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Towards a divergence-free wavelet method for the
simulation of 2D/3D turbulent flows

Erwan Deriazt § and Valérie Perriery

1 Laboratoire de Modélisation et Calcul de I'MAG, BP 53 - 3810Grenoble Cedex 9,
France

Abstract. In this paper, we investigate the use of compactly suppodie@rgence-
free waveletsor the representation of the Navier-Stokes solution. Afeeminding the
theoretical construction of divergence-free wavelet @estwe present in detail the bases
and corresponding fast algorithms for 2D and 3D incompbéssgiows. In order to compute
the nonlinear term, we propose a new method which providgwactice with the Hodge
decomposition of any flow: this decomposition enables ugpagate the incompressible part
of the flow from its orthogonal complement, which correspotadthe gradient component of
the flow. Finally we show numerical tests to validate our apph.

Submitted to:Journal of Turbulence

1. Introduction

The prediction of fully-developed turbulent flows represesn extremely challenging field
of research in scientific computing. Tierect Numerical Simulation€DNS) of turbulence
requires the integration in time of the nonlinear Navieskés equations, which assumes the
computation of all scales of motion. However, at large Réysmamumber, turbulent flows
generate increasingly small scales: to be realistic, thereliization in space (and correlatively
in time) ought to handle a huge number of degrees of freedwam g in 3D out of the reach
of available computers.

Many tentatives have been done or are underway to overcorseptbblem: one
can cite theVortex Methodsvhich are able to generate very thin scales,Large Eddy
Simulation (LESand subgrid-scale techniques which separate the flow irde kcales, that
are explicitly computed, from the small scales, that araatrized or statistically computed.

In that context, wavelet bases offer an intermediate deositipn to suitably represent
the intermittent spatial structure of turbulent flows, wathly few degrees of freedom: this
property is mainly due to the good localization, both in pbgsand frequency domains,
of the basis functions. The wavelet decomposition was dhiced in the beginning of the
90s for the analysis of turbulent flowg [8,] 23] 21]. Waveletdzhmethods for the resolution
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of the Navier-Stokes equations appear lafé[2,[11, P[Tb, TBey have also been used
to define LES-type methods such as the CVS method [10]. Mo#teofvorks cited below
use a Galerkin or a Petrov-Galerkin approach for the 2D eitytformulation with periodic
boundary conditions. However, if we want to turn to the 3Decagth non periodic boundary
conditions, these approaches are no more available.

An alternative was at the same period firstly considered byUkban and after
investigated by several authors: they proposed to usealittergence-free wavelet bases
originally designed by Lemarié-Rieussgt][19]. Divergeifiee wavelet vectors have been
implemented and used to analyze 2D turbulence flg\v$ J1[ b, e&9well as to compute
the 2D/3D Stokes solution for the driven cavity problén] [2®]. Seeing that divergence-free
wavelets are constructed from standard compactly suppbiroethogonal wavelet bases, they
allow to incorporate boundary conditions in their constiut g, 28].

This research direction is of great interest, since divergdree wavelets provide with
bases suitable to represent the incompressible NaviéeStsolution, in two and three
dimension. Our objective is now to investigate their fedisjpand amenability for such
problem. The first point lies in avoiding the pressure by @copg the equations onto the
space of divergence-free vectors. This (orthogonal) ptme is the well-known Leray
projector, and it can be computed explicitly in Fourier spdor periodic boundary conditions.
Unfortunately, as already noted by K. Urb&n]|[28], if we wamekplicit the Leray operator in
terms of divergence-free wavelets, since they form bigitihal bases (and not orthogonal),
they would not give rise, in a simple way, to the orthogonaljgction onto the space of
divergence-free vectors.

Nevertheless, we propose in the present paper to investigatuse of divergence-free
wavelets for the simulation of turbulent flows. Firstly, wamind the basic ingredients of
the theory of compactly supported divergence-free wawadetors, developed by Lemarié-
Rieusset[[19]. In section 3, we present in detail the basgsra@osed to implement in space
dimensions 2 and 3. We will see that the choice of the compi¢mavelet basis is not
unigue from this construction, and it induces the valuesieérdence-free coefficients, for
compressible flows. We discuss the algorithmic implemematf divergence-free wavelet
coefficients in dimensions 2 and 3, leading to fast algor#lfim O(V) operations wheré/ is
the number of grid points).

Section 4 is devoted to the Hodge decomposition of a comiptedteld, in a wavelet
formulation: the method we present uses both the biorthalgprojectors on divergence-
free, and on curl-free wavelets: our method is an iterativecgdure, and we will
experimentally prove that it converges. The last secties@nts numerical tests to validate our
approach: nonlinear compression of 2D and 3D incompressifbulent flows, and Hodge
decomposition of well chosen examples, such as the nomliteea of the Navier-Stokes
equations.
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2. Theory of divergence-free wavelet bases

In this section, we review briefly the relevant propertieswaivelet bases, that will be

used for the construction of divergence-free wavelets. @amtly supported divergence-free
vector wavelets were originally designed by Lemarié-Rgat, in the context of biorthogonal
Multiresolution Analyses. We illustrate the constructisith the explicit example of splines

of degree 1 and 2. For more details, we refe{t¢ [19, 6] 17, 27].

2.1. Multiresolution Analyses (MRA)

Multiresolution Analyses (MRA) are approximation spacdlevang the construction of
wavelet bases, introduced by S. Mallpt][22]. We begin with ¢time-dimensional case of
functions defined on the real line.

Definition (MRA) : A Multiresolution Analysis of ?(R) is a sequence of closed subspaces

(V;) ez verifying:

D) V5, Vi TV, Nz Vi =10}, U,V is dense inl?(R)

(2) (Dilationinvariance) feV, <<= f(2.)eV;n

(3) (Shift-invariance) There exists a functiop € V; such that the familyo(.—k) ; k € Z}
form a (Riesz) basis df;.

The functiong in (3) is called ascaling functiorof the MRA.

Here, j denotes the level of refinement. By virtue of the dilationamance property (2)
above, we can deduce that each splcés spanned by{¢, . ; £ € Z} where¢, i(z) =
212¢(2x — k).

Wavelets appear as bases of complementary spéces

Vin=V; oW, 1)

where the sum is direct, but not necessarily orthogonahigdontext (called the biorthogonal
case), the choice of spac#g; is not unique. The problem of constructing the spaldgs
means to find a functiogy, calledwaveletsuch that the systefv)(. — k) ;k € Z} spans
Wy. Repeated decomposition Bf yields the multiresolution analysis &f with the wavelet
spaces:

7j—1
V=T D We
(=0

which leads, when — +o0, to the wavelet decomposition of the whole space:

“+oo
L*(R) = Vo P W,
=0
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As a result, we can write any functighe L?(R) in the basis ¢k, ;% ; 7 > 0,k € Z}, with
op =@ —k)and ;= 2/2)(2 - —k):

f= Z Cr Ok + Z Z djk ik (2)

keZ >0 kezZ

Dual bases Let a pair(¢, ¢) of scaling function and wavelet, arising from a Multired@n
Analysis, be given, then we can associate a unique dual¢air*), such that the following
biorthogonality (in spacé?) relations are fulfilled: for alk € Z and;j > 0,

< PPy >=0ko, <O, >=0, <PUj, >= 0080, < V[P >=0 (3)

Moreover the dual scaling functiong and the dual wavelets; , have the same structure as
above:g; = ¢*(- — k) andy;, = 20/24%(27 . —).

Scaling equations and filter design Since the function%gb(é) lives in V;, there exists a
sequencéhy) (also called théow pass filte) verifying:

1 =z
730G) = Loz b )

By applying the Fourier transforim (@) rewrites:

~

$(26) = mo(£)(€)

wheremy(§) = 75 30, hwe™ ™ is the transfer function of the filtef, ).

Again, because dfi’_; C Vj, the wavelet satisfies a two-scale equation:
1 T
—=U(5) =D _ gk olx — k) )

where the coefficient§g,.) are called thénigh pass filter Again the Fourier transform af
expresses with the transfer functiog of filter g, as:

~

D (26) = no(€)(€)
In the same way, the dual functions satisfy scaling equation

707 (3) = Ehen bl 67w = k), 6°(26) = mi(€)9*(¢€) ©)
GV (5) = Ly gi 0" = k), 6(26) = m5(€)6"(€)

Following [[L7,[$], the biorthogonality conditionf (3) fdre scaling functions imply:

mo(§)my(§) +mo(€ +m)mg(€ +7) =1

while one can choose, for example, as transfer functionth&associated wavelets:

no(§) = e my(€+m),  ng(€) = e mo(€ + )
|| The Fourier transform of a functighis defined byf(¢) = [72° f(x) e~"¢dx
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which corresponds to:
gr = (=D Ry, gi= (=) hog, Yk

In practice, the filter coefficients, and g, are all what is needed to compute the wavelet
decomposition[{2) of a given function. Notice that theseifdtare finite if and only if the
functionsy and¢ are compactly supported.

Example: symmetric biorthogonal splines of degree 1

A simple example for spacdg are the spaces of continuous functions, which are piecewise
linear on the interval§k2=7, (k + 1)277], for k € Z. In this case we can choose as scaling
function the hat functio(x) = max(0, 1 — |z|). Its transfer function is given by

i 14e7% 2
) = (15) )
The shortest even dual scaling function associated withassociated with the filter:
* 7 1 + G*Zf ’
mie) = (K5 ) @ oot ®

The corresponding values of filtefs,) and(h;) are given in tabl€]1. Figur@ 1 displays the
scaling functions and their associated wavelets in this.cas

Figure 1. From left to right: the scaling functiost with its associated symmetric wavelet
with shortest support, and their duals: the dual scalingtion ¢* and the dual wavelet*.

2.2. Decomposition-recomposition algorithm and usefahegle

In the context of a biorthogonal Multiresolution Analystee wavelet decomposition of a
given functionf € L*(R) (equation[[R)), is obtained through the now well known Faatlet
Transform [2R]. We briefly review here the formula that widl bseful for the following.

In practice we begin with an approximatigi of f in some spacé’; of the MRA.
This approximation may be the oblique projection fofonto V; following the direction
perpendicular td/; (also called the biorthogonal projection &f); but usually f; means
an interpolating function of, associated to nodg¢2-7 ; k € Z} (see in last section some
examples of procedure).
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This approximationf; of function f may be expanded in terms of the scaling basis
¢J7k; = 2‘]/2@5(2]1‘ — k’) of VJ:

+o0
file) =273 " c;p (272 — k)

k=—00

The wavelet decomposition ¢f; corresponds to a truncated sum in equat{dn (2) up to the
level J — 1, meaning tha2 = is the finest scale of approximation:

J-1
Fr=> cdn+ > dixtu )

keZ j=0 keZ
The wavelet coefficientd; ;, are then computed recursively on the leygiromj = J — 1 to
j = 1 using the decomposition of spacgls (1):

+o0 +o0 +o0
fion= D Gk bk = Y CGr bkt D diniis

k=—o0 k=—o0 k=—o0

(Here f;,1 denotes the biorthogonal projection j6f onto V. ;). By biorthogonality [[B) one
has:

Gk =< firl®in >+ dip =< firl¥je > e =< firal@jiie >

which yield the decomposition formula: for gli=0,....J — 1,

S *
Cik = D¢ N} Cit1evom

— *
djk = Y 097 Citl042k

where the filtersi; andg; arise from the scaling equatior{$ (6) of the dual basis fonsti
In the same way, we obtain the reconstruction formula:

j ) = - '7 - ‘7
Cit1k Z(hk 20 Cj0 + Gr—20 dj ¢)
¢

whereh,, and g, are the filters provided by the scaling equatiddg[]4, 5) ofpitimal basis
functions.

The computing cost for the whole wavelet decompositifin 5 ell as for the
recomposition) is about’2’ operations, where”’ is the number of point valueg(k2~7)
we start with, and”' means the length of the filterd;{ for the decompositionk,, for the
synthesis).

Example: spline wavelets of degree 1 and:2Biorthogonal splines provide with wavelet
bases which are regular, compactly-supported and easyplennent. The scaling functions
of the associated MRA are standard B-spline bases, and thedetsare constructed easily, by
linear combinations of translated B-splines. We focus bartvo examples of wavelet bases,
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/ 00 V

®o (o o1 (0

Figure 2. Scaling functions and associated even and odd waveletsshitttest support, for
splines of degree 1 (left) and 2 (right).

which will be useful for the construction of divergenceengavelets: splines of degree\;l;o(
MRA spaces) and splines of degree‘@l (MRA spaces). In both cases we draw the scaling
functions and the associated wavelets with shortest stfffgure[2). In both cases the filters
are easy to compute (sde][fJ7, 6]). Since the support of basisién is very short, the filters
have a few non zero coefficients. The values of the decomposind reconstruction filters
are given on Tablf 1.

‘ -2 | -1 0 1 2
T5hi’ | —1/8| 1/4 | 3/4 |1/4]-1/8 Jshit | —1/4] 3/4 |3/4| —1/4
59| 0 0 |[—1/4]1/2|-1/4 759/ | 1/8 | =3/8|3/8|-1/8
she | 0 1/4 | 1/2 [1/4] 0 0 shi | 1/8 | 3/8 |3/8] 1/8
590 | 0 | —1/8|-1/4|3/4|-1/4|~1/8 59 | —1/4] =3/4|3/4] 1/4

14 -1 0 1 2

| Ol W

Table 1. Decomposition filter &;, g¢;) and reconstruction filteri(,, g¢i) coefficients,
associated to piecewise linear splines (left) and pieeegismdratic splines (right), verifying
([3) (see hereafter) with shortest supports.

2.3. Multivariate wavelets

The above considerations can be extended to multi-D. Thelestway to obtain multivariate
wavelets is to employ anisotropic or isotropic tensor paisiof one-dimensional functions.

To be more precise, we focus on the two dimensional case:(Ugj and (V}') two
multiresolution analyses df?(R) be given, associated with scaling functions and wavelets
(b0, 10) @nd (1, 1 ); the two dimensional tensor product spage® V} is generated by the
scaling basig oz, ()d1,7k,(y); (k1, k2) € Z2}, wheregg s, (x) = 272¢(272 — k1) and
similarly for ¢, ;1,. Then each functiorf; in V) @ V} can be written:

Frlmy) = Y D Cirk 2700272 — k1) ¢1(27y — ko) (10)

k1=—o00 ka=—00
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The anisotropic 2D wavelets are constructed with tensodymts of wavelets at different
scales{v j, k, (z)¥1,4,.1,(y) }. FoOr certain choices ofy, j», the support of the functions may
be very lengthened. In this case the wavelet decompositign writes:

Frmy) = D ks Gola — k) b1y — ko)

(k1 k) e Z)?
J—1 J-1
+ Z Z Ut/ Z Ay o Jer oo Yo (27w — K1) 1 (27y — ko)
71=0 j2=0 2
(k1 ko)l

The anisotropic decomposition is the most easy way to coegutulti-dimensional wavelet
transform, as it corresponds to apply one-dimensional lgavdecompositions in each
direction. In the 2D case, this is schematized in figlire 3.

Dk — Vg () X D171y (y) | — Yt )

Figure 3. Anisotropic 2D wavelet transform.

In the isotropic case, the 2D wavelets are obtained throwgisor products of
wavelets and scaling functions or wavelets at $henescale. This produces the following
decomposition forf;:

Frxy) = D ks Gola — k) da(y — k2)

(1, k2)eZ2
1,0) 1,1
+ Z (Z d; k1 ks V0,5, ki () D1k (y) + Z d§,k1?k2 V0,5, () V15,0 (Y)
7=0 k1,ko k1,k2

0,1
+ Z d§ak1?k2 d)O’j,kl (x) wl,j,kg (y))

k1,k2
As one can see, this decomposition involves three kinds oflets, one following the
direction z: W0 (2, 9) = y(x) ¢1(y), one following the directiony: OV (z,y) =
do(z) ¥1(y) and one in both directions¥"V(z,y) = 1o(z) ¥1(y). The interest of this
basis remains in the fact that the size of their support ipgntional to2~7 in each direction,
i.e. the basis functions are rather isotropic. The principlehef associated decomposition
algorithm is illustrated by figurfg 4.
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H ]
(I)Jfl,k \Ilfj()i11)7k
Pk - -
, (1,1)
‘I’f}_Of,k Vi

€
WSk

Figure 4. Isotropic 2D wavelet transform.

2.4. Theoretical ground of the divergence-free waveletorsc

Let introduce
Haiv(®") = {f € (L*(R™)"/divf € L*(R™), divf =0}

the space of divergence-free vector functiong’in

The construction of compactly divergence-free waveletd#{R"))", which will correspond
to Riesz bases dﬁdiV(R”), was originally derived by Lemarié-RieussEt][19]: it issbd on
the following proposition, which relates two different rtitdsolution analyses of?(R) by

differentiation and integration:

Proposition: Let (V) a one-dimensional MRA with a derivable scaling functignand a
wavelety;, be given. Then, we can build a MRA') with a scaling functionp, and a

wavelety, verifying:

%0 = spar{¢o(z — k), k € Z} ‘/01 = span{¢i(z — k), k € Z}

and
¢1(2) = do(z) — go(x — 1) ¥1(x) = 4 ()

For the refinement polynomials it can be traduced by:

2
mo(§) = m m1(§)
Equation [11L) rewrites for the dual functiong, v, ¢}, and;:
o (2) = ¢i(x +1) — ¢i(x) o' (2) = —4 i (x)

which induces: "
* 1+el *
mi(€) = —5— mi(©)

(11)

(12)
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Example: As an example of functions fulfilling the above propositiame shall cite the
piecewise linear spline functions,, vy, associated with the piecewise quadratic spline
functionsgy, ¢ introduced in section 2.2, and plotted on fig[ire 2.

Then, the divergence-free wavelets are explicitly comsédi by combining suitable
tensor products of these functions. For instance, in the &2 eve may have the following

basis [1D]:

Example: The 2Ddivergence-free vector scaling functitakes the form:

D (1, 22) = ¢1($1)¢1,($2) _ d1(21) [Po(22) — ¢o(w2 — 1)]
divit —1'(21)1(2) ~[o(a1) = do(x1 = 1)] 1 (a2)
and the correspondingotropicvector wavelets are given by the system:
1
(1,0) _ | —q¥i(a)[¢o(z2) — do(z2 — 1)]
Y i (1, 22) = o (1)1 (2)
\I,gi,\ll) (th) ¢1($1)1/10(372)

—3@o(x1) — do(1 — 1)]eh (22)

V1 (1)o(z2)
—wo(ﬂfl)wl (1172)

It can be easily seen that the dilated and translated fm&‘ﬁtaivj K= 2j\I!aiV(2j:c1 —

Uiy (01,22) =

kn, 22y —ko) With 5, k1, ko € Z ande € {0, 1}2\(0, 0) span the spadeé 4;, (?) of divergence-
free vector functions im?. We represent in figuilé 5 the three generating functionsdrcése
of spline generators of degree 1 and 2 of figure 2.

More generally, the construction of divergence-free wetgahR™ is carried out by suit-
able combinations of tensor products of functieis v, and ¢, v, satisfying the above
proposition (see[[19, 27, P8]). These allow to state theofalhg theorem of existence of
isotropicdivergence-free wavelet bases in the general ¢afe [19]:

Theorem: There exisfn—1)(2"—1) vectorfunctlonelldIV € ﬁdiV(R”) (e € Q2 of cardinal

(2" —1),1 <i < n— 1) compactly supported, such that every vector functian ﬁdiv(R”)
can be expanded in a unique way:

u= Z Z Z daiv,z',j,k \Ijaiv,z',j,k
jGZ EGQ;‘L kEZn
and one has, for a constatt > 0 independent frona = (uy, us, . . ., uy,):

Ll < {5 S gt < Clul:

jel, =€ kel"
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Figure 5. Isotropic 2D generating divergence-free Wavelkéﬁ’\?) (left), \I/((jol

v (right).

’\j) (center) and

where[ul?, =377, [Juil|Z..

These wavelets have already been studied by several atbh@i3 analyses of turbulent
flows [[1,[I%], and also to solve the Stokes problem in two aneetllimensiond]26, T, 128].
From now on, we will focus on the 2D and 3D case, and we will ¥e¢ the expansion of
compressible flow in terms of divergence-free wavelet b&sast uniquely given. We will
also present in a practical way, the associated fast afgosit

3. Practical implementation of divergence-free wavelets

In this section, we present in detail the two and three-dsimral divergence-free wavelet
bases, and we study how to compute the associated fast Wwaelsforms. We present
the constructions in thisotropic multivariate wavelet case (see section 2.3), and also in the
anisotropicone, which differs somewhat from previous studies.

In the following, we are given two 1D multiresolution anags$V’) and (V') satisfying
the proposition of section 2.4. We natg, v, and¢y, ¥, their associated (one-dimensional)
scaling functions and wavelets.

3.1. Isotropic divergence-free wavelet transforms

3.1.1. The 2D caseThe starting point of the construction lies in considerirgy 2D
multiresolution analysis af*(r?) the vector space of tensor-produgis © V) x (V@V}').
In the isotropic case, tHD scaling function®,, ®, and the2D waveletsl, V5 of this MRA
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are given by:
e R R RS N F
R I LT
WP = | POV ey =
W = | P ey =

As explained in section 2.3, the functions
{\Ijj,j,k(xl’ 1‘2) = 2]\I/§(2j$1 — k’l, 2jl‘2 — ]{?2)}

with j € Z, k = (ki, ky) € Z%,¢ € {(0,1),(1,0), (1,1)},7 = 1,2, form a basis of L?(R?))2.
Then, a velocity fieldx in (L?(R?))? has the following wavelet decomposition:
Qo (10 (1,0) 1,(1,0) 0,1) 1,(0,1)
u= E: §: ( k_kd,kqg k*ﬂajkqa]k (13)
i€l kel

(0,1) (0, (1,1) (1, (1,1) (1,1)
+dy wl k+duk@ k+d kmwk)

By a simple linear change of basis we are able to find out agﬁarme-free wavelet basis,
and its complement:

N 7 EL RS A
1,0 3 )
\11(2 ) \I/nl 0 = \Ilgl K
v g = S - U (- 1)
@9n %1 01

(1) W) _ g g
{ o { m%% W() WHU

The first functlonS\I!dv yield a divergence-free basis (already shown in example of
section 2.4), and the second ongs are the complement functions corresponding to non
divergence-free part of the data. Remark that the funcnb;ﬂ§ and¥: are not orthogonal.
Moreover, the choice of the functions, is not unique, and this choice has an influence on
the values of all the coefficients, when applying this transfto a compressible flow. The
choice of?¢ we made in this work, leads to very simple formula to obtaedivergence-free
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coefficients.
Now, the expansior] (13) of a given vector functeican be rewritten:

(0,1) (0,1) (1,1)
u= Z Z < dlvjk dlvjk+dd|vjk \I[dIV]k—i_ddIV]k\I]dIVj )
jelkeZ’
(1,0 (0,1) (1,1)  (1,1)
3030 (dh v e ) (14)
jelikeZ’
where the new coefficients are directly expressed from tiggnal ones by:

(1,0) (1,0) (1,00 _ 51,0 | 1410 1,0
ddlvj d2,j,k dn,j,k - dl,j,k ™ 4d2 ko dQJvklvkrl
o1  _ 401 0,1) _ 4(0,1) 1401 1 ,4(0,1)
(ddiv) dd'V] k - dl,j,k (dn) dn,j,k - d27j7k + 4d1 T k 4d1,j,k:1—17(él25)
L) 1401 1) (L) 1,0 1 4(11)
\ ddiv,j,k - le,j,k 2d2jk \ dn]k d gk T d gk

As one can see, the computation of divergence-free Wa\,(md:a?illuentSal‘E‘j iv.ik is reduced to
a very simple linear combination of the standard waveleffimbents d5 ik prowded by the
biorthogonal fast wavelet transform, which makes programgreasy.

Remark: div(5?), div(e"") and di (") are generating functions of the scalar space
V%@ VO, Moreover, for allu, we have

o (1,0) (1,0) (0,1) . (0,1) 1 1) (1,1)
divu = Z Z ( div( v k) ,j,k dlv(\Iln,j,k) dlv(\IfnJ k))
i€l kel

Then, the incompressibility condition div= 0 is equivalent toi;j k=0 forall 7, k, e.

For incompressible flows, since the biorthogonal projexctorto the space(e“/j1 ® Vjo) X
(Vjo ® le) commute with partial derivativeq JlL9], the coefficientfaivvﬁk are uniquely
determined, by the formul&d,,) in equation [(I8). We present in section 5.2, numerical
experiments on 2D incompressible turbulent flows.
Difficulties arise when we want to compute the divergeneefpart of a compressible
flow. Because of the non-orthogonality between the divasgdree baS|s{\Ide) and its
complement¥¢ ), the values of the divergence-free wavelet coefficienteddn the choice
of the complement basis. We address this problem in the fgpsertion 4, on the Hodge
decomposition.

3.1.2. The isotropic 3D caseThe construction of the 3D divergence-free wavelet basgs ma
be obtained in a similar fashion as for the 2D bases. Agamké#y-point is to start with a
vector multiresolution analysis ¢f.%(r?))3, of the type

1 0 0 0 1 0 0 0 1
VieVleV)x (Ve VieV))x (Ve VeVl
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This MRA provides naturally with 3 generatif3i-vector scaling functions

b1 (1) o(2)Po(23) 0 0
Oy (21, 29,23) = | 0 Qy = | GoP100 ®3 =10
0 0 PoPoP1

and 21 generatingD-vector wavelets
{US]i=1,2,3, e = (e1,9,e3) With ; = 0,1 ande # (0,0,0)}

For example, we give below the expressions of wavelétd? w09 angy (00

oo V1(x1)do(w2)Po(x3) oo 0 oo 0

U @, w2, 5) = | 0 W5 = | g vy =1 o
0 0 YoPo 1

o P1(21)0(22) Po(3) " 0 . 0

Uy, 0, 5) = | O WS = | iy vt =1 o
0 0 Yooty

. Y1(21)o(w2)0(3) L 0 . 0

U (g, 25) = | 0 Ty = | ey \Ifg D=0
0 0 Yooty

and it goes similarly fof0, 1,0), (0,0,1), (1,0,1) and(0, 1, 1).
Let introduceQ; = {¢ € {0,1}3\ (0,0,0)}. Theisotropic wavelet expansion of a given
functionu writes:

u=> > >, (dij,k A N P N ‘I’Z,j,k) (16)

JeL kel =€%

Following theorem of sectiop 2.4, there exist 14 kinds ofrispic divergence-free wavelets,
with arbitrary possible choices concerning the privilegeéction of each basis function. In
the following we do not detail all the expressions we chobsépnly some typical ones:
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U (1,0,0)

div,1

(1,0.0)

div,2

\11(1’1’0)

div,1

(L1

div,2

\11(1,171)

div,1

(1,1,1)
\IIdiV,Q

(xla T, f['g) -

(.Tl, Ty, .Tg) =

(l‘l) T, :L‘3) -

(.Tl, Ty, .Tg) =

(.Tl, Ty, .Tg) -

(l‘l) T, :L‘3) -

—2p1 (1) [Po(w2) — do(za — 1)]¢o(x3)

Yo(z1)d1(x2)Po(3)
0

_%1/11(961)%(902)[%@3) — gbo(;pg — 1)]
0

Yo(z1)do(2)d1(3)

Y1 (1)v0(22)do(23)
—1/10(56’1)1/11 (56’2)%(56’3)
0

—11 (21)0(22) Y0 (3)
0

Yo(w1)o(z2)h1 (23)
0

Yo(w1)1 (22)00(23)
—1/}0(901)1/10(902)1/11 (ffs)

15

It goes similarly for all basis function: for eaeche 2} given, two divergence-free wavelets

E -
div,:’

i = 1,2 are carried out by linear combination f, V5, Vs, in order to satisfy the

divergence-free condition. The complement wavalgtis constructed in order to take care
of the symmetry. For example, we consider:

v

\

(1,0,0)

n

(g, (L00) _ 1,(1,00)
Pyiv, =¥

2

(1,0,0) o (1,0,0)
Viive =¥

3

1,0,0
w00

(W00 = w0 —1,)

=

1,0,0 1,0,0
— L0y w0 1)

*)
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(0,1,0) 0,0,1) .
and similarly for\I!dIV and\I!dNZ 1=1,2.

1,1,0 1,1,0 1,1,0
Vi = v

1,100 1 (1,1,0)
\I/diV,Q = ¥

\I/H,LO) _ \1151,1,0) +\1151,1,0)

(0,1,1) (1,0,1) i —
and S|m|Iarnyor\I!dN and\I!dNZ =1,2.

r \I]Ejll,\ll:ll) _ \I’:())Ll’l) . \Ilgl,l,l)

(1,1,1) (1,1,1) (1,1,1)
\Ddlw v — s

\I’I(’%M) \11(111)+\If(111)+\11(111)

\

Now we can rewrite[(16):
u= Z Z Z (df:liv,l,j,k‘l’fjiv,l,j,k + daiv,z,j,kqjaiv,zj,k + dlg’\,j,k\ljlg’l,j,k>
jGZ keZS 86Q§

where the divergence-free wavelets are simply obtained the standard ones, for example:

1,0,0 1,0,0 1,1,0 1,1,0 1,1,0
( dfjiv;) = dy" dflel - %(dg S — )
(1,0,0) d(l,o,o) d(l_,l,o) _ d(l,l,o)
dﬂ“{f 2d(1,1,1) d(1,1,1) d(1,1,1) div,2
d|V 1 - (_ 1 + 2 + 3 )
1,1,1) 1,1,1 1,1,1 1,1,1
déhvg o %(_d(l : + ng ) — dz(’, ))

The complement coefficients are in this case:

4 (1 0 ,0) (1,0,0) 1 (1,0,0) (1,0,0) 1 (1,0,0) (1,0,0)
d dl,kl,kmks + _( 2,k1,ka,ks 2,1617/62*1,163) + Z(d&k‘l,kmk‘s - 37/61,1627/?3*1)

1,1,0 1,1,0 1,1,0 1,1,0 1,1,0
(dn) dE’Lk )= (dg )+ dg )) + %(d:(‘},kl,k)g,kg - dg,kl,k)g,kgq)

N[

1,1,1 1,1,1) 1,1,1) 1,1,1)
L dy Y = 1@t ot g alttY)

As for the two-dimensional case, the computation of divecgefree wavelet coefficients
of any 3D vector field lies in a short linear combination ofrstard biorthogonal wavelet
coefficients, arising from the fast wavelet transform.
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3.2. Anisotropic divergence-free wavelet transforms

In this section we will construct anisotropic wavelets thig divergence-free. Since the one-
dimensional wavelets verify,’ = 44, we derive easily divergence-free wavelet bases by
tensor products of one-dimensional wavelets. We detahénfollowing the construction of
such bases in the two and three dimensional cases.

3.2.1. The anisotropic 2D caseThe 2D anisotropic divergence-free wavelets are given by:

2j21p1(2j1$‘1 — kl)w0(2j2$‘2 — /{?2)

gan —= . . ,
dIV,J,k(xl’xQ) —2014hg (201 2y — ke )by (229 — k)

wherej = (j1,j2) € Z* is the scale parameter (which is different in both directjpand
k = (ki, ky) € Z* is the position parameter. When the indieandj vary in Z?, the family
{\Ifdlv 1) forms a basis ol iy, (R?).

We mtroduced the complement functions:

201001 (2711 — Ky )ho (27229 — ko)
272400 (20 w1 — k)1 (27225 — k)

The anisotropic divergence-free wavelet transform workslarly as the isotropic one
but with fewer elements to be computed. The decompositioa gien vector functioru
begins with the anisotropic wavelet decomposition assedia the MRA(V' @ V) x (V) ®
V') (see sectiofi 2.3);

— an
u= Z Z <d1Jk\II k+d23k\1123k>

\I/nJ k(ZL‘l, 1‘2) =

JeZ keZ?
with:
U1 (2 ) — K)o (2729 — K
\If?;]k($1,562) _ 01( 1 1)%o( 2 2)
0
\I,a — . ;
2, k(xla ZEQ) ’l7Z)0(2']1371 — kjl)’ll)l(Q‘DfEQ - kQ)

for j,k € Z?. Remark that for more simplicity, the dilated functions ace normalized, in
L?-norm.
u can be expanded onto the new basis:

_ gan an gan
u= > (dd|VJk Yaivix T4k Vo k) (17)
jel’ kel
with the corresponding coefficients:

dan — 22 dan __ 2 dan
d|V,j,k 2271 42272 L), k 2271 42272 2], k
(18)

an  _ 271 an 272 an
dnJ k = 2142202 d k + 2271 492272 dQJ k
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3.2.2. The anisotropic 3D casén the same way, the (non normalized) anisotropic 3D
divergence-free wavelets take the form:

202401 (27 21 — k1) ho (2720 — ko )ho(23 25 — k)

WA 11 (T T2, T8) = | 271 (P ay — K)oy (222 — ha)ubo (25 — Ks)
. 0
0
\I’gir\]/,z,j,k(xl’x% x3) = | 2890 (27 a1 — k1)1 (229 — ko)to (2723 — k3)

—2729h (2901 — Ky )1bo (2720 — kig)tby (2735 — ki3)

—2739p1 (27 g — Ky )apo (272 @y — Ko )tho (283 — k)
Vaivsjk(@ @) =10 | |
2]1¢0(2]1x1 — k1)¢0(2321‘2 — k?g)’ll)l(Qj?’ZL‘g — k?g)

With j = (41, jo, ja), k = (ky, ko, k) € Z°.

The 3D divergence-free basis is carried out by considenihgtavo types of functions among
the three above. As complement basis we introduce a funatioch is the most as possible
orthogonal to the previous ones:

2j1¢1(2j1l‘1 — k1)¢0(2j21‘2 — k?g)i/)o(?j?’l‘g — k?g)
yan (5517372, 1’3) = 2j2¢0(2j1$1 - k1)¢1(2j2$2 - k2)¢0(2j3953 - k3)
2034ho (27 2y — k1) (272 wy — ko )by (27325 — ki)
The operations to compute divergence-free coefficients @amdplement coefficients are
similar to the 2D case.

4. An iterative algorithm to compute the Hodge wavelet decomosition

4.1. Principle of the Hodge decomposition

The Hodge decomposition consists in splitting a vector fioncu € (L?(R"))" into its
divergence-free componeny;, and a gradient vector. More precisely, there exist a pressur
p and a stream-function such that:

u = ugjy, + ﬁp and ugj, = curl (0 (29

Moreover, the functionsurl ¢» andVp are orthogonal irf L2(r"))". The stream-functiom
and the pressureare unique, up to an additive constant.

In R?, the stream-function is a scalar valued function, wheneas it is a 3D vector function.
This decomposition may be viewed as the following orthodispace splitting:

(L*(R™))" = Hgiy (R") @& Heyp(R")
where we note

Hy, (") = {v € (Z2R™)"/divy € L*(R"), divv =0}
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the space of divergence-free vector functions, and
Heyr(R") = {v € (LA(R™)"/eurlv € (L*(R™))", curlv = 0}

the space of curl-free vector functions (if= 2 we have to replaceurl v e (L*(R"))" by
curl v € L?(R?) in the definition). For the whole spag&#, the proofs of the above decompo-
sitions can be derived easily, by mean of the Fourier transfétn more general domains, we

refer to [I2].

The objective now is to provide with a wavelet Hodge decontmrs Since in
the previous sections we have constructed wavelet bas%gf([&"), we have to work
analogously to carry out wavelet basesgHof,((R").

4.2. Construction of a gradient wavelet basis

A definition of wavelet bases for the spaagur|(1&") (n = 2,3) has already been provided
by K. Urban in the isotropic casg [28]. We will focus here oa tonstruction o&nisotropic
curl-free vector wavelets in the 2D case (it goes similanlyhien-dimensional case).

This construction is very similar to the divergence-freev@at construction, despite
some crucial differences. The starting point here is tockeaavelets in the MRAV? ®
V) x (V] @ V})instead of(V] @ V}) x (V) @ V}), where the one-dimensional spadgs
andV; are related by differentiation and integration (propositof sectiorf Z]4).
SinceH ¢ i(R?) is the space of gradient functions i (r?), we construct gradient wavelets
by taking the gradient of a 2D wavelet basis of the MRA" ® V'). If we avoid theL*-
normalization, the anisotropic gradient wavelets are éefioy:

2714hg (291 w1 — Ky )aby (2729 — k)

\I]an (xth) -

curljk V (Y1(2 21 — k)1 (2220 — ko)) =

] =

25291 (27w — K)o (2722 — ko)

Thus, wherj = (ji, jo), k = (k1 ko) vary inZ?, the family{\If"é‘Srlj 1o} forms a wavelet basis
of Heyr(R?).

The decomposition algorithm on curl-free wavel@@‘é‘lrj‘rlj k} works similarly as the
decomposition algorithm on anisotropic divergence-frmaléfs. A vector functiory is

firstly approximated in a spa¢®’y @ V}) x (V} @ V?) by:

of = 2ke7? 10k $0(2721 — k1)1 (2722 — ko)
U;# - Zk€Z2 CQ’JJ{ ¢1 (2Jx1 - k1)¢0(2Jx2 - kQ)

VJ:

By applying tov}" the standard anisotropic wavelet transfornii6f © V}) and tov} the one
of (V} @ V?), it rewrites:

’U?(I’l, SU2) - Zjl,j2<J ZkEZQ dla,?k w0(2j1$1 — ]i]l) 1/11(2j2$2 — ]i]z)

#
vz, x9) = . .
! v (a1, 32) = D irjncd 2ok dzaEk Y1271 — k1) Yo(27222 — ko)
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Let us introduce the vector wavelets:

2jll‘ —k )¢1(2j2x2 — k?Q) an, # 0

\I,an # @/)0( 1 1 o _ } _

. (@1, 22) = 0 2, (T, T2) (2911 — oy Yo (22 —
then

an# an
Z Z(dljk 1J,k+d klpz‘]k
31]2<Jk€Z

Thus, to compute the expansion]éfv in terms of the gradient vector wavelets, we have to
perform the change of basis:

LT 21@‘1’5 2”@?}‘5
N [ N ST
which leads to:
Z Z (dcurIJk CUF'Jk+d k\I[NJ k) (20)
J1:52<) ke 7
where the curl-free wavelet coefficients are obtained frioenstandard ones by:

271 9J2

qan qan (21)

curljk = 221 1 92 le kT 221 4 922 2Jk
associated to complement coefficients:

272 an 2J1 an
dNJ k = 921 1 9% d1,j,k 9251 4 92j2 dz,j,k (22)

4.3. Implementation of the Hodge decomposition in the vedaweintext

From now on, our objective is to compute the wavelet decoitipasof a given vector
functionv: this means to find a divergence-free componegjgy, and an orthogonal curl-free
component | such that:

vV =Vdiv + Veurl
where:
Vdiv = Z ddiv,j,k‘l'div,j,k Veurl = Z dcurl,j,k‘l’curl,j,k
Jk ik
are the wavelet expansions onto div-free and curl-free lgalases constructed previously

(section3.Z]1 anfl 4.2). For more simplicity, we will focus 2D anisotropic wavelet bases
(and we will omit the superscript "an” in the notation of thasks functions).

To provide with such decomposition, we have to overcome teblpms:
- The first one lies in the fact that div-free wavelets and -tieé wavelets form
biorthogonalbases in their respective spaces, and as already noticed Ugbn [28], they

kz)
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would not give rise, in a simple way, to the orthogonal pro@ts v y;, andvg of v. As
solution, we propose to construct, in wavelet spaces, t\queﬂmes{v’aiv) and(v’éurl) that
will converge tov g, andv -

- The second difficulty is that div-free wavelets leave incggaof the form(V} @ V?) x
(VY @ V}), whereas curl-free wavelets arise frdii? @ V}) x (V} @ V?), whereV?, V!
andf/oo, \701 are couples of spaces related by differentiation and iategr. These spaces are
different, and in order to construct our approximati(mgiv) and(vf:url), we have to define
a precise interpolation procedure between the two kindpates. In particular, the spaces
V0, V! can be suitably chosen frob®, V!

4.3.1. Iterative construction of the div-free and curldrparts of a flow Let v = (vy, vs)
a vector function be given, and suppose thas periodic in both directions, and known on
27 x 27 grid points that are not necessarily the samesfaandv,. In the following, we will
note:

- I;v an approximation of in the spaceV; @ V¥) x (VY ® V}), given by some
interpolating process.

- T#v an approximation of7 in the spacéV? @ V}) x (V} ® V), also given by some
interpolating process.

We now define the sequencey;,, € (V; ® V) x (V] ® V}) satisfying divvi,, = 0, and
Ve € (V7 ® V}) x (Vj @ V}) satisfying curlv, 4 = 0, as foIIows.;:

- We begin withv® = I,v and we computev&iv, the divergence-free wavelet
decomposition of/°, and its complement?, by formula (1} IB):

_ .0 0 _ 0 . 0 .
LV =Vgiy + Vo = D dgivik Ydivik + 2D ik Yajk
Jk jk
Then we compute at grid points the difference- V(C)iiV'

Secondly we conside]fﬁ(v — V((]jiv)’ and we apply the curl-free wavelet decomposition
(0[21[2R), leading to a curl-free part and its complement:

# 0\ _ <0 0 _ 0 0
jk Jk

: , o R S
Finally we defingpointwise v = v Vaiv — Veurl

- At stepp, by knowingv? at grid points, we are able to construct a divergence free-pa
Vé_iv of I,v* by (7), a_ndvzéwl, the curl-free component 6 (_vp - V_Ic)iiv) by @). (44 - Véiv
being computed at grid points). The next term of the sequenagain defineghointwise

p+l _ p_ P P
VI = VP = vaiv ~ Veurl (23)
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We iterate this process untii”||,2 < ¢, and we obtain:
P P
~ P p
V R Zlvdiv + Zlvcurl
p= p=

P P
= > (Z dﬁiv,j,k) Vdivjk + D (Z df:un,j,k) Veurljk
jk A=t Jk A=t

where the right hand side is an approximatiorvoWhich interpolates the data up to an error
¢ (e being given).

For the moment, we are not able to prove theoretically thevexgence to0 of
the sequencév?): we will prove it experimentally in sectiof $.4, on arbityafields.
Nevertheless, we can outline some remarks:

- The convergence rate depends on the choice of complerrmﬁcfustl!nﬁjﬁk, v
The more thel*-scalar products< gy 5y, ¥
small, the faster the sequence converges.

- Ideally, we would like to choose the interpolating operafty and H# such that the
convergence doesn’t depend on this choice. We propose lzetdwice for these operators,
based on spline-quasi interpolation, which is satisfgcabrelatively-slow convergence rate.

Nk

njk > and < ‘I'curl,j,kv‘I’NJ’,k’ > are

4.3.2. Hodge-adapted spline interpolatiorn this part, we will detail our choice of operators
I andﬂ?}*, in the context of spline spaces of degreéfﬁ)(and 2 Q/jl) that we have introduced
at the beginning.

Let us suppose the componentsandv, of a velocity fieldv be known respectively at
knot points2~7(ky + 3, k2) and2™(ky, ko + 1), for ky, ks = 0.27 — 1. This choice of grid is
induced by the symmetry centers of scaling functionsf V; and¢, of V; (see Figur§]6).

1.0

09 7 b0

0.8 7
0.7 7]
0.6 7]
1
05 7]
04 7
03 7]

027

01

0 T T T T T T T
-11-1 -o07 03 (0 o1 05 09 ] 13 17 2 21

Figure 6. The two scaling functions dfy andV;, and their symmetry centers

For.J given,I; is chosen as an operator of quasi-interpolation (simikarlsectio{5.1]1)
in the spline spacg/] ® Vy) x (V) @ V})
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Iv= Zci{ q)l,J,k + ZC%{ q>2,J7k
k k
whered, and®, are the vector scaling functions introduced in secfionB. 1.
The second operatﬂ';ﬁE provides again with a quasi-interpolation of vector fuans onto
a new spline spacg’? ® V}) x (V} @ V?). Under interpolating considerations, we define:

VO = {v; v(z —1/2) € Vy} = span{go(z — 1/2— k) ; k € Z}

Vi={v;v(z—1/2) € i} = span{dy(z — 1/2 — k) ; k € Z}

Hence we can write:
#o_ #1 & #2 5
I7v = Z a 1okt Z % P2,k
k k

whereéljk and q~>2Jk are the 2D anisotropic vector scaling functiong of 3.1.1tltom
Po = ¢o andg, = ¢1.

5. Numerical experiments

In this section, we present our numerical results concgrthia application of divergence-free
wavelet decomposition, for analyzing several data. Werbegfih the analyses of periodic,
numerical, incompressible velocity fields in dimensions tnd three, arising from pseudo-
spectral codes. First, we have to take care of the initiarpulation of such fields, in
order not to break the incompressible condition satisfieBaarier space. Then, after the
vizualisation of the divergence-free wavelet coefficiemts study the compression obtained
through the wavelet decomposition. In the last part, wesdtigate and numerically prove
the convergence of the algorithm presented in sedtipn 18&harovides with the wavelet
Hodge decomposition of any flow. As an example, we computdithree component of the
nonlinear term of the Navier-Stokes equations, and we eiina associated pressure, directly
in wavelet space. In all the experiments, we will use diveagefree wavelets constructed with
splines of degrees 1 and 2.

5.1. Approximation of the velocity in spline spaces

Usually, the data are provided by point values of the veyoiéld. The first step of the
wavelet decomposition consists in interpolating the vigfjocoordinates on the suitable B-
spline space. The arising problem is that this approximatiay not conserve the divergence
free condition that is verified in Fourier space, when vejoarise from a spectral code.

The spline approximation of data, obtained through spletiethods, introduces a slight error
for the divergence free condition. This difference may ndnleglectable. For the turbulent
fields we studied (2D and 3D) the error is abotitof the L?-norm (i.e. 0.01 % of the energy).

Thus we propose two ways to overcome the problem. The firstisveyinterpolate the

velocity in the Fourier domain and to compute exactly itgthiogonal projection on wavelet
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spaces. The second way is to interpolate on the divergeaedfispline spaces with a Hodge
decomposition made by wavelet decompositions as it is g the paift 4.3.1 . This can
be applied to any compressible flow.

5.1.1. By quasi-interpolationThe spline quasi-interpolation is a good compromise when
we have to deal simultaneously with spline approximatidndegree even and odd. In this
context, the order of approximatioriist- 1, by using B-splines of degree[[]. An advantage
of the procedure is that it may be applied in any case of baynoanditions.

Let b be a B-spline scaling functiorb (= ¢, or ¢;). Given the samplingf(k/N)
(N = 27), we want to compute scaling coefficients of a spline functionfy, that will
nearly interpolate the valug§k/N):

fu(@) =Yk b(Nx — k) (24)
ke,
fn is an interpolating function if:

chb(ﬁ—k):f(%) Vi€

kel
For example, if we considér= ¢, (spline of degree 2), the previous condition implies:
1 1 1
fN(N) = 5(0571 +¢p) = f(ﬁ> A=W/

In order to avoid the inversion of a linear system, the quasiFpolation introduces, instead
of Cy.

) C+1 1.,.0—1 C+2

o= Z[f( — ) )] Ve

14
s/ )+ =5
By replacinge, by ¢, in (4), we obtain the following error at each grid point:

1, - l 1 {—2
5(0571 +¢r) — f(ﬁ) = 1—6[—f(T)
Faf(Ch 6 +an(h (R
1 1 -2 042

- __ - ¥ _ ; t— 4
48N4f (0)+O(N6) ,with 6 €] N

Therefore, the pointwise error of quasi-interpolation rdey 4, for a sufficiently regular
function.

5.1.2. By using the Discrete Fourier Transfori8ince they are highly accurate, spectral
methods are often considered as a reference techniquefolating incompressible turbulent
flows. For periodic boundary conditions on the clihhé |?, the Discrete Fourier Transform is
used to decompose the velocity

If . means the Discrete Fourier coefficientaxobn a/N* regular grid,

) 1 n. , kn
=5 ), ulgp)e

n€{071 7777 N71}2
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the velocity expansion in the Fourier exponential basis is:
u(x) = Z ay e2imk X (25)
ke{o,1,...N—1}2
In this context, the divergence-free condition div= 0 writes:

ki, =0, vke{0,1,...,N -1}’ (26)

Assume now that the velocity field we have to analyze (supposed to be 1-periodic
in both directions), is obtained from a spectral method aedfies the incompressibility
condition in Fourier domain[(26). To compute its decompositin a divergence-free
wavelet basis ofk?, we have first to approximata = (u;,us) in the suitable space
(Vi@ V?) x (VY ® V}) which has been introduced in section 3.1.1, wheo®rresponds to
N = 27. Then we search for an approximate function= (u; 1, u, ») such that:

271 —=2/-1 3
ui = Zm:o n2=0 CJnino 1,71 90, Jns

J_ J
Uy2 = Zilié ig é 2Jn1 no ¢0 Jn1¢1 Jing
For the choice of functionsp, and ¢, defined above (see equatiolﬂ(ll)) the
incompressibility condition diwi; = 0 takes the discrete form on the coefficieds ,,,:

1 1 _
Crnimne — Clnit1ns + CJJM,M - CJ,mmz—i—l =0, \V/(nl’ n2) (27)

To conserve the incompressibility condition verified by a solution consists in
consideringu; as the biorthogonal projection onto the spéce @ V) x (V? @ V}), since
we know that this projector commutes with the partial deives [I9]. This is equivalent to
consider that:

1 _
CJ,nl,ng = <u | gb){,J,nlgbé,J,ng >
2 _
Clning = <u | (balm(bi],w >
Replacingu by its Fourier expansiof (R5), it follows:
1 - 2irkK.X
G = 3t [ G (00) 6 02) dird

ke{o,1,..,N—1}2

= = kn
=277 N Ay @127 2mky) @2 2mhy) €27
ke{o,1,..,N—1}2

wheregz?’{, gb; denote the (continuous) Fourier transforms of the dualrsgélinctionse;, ¢5.
FinaIIy, we obtain an explicit form for the Discrete Fourigansform DFT of the coefficients
(and in the same way faf;

ni, ng)

DFT(chnl = g 277 65(2 7 (2nka)) G5(2 (2mhy))

CJ ni,ne

(28)

DFT(n)y = iy 277 63(2-7 (2mkr)) 61(27 (2mhs))
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It means that the discrete Fourier transform of coefficiefs ,, is given by the discrete
Fourier transform ofi, multiplied by tabulate values df, 2| of the Fourier transform of the
duals&’{, <Z>§ In practice, we don’t know the explicit forms of these fuoos, except by the
infinite product:

GH(6) = dn(6) a2 — con(e2)) = (22) a2 - cos(e2 )

ém%%uoczﬂ)zéw%@(ggg)

Nevertheless, the infinite product converges rapidly, Wiidows to obtain point values @%
andg@’{, with sufficiently accurate precision.

In dimension 3, it goes similarly, by considering the biogbnal projection of a 3D
vector fieldu onto the spacéV; @ VY @ V) x (VI Vi V)) x (VI V) V}).

5.2. Analysis of 2D incompressible fields

We focus in this part on the analyses of two-dimensional yiagaurbulent flows.

The first numerical experiment we present studies the mgufitwo same sign vortices.
It concerns free decaying turbulence (no forcing term). E€kperiment was originally
designed by M. Farge and N. Kevlah@n|[25], and often usedstan@v models[]4, 13]. This
experiment was here reproduced by using a pseudo-spéuttaldifference method, solving
the Navier-Stokes equations in velocity-pressure fortma

The initial state is displayed on figufg 7 left. In a periodaxpthree vortices with a
gaussian vorticity profile are present; two are positivéilie same intensity, one is negative
with half the intensity of the others. The negative vortekése to force the merging of the
two positive ones. The time step w&s= 102 and the viscosity = 5 107°. The solution is
computed on &12 x 512 point grid.

The vorticity fields at timeg = 0, ¢ = 10, ¢ = 20 andt = 40 are displayed on fig-
ure[T. The last row of figurg 7 displays the absolute valueb@fgsotropic divergence-free
wavelet coefficients at corresponding times, renormaliae?’ at scale indey. As one can
see, divergence-free wavelet coefficients concentratérongschange in vorticity zones, that
is around or in between vortices, or along vorticity filansiats they are equivalent to second
derivatives of the velocity.

The second experiment deals with a decaying two-dimenkiortaulent field, obtained
with an initial state of random phase spectrum. That vaytiield was computed with the
spectral code ofl14], at a resoluti®af24 x 1024, and a Reynolds number 8f5 x 10%. This
field has been kindly provided to us by G. Lapeyrg [18]. Fiditeft represents the vorticity,
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after 40 turnover time-scale, where it exhibits the emergence oératit structures together
with strong filamentation of the flow field outside the vorsice

We show in Figure[]8 right, the isotropic divergence-free @law coefficients of the
corresponding velocity field, i -norm.

As expected, the wavelet coefficients get an insight intoethergy distribution over
the scales of the flow. As one can see on Figlire 8, the energyadlest scale (or highest
wavenumbers) is localized along the strong deformatioaslirand fits the filamentation
between vortices, or with strong changes in vortices. Tlgeright square corresponding
to vertical isotropic Waveletsxl(glv k) exhibits vertical structures, whether the bottom-left

square corresponding to horizontal wavel@%)i(‘/)j k) exhibits horizontal deformation lines.

Now we investigate the compression properties of the dererg-free wavelet analysis:
as predicted by the nonlinear approximation theory (Bee 3 compression ratio in energy-
norm is governed by the underlying regularity of the velp&igld in some Besov space.
Letu an incompressible field be given, its divergence-free w\etpansion writes:

(1 0) (0,1) (0 (1,1) (1,1)
u=uo+ 20 Z ( d|V,], le,j,k T ddiv,], \I[dlv,],k T ddIV,j,k ‘deiV,j,k)
320 ke7?

The nonlinear approximation ofx relies on computing the best N-terms wavelet
approximation by reordering the wavelet coefficients:

€1 £2
v, k)~ vk, = > v, x>

B 3 gy
A er K % e 8 z("
= { ¢ // & & 1)
. vs ) P (0 ) - (EH)§
== Z " \\ Ee

: 3

®

Figure 7. Vorticity fields at timest = 0, t = 10, ¢ = 20 and¢ = 40, and corresponding
divergence-free wavelet coefficients of the velocity.
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and introducing

1

N
Yn(u) =ug + Z; daiiv,ji,ki \ijiiv,ji,k- (@9)
Then we have

1 S
u-Sx@le < () Tl (30)

if the quantity||ul,, = 5.1 |dgy, | i finite, with L = 1+ & (this means that
belongs to the Besov spadx?). As stated in[[B], the evaluated regularitgan't be larger
than the order of polynomial reproduction in scaling spaatas one (that equals the number
of zero moments of the dual wavelet). In our experiment, thal dpline waveletg; and
17 introduced i Z]2 have respectively two and three zero mésnerhich only allows us to
evaluate regularities smaller than two.
Figure[® shows the nonlinear compression of divergenaeviavelets, provided on th@24>
turbulent field. The curve represents theerror |[u — X (u)| 2, versusN, in log-log plot.
The convergence rate measured on the curyvesds! .35, which induces that the velocity flow
belongs to the corresponding Besov sp&gé with ¢ = 0.85.
When looking at the compression curve on figdre 9, we obséree zones:

- First, large scale wavelets capture the large scale steicf the flows. Consequently,
the compression progresses slowly and irregularly.

- Then we observe a linear slope that represents the nonbte@ture of the turbulent
flows. In this region, we are able to evaluate the regulafithe field.

- The last region corresponds to an abrupt decrease, due tia¢hthat the data are
discrete.

One can also remark on Figyfe 9 that ohl% of the coefficients recover abdi% of
the L?-norm.

Turbulent vorticity field Divergence-free wavelet decormajion of the velocity

Figure 8. Vorticity field for a1024 x 1024 simulation of decaying turbulence (left), and the
corresponding divergence-free wavelet coefficients of/éiecity field (right).
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Figure 9. L2-error provided by the nonlinear N-best terms wavelet axipration ): in
log-log plot, L2-error ) versusV for a 2D turbulent flow.

The same experiment was carried out on the three interaabiiges, but due to the few
number of vanishing moments of the wavelets we use (2), tpesdf the curve saturates at
s = 2, meaning that these fields are more regular.

5.3. Analysis of a 3D incompressible field

In this part we consider a three dimensional periodic fietdsireg from a freely decaying
isotropic turbulence, and kindly provided to us by G.-H. t€btand B. Michaux [[4].
The experiment deals with an initial velocity condition of@sian distribution, antk8?
collocation points. Figurg 10 displays the vorticity isdages corresponding to abolit% of
the maximum vorticity at five turnover times.

Figure 10. Isosurface of vorticity magnitude after 5 large-eddy twers provided by a
spectral methodJ4].

The divergence-free wavelet decomposition of the corneding velocity field is com-
puted, and displayed on Figurpg 11 12. As explained itiosgg.1.2, the isotropic
3D divergence-free wavelet decomposition provides Witlgenerating Wavelet@f:liv Lk

g
div,z;k
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Figure[I] left shows the corresponding renormalized cdeﬁistddivljk, whereas
Figure[I1 right shows théjddmjk, until j = 6. The smallest scalej (= 7) wavelet
coefficients are displayed on Figyré 12 below, for two kinidgamerating wavelets: we choose

\118“0/2) which corresponds to horizontal structures, mmolll) which exhibits vertical ones.

it disergonce frea pirt of the wivelst desompasiian [harizents motians] froa part of the wavelat (varical motiane

Figure 11. Isosurface).2 of divergence-free wavelet coefficients associated/m, .
(left) and totlfaiv 2,k (right), in absolute value. o

Figure[1B displays the nonlinear compression error: we bawguted the convergence
rate on the linear part of the graph (which is shorter by camspa with the 2D case, due the
low resolution) and we have found= 1.45.

5.4. Analysis of 2D compressible fields

We presented in sectign #.3, an algorithm which gave risentawveelet Hodge decomposition
of any flow. In order to numerically prove that it always corges, we have tested the method
on various random two-dimensional fields. We constructeakesof them by summing random
gaussians, and we modified their Fourier spectra in ordeatp the regularity. Figuré 14
displays theL?-norm of the residual, in terms of the number of iteratiows,four different
vector functions. We can infer the following conclusions:

- For all functions we have tested, the method convergescanes shows that, except
at the early beginning, the convergence is exponential.
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Figure 12. Isosurfacd).06 of divergence-free wavelet coefficients associatedfé}ﬁ’s)]k

(left) and to %V

div1 sk (right), in absolute value.
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Figure 13. L2-error provided by the nonlinear N-best terms wavelet agipration (29): in
log-log plot, L2-error ) versusV for a 3D turbulent flow.

- The slope of the curve do not depend to much on the numberiadpgints, but the
curve itself, corresponding t242 grid points, is upon these @662 grid points.

- The convergence rate increase with the number of vanisimogents of the dual
wavelets.

In the futur, we will investigate the influence of the wavédases and of the interpolating
projectors, on the convergence rate.

Since our main objective for further research is to use diece-free wavelets
for solving the Navier-Stokes equations, we have to prowdt the wavelet Hodge
decomposition of the nonlinear terfn.V)u. Indeed, althouglm should be incompressible,
this term breaks the divergence-free condition and yieldsompressible part. As an
illustration, we consider aa the 2D turbulent field displayed on Figure 8, and we compute,
by mean of our wavelet Hodge decomposition, the div-freecamdfree wavelet components
of (u.V)u. Figure[Ip shows the anisotropic wavelet coefficients ofdiliergence-free part
(left) and of the curl-free part (right) of th@:.V)u arising from this decomposition.
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Figure 14. Convergence curves of the iterative wavelet Hodge algworith

Figure 15. Anisotropic wavelet coefficients corresponding to the weiveHodge
decomposition ofu.V)u: divergence-free coefficients (left), and curl-free caidints (right).

Figure [Ib (left) displays the vorticity field associated ke tdivergence-free part of
(u.V)u, while Figure[Ip (right) represents the pressure issued fhe curl-free term, that is
easily reconstructed in wavelet domain, as it will be explaelow.

The extracted div-free part ¢fi.V)u is all what is needed to compute the time-evolution
of the velocity in the incompressible Navier-Stokes equeti Thanks to the curl-free wavelet
definition, we are also able to directly reconstruct the suwes from the curl-free coefficients
of Vp:
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Figure 16. Vorticity (on the left) and pressure (on the right) deriveahf the wavelet Hodge
decomposition of the nonlinear teraVu, with u displayed on FigurE 8.

Indeed, with periodic boundary conditions, the curl-fregetf (u.V)u writes:

—1 291-1272—1

(0. V)uley, = Z Z Z deurl g, ks 27 o (27 @ — k1) (272 y — ko)

J1,J2=0 k1=0 ko=
J—1 2911

+ Z Z dCUI’|k 27 o (2w — k)

J1=0 k1=

J—1 2/1-1272-1

(0. V)uleyrl, = Z Z Z deurl oy 22 V127 @ — k1) o(272 y — ko)
71,J2=0 k1=0 ko=0
J—1 2021 _ .
+ Z Z dCUI’|k 2% (2% y — ko)
72=0 ko=

Be integrating the system (we recall that = 4 v, see the definition of gradient
wavelets), we obtain (up to a constant):
J—1 21-1272-1
YD dourl 1 (27— k) (272 y — ko)
J1,J2=0 k1=0 k2=0
J—121-1

+Z Z dCUﬂk i (2" = ky)

J1=0 k1=
J—1292-1
2.2 deury, 1y — k)
j2=0 ka=0
Thus the computation of the pressure is no more than a sthral@sotropic wavelet
reconstruction inl/} x V}, from the curl-free coefficients. By comparison to the puess
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computed in Fourier domain, we have found a relative err@rof0—* in the L2-norm, which
probably arises from the interpolating process. On therdthad the difference between the
Leray projection (in Fourier space) and the wavelet prapeabnto the divergence-free space
representd % of the L2-norm, that is to say).01% of the energy. FigurE L7 displays the
localisation of this error.
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Figure 17. Error between the divergence-free part(of V)u (obtained through Fourier
transform) and the one provided by the wavelet Hodge decsitipo.

Conclusion and perspectives

We have presented in detail the construction of 2D and 3Drgeree-free wavelet bases, and
a practical way to compute the associated coefficients. We imroducedanisotropicdiv-
free and curl-free wavelet bases, which are more easy tddawé have shown that these
bases make possible an iterative algorithm to compute thveletaHodge decomposition of
any flow. Thus, numerical tests prove the feasibility of diygnce-free wavelets for simulating
turbulent flows in two and three dimensions. A divergenee-fivavelet based solver for 2D
Navier-Stokes equations is underway and will be reporteadforthcoming paper.

An important issue that must be addressed is the greatyabilihe method: although
all numerical tests have been presented in the periodic tasenethod extends readily to
non-periodic problems, by using wavelets adapted to thegsfooundary condition§ [R8,]24],
in the div-free construction. Another point is since we édasthe(u, p)-formulation for the
Navier-Stokes equation, and since we are able to computlecitag projector in the wavelet
domain, the method extends easily to the 3D case. At lastptbthod should be competitive
by comparison to a classical Fourier method in the non-gerioase: indeed, the periodic
case corresponds to boundary conditions for which spaui#iods are obviously fast, while
it is clear that wavelet methods take advantage both of timepcession properties of the
wavelet bases for functions and for operators, in any case.
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Figure 1. From left to right: the scaling functiog with its associated symmetric wavelet with
shortest support, and their duals: the dual scaling funetioand the dual wavelet*.

Figure 2. Scaling functions and associated wavelets with shortggbat, for splines of
degree 1 (left) and 2 (right).

Figure 3. Anisotropic 2D wavelet transform.

Figure 4. Isotropic 2D wavelet transform.

Figure 5. Isotropic 2D generating divergence free waveléfﬁ’\?) (left), \I/S)I\j) (center) and

v (right).

Figure 6. The two scaling functiong, and¢;, and their symmetry centers.

Figure 7. Vorticity fields at timest = 0, t = 10, t = 20 and¢ = 40, and corresponding
divergence-free wavelet coefficients of the velocity.

Figure 8. Vorticity field for a1024 x 1024 simulation of decaying turbulence (left), and the
corresponding divergence-free wavelet coefficients of/elecity field (right).
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Figure 9. L2-error provided by the nonlinear N-best terms wavelet axpration ): in
log-log plot, L2-error ) versusV for a 2D turbulent flow.

Figure 10. Isosurface of vorticity magnitude after 5 large-eddy twers provided by a
spectral methodJ4].

Figure 11.Isosurfacd).2 of divergence-free wavelet coefficients associatei . (left)
R/,l,j,k

and totIféiV&j’k (right) in absolute value.

Figure 12. Isosurfaced.06 of divergence-free wavelet coefficients associatewW’S)Jk

(left) and totIJ((jOi’\?’ll)]k (right), in absolute value.

Figure 13. L2-error provided by the nonlinear N-best terms of waveletragimation ): in
log-log plot, L2-error ) versusV for a 3D turbulent flow.

Figure 14. Convergence curves of the iterative wavelet Hodge algorith

Figure 15. Anisotropic wavelet coefficients corresponding to the weiveHodge
decomposition ofu.V)u: divergence-free coefficients (left), and curl-free caidints (right).

Figure 16. Vorticity (on the left) and pressure (on the right) deriveadnfi the wavelet Hodge
decomposition of the nonlinear teraVu, with u displayed on FigurE 8.

Figure 17. Error between the divergence-free part(of. V)u (obtained through Fourier
transform) and the one provided by the wavelet Hodge decsitipio.



