4. Composite maps

We call cycle maps the kth iterate of M along a cyclic sequence of k walls, seen as a first

return map, defined on a subset of a wall. We deal in this section under assumption H3,

since otherwise computations rapidly become untractable, and the linear algebra tools we

use here cannot be invoked.

The task of describing cycle maps’ domains and fixed points has been investigated in early

studies on systems of the form (1), mainly [19,20,30]. All these previous results, as well as

some new ones can be found in a work of R. Edwards [8], with recent improvements given

in [11] in terms of combining multiple loops. These studies all concern the case of a single

threshold per direction, which is translated to zero : then, M is a fractional linear mapping,

i.e. a linear mapping divided by an affine 1-form. Composition preserves such mappings.

Given a cyclic sequence of boxes, it is shown that the domain on which a return map is well

defined is a polyhedral cone. Furthermore, fixed points of the return maps are closely related

to eigenvectors of the linear numerator of the return map. Although it is commonly thought

that these results extend to the case of multiple thresholds, this has not been properly proved

yet.

Here, we propose such an extension to the multiple thresholds context. This leads to deal with

fractional affine mappings instead of fractional linear ones. In short, the main difference with

previous results is that one has to consider translations of eigenspaces, instead of eigenspaces

themselves, and keep trace of all crossed thresholds along an orbit, since they are not all

the same. This does not only complicates the formulae and computations, but one also loses

some nice features of the binary case, as discussed at the end of this section.
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Recall that since H3 is assumed, in a box Ba the mapping M = Ma writes :

Mx = f(a) + α(x)
(
x − f(a)

)
= f(a) +

θ±ι
ι − fι

xι − fι

(
x − f(a)

)
, (29)

where ι is the escaping direction for x, and θ±ι
ι is either θ−ι

.
= θιaι

or θ+
ι

.
= θιaι+1 (the choice

being given by the condition α(x) ∈]0, 1[, for example).

4.1. Iterates of the transition map

A matrix formulation of M’s iterates can be obtained from the equation above. Given a

wall W , ` successive iterates of the transition map can follow different sequences of facets.

Accordingly, W can be partitioned into regions corresponding to specific wall sequences. In

particular, if there is a loop of length ` in TG, containing W , one of these domains correspond

to this loop. A necessary condition for a limit cycle to happen is then naturally that this

domain be nonempty.

More explicitely, let a = a0 . . . ak+1 be a finite sequence of symbols in A, such that there may

be some continuous trajectory intersecting successively Ba0 . . . Bak+1 . It follows that such

a trajectory crosses successively the walls W 0 .
= ∂Bout

a0 ∩ ∂Bin
a1 , . . . W k .

= ∂Bout
ak ∩ ∂Bin

ak+1 .

Then, on the wall W 0 ⊂ ∂Bin
a1 , the domain from which the sequence a is followed can be

written as :

Da

.
=

k⋂

i=0

M−i(W i). (30)

This expression is reminiscent of the definition of the domains Dε
ij(a), in equation (14). In

fact, the latter correspond to the particular case k = 2 in the formula above, with appropri-

ate a. Note that the word a can not be arbitrary, and that the set Da may be empty. This

will be analysed in more detail in section 5.

Within the framework of binary systems, sets of the form (30) are easily defined as polyhe-

dral cones. Moreover, the linear inequalitites defining these cones are obtained via a simple

rescaling of the linear part of the transition map. Since boxes are orthant in this context,
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describing a set of the form Da consists in forcing the sign pattern of solutions of the linear

inequations describing the returning cone. In our more general context, an explicit descrip-

tion of domains Da is still possible, though in less simple form. We postpone this description

until the end of the section, after expliciting iterates of M on a fixed sequence of walls.

As focal points lying inside their own originating box are a special case, for which M

has been defined as a constant map with no change in forward iterates, we assume in the

following that all crossed boxes have at least one escaping direction.

On a domain Da (supposed nonempty until further precisions), corresponding to a fixed list

of k walls successively crossed by the flow, Mk can be written unambiguously. Observe that

since W 0 = ∂Bout
a0 ∩ ∂Bin

a1 , the symbol of the first box crossed by orbits originating in Da

is a1, and not a0. We note accordingly f1 . . . fk the focal points of the successively crossed

boxes (i.e. f j = f(aj)), and ι1, . . . , ιk the exit directions followed along these boxes. This

leads to the following expression :

∀x ∈ Da, Mkx = fk + ∆ιk

F (k)(x − f1)

〈F (k)(x − f1), eιk
〉 , (31)

where the term ∆ιk
above is an abbreviation for θ

±ιk
ιk − fk

ιk
, with the threshold θ

±ιk
ιk ∈

{θιkaιk
, θιkaιk

+1} being the kth to be crossed. From H1, ∆ιk
is clearly nonzero. Noting

transposition with a T , 〈x, y〉 = xT y = yT x is the usual inner product, introduced here to

improve readability.

The matrix F (k) ∈ Rn×n is defined as the right-to-left product :

F (k) =

k−1
←−−∏

j=1

[
(f j − f j+1)eT

ιj
+ ∆ιj

Id
]

=
[
(fk−1 − fk)eT

ιk−1
+ ∆ιk−1

Id
]
. . .

[
(f1 − f2)eT

ι1
+ ∆1Id

]
,

(32)

for k > 2, and F (1) = Id.

The expression of Mk is easily proved by induction. Actually, supposing it correct at a

step k, and computing Mk+1 on a domain where the escaping direction is ιk+1, one gets
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from (29), which also gives the initial step of the induction :

Mk+1x = fk+1 +
∆ιk+1

(Mkx)ιk+1
− fk+1

ιk+1

(
Mkx − fk+1

)
,

and reinjecting eq. (31), i.e. the induction hypothesis,

Mk+1x = fk+1 + ∆ιk+1

fk + ∆ιk

F (k)(x−f1)
〈F (k)(x−f1),eιk

〉
− fk+1

〈
fk + ∆ιk

F (k)(x−f1)
〈F (k)(x−f1),eιk

〉
− fk+1, eιk+1

〉

= fk+1 + ∆ιk+1

(fk − fk+1)eT
ιk

F (k)(x − f1) + ∆ιk
F (k)(x − f1)〈

(fk − fk+1)eT
ιk

F (k)(x − f1) + ∆ιk
F (k)(x − f1), eιk+1

〉

= fk+1 + ∆ιk+1

F (k+1)(x − f1)

〈F (k+1)(x − f1), eιk+1
〉

with F (k+1) =
[
(fk − fk+1)eT

ιk
+ ∆ιk

Id
]
F (k), yielding (32).

This matrix is always invertible, as we show now.

Proposition 7 For all k ∈ N, the n × n matrix F (k) is invertible, as far as H1 holds.

Proof. From equation (32), F (k) is a product of n×n matrices, which are all diagonal with

one nonzero column. Developing along this column, only one minor is nonzero, yielding for

the jth matrix :

det
(
(f j − f j+1)eT

ιj
+ ∆ιj

Id
)

= (∆ιj
)n−1(∆ιj

+ f j
ιj
− f j+1

ιj
)

= (θ±j
ιj

− f j
ιj

)n−1(θ±j
ιj

− f j+1
ιj

),

whence the determinant :

det(F (k)) =
k−1∏

j=1

(∆ιj
)n−1(θ±j

ιj
− f j+1

ιj
), (33)

which from assumption H1 is nonzero, whatever k. �

It is implicitely assumed, when writing equation (31) for Mk, that the inner product

〈F (k)(x − f1), eιk
〉 6= 0 in the denominator. As can be seen from an alternative way of

expressing Mk, this condition is always verified. This relies on Edwards observation, in [8],
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that the time spent on the continuous trajectory between some x and its image Mkx can

be read directly from Mk, in the case of binary systems. This property is still valid in our

case. Noting τ j(x) = τ(Mj−1x) the time spent in the jth crossed box, for j = 1 . . . k, the

following holds :

exp


−λ

k∑

j=1

τ j(x)


 =

∆ι1 . . . ∆ιk

〈F (k)(x − f1), eιk
〉 , (34)

where the sum in the exponential is clearly the total time between x and Mkx. A zero inner

product would mean that this time is infinite (and negative !). Such a pathological case is

only possible along a finite sequence of boxes, one of whose contains its own focal point. But

the latter case has been excluded here, as explained before.

To prove that equation (34) holds, one has to remember that α(x) = e−λτ(x), in equa-

tion (29). Then, for an iterate of M there are two equivalent formulations :

Mjx − f j = e−λτj(x)(Mj−1x − f j) = ∆ιj

F (j)(x − f1)

〈F (j)(x − f1), eιj
〉 .

Projecting this expression on eιj
, the scalar e−λτj(x) can be expressed as a ratio :

e−λτj(x) =
∆ιj

〈Mj−1x − f j , eιj
〉 .

From equations (31) and (32) :

Mj−1x − f j =

[
(f j−1 − f j)eT

ιj−1
+ ∆j−1Id

]
F (j−1)(x − f1)

〈F (j−1)(x − f1), eιj−1
〉 =

F (j)(x − f1)

〈F (j−1)(x − f1), eιj−1
〉 ,

which leads to

e−λτj(x) =
∆ιj

〈F (j−1)(x − f1), eιj−1
〉

〈F (j)(x − f1), eιj
〉 .

Equation (34) is then a product of ratios of the form above.

Hence, one gets an alternative formulation of equation (31) in which the time is explicit :

Mkx = fk +
exp

(
−λ

∑k
j=1 τ j(x)

)

∆ι1 . . . ∆ιk−1

F (k)(x − f1). (35)

Now we have all the ingredients to provide an explicit description of the domains Da,

eq. (30). Inequalities defining this domain are of two kinds : those expressing the inclusion
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Da ⊂ W 0, and those expressing that orbits initially follow the sequence of boxes a. The first

are immediate, and the difficulty only comes from the second. Observe that we will not give

an irredundant description, as we were able to do in the simple case of proposition 4, even

if we deal here under the simplifying assumption H3.

Proposition 8 For a = a0 . . . ak+1, the set Da, as defined in equation (30) is properly

described by the following set of inequalities, for each j ∈ Nk :

∀i ∈ Iout(a
j) \ {ιj},

eT
i

∆i∆ι1 . . . ∆ιj

[
∆ιj

Id − ∆ie
T
ιj

]
F (j)(x − f1) > 0, (36)

along with the 2(n − 1) inequalities defining W 0 ⊃ Da.

The value θ±i

i is the escaping threshold in direction i for the box Baj , ∆i is similar to the

already defined abbreviation of θ±i

i − f
j
i . Since for each i, x− f1 is multiplied on the left by

a 1 × n vector in inequation (36), the system of inequations associated to each j can be put

in matrix form as C(j)(x − f1) > 0, where the lines of C(j) are given by (36).

Proof. The necessity of inequalities defining W 0 does not need any proof.

Other inequations are equivalent to τi(Mj−1x) > τιj
(Mj−1x), i.e. ιj is the escaping direction

in Baj , for initial condition Mj−1x.

Actually, noting xj .
= Mjx for concision, the later inequality on exit times rewrites :

x
j−1
i − f

j
i

∆i

−
xj−1

ιj
− f j

ιj

∆ιj

> 0.

This has clearly to be statisfied by all i ∈ Iout(a
j) \ {ιj}, and is equivalent to :

eT
i

∆i∆ιj

[
∆ιj

Id − ∆ie
T
ιj

]
(xj−1 − f j) > 0.

Now, from eq. (35) and xj−1 − f j = eλτj(x)(xj − f j), one gets :

xj−1 − f j =
exp

(
−λ

∑j−1
i=1 τ i(x)

)

∆ι1 . . . ∆ιj−1

F (j)(x − f1),

and since the exponential is positive, inequation (36) follows. �



Geometric properties of a class of piecewise affine biological networks models 37

4.2. Cyclic maps

Now we turn to the case of cyclic maps. For this, let a0, a1, . . . , a` = a0 be a periodic list of

box symbols, so that Da 6= ∅, for a = a0 . . . a`−1a0. There are then corresponding periodic

sequences of walls, focal points, and exiting directions : W j , f j and ιj , with j taken modulo

`. Then, for and x ∈ Da ⊂ W 0, the iterated map M` maps x back on W 0, and writes :

M`x = f0 + ∆ι0

F (`)(x − f1)

〈F (`)(x − f1), eι0〉
, (37)

where the periodicity of the box sequence leads to replacing occurences of ` by 0 above, as

well as in the expression of F (`) computed from (32) (but F (`) 6= F (0), of course).

Now, for nonempty Da the restriction M`|Da
is not strictly speaking a Poincaré return map

in general, since some points may be mapped outside Da, and thus escape from the loop

a when mapped again. However, it is clear that if a limit cycle exists around a, it must

correspond to a fixed point of M` that lies in Da. A practical way to characterize fixed

points of this map is to translate the expression (37) :

M`x − f1 = f0 − f1 + ∆ι0

F (`)(x − f1)

〈F (`)(x − f1), eι0〉
,

which can be put as single fractional term :

M`x − f1 =
1

〈F (`)(x − f1), eι0〉
[
(f0 − f1)eT

ι0
+ ∆ι0Id

]
F (`)(x − f1)

=
F (`+1)(x − f1)

〈F (`)(x − f1), eι0〉
. (38)

Here again, F (`+1) is obtained from eq. (32) with indices taken modulo `.

It appears now that if x∗ is a fixed point of the return map M`, then x∗−f1 is an eigenvector

of F (`+1), with eigenvalue 〈F (`)(x∗ − f1), eι0〉.

Conversely, if y − f1 is an eigenvector of F (`+1), with eigenvalue µ, y is a fixed point of M`

only if it satisfies :

µ = 〈F (`)(y − f1), eι0〉
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as seen by simply combining the two requirements F (`+1)(y−f1) = µ(y−f1) and M`y = y.

Thus, noting Eµ(F (`+1)), or simply Eµ when nonambiguous, the eigenspace corresponding

to an eigenvalue µ, and given a point y ∈ f 1 + Eµ, a fixed point for M` can be explicited :

x∗ = f1 +
µ

〈F (`)(y − f1), eι0〉
(y − f1), (39)

provided it belongs to Da, and 〈F (`)(y − f1), eι0〉 6= 0.

This latter condition is necessary for a fixed point to belong to the line f 1 + R(y − f1).

Actually, the nonzero inner product above is invariant when y is replaced by a point in the

affine line f1 +R(y − f1), and we have shown with eq. (34) that this inner product must be

nonzero for all images of the return map, hence for fixed points.

In fact, we show now that this condition necessarily holds if f 1 + R(y − f1) intersects the

hyperplane {x | xι0 = θ
±ι0
ι0 }. In particular, it is automatically satisfied if the point x∗

in equation (39) belongs to Da, which is a subset of the wall W 0, itself included in the

mentioned hyperplane.

Proposition 9 Let µ be an eigenvalue of matrix F (`+1), and (y−f1) ∈ Eµ a corresponding

eigenvector. Suppose H1, and f 1 + R(y − f1) ∩ {x | xι0 = θ
±ι0
ι0 } 6= ∅.

Then, 〈F (`)(y − f1), eι0〉 6= 0.

Proof. Suppose 〈F (`)(y − f1), eι0〉 = 0. Then,

F (`+1)(y − f1) =
[
(f0 − f1)eT

ι0
+ ∆ι0Id

]
F (`)(y − f1)

= ∆ι0F
(`)(y − f1),

so that 〈F (`+1)(y− f1), eι0〉 = 0. And since F (`+1)(y− f1) = µ(y− f1) with nonzero µ (due

to proposition 7), this orthogonality equation yields yι0 = f1
ι0

. Such a relation holds for any

point in the affine line f1 + R(y − f1). In particular, if a point of this line also belongs to

the hyperplane of the proposition’s statement, one is lead to the equality : yι0 = θ
±ι0
ι0 = f1

ι0
.

This contradicts H1. �
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We have given a necessary condition on eigenvectors, let us now give one on eigenvalues.

Since this product will appear several times, an abbreviation may be introduced :

∆
.
=

∏̀

j=1

∆ιj
. (40)

Then the the necessary condition is :

µ

∆
> 1 (41)

for a fixed point to be obtained from the eigenspace Eµ. This comes directly from eq. (34),

since transition times must be positive, and the inner product equals the eigenvalue asso-

ciated to a candidate fixed point. Then, ∆ and µ must have the same sign, and the latter

must be real and of greater modulus than ∆.

As a noticeable point, the sign of ∆ is fully determined from the parity of the cycle’s length

`. Actually, the sequence of crossed walls is periodic. Then, if the flow crosses a wall with

threshold θ
±ιj
ιj increasingly in direction ιj , which implies ∆ιj

< 0, it must cross the same

hyperplane decreasingly at some later point on the same orbit, so that ∆ιj+m
> 0, for some

m. Thus, the full product consists of such pairs, whose product is negative. Hence ` must

be even, and

sign(∆) = (−1)
`
2 .

The case of equality in eq. (41) is to be rejected when looking for fixed points. This has to

be stressed, since ∆ is a potential eigenvalue of F (`+1), with any ei as eigenvector, where i

is a direction in which no wall is crossed along the cycle. This results directly from eq. (32),

when at least one i ∈ Nn does not appear as an exit direction ιj , thus leading to the ith

column being nonzero on the diagonal only, with entry ∆.

Up to now, all results we have given concerning cycle maps were already known (with

simpler form) in the binary case, as analyzed in [8]. In the latter work, stability of fixed
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points is also investigated. Here again, with slight differences, the results extend. To show

this, we compute the Jacobian of our return map at a point x :

DM`
x =

F (`+1)

〈F (`)(x − f1), eι0〉
− F (`+1)(x − f1)eT

ι0
F (`)

〈F (`)(x − f1), eι0〉2
,

which, at a fixed point x∗, takes the simpler form :

DM`
x∗ =

F (`+1)

〈F (`)(x∗ − f1), eι0〉
− (x∗ − f1)eT

ι0
F (`)

〈F (`)(x∗ − f1), eι0〉
.

Now we apply this Jacobian at x∗ − f1 :

DM`
x∗(x∗ − f1) = (x∗ − f1) − (x∗ − f1) = 0.

Given an other fixed point y∗, one also computes the following :

DM`
x∗(y∗ − x∗) = DM`

x∗(y∗ − f1) − DM`
x∗(x∗ − f1)

=
F (`+1)(y∗ − f1)

〈F (`)(x∗ − f1), eι0〉
− (x∗ − f1)eT

ι0
F (`)(y∗ − f1)

〈F (`)(x∗ − f1), eι0〉

=
〈F (`)(y∗ − f1), eι0〉(y∗ − f1)

〈F (`)(x∗ − f1), eι0〉
− (x∗ − f1)〈F (`)(y∗ − f1), eι0〉

〈F (`)(x∗ − f1), eι0〉

=
〈F (`)(y∗ − f1), eι0〉
〈F (`)(x∗ − f1), eι0〉

(y∗ − x∗).

Hence, x∗ − f1 is an eigenvector of the Jacobian, associated to eigenvalue 0 (we discuss

this degeneracy at the end of this section), and all y∗ − x∗ for fixed points y∗ 6= x∗, are

eigenvectors as well. Moreover, the associated eigenvalues are the ratios of those of the fixed

points themselves, seen as eigenvectors of F (`+1). Thus, if all eigenvalues of the latter give

fixed points of M`, we have all the fixed points of the Jacobian. This is exactly the situation

of the binary case, where the eigenanalysis of the Jacobian is known from fixed points of

the return map. Thus, we refer to [8] for a discussion about the remaining special cases :

eigenvalues of F (`+1) that do not correspond to admissible fixed points, and eigenvalues

with differing algebraic and geometric multiplicity. Concerning the latter, simple calculations

show that when an eigenvalue has geometric multiplicity > 1, the fixed points given by the

associated eigenspace form an affine subspace. This is just as in the binary case (the proof is



Geometric properties of a class of piecewise affine biological networks models 41

given in [8], and remains unchanged here ; another result is preserved along with its proof :

the fact that straight lines joining fixed points are invariant under M`).

In any case, the key point is preserved : noting µ(x∗) the eigenvalue of F (`+1) associated to

a fixed point x∗, eigenvalues of the Jacobian have modulus of the form

∣∣∣∣
µ(y∗)

µ(x∗)

∣∣∣∣, and thus x∗

is (asymptotically) stable if µ(x∗) is a (strict) dominant eigenvalue of F (`+1).

We can summarize the above discussion in the following proposition :

Proposition 10 Let a = a0 . . . a`−1a0 provide a cyclic sequence of walls in phase space with

nonempty returning domain Da, and a return map written in the form (38). Assume the

matrix F (`+1) has an eigenvector v with real eigenvalue µ. Then, the point :

x∗ = f1 +
µ

〈F (`)v, eι0〉
v

is a fixed point of the return map, provided

µ

∆
> 1, and x∗ ∈ Da.

Morevoer, it is asymptotically stable if, for any other eigenvalue η of F (`+1) the following

holds :

|µ| > |η|.

If the inequality is weak, x∗ is stable, and it is unstable otherwise.

This proposition is an exact analogue of what is known in the case of binary systems,

the differences being that eigenvectors are translated with f 1, and the eigenvalue µ can be

negative. Moreover it must be of greater modulus than ∆, a quantity obtained from the

thresholds and focal points coordinates involved in the cycle, instead of being just > 1 like

in the binary case.

Remark 3 This resemblance is intuitively not surprising, and has always been considered

true in previous discussions in the literature. Anyway, proving this involves a different way of
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writing things than usual. In particular, the return map is usually reduced to a Rn−1 → Rn−1

application, since at each step a coordinate is known to be zero. Here, this is not the case,

and the same coordinate xi may take different threshold values along a single orbit. This

is why M has been kept all its components. This also explains why the Jacobian DM` is

noninjective : the dynamics is essentially n − 1 dimensional, and keeping all n components

introduces degeneracy. Mathematically, the fact to use a somehow superfluous coordinate

has to be related to the use of homogeneous coordinates in the context of projective geom-

etry. In the latter context, the additional coordinate is usually set to 1, but since here one

deals with a piecewise projective mapping, this homogenization must be reiterated in each

box, using a corresponding threshold value instead of 1.

Finally, in the binary case one important result stands, that is lost here. It is the fact that

trajectories starting from a same ray through the origin stay on this ray when iterating

the mapping M. Hence the long run dynamics can be projected on a n − 1 sphere without

loss of information, which has allowed to prove that no chaotic dynamics may happen in

a 3-dimensional binary system [30], as well as to study in details a class of 4-dimensional

systems [15]. Here there is no apparent way to extend this property, since threshold hyper-

planes do not intersect at a single point.

The domains on which iterates of M are defined, as described in equation (30) and propo-

sition 8, can be described via paths on an oriented graph. These paths form a symbolic

dynamical system, which provides useful tools to investigate the dynamics on (D ,M). It is

the aim of next section to develop this aspect.

5. The symbolic dynamics approach

In this section, the uniform decay rates assumption H3 is not required.
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5.1. The transition graph and its induced codings

The partition of phase space into boxes naturally induces an oriented graph, with edges

representing admissible transitions between boxes. Formally, we denote the transition graph

as TG = (A, E). It is an oriented graph, whose vertices are subscripts of boxes. Edges corre-

spond to pairs of boxes that are successively crossed by some trajectory, when iterating the

transition map M. This includes 1-loops, corresponding to boxes that are forward invariant

(i.e. with a subscript in T ), and pairs that are adjacent through some n − 1 dimensional

threshold hyperplane (i.e. a single wall), ordered in accordance with the flow lines. As we

already observed when writing H2, Ba and Bb are adjacent through a single wall if and only

if a − b = ±ei, for some i ∈ Nn. Now, the flow lines in a box Ba only escape in directions

i ∈ Iout(a), with monotonicity given by the sign ±i = (di(f(a)) − ai) we have introduced

in section 3.2. This sign ±i depends on the symbol a, whose value will be clear from the

context in the sequel. In short, E can thus be written :

E =
{

(a, a) | a ∈ T
}
∪

{
(a, a ±i ei) | a ∈ A \ T , i ∈ Iout(a)

}
.

Thus, TG describes transitions between boxes that occur through n − 1 dimensional faces.

Trajectories crossing lower dimensional faces are then ignored in this description, as with

the construction of the domain D on which M is defined. A nice property of TG is that

it is naturally embedded on a cubical lattice, herited from phase space partition through

the double correspondence vertices-boxes and edges-facets. In case of a single threshold per

direction, the lattice reduces to a single n-cube, whose symmetry properties have been used

to improve classification of Glass networks and their dynamics [7,17].

Attractors of the discrete-time, continuous-space system (D ,M) have a counterpart in TG.

The converse does not hold in general, and the discrete attractors of TG may be of differ-

ent nature than those of the original system. Self loops correspond to asymptotically stable

steady states, since they arise at boxes containing their own focal point. The cases of attract-

ing cycles and foci - both appearing as loops in TG - have been greatly clarified by several
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authors [19,20,30,36]. Yet, a complete characterization of those attractors in TG that have

an equivalent in phase space is still lacking, and the task remaining in this direction is still

a largely open problem.

Classically, TG codes a subset of infinite words on the alphabet A, given by infinite paths

on this graph. This set is given by :

S (TG) =
{
a = (at)t∈N | ∀t ∈ N, (at, at+1) ∈ E

}
⊂ AN.

Such an approach is usually referred to as symbolic dynamics, since A is a finite set whose

elements are symbols representing a subset of state space. Moreover, S can be seen as a

metric space on which discrete dynamics can be defined. We shall give the sole ingredients

of this theory that will be of direct use here, without detailing its numerous developments.

Several textbooks about dynamical systems give an introduction to this subject ; here we

mainly rely on the classical reference [29]. The dynamics is obtained by introducing the shift

operator σ : S → S , defined by (σ(a))t = at+1.

This operator is continuous for several metrics, among which the following will be conve-

nient :

ρ(a,b) =





0 if a = b

2−min{t | at 6= bt} if a 6= b

(42)

Thus, the more initial terms of a and b coincide, the closer they are for ρ. The space S is

compact for ρ, and σ-invariant. As such, it is called a shift space in the literature. The pair

(S , σ) constitutes a discrete dynamical system in the usual way. Since orbits of this system

are associated to words on the alphabet A, whose elements are in turn representing subsets

of the state space of the initial dynamical system, the trajectories of (S , σ) represent sets

of trajectories in (D ,M).

The usual way to compare these two dynamical systems requires an application φ : D → S ,

which could lead to a conjugation relation of the form : φ◦M = σ◦φ. Depending on φ being

one-to-one or onto it is respectively said to be an embedding or a factor map. If it is bijective
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with continuous inverse (i.e. a homeomorpism), it is called a (topological) conjugacy. From

a topological point of view, two conjugate dynamical systems behave identically, and thus

conjugacy is among the strongest equivalence relation one may apply to symbolic dynamical

systems. Notably, fixed points, periodic orbits and their period, dense orbits, topological

transitivity and topological entropy are well known invariants for conjugacy.

An application like φ above is clearly linked to the mapping d introduced in section 2.2, when

formalizing H2. d maps points of
⋃

a int(Ba) onto A. A very similar mapping is introduced

in [36], where it serves as a discrete mapping conserving asymptotically stable steady states,

and limit cycles for some parameter values when TG essentially consists of a single loop.

An other kind of coding has also been used in the case of complicated trajectories in a

specific network, with an attractor having the shape of a double loop [8–10] : a symbol was

associated to each loop, and it was shown that a subsequence was not allowed among words

on these symbols, for certain parameter values. Such dynamics were thus related to the so

called golden mean shift (see [29]), and only concerned a subgraph of the whole TG.

Here, D entirely lies in the complement of d’s domain. But it is also contained in the

reunion of all facets of boxes Ba, taken without their boundary. Any of these open facets is

well defined by the two boxes it is part of. On the boundary ∂U of the whole domain this

would not work as such, but this boundary can not be reached from the rest of D , so that

we can ignore it without much trouble : by D we now mean D \ ∂U . Then, for all x ∈ D ,

either there is a unique pair (a, b) such that x ∈ ∂Bout
a ∩ ∂Bin

b , or some a ∈ T such that

x ∈ ∂Ba ∪ {f(a)}. Accordingly, we can define a mapping Φ : D → E , with

Φ(x) =





(a, b) if x ∈ ∂Bout
a ∩ ∂Bin

b

(a, a) if x ∈ ∂Ba ∪ {f(a)}, for a ∈ T .

Thus Φ codes with labels of the edges of TG, instead of vertices. Observe that Φ−1(a, b) is

a practical way to denote the open wall between two adjacent boxes Ba and Bb, respecting

the orientation of the flow.
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This leads to consider a new shift space, which is obtained from S through the so called

2-block map β2, defined by

(β2(a))t =




at

at+1


 ∈ E .

This vertical writing of edges will make things clearer when dealing with a full sequence of

pairs. We note S [2] .
= β2(S ) ⊂ EN ; it is a shift space. The shift operator on S [2] is noted

σ[2]. Then, the two symbolic dynamical systems (S , σ) and (S [2], σ[2]) are conjugate, i.e.

β2 is continuous and β2 ◦ σ = σ[2] ◦ β2 (cf. [29] p.18). Thus, both systems yield the same

information, at least topologically. The latter is more directly related to M’s dynamics,

which is from walls to walls, rather than boxes to boxes, while the first one is more closely

related to the dynamics induced by TG since the vertices of this graph are labeled (with

symbols from A), not its edges.

Now to code the trajectories of (D ,M), we proceed in two steps. First, following [13], one

introduces the mapping ξ : D → DN, defined by :

ξ(x) =
(
x,Mx,M2x, . . .

)
.

As mentioned in section 3.3, M is continuous on D . It is proved in [13] that the mapping ξ

above is then a conjugacy, when restricting the range to ξ(D). This proof is done using the

following metric on DN :

%(x,y) =
∑

k∈N

1

2k

δ(xk, yk)

1 + δ(xk, yk)
,

where δ(·, ·) is any metric on D . The shift operator on DN is noted σD .

The second step is a mapping Φ∞ : DN → S [2], which is naturally induced by Φ :

Φ∞
(
(xk)k∈N

)
=

(
Φ(xk)

)
k∈N

.

This application maps sequences on D to sequences on E , which can be seen as coding

infinite words on an uncountable alphabet, with infinite words on a finite alphabet. It is
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thus the step at which an approximation is done in the process of coding the dynamics.

The two previous steps provide us with a mapping

φ = Φ∞ ◦ ξ : D → S
[2].

This mapping can be described in more details. For this one extends the definition of eq. (30)

for domains Da when a is an infinite word in S :

Da =
⋂

i∈N

M−i
(
Φ−1(ai, ai+1)

)
. (43)

The resulting domains are then defined by an infinite set of inequalities like those given in

proposition 8. One has moreover the following result

Proposition 11 The mapping φ takes constant values on the domains Da defined in eq. (43).

The latter are exactly the connected components of D , hence φ is continuous.

Proof. Given ε = (εi)i∈N ∈ S [2], the preimage Φ−1
∞ (ε) is the product of walls :

∏

i∈N

Φ−1(εi).

This product is a subset of the range of ξ. Then, noting a = β−1
2 (ε), it follows from the

definitions that the ξ preimage of the product above is exactly Da.

Thus, one gets φ−1(ε) = ξ−1 ◦ Φ−1
∞ (ε) = Da, and the latter are the preimages of infinite

words in S [2] : φ is constant on such domains.

Now, each set Φ−1(a0, a1), for (a0, a1) ∈ E , is either in the relative interior of a wall, or it

is a focal point inside its own box. In either case, it is disjoint from all other sets of the

same form. Thus, connected components of D must be subsets of the preimages of Φ. For

an infinite word a = (a0, a1 . . . ), one has Da ⊂ Φ−1(a0, a1). Then, from the definition of

D , eq.(28) : D =
⋃

a∈ADom(Ma) \ ⋃
i∈N

M−i(F2), it is clear that the only obstacles to

connectedness of domains Da are the sets M−i(F2). But faces in F2 are the intersections

of two walls or more. Hence in any set intersecting M−i(F2) for some i, there are points

whose ith iterates lie in distinct walls. It follows that the connected components are exactly

the sets of points following the same itinerary, i.e. the preimages of φ, which we just proved

to be the Das. �



48 Etienne Farcot

All constructions above may be summarized using the following diagram, in which all

paths commute :

D

M

ξ

φ

ξ(D)  DN
Φ∞

σD

S [2]

σ[2]

S
β2

σ

(44)

Now, the problem is that the left part of the diagram is clearly not a conjugacy, a fact we

have stressed using dotted arrows at the noninvertible step. Actually Φ∞, and thus φ, are

neither one-to-one nor onto in general, as illustrated for instance on figure 7 and its legend.

C1

C2

a b c d

Fig. 7. Example of a system in R2 with two limit cycles. The phase plane is on the left, and

the transition graph on the right. On this latter, C1 and C2 are obvious abbreviations for cyclic

sequences of walls. a and b are also shorthands for symbols in A2 = (N4×N5)
2. As an illustration of

the default of injectivity of the operator φ it appears here that both coexisiting cycles are attracting

for a whole set of orbits crossing similar sequences of walls. Surjectivity lacks as well, due to the

fact that all words in the language (C1∗aC2∗b)∗ are allowed blocks in S
[2](TG), while there is no

continuous trajectory looping around both cycles C1 and C2.

Remark 4 One can see on the transition graph above, that some edges are not oriented.

They correspond to white walls in phase plane, which are unavoidable inside cycles of the

plane. White walls are less problematic than black walls, since they are not reachable in

increasing time ; they are unstable surfaces in phase space. This suggests that our H2 is

too strong, and precludes interesting dynamics. A weaker version of this condition should
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only forbid black walls. However, most interesting dynamics appear in higher dimensional

spaces, where white walls do not necessarily occur inside periodic trajectories.

The non-injectivity of φ is an inevitable feature of the system (D ,M), in which the

domains Da associated to admissible itineraries are not reduced to single points. The fact

that φ is not surjective, on the other hand, means that some infinite paths in the transition

graph do not correspond to any admissible trajectory of the continuous system. According to

this, the (generally proper) subset φ(D) ⊂ S [2] is exactly the space of admissible trajectories

in TG, thus it seems worthwhile to study the subsystem (φ(D), σ[2]). First, one must of course

check that this system is well-defined. From the commuting diagram (44), φ(D) inherits shift-

invariance from D ’s M-invariance. Now, the space φ(D) must be compact in order to get a

properly defined symbolic dynamical system.

Such systems are usually defined as the action of the shift on a shift space. The latter is

equivalently defined as a shift-invariant compact space, or as a subspace of all infinite words

on the alphabet defined by a (possibly infinite) sequence of forbidden (finite) blocks. The

equivalence of these two characterization is proved in [29], pp. 5-6 and 179. We will prove

that the second characterization holds for φ(D). Note that this implies shift invariance.

Proposition 12 (φ(D), σ[2]) is a symbolic dynamical system, i.e. φ(D) is a shift space.

Hence it is compact.

Proof. First note that an infinite word ε = ε0. ε1ε2 . . . is in φ(D) if and only if

∃x ∈ D , ∀i ∈ N, εi = Φ ◦Mix

Then, for any ε ∈ S [2], we note a = β−1
2 (ε) = a0.a1a2 . . .

Now, the domain Da is either empty, or not. In the latter case, ε clearly belongs to φ(D).

If Da = ∅, either there is an i ∈ N, Di .
= Da0...ai = ∅, either all Di are nonempty, but

Da =
⋂

i∈N
Di = ∅. In the first case, a0 . . . ai is a forbidden block in φ(D).
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In the second case, the closures Di no longer are subsets of D , but they are compact (from

proposition 4, they are closed piecewise smooth cells). Moreover, from Di ⊃ Di+1, it follows

that Di ⊃ Di+1. Then, compacity implies that
⋂

i∈N
Di 6= ∅. Any point in this intersection

is not in Da, and may even be outside D . Note x̄ such a point. Then,

∃(xi)i ∈
∏

i∈N

Di, lim
i→∞

xi = x̄,

which in turn implies ∃x ∈ D , lim
i→∞

Mix = x̄.

Then, for all i ∈ N, Φ ◦Mix = εi, and thus ε ∈ φ(D).

Finally, φ(D) is fully characterized by the finite blocks with empty domain, which all are

forbidden. �

Now, the dynamics of the two symbolic dynamical systems (φ(D), σ[2]) and (S [2], σ[2])

may be compared, which is done in the next section in terms of topological entropy.

5.2. Comparison of topological entropies

Topological entropy is an important tool in symbolic dynamics. Actually, this quantity is

conjugacy invariant, and can be effectively computed for systems described by an oriented

graph. We first recall a few definitions and properties. Proofs and additional details may be

found in chapters 4 and 6 of [29], along with an extensive bibliography. We will often omit

the adjective topological, and simply use the term entropy in this section.

Let note X a shift space, σX the shift operator on X, and Lk(X) the set of blocks of length

k appearing in X. Then, the entropy of (X,σX) is defined as :

h(X,σX) = lim
k→∞

1

k
log (#Lk(X)) , (45)

where log is conventionally the logarithm with base 2. This quantity is nonnegative, and its

positivity is a common criterion for the existence of a dynamical system.



Geometric properties of a class of piecewise affine biological networks models 51

In case when X is defined by the way of infinite paths on an oriented graph G, note A the

adjacency matrix of G : Aij ∈ {0, 1}, and Aij = 1 iff (i, j) is an edge in the graph. Define the

irreducible components of A as the equivalence classes for the equivalence relation : i ∼ j

if ∃p, q ∈ N, (Ap)ij 6= 0 and (Aq)ji 6= 0. This corresponds exactly to strongly connected

components in G. We note Ai, i = 1 . . . k the submatrices of A with all indices in the same

equivalence class. If there is a single class, A is said to be irreducible.

Perron-Frobenius theorem ensures that any matrix with nonnegative entries has a dominant

positive eigenvalue µA, which is simple, and is associated to a nonnegative eigenvector.

Following [29], we call the Perron eigenvalue of A the maximum : µA
.
= max

i=1...k
µAi

.

Then, the entropy is given by :

h(X,σX) = log µA. (46)

We will need the following lemma, proved in [29] as theorem 4.4.7, p.123.

Lemma 3. Let A be an irreducible matrix, and 0 6 B 6 A, with Bij < Aij for a pair i, j

of indices. Then µB < µA.

Since S and S [2] are conjugate they have the same entropy. As S is exactly the shift space

induced by infinite paths on TG, one simply note : hTG = h(S [2], σ[2]) = h(S , σ). One also

abbreviates : hφ(D) = h(φ(D), σ[2]). Now, from the fact that φ(D) ⊂ S [2], one can only infer

hφ(D) 6 hTG. The next theorem yields a stronger result when the transition graph contains

a splitting box that is ’inside’ the domain, with certain conditions.

We use [a] to denote the ∼ equivalence class of a, i.e. the set of vertices in the same strongly

connected component of TG as a. Observe that such components are either single vertices,

loops, or more complex structure involving several intersecting loops. Note also that the

adjacency matrix of TG is indexed by A, and not by integers.

Theorem 1 Let TG be the transition graph associated to the dynamical system (D ,M)

obtained from a piecewise affine system of the form (1), and satisfying H1 and H2.
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Suppose moreover that there is an a ∈ A, and at least two distinct directions i1, i2 ∈ Iout(a),

such that for j ∈ {1, 2} and ± ∈ {−,+},

a ± eij
∈ [a].

Finally, assume that besides [a], all equivalence classes are either loops, single vertices, or

contain a vertex satisfying the same conditions as a.

Then,

hφ(D) < hTG.

Proof. To simplify the discussion, we assume without loss of generality that ±ij
= +, for

j ∈ {1, 2}.

Since i1 and i2 are exiting directions for a, and since H2 precludes white walls, the pairs

(a − eij
, a) and (a, a + eij

), for both values of j, are edges in TG. All vertices appearing

in these four edges being in the same strongly connected component, there must be a path

from a + eij
to a − eij

, for both j. Hence, there are necessarily two loops of the form

a + eij
→ · · · → a − eij

→ a → a + eij
,

which intersect at vertex a.

Note that loops (including single vertices, seen as 1-loops) have zero entropy, since they

only generate periodic words. From its definition, entropy is always nonnegative. Then from

eq. (46), the entropy of TG must be log µA[a]
, for the a above, or one fulfilling the same

requirements. From now on, we note [a] the class with maximal eigenvalue : µA = µA[a]
.

Now, lemma 1 ensures that at most one of the two domains Di1i1 , Di2i2 is nonempty,

where we define these domains as in eq. (14), at the box Ba. This means exactly that one

of the two 2-blocks : 


a − eij

a







a

a + eij


 , j ∈ {1, 2},
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is a forbidden block in the shift space φ(D). Suppose for example that Di1i1 = ∅. Since this

restricts the allowed 2-blocks, we turn our attention on S [2] instead of S . As both shift

spaces are conjugate, they have common entropy. Moreover, S [2] can also be described by

an oriented graph, whose vertices are given by edges in TG, and edges are given by those

pairs of edges (e, f) in TG such that the terminal vertex of e is the initial vertex of f .

In this new graph, noted TG
[2], a quick inspection shows that strongly connected compo-

nents that are loops or single vertices correspond to connected components of the same

nature in TG, although their number may differ. Similarly, other strongly components of

TG correspond to components in TG
[2] that are not loops. Hence, the class in TG

[2] which

corresponds to [a] is the class [(a − eij
, a)] = [(a, a + eij

)], for both values of j.

Note A[2] the adjacency matrix of TG
[2]. Its subscripts are thus pairs of edges. It admits an

irreducible submatrix with indices in the class [(a− eij
, a)]. We note it A

[2]
[a]. In this subma-

trix, the entries (a − eij
, a), (a, a + eij

) are equal to 1 for both j. Set the entry with indices

(a − ei1 , a), (a, a + ei1) to zero. One gets a matrix B
[2]
[a], such that µ

B
[2]

[a]

< µ
A

[2]

[a]

by virtue of

lemma 3.

Since we have supposed Di1i1 = ∅, φ(D) is a subset of the shift space induced by matrix

B[2], obtained from A[2] after setting elements to zero as described above, for all classes [a]

that are not loops nor single vertices. Hence,

hφ(D) 6 log µB[2] . (47)

The Perron eigenvalue of A[2] is the same than that of A, and it is clearly that of the

irreducible component A
[2]
[a]. On the other hand, the Perron eigenvalue of B [2] is given by

one of its irreducible components B
[2]
[b] , where [b] may differ from [a]. In any case, one gets a

sequence of inequalities :

µB[2] = µ
B

[2]

[b]

< µ
A

[2]

[b]

6 µ
A

[2]

[a]

= µA[2] = µA.
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Combining these inequalities with (47), one gets :

hφ(D) < log µA = hTG.

�

In words, theorem 1 means that dynamics on the transition graph is much more com-

plicated than dynamics allowed in the continuous dynamical system (D ,M). It requires

special conditions on TG, namely the existence of a particular kind of splitting box in the

’most complicated’ region of phase space. But it is a very general result in the sense that it

holds for any parameter values yielding the same transition graph. Hence, it provides a strict

upper bound for the complexity of a continuous system, which can be read directly from

the discrete structure of TG, without detailed knowledge of parameter values. Furthermore,

in the case when TG is strongly connected, a local information on a vertex a ∈ A provides

a result on entropy, which is a global characteristic of the system. Yet, an other limitation

of this result is that the required kind of splitting box can only happen in a system with

at least two thresholds in at least two directions. This is counterbalanced by the fact that

many biological systems are known to involve several thresholds per variable.

5.3. Example in R3

We now examine a three dimensional example that will serve as an illustration of results in

this paper. Namely, we consider a transition graph TG which contains three cycles C1, C2, C3,

sharing a single vertex a, and only loops or single vertices as other strongly connected compo-

nents. It follows that Ba must have three escaping directions : Iout(a) = N3, like in figures 5

and 6. In the following, we will abusively identify cycles in TG and their corresponding
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sequence of boxes in phase space. To simplify formulation, let ±i = + for i ∈ N3. We note

Ci = a → ai1 → · · · → ai`−1 → a,

where ai1 = a + ei.

In accordance with lemma 1, we put D11 6= ∅, and D22 = D33 = ∅. In order to focus

on this triple loop structure, we assume moreover that Ba is the only box that is splitting

among those crossed by the three circuits. Thus, no trajectory can escape
⋃

i Ci : it is an

invariant subset in phase space. As a last assumption, all cycles have the same length `, so

that M` : ∂Bin
a → ∂Bin

a is a properly defined return map.

With these sole assumptions, one can readily illustrate theorem 1. First, a known fact about

entropy is that h(X,σ`) = ` h(X,σ), for any symbolic dynamical system (X,σ). Hence, the

inequality provided in the theorem holds iff the same holds for `-steps dynamics. For the

latter, a transition graph may be formed : TG` has adjacency matrix A` where A is that of

TG. The subset of TG` formed by the cycles is not strongly connected as
⋃

i Ci. Yet, since

σ`(a) = a, and for any pair i, j, (σ`)−1(aij) = {a1j , a2j , a3j}, strongly connected components

take the form :

a1j

a2j a3j

a

C1

C3C2

Fig. 8. Subgraph of TG
` corresponding to

⋃
i
Ci. Vertex a is fixed, but it can attain itself through

any of the three cycles, as illustrated by the use of three self loops. For any j ∈ N`−1, the three

vertices a1j , a2j , a3j form a graph like that on the right above.

Associating a label i for cycle Ci, one is lead to a labelling of the edges of the graph on

the left in figure 8, and a labelling of the vertices of the graph on the right. In both cases, the

induced shift space is the full 3-shift (N3)
N. In the following, we use the vertex labeled graph

on the right, for it is more convenient. The entropy of the full 3-shift is readily computed,
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yielding log 3. Thus hTG = 1
`
log 3.

Now, since D22 = D33 = ∅, self loops at vertices a2j and a3j are irrelevant with respect to

the dynamics in φ(D). Then, instead of an 3 × 3 adjacency matrix with all entries equal to

1, one gets an adjacency matrix :




1 1 1

1 0 1

1 1 0




,

which has dominant eigenvalue 1 +
√

2. It follows that the entropy hφ(D) is bounded by

1
`
log(1 +

√
2), which is strictly lower than the entropy of the transition graph.

Observe that no explicit values of parameters in (D ,M) has been fixed. The only require-

ments concern the boxes in which focal points lie. We also have supposed D11 6= ∅, but

lemma 1 guarantees that there is at most one i with nonempty Dii, which would have lead

us to the same conclusion for any value of i.

Now, it would be interesting to study the continuous dynamics with more detail. Notably,

the upper bound 1
`
log(1 +

√
2) is still positive, which is characteristic of chaotic systems.

With this in mind, we have carried a series of numerical simulations on an example, with

the transition graph of figure 9. All focal points were fixed with values in agreement with

TG, except f(a) = f(222), the focal point of the splitting box. We simulated about one

hundred systems, each with a fixed random value of f(a), constrained in the box B333. For

each value of the focal point, 10 initial conditions where chosen randomly in B222, and a

200-step simulation carried.
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2
3

1

C1

C2

aC3

Fig. 9. The transition graph chosen for numerical investigations. Edges with no arrow point towards

the cycles. Remark that some of them are not well oriented : they correspond to white walls in

phase space. This is not necessary in R3, provided there are enough thresholds. As we deal here

with an illustrative example, we have chosen to use no more than 2 threshold per variable. Then,

constructing 3 cycles of length ` = 6 required white walls, which have anyway no influence on the

dynamics inside
⋃

i
Ci.

This only lead us to phase portraits composed of one to three limit cycles, with a majority

of portraits with three cycles. A typical example of the latter being shown in figure 10. Any-

way, it is commonly known that chaotic trajectories are not easily captured by numerical

simulation. Moreover, all evidence of chaotic behaviour in systems like those we study here

appeared in dimension 4 or more. With a single threshold per direction, we already men-

tioned that chaos is not possible in R3. We plan to analyse further some typical examples

like that of figure 9, we the aid of tools and results of this paper, as well as more systematic

numerical simulations.

6. Conclusion

Besides extending formerly known results to a more general context, the present work pro-

vides a geometric framework to study systems of the form (1). The main result obtained

with the help of this framework is theorem 1, which states that the sole transition graph
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Fig. 10. Three limit cycles of the same system. On the left, the superposed coordinates of a

vector versus time, for three different initial conditions. On the right, the corresponding orbits in

R3, without transients for improved visualization. Thresholds are {2, 3} in all directions.

is much too coarse to properly describe dynamics of the continuous system. The criterion

we have chosen to characterize this is topological entropy, because it can be computed for

dynamical systems induced by an oriented graph. On the other hand, the case when TG is

really too approximative, i.e. when theorem 1 applies, can be read directly on the graph,

without knowing precise parameter values. Hence, it leads to consider TG as a good source

of information, provided it is closely examinated.

As all frameworks, it opens several directions for future research. Among them, the study

of examples like that of section 5.3 must be pursued. Proposition 10 on the return maps,

as well as the explicit description of returning domains Da provided in proposition 8, shall

be useful results for numerical investigation. They have equivalent statements in the binary

case, that have already proved their ability to improve our knowledge of Glass systems.

An other direction concerns topological entropy, and is twofold. First, some additional in-

formation for specific systems may improve theorem 1, which makes little assumptions on

parameter values. More constraining requirements should help to determine more forbidden

blocks in φ(D). Here again, proposition 8 shall help, since we have seen that forbidden blocks

are exactly those finite words a for which Da is empty. An other work remaining would be

a more detailed comparison of the dynamics in (D ,M) and (φ(D), σ[2]). A first difficulty, is

that D is not compact. Although definitions exist for the topological entropy of noncompact



Geometric properties of a class of piecewise affine biological networks models 59

sets [2,23,33] they are less easily computed than that of an oriented graph. A better way

to handle this question would be to consider trajectories that intersect lower dimensional

faces. Then, the domain of the dynamics would be compact. Moreover, we have met twice

the presence of white walls inside cycles, which could indicate that excluding such walls

is a too strong hypothesis. There are mainly two approaches to the problem of dynamics

in codimension 2 faces. One consists in comparing the piecewise affine dynamics with the

smooth one it is inspired of. This is done with tools from singular perturbation theory, the

most complete and recent reference on these techniques being [35]. The other one uses the

Filippov notion of solution for a differential equation with discontinuous right-hand side [4,

21]. The principle is to replace the differential equations by differential inclusions at lower

dimensional faces. This latter approach seems more closely related to the qualitative flavour

of symbolic dynamics than singular perturbation techniques. Moreover, the mapping Φ∞

we have used in the process of coding the dynamics sends full sets of trajectories to infinite

words. Hence, extending it to solutions of differential inclusions does not seem out of reach,

at least in principle.
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21. J.L. Gouzé, T. Sari, A class of piecewise linear differential equations arising in biological models,

Dynamical systems, 17:299–316 (2003).

22. M. Henk, J. Richter-Gebert, G.M. Ziegler, Basic properties of convex polytopes, in CRC Hanbook

of discrete and computational geometry, J.E. Goodman, J.O’Rourke, editors, Boca Raton, New

York, CRC Press (1997).

23. J.E. Hofer, Topological entropy for noncompact spaces, Michigan Math. J. 21, no. 3, 235-242

(1975).

24. K. Kappler, R. Edwards, L. Glass, Dynamics in high-dimensional model gene networks, Signal

Processing 83, 789-798 (2003).

25. D.B. Killough, R. Edwards, Bifurcations in Glass networks, International Journal of Bifurcation

and Chaos (accepted) (2005).

26. S. A. Kauffman, The origins of order, Oxford University Press (1993).

27. J. Lewis, L. Glass. Steady states, limit cycles, and chaos in models of complex biological networks,

Int. Jour. Bif. and Chaos 1, 477-483 (1991).

28. J.E. Lewis, L. Glass, Nonlinear and symbolic dynamics of neural networks, Neural Computation

4:621-642 (1992).

29. D. Lind, B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University

Press (1995).

30. T. Mestl, E. Plahte, S.W. Omholt, Periodic solutions of piecewise-linear differential equations,

Dyn. Stab. Syst., 10(2):179-193 (1995).

31. T. Mestl, C. Lemay, L. Glass, Chaos in high-dimensional neural and gene networks, Physica

D, 98:33-52 (1996).

32. T. Mestl, R.J. Bagley, L. Glass, Common chaos in arbitrarily complex feedback networks,

Physical Review Letters 79(4):653-656 (1997).

33. M. Misiurewicz, On Bowen’s definition of topological entropy, Discrete Contin. Dyn. Syst., Ser.

A, 10, 827–833 (2004).

34. E. Plahte, T. Mestl, S.W. Omholt, A methodological basis for description and analysis of systems

with complex switch-like interactions, J. Math. Bio. 36:321-348 (1998).

35. E. Plahte, S. Kjøglum, Analysis and generic properties of gene regulatory networks with graded

response functions, Physica D, 201:150-176 (2005).

36. E.H. Snoussi, Qualitative dynamics of piecewise-linear differential equations: a discrete mapping

approach, Dyn. Stab. Syst., 4(3-4):189-207 (1989).



62 Etienne Farcot

37. R. Thomas, R. D’Ari, Biological Feedback, CRC-Press, Boca Raton, Florida (1990).

38. G.M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics 152, Springer-Verlag, New

York (1995).


