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A maxiset approah of Gaussian white noise models.(nonde�nitive version)Chesneau ChristopheJune 7, 2005Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, 175 rue deChevaleret, F-75013 Paris, Frane. hristophe.hesneau4�wanadoo.frAbstratWe onsider the problem of estimating an unknown funtion f in a homosedasti Gaussianwhite noise setting under L
p risk. The partiularity of this model is that it has an intermediatefuntion, say v, whih ompliates the estimate signi�antly. While varying the assumptions on v,we investigate the minimax rate of onvergene over two balls of spaes whih belong to family ofBesov lasses. One is de�ned as usual and the other alled 'weighted Besov balls' used v expliitly.Adopting the maxiset approah, we develop a natural hard thresholding proedure whih attainedthe minimax rate of onvergene within a logarithmi fator over these weighted balls.Keywords: Minimax, Mukenhoupt weights, Maxiset, Gaussian noise, warped wavelets, waveletthresholding.AMS 1991 Subjet Classi�ation: Primary: 62G07, Seondary: 62G20, 42B20.1 IntrodutionConsider the Gaussian white noise model in whih we observe proesses Yt governed by

dYt = Hv(f)(t)dt +
1√
n
dWt, n ∈ N

∗, t ∈ [0, 1] (1)where the operator Hv : B([0, 1]) → L
2([0, 1]) is de�ned by
Hv(f)(t) =

f(t)

v(t)
,with

B([0, 1]) = {f measurable on [0, 1], sup
x∈[0,1]

|f(x)| <∞}and
L

2([0, 1]) = {f measurable on [0, 1], ‖f‖2
2 =

∫ 1

0

|f(x)|2dx <∞}.The funtion v is supposed to be known and to satisfy the ondition ' 1
v
belongs to L

2([0, 1])'. The proess
Wt is a standard Brownian motion on [0, 1]. The funtion f is the unknown funtion of interest. Wewant to reonstrut f from the observations {∫ 1

0
h(t)dYt, h ∈ L

2([0, 1])}.In the simplest ase where v is onstant, we observe the well known Gaussian white noise modelwhih has been onsidered in several papers starting from Ibragimov and Has'minskii (1977). Underertain assumptions on the smoothness of f , the model (1) beomes an appropriate large sample limitto more general non parametri models suh as probability density estimation (see Nussbaum (1996)) ornonparametri regression (see Brown and Low (1996)). Minimax properties in various risk over numerousfuntion spaes an be found in the book of Tsybakov (2004).In the ase where v is spatially inhomogeneous, the urve estimation is signi�antly more ompli-ated. For instane, onsider the observation of data (Y1, X1), ..., (Yn, Xn) where
Yi = f(Xi) + σ(Xi)ǫi. (2)1



A maxiset approah of Gaussian white noise models. (nonde�nitive version) 2where the random variables Xi are i.i.d, independent of ǫi, with density g. The ǫi's are normal i.i.d withmean zero and variane one. Brown and Low (1996) have shown that if σ and g satisfy some onditionof boundedness and f belongs to ertain Sobolev lasses then the model
dZt = v(t)dYt, t ∈ [0, 1] (3)is asymptotially equivalent (in Le Cam's sense) to (2) under the alibration v = σ√

g
. An appliation ofthis result an be found in Efromovih and Pinsker (1996). For other equivalenes onerning (3), seeGrama and Nussbaum (1998).In this paper, we are foused on the model (1) for general v and we take the problem in theframework of wavelet analysis. We wish to estimate f on [0, 1] by a measurable funtion on [0, 1] withrespet to the observations {∫ 1

0 h(t)dYt, h ∈ L
2([0, 1])} under the L

p risk
Ef (

∫ 1

0

|f̂(t) − f(t)|pdt), p ≥ 1.We have denoted Ef the expetation with respet the distribution Pf of proesses Yt. Our study an bedivided in two parts.In a �rst part, we investigate the estimation of f over usual Besov balls Bs,π,r(L). We show thatthe minimax properties obtain for the ase where v is bounded from above and below an be extended(without deteriorating the rate of onvergene) to more general funtions v. More preisely, we showthat if π ≥ p ≥ 1 and v belongs to L
π′

([0, 1]) for π′ = max(π, 2) then the minimax rate of onvergeneis of the form
n−α1p where α1 =

s

1 + 2s
.For other values on the parameters (s, π, r), we show that if v is bounded from above then the minimaxrate of onvergene over Bs,π,r(L) is of the form

(
ln(n)

n
)α2p where α2 =

s− 1
π

+ 1
p

2(s− 1
π
) + 1

.In the ase where π ≥ p > 2, it is natural to address the following question: an we obtain the sameminimax rate over suh spaes for any v whih does not belong to L
π([0, 1])? Using an expliit example,we show that the answer is 'No'.This result motivates us to devote a seond part in whih we investigate other funtion spaesmore adapted to our model. Our hoie will be made on Besov balls onstruted on a wavelet basiswarped by a fator depending on v. Suh spaes were introdued in analysis by Qui (1982) and werereently developed in statistis by Kerkyaharian and Piard (2005). These authors have establishedgood estimation results in a regression setting with random design (i.e (2) with σ(.) = 1) for verygeneral densities g. The key of the suess of our study rests on the following argument : under ertainonditions on the warping fator whih refer to Mukenhoupt theory, the warped wavelet bases possesssome interesting geometrial properties in the L

p norm whih allow us to onsider funtion spaes andproedures deeply linked to the model.Using these analytial tools, we show that if π ≥ p > 1 and if v is subjet to a property ofMukenhoupt type then the minimax rate over weighted Besov balls BG
s,π,r(L) de�ned starting from G,the primitive of 1

v2 , is of the form
n−α1 where α1 =

s

1 + 2sfor s large enough. The hypotheses made on v are more general than onditions of boundedness or otheronditions of integrability depending diretly of the parameter π.Finally, we use this warped wavelet basis to onstrut a natural proedure whih stay as lose aspossible to the standard hard thresholding algorithm. In order to measure his performane under L
p risk,we isolate the assoiated maxiset. This statistial tool developed by Cohen, De Vore, Kerkyaharian andPiard (2000) onsists in investigating the maximal spae (or maxiset) where a proedure has a givenrate of onvergene. One of the main advantages of this approah is to provide a funtional set whih isauthentially onneted to the proedure and the model. Thus, by hoosing the rate

(ln(n))α1n−α1 where α1 =
s

1 + 2s



A maxiset approah of Gaussian white noise models. (nonde�nitive version) 3and onsidering π ≥ p > 1, we prove that our weighted Besov ball BG
s,π,r(L) is inluded in the maxisetof our proedure. So, we onlude that it is 'near to the optimal' i.e it attains the minimax rate ofonvergene up to a logarithmi fator.The paper is organized as follows.Setion 2 de�nes the basi tools (Mukenhoupt weights, warped wavelet basis ...), inequalities andfuntion spaes we shall need in the study. In Setion 3 we investigate the minimax rate over usualBesov balls. Setion 4 do the same study but over the weighted Besov balls. Setion 5 is devoted to theperformane of a natural hard thresholding proedure when the unknown funtion of interest belongs tothese weighted spaes. In Setion 6, we desribe another statistial model and we explain why we anhave results similar to those obtained for (1). Finally, Setion 7 is devoted to the proofs of tehniallemmas.2 Mukenhoupt ondition, warped wavelet bases and funtionspaesThroughout this paper, for a weight m (i.e non negative loally integrable funtion) on [0, 1], we set

L
p
m([0, 1]) =

{

f measurable on [0, 1] | ‖f‖p
m,p =

∫ 1

0

|f(t)|pm(t)dt <∞
}where L

p([0, 1]) = L
p
1([0, 1]) denotes the usual Lebesgue spae i.e
L

p([0, 1]) =
{

f measurable on [0, 1] | ‖f‖p
p =

∫ 1

0

|f(t)|pdt <∞
}

.2.1 Mukenhoupt weightFirst reall the notion of Mukenhoupt weight.De�nition 2.1. Let 1 < p < ∞ and q suh that 1
p

+ 1
p

= 1. A weight m satis�es the Ap-ondition(or belongs to Ap) i� there exists a onstant C > 0 suh that for any measurable funtion h and anysubinterval I of [0, 1] we have
(

1

|I|

∫

I

|h(x)|dx) ≤ C(
1

m(I)

∫

I

|h(x)|pm(x)dx)
1
p (4)where |I| denotes the Lebesgue measure of I and m(I) =

∫

I
m(x)dx.If m veri�es the Ap ondition then it is a Mukenhoupt weight.Example 2.1. The weight m(x) = xσ satis�es the Ap-ondition with p > 1 i� −1 < σ < p− 1.Let us introdue one of the most interesting property related to this notion.Lemma 2.1. Let 1 < p < ∞. If w satis�es the Ap ondition then there exists a onstant C > 0 suhthat for any subintervals S ⊆ B ⊆ [0, 1] we have

w(B)(
|S|
|B| )

p ≤ Cw(S).Proof of Lemma 2.1. It su�es to apply (4) with the funtion h = 1S and the interval I = B.The previous ondition has been introdued by Mukenhoupt (1972) and widely used afterwardsin the ontext of Calderón-Zygmund theory. The Ap-ondition haraterizes the boundedness of ertainintegral operators on L
p
m spaes like the Hardy-Littlewood maximal operator or the Hilbert transform.For the omplete theory, see the book of Stein (1993).



A maxiset approah of Gaussian white noise models. (nonde�nitive version) 42.2 Warped wavelet bases and Mukenhoupt weightsFirst we introdue the warped wavelet bases. Seond we set some results whih will be intensively usedin the sequel of this paper.Let N be an integer stritly positive. We denote by
ξT = {φτ,k(T (.)), k ∈ ∆τ ; ψj,k(T (.)); j ≥ τ, k ∈ ∆j}, ∆j = {0, ..., 2j − 1},the warped wavelet basis adapted on the interval [0, 1] onstruted starting from

• ψ the wavelet assoiated with a multiresolution analysis on the line Vj = {φj,k, k ∈ Z} suh that
Supp(φ) = Supp(ψ) = [−N + 1, N ] and ∫ ψ(t)tldt = 0 for l = 0, ..., N − 1. Let us reall that onthe unit interval there exists an integer τ satisfying 2τ ≥ 2N suh that one an built at eah level
j ≥ τ a wavelet system (φj,k, ψj,k) where

φj,k(x) = 2
j
2φ(2jx− k), k = N,N,N + 1, ..., 2j −N − 1and

ψj,k(x) = 2
j
2ψ(2jx− k), k = N,N,N + 1, ..., 2j −N − 1.For eah funtions, we add N funtions on the neighborhood of 0 whih have the support ontainedin [0, (2N − 1)2−j] and N funtions on the neighborhood of 1 whih have the support ontainedin [1 − (2N − 1)2−j , 1]. For simpliity, we denote by "τ − 1" the integer suh that ψτ−1,k = φτ,k.

• T a measurable funtion on [0, 1] whih are an known, inreasing, bijetive, absolutely ontinuousand satis�es
T (0) = 0 and T (1) = 1.We assoiate to this funtion the weight
w(.) =

1

T̃ (T−1(.))
(5)where T̃ denotes the derivative of T and T−1 its inverse funtion. Remark that for any measurablepositive funtion z de�ned on [0, 1], w satis�es

∫ 1

0

z(T (x))dx =

∫ 1

0

z(x)w(x)dx.Note that the warped wavelet bases an be viewed as a generalization of the regular wavelet bases. SeeMeyer (1990) and Daubehies (1992) for wavelet bases on the real line. See Cohen, Daubehies, Jawerthand Vial (1992) for wavelet bases on the interval.Let ∞ > p > 1. If w veri�es the Ap ondition then, for any ν ≥ τ , any funtion f of L
p([0, 1]) anbe deomposed on ξT as

f(x) = PT
ν (f)(x) +

∑

j≥ν

∑

k∈∆j

βT
j,kψj,k(T (x)),where

PT
j (f)(x) =

∑

k∈∆j

αT
j,kφj,k(T (x)), αT

j,k =

∫ 1

0

f(T−1(t))φj,k(t)dtand
βT

j,k =

∫ 1

0

f(T−1(t))ψj,k(t)dt.Let us reall some properties linked to ξT .Property 2.1. Let v > 0. There exists a onstant C > 0 suh that
∑

k∈∆j

|φj,k(T (x))|v ≤ C2
jv
2 , x ∈ [0, 1].This inequality is always true if we exhanged φ by ψ.



A maxiset approah of Gaussian white noise models. (nonde�nitive version) 5Property 2.2. If w ∈ Ap then there exist two onstant c > 0 and C > 0 suh that for j ≥ τ we have
c2

jp
2

∑

k∈∆j

|αT
j,k|pw(Ij,k) ≤ ‖PT

j (f)‖p
p ≤ C2

jp
2

∑

k∈∆j

|αT
j,k|pw(Ij,k)where we have set Ij,k = [ k

2j ,
k+1
2j ]. These inequalities are always true if we exhanged φ by ψ.2.3 Funtion spaesFirstly, let us preise that weighted Besov balls BT

s,π,r(L) has three parameters: s measures the degreeof smoothness, π and r speify the type of norm used to measure the smoothness. Let us de�ne thesespaes with preise details below.For any measurable funtion f de�ned on [0, 1], denote the assoiated N -th order modulus ofsmoothness as
ρN (t, f, T, π) = sup

|h|≤t

(

∫

JNh

|
N
∑

k=0

(

N

k

)

(−1)kf(T−1(T (u) + kh))|πdu
)

1
πwhere JNh = {x ∈ [0, 1] : T (x) +Nh ∈ [0, 1]}. Let N > s > 0, ∞ ≥ π, r > 1. We say that a funtion fof L

π([0, 1]) belongs to the weighted Besov balls BT
s,π,r(L) i�

(
∫ 1

0

(

ρN (t, f, T, π)

ts

)r
1

t
dt

)

1
r

≤ L <∞with the usual modi�ation if r = ∞. These spaes an be viewed as a generalization of usual Besov balls.If we are in the ase where T = Id then we simply denote ξT = ξ, αT
j,k = αj,k, βT

j,k = βj,k,
PT

j (f) = Pj(f) and BT
s,π,r(L) = Bs,π,r(L).Starting from the previous de�nition, we an set a list of properties whih link the weighted Besovballs with the warped wavelet basis on the unit interval. See below three of these.Property 2.3. If w ∈ Aπ we have

f ∈ BT
s,π,r(L) =⇒ (

∑

j≥τ−1

(2j(s+ 1
2 )(
∑

k∈∆j

|βT
j,k|πw(Ij,k))

1
π )r)

1
r ≤ L. (6)for π ≥ 1, r ≥ 1 and N > s > 0.Moreover, we have the reiproity for s large enough.Property 2.4. If w ∈ Aπ we have

f ∈ BT
s,π,r(L) ⇐= (

∑

j≥τ−1

(2j(s+ 1
2 )(
∑

k∈∆j

|βT
j,k|πw(Ij,k))

1
π )r)

1
r ≤ L. (7)for π ≥ 1, r ≥ 1 and N > s ≥ q(w) where

q(w) =

{

infv>1{w satisfies the Av condition} if w is not a constant on [0, 1],

0 if w is constant on [0, 1].
(8)The following property is similar to Property 2.3 but expressed in term of Pj(f).Property 2.5. If w ∈ Aπ we have

f ∈ BT
s,π,r(L) =⇒ (

∑

j≥τ

(2js‖PT
j (f) − f‖π)r)

1
r ≤ L (9)These results are always true with the usual modi�ation if r = ∞. For further details on thissubsetion, we refer the reader to the artile of Kerkyaharian and Piard (2005).In the sequel, the onstants C, C′, C′′, c, c′, c′′ represent any onstants we shall need, and andi�erent from one line to one other.



A maxiset approah of Gaussian white noise models. (nonde�nitive version) 63 Minimax study over Besov ballsLet us reall that we observe the model (1) under the two following assumptions on v and f :
• 1

v
belongs to L

2([0, 1]),
• ‖f‖∞ <∞.Let us set the following notations:

ǫ = sπ − p− π

2
, α1 =

s

1 + 2s
and α2 =

s− 1
π

+ 1
p

2(s− 1
π
) + 1

.We shall exhibit the minimax rate of onvergene over usual Besov balls for several values of ǫ. The �rstpart of this setion is devoted to the proofs of the two following theorems.Theorem 3.1. Let ∞ > p ≥ 1 and ∞ ≥ π ≥ p. Assume that v satis�es the following ondition:
v ∈ L

π′

([0, 1]) (10)where π′ = max(π, 2). Then for N > s > 0 and ∞ ≥ r ≥ 1 we have
inf
f̂

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≍ n−α1p.Theorem 3.2. Let ∞ > p > 1. Assume that v satis�es the following ondition:

‖v‖∞ <∞. (11)Then for N > s > 1
π
, ∞ ≥ π ≥ 1, ∞ ≥ r ≥ 1 and ǫ < 0 we have

inf
f̂

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≍ (

ln(n)

n
)α2pFor ǫ = 0, there exist C > 0 and c > 0 satisfying

c(
ln(n)

n
)α2p ≤ inf

f̂

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≤ C(

ln(n)

n
)α2p(ln(n))(

p
2−π

r
)+ .Remark 3.1. For the two lower bounds, only the ondition 1

v
∈ L

2([0, 1]) is determinant.3.1 Proof of Theorem 3.1: upper bound and lower bound3.1.1 Upper boundHere, we use the standard method whih onsists in representing the unknown funtion f on a regularwavelet basis and in studying the upper bound attained by the assoiated linear wavelet proedure.Theorem 3.3. Let ∞ > p ≥ 1 and π ≥ p. Assume that the ondition (10) holds. Consider f̂ l the linearestimator de�ned by
f̂ l(x) =

∑

k∈∆j0

α̂j0,kφj0,k(x) (12)where
α̂j0,k =

∫ 1

0

φj0,k(t)v(t)dYt.Then for N > s > 0 and ∞ ≥ r ≥ 1 there exists a onstant C > 0 suh that
sup

f∈Bs,π,r(L)

Ef (‖f̂ l − f‖p
p) ≤ Cn−α1pfor j0 the integer satisfying 2j0 ≃ n

1
1+2s .



A maxiset approah of Gaussian white noise models. (nonde�nitive version) 7Proof of Theorem 3.3. Using Hölder's inequality, for π ≥ p we have
Ef (‖f̂ l − f‖p

p) ≤ C(Ef (‖f̂ l − f‖π
π))

p
π . (13)Using Minkowski's inequality and the elementary inequality

(|x+ y|)π ≤ 2π−1(|x|π + |y|π), x, y ∈ R,the L
π risk of f̂ an be deomposed as follows:

Ef (‖f̂ l − f‖π
π) ≤ C(Ef (‖f̂ l − Pj0(f)‖π

π) + ‖Pj0(f) − f‖π
π)

= C(S1 + S2). (14)Sine f ∈ Bs,π,r(L) ⊂ Bs,π,∞(L), Property 2.5 gives us
S2 ≤ L2−j0sπ. (15)Using the de�nition of f̂ l and Property 2.2, one gets

S1 = Ef (‖
∑

k∈∆j0

(α̂j0,k − αj0,k)φj0,k(.)‖π
π)

≤ C(2j0( π
2 −1)

∑

k∈∆j0

Ef (|α̂j0,k − αj0,k|π))

= C2j0(
π
2 −1)S∗

1 . (16)Let us onsider ρj,k de�ned by
ρj,k =

√

∫ 1

0

v2(t)φ2
j,k(t)dt. (17)We have learly

α̂j0,k − αj0,k =
1√
n

∫ 1

0

v(t)φj0,k(t)dWt ∼ ρj0,kǫnwhere ǫn is random variable suh that
ǫn ∼ N (0,

1

n
).To study S∗

1 , we only need the seond point of the following lemma whih will be proved in Appendix.(The �rst point will be used later in the study.)Lemma 3.1. Let n ∈ N
∗. If Vn ∼ N (0, 1

n
) then for κ ≥ 2

√
2π there exists a onstant C > 0 onlydepending on p suh that

• Pf(|Vn| ≥ κ
2

√

ln(n)
n

) ≤ Cn−π
2 ,

• Ef (|Vn|π) ≤ Cn−π
2 .Thus, one gets

S∗
1 ≤ Cn−π

2

∑

k∈∆j0

ρπ
j0,k. (18)First onsider the ase where 2 > π ≥ 1. Hölder's inequality, Property 2.1 and ondition (10) yield

∑

k∈∆j0

ρπ
j0,k ≤ (

∑

k∈∆j0

∫ 1

0

v2(t)φ2
j0,k(t)dt)

π
2 (

∑

k∈∆j0,k

1)1−
π
2

≤ C(2j0

∫ 1

0

v2(t)dt)
π
2 2j0(1−π

2 )

≤ C′2j0 . (19)



A maxiset approah of Gaussian white noise models. (nonde�nitive version) 8Seond investigate the ase where ∞ ≥ π ≥ 2. Applying Hölder's inequality with the measure dν =
φ2

j0,k(t)dt, using Property 2.1 and ondition (10), one gets
∑

k∈∆j0

ρπ
j0,k ≤

∫ 1

0

vπ(t)
∑

k∈∆j0

φ2
j0,k(t)dt

≤ C2j0‖v‖π
π

= C′2j0 . (20)Thus, onsidering (16), (19), (18) and (20) we obtain for π ≥ 1,
S1 ≤ C2

j0π

2 n−π
2 . (21)Taking in aount that 2j0 ≃ n

1
1+2s , the inequalities (14), (15) and (21) imply that

Ef (‖f̂ l − f‖π
π) ≤ C(2

j0π

2 n−π
2 + 2−j0sπ)

≤ C′n−α1π.Considering (13), we dedue that for π ≥ p ≥ 1,
sup

f∈Bs,π,r(L)

Ef (‖f̂ l − f‖p
p) ≤ Cn−α1p.This ompletes the proof of Theorem 3.3.3.1.2 Lower BoundNow, introdue a key theorem whih will be intensively used to exhibit the lower bounds over generalBesov balls.First of all, remark that for any j and N of N

∗, there exists a onstant 2N − 2 ≥ C∗ ≥ 2 suh that
r∗ =

2j − C∗
2N − 1

∈ N
∗ (22)Theorem 3.4. Let j an integer depending on n, (ωj,k)k∈Rj

a �xed sequene and ε a sequene suh that
ε = (εk)k∈Rj

∈ {−1, 1}r∗ where
Rj = {2j − l(2N − 1) +N − 2; l = 1, 2, ..., r∗}. (23)and r∗ is de�ned by (22). Let us set the funtions

gε(x) = γj

∑

k∈Rj

ωj,kεkψj,k(T (x)) (24)where γj is hosen in suh a way that gǫ belongs to BT
s,π,r(L). For suh ǫ, if we onsider ε∗k = (ε′i)i∈Rjde�ned by

ε′i = εi1{i6=k} − εi1{i=k},then for any estimator f̂ we have
Uj = sup

gǫ∈BT
s,π,r(L)

Egǫ
(‖f̂ − gǫ‖p

p)

≥ e−λ

2
γ

p
j

∑

k∈Rj

ω
p
j,k inf

εi∈{−1,+1}
i6=k

Pgǫ
(∧n(gε∗

k
, gǫ) > e−λ)‖ψj,k‖p

w,pwhere ∧n(gε∗
k
, gǫ) denotes the likelihood ratio between the laws indued by gε∗

k
and gεk

de�ned by
∧n(gε∗

k
, gǫ) =

dPgε∗
k

dPgε

. (25)



A maxiset approah of Gaussian white noise models. (nonde�nitive version) 9Proof of Theorem 3.4. Sine T is inreasing with T (0) = 0 and T (1) = 1, for all k belonging to Rj wehave the ST
j,k's de�ned by

ST
j,k = Supp(ψj,k(T (.))) = [T−1(

k −N + 1

2j
), T−1(

k +N

2j
)]whih satisfy

ST
j,k ∩ ST

j,k′ = ∅ for k 6= k′, k, k′ ∈ Rjand
∪

k∈Rj

ST
j,k = [T−1(

C∗ − 1

2j
), T−1(1 − 1

2j
)] ⊂ [0, 1].In the ase where T = Id, we adopt the notation Sj,k instead of ST

j,k. Denote by G the set of all gεde�ned by (24). For any estimator f̂ , let
W 1

j,k =

∫

ST
j,k

|f̂(x) − γjεkωj,kψj,k(T (x))|pdxand
W 2

j,k =

∫

ST
j,k

|f̂(x) + γjεkωj,kψj,k(T (x))|pdx.Using the fat that the ST
j,k are disjoint, for any positive sequene (δj,k)k∈Rj

, we have
Uj ≥ 1

card(G)

∑

ε

Egε
(‖f̂ − gε‖p

p)

≥ 1

card(G)

∑

k∈Rj

∑

ε

Egε
(

∫

ST
j,k

|f̂(x) − γjǫkωj,kψj,k(T (x))|pdx) (26)By the de�nition of ǫ∗k and the fat that for all k ∈ Rj

Card(G) = 2Card(ǫ, ǫi ∈ {−1,+1}, i 6= k, i, k ∈ Rj),we obtain
Uj ≥ 1

card(G)

∑

k∈Rj

∑

εi∈{−1,+1}
i6=k

Egε
(W 1

j,k + ∧n(gε∗
k
, gǫ)W

2
j,k)

≥ 1

2

∑

k∈Rj

inf
εi∈{−1,+1}

i6=k

δ
p
j,kEgε

(1{W 1
j,k

≥δ
p

j,k
} + e−λ1{∧n(gε∗

k
,gǫ)>e−λ}1{W 2

j,k
≥δ

p

j,k
})

≥ e−λ

2

∑

k∈Rj

inf
εi∈{−1,+1}

i6=k

δ
p
j,kEgε

(1{∧n(gε∗
k

,gǫ)>e−λ}(1{W 2
j,k

≥δ
p

j,k
} + 1{W 1

j,k
≥δ

p

j,k
})). (27)Now, onsider the sequene δj,k de�ned by

δj,k = γjωj,k‖ψj,k‖w,p.Using Minkowski's inequality and the hange of variable y = T (x), we see that
(W 1

j,k)
1
p + (W 2

j,k)
1
p ≥ 2γjωj,k‖ψj,k(T (.))‖p

= 2δj,k.Therefore
1{W 2

j,k
≥δ

p

j,k
} ≥ 1{W 1

j,k
≤δ

p

j,k
}. (28)Putting (26), (27) and (28) together, we dedue that

Uj ≥ e−λ

2
γ

p
j

∑

k∈Rj

ω
p
j,k inf

εi∈{−1,+1}
i6=k

Pgǫ
(∧n(gε∗

k
, gǫ) > e−λ)‖ψj,k‖p

w,p.



A maxiset approah of Gaussian white noise models. (nonde�nitive version) 10Theorem 3.4 an be viewed as a generalization of Lemma 10.2 whih appeared in the book Härdle,Kerkyaharian, Piard and Tsybakov (1998).Theorem 3.5. Let ∞ > p ≥ 1. There exists a onstant c > 0 suh that for N > s > 0, ∞ ≥ π ≥ 1 and
∞ ≥ r ≥ 1 we have

inf
f̂

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≥ cn−α1p.Proof of Theorem 3.5. Let j an integer to be hosen below. Consider the funtions gǫ de�ned by (24)with

ωj,k = 1 and T = Id.Sine the wavelet oe�ients of gε(denoted below by β∗
j,k) are equal to γjεk and Card(Rj) = r∗ ≤ C2j ,we have

2j(s+ 1
2 )(
∑

k∈Rj

|β∗
j,k|π2−j)

1
π = γj2

j(s+ 1
2 )(
∑

k∈Rj

2−j)
1
π

≤ Cγj2
j(s+ 1

2 ).Using Property 2.4 with q(w) = 0 and taking j large enough, only the following onstraint on γj isneessary to guarantee that gε ∈ Bs,π,r(L):
γj ≤ C′2−j(s+ 1

2 )where C′ denotes a onstant suitably hosen. Now, onsider the following lemma whih will be provedin Appendix.Lemma 3.2. If we hose γj = n− 1
2 then there exist λ > 0 and p0 > 0 not depending on n suh that

∑

k∈Rj

inf
εi∈{−1,+1}

i6=k

Pgǫ
(∧n(gε∗

k
, gǫ) > e−λ) ≥ p02

j .It follows from Lemma 3.2 and Theorem 3.4 that:
sup

gε∈Bs,π,r(L)

Egǫ
(‖f̂ − gε‖p

p) ≥ e−λ

2
γ

p
j

∑

k∈Rj

inf
εi∈{−1,+1}

i6=k

Pgǫ
(∧n(gε∗

k
, gǫ) > e−λ)‖ψj,k‖p

p

≥ e−λ

2
2

jp
2 ‖ψ‖p

p(
1√
n

)pp0.Choosing j suh that γj = n− 1
2 ≃ 2−j(s+ 1

2 ) (i.e 2j ≃ n
1

1+2s ), one gets
inf
f̂

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≥ e−λ

2
‖ψ‖p

p(
2

j
2√
n

)pp0

≥ c′′n−α1p.This ends the proof of Theorem 3.5.Combining Theorem 3.3 and Theorem 3.5, we obtain Theorem 3.1.Remark 3.2. If v is a positive onstant then we obtain the usual minimax result.Example 3.1. Let ∞ > π ≥ p ≥ 1. Consider the model (1) with the operator Hv1 where
v1(t) = t−

σ
2 for − 1 < σ <

2

π′ .It is lear that the ondition (10) holds. So we an apply Theorem 3.1.Example 3.2. Let ∞ > π ≥ p ≥ 1. Consider the model (1) with the operator Hv2 where
v2(t) = (1 − t)αt−β for 0 < α <

1

2
and 0 < β <

1

π′ .Remark that v2 is not bounded from above and below and that the ondition (10) holds. So we an applyTheorem 3.1.The following subsetion proposes to investigate the minimax rate over Bs,π,r(L) under L
p loss forother values of the parameters (s, π, r) and other assumptions on v.



A maxiset approah of Gaussian white noise models. (nonde�nitive version) 113.2 Proof of Theorem 3.2: upper bounds and lower bound3.2.1 Upper boundsLet us onsider the following threshold wavelet proedure:
f̂@(x) =

∑

k∈∆j1

α̂j1,kφj1,k(x) +
∑

j∈Λ

∑

k∈∆j

β̂j,k1{|β̂j,k|≥κ
√

j
n
}ψj,k(x) (29)where we have set

α̂j,k =

∫ 1

0

φj,k(t)v(t)dYt, β̂j,k =

∫ 1

0

ψj,k(t)v(t)dYt,

Λ = {j ≥ τ − 1; j1 < j < j2 } for j1 and j2 the integers verifying
2j1 ≈ (n(ln(n))

p−π
π

1{ǫ≥0})1−2α and 2j2 ≈ (n(ln(n))−1{ǫ≤0})
α

(s− 1
π

+ 1
p

) (30)where
α = max(α1, α2).Following step by step the proof of Theorem 3 whih appeared in Donoho, Johnstone, Kerkyaharianand Piard (1996), one an show that the estimator (29) attains the upper bound desribe in Theorem3.2. This is an immediate onsequene of the following lemma:Lemma 3.3. Assume that the ondition (11) holds. Then for any κ there exist C > 0 and κ′ satisfying

• Ef (|β̂j,k − βj,k|2p) ≤ Cn−p

• Pf(|β̂j,k − βj,k| ≥ κ′

2

√

j
n
) ≤ C2−κj.The proof is rejeted in Appendix.3.2.2 Lower boundTheorem 3.6. Let ∞ > p ≥ 1. There exists a onstant c > 0 suh that for N > s > 1

π
, 0 ≥ ǫ and

∞ ≥ r ≥ 1 we have
inf
f̂

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≥ c(

ln(n)

n
)α2p.Proof of Theorem 3.6. Consider the following family

{g0 = 0; gk = γjψj,k, k ∈ Rj}where Rj is de�ned by (23). In order to prove Theorem 3.6, let us introdue a theorem whih an beview as an adapted version of Lemma 10.1 of Härdle, Kerkyaharian, Piard and Tsybakov (1998).Theorem 3.7. Assume the following onditions are ful�lled:
• ∀k ∈ Rj , γj is hosen suh that gk ∈ Bs,π,r(L),

• There exists a onstant p0 > 0 satisfying
∑

k∈Rj

Pgk
(Λ(g0, gk) ≥ 2−λ∗j) ≥ p02

j (31)for a �xed λ∗ suh that 1 ≥ λ∗ > 0.Then for any estimator f̂ we have
sup

f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≥ 2−p2j( p

2−1)γ
p
j ‖ψ‖p

p

p0

2
.



A maxiset approah of Gaussian white noise models. (nonde�nitive version) 12Proof of Theorem 3.7. For sake of simpliity, let us denote by d the L
p metri, i.e. for any f and g whihbelong to L

p([0, 1])

d(f, g) = (

∫ 1

0

|f(t) − g(t)|pdt) 1
p .Put

δj =
γj

2
2j( 1

2− 1
p
)‖ψ‖p. (32)From Chebyhev's inequality, we see that

δ
−p
j sup

f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≥ δ

−p
j sup

k∈Rj∪{0}
Egk

(‖f̂ − gk‖p
p)

≥ sup
k∈Rj∪{0}

Pgk
(‖f̂ − gk‖p ≥ δj)

≥ max(
1

r∗

∑

k∈Rj

Pgk
(d(f̂ , gk) ≥ δj),Pg0(d(f̂ , g0) ≥ δj)). (33)Sine r∗ ≤ 2j it su�es to prove that

max(2−j
∑

k∈Rj

Pgk
(d(f̂ , gk) ≥ δj),Pg0(d(f̂ , g0) ≥ δj)) ≥

p0

2
. (34)Assume on the ontrary that (34) is false. Then there exists an estimator, say f∗, suh that

max(2−j
∑

k∈Rj

Pgk
(d(f∗, gk) ≥ δj),Pg0(d(f

∗, g0) ≥ δj)) <
p0

2
.In partiular, we have

Pg0(d(f
∗, g0) ≥ δj) <

p0

2
(35)and sine there exists c > 0 suh that r∗ ≥ c2j (for instane, c = 1

N(2N−1)), we have
2−j

∑

k∈Rj

Pgk
(d(f∗, gk) < δj) > c− p0

2
. (36)Putting (31) and (36) together, we obtain that for any k ∈ Rj

∑

k∈Rj

Pgk
({d(f∗, gk) < δj} ∩ {Λ(g0, gk) ≥ 2−λ∗j}) ≥

∑

k∈Rj

Pgk
(d(f∗, gk) < δj)

+
∑

k∈Rj

Pgk
(Λ(g0, gk) ≥ 2−λ∗j) − (2N)−12j

> (c− p0

2
)2j + p02

j − c2j

>
p0

2
2j. (37)We now use the δj de�ned in (32). First for all k ∈ Rj

d(gk, g0) = γj‖ψj,k‖p = 2δjand the triangular inequality implies that
∪

k∈Rj

{d(f∗, gk) < δj} ⊂ {d(f∗, g0) ≥ δj}.Seond for all k 6= k′ ∈ Rj we have
d(gk, g

′
k) = γj(‖ψj,k‖p + ‖ψj,k′‖p)

≥ γj‖ψj,k‖p

= 2δj.



A maxiset approah of Gaussian white noise models. (nonde�nitive version) 13Consequently the events {d(f∗, gk) < δj} are disjoint for k 6= k′ ∈ Rj . It follows from (37) that
Pg0(d(f

∗, g0) ≥ δj) ≥ Pg0( ∪
k∈Rj

d(f∗, gk) < δj))

=
∑

k∈Rj

Pg0(d(f
∗, gk) < δj))

=
∑

k∈Rj

Egk
(Λ(g0, gk)1{d(f∗,gk)<δj})

≥ 2−λ∗j
∑

k∈Rj

Egk
(1{d(f∗,gk)<δj}1{Λ(g0,gk)≥2−λ∗j})

= 2−λ∗j
∑

k∈Rj

Pgk
({d(f∗, gk) < δj} ∩ {Λ(g0, gk) ≥ 2−λ∗j})

>
p0

2
2(1−λ∗)j .Then we ontradit (35). So, ombining (33) and (34), we dedue that for any estimator f̂ we have

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≥ 2−p2j( p

2−1)γ
p
j ‖ψ‖p

p

p0

2
. (38)Sine the wavelet oe�ients of gk, denoted below by β∗

j,k, are equal to γj with k �xed, we have
2j(s+ 1

2 )(|β∗
j,k|π2−j)

1
π = γj2

j(s+ 1
2 )(2−j)

1
π

= γj2
j(s+ 1

2− 1
π

).So taking
γj ≤ C′2−j(s+ 1

2− 1
π

)where C′ denotes a onstant suitably hosen, Property 2.4 with q(w) = 0 implies that the gk belong to
Bs,π,r(L). Now onsider the following lemma:Lemma 3.4. Let γj = c0

√

ln(n)
n

. If there exists a onstant c > 0 suh that for n large enough
ln(2j) ≥ c ln(n) (39)then for a �xed 1 ≥ λ∗ > 0 and a c0 small enough there exists a onstant p0 > 0 satisfying

∑

k∈Rj

Pgk
(Λ(g0, gk) ≥ 2−λ∗j) ≥ p02

j . (40)Thus, hoosing
γj = c0

√

ln(n)

n
, i.e 2j ≃ (

√

n

ln(n)
)

1

s+1
2
− 1

πand remarking that for n large enough we have
ln(2j) ≥ 1

2(s+ 1
2 − 1

π
)
(ln(n) − ln(ln(n))) + ln(c)

≥ 1

4(s+ 1
2 − 1

π
)

ln(n)

≥ 1

4N + 2
ln(n),the ondition (39) and a fortiori, the ondition (31) are satis�ed. So Theorem 3.7 implies that

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≥ 2−p2j( p

2−1)γ
p
j ‖ψ‖p

p

p0

2

≥ c(
ln(n)

n
)

p
2 (

√

n

ln(n)
)

p
2
−1

s+ 1
2
− 1

π

= c(
ln(n)

n
)α2p.This ends the proof of Theorem 3.6.



A maxiset approah of Gaussian white noise models. (nonde�nitive version) 14Putting Subsetion 'Upper bounds' and Theorem 3.6 together, we establish Theorem 3.2.3.3 When v does not belong to L
π
′

([0, 1])The last part of this setion is enter around the following question:Question 3.1. Let π ≥ p > 2. Can we extend the minimax properties without deteriorating the rate ofonvergene over Bs,π,r(L) for other v i.e funtions whih does not satisfy the assumption 'v belongs to
L

π([0, 1])' (see Theorem 3.1)?The following theorem gives a beginning of answer by onsidering a funtion v whih does notbelong to L
p([0, 1]) and, a fortiori, to L

π([0, 1]).Theorem 3.8. Let ∞ > p > 2 and ∞ ≥ π ≥ p. Assume that we observe model (1) with the operator
Hv∗ where

v∗(t) = t−
σ
2 for

2

p
< σ < 1. (41)Then for N > s > 0 and ∞ ≥ r ≥ 1 there exist two onstant C > 0 and c > 0 suh that

cn−α̃p ≤ inf
f̂

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≤ Cn−α′pwhere

α′ =
s

2s+ 1 + σ − 2
πand

α̃ =







α1
π−p

π(σp−2) > s > 0, π > p,
s+ 1

p
− 1

π

2s+1+σ− 2
π

N > s ≥ π−p
π(σp−2) , π ≥ p.Proof of Theorem 3.8. First, introdue the following lemma whih will be proved in Appendix.Lemma 3.5. Let π > 2. Let us onsider ρj,k de�ned by (17) with v = v∗ (see (41)) and ηj,k de�ned by

ηj,k =

√

∫ 1

0

1

v2
∗(t)

ψ2
j,k(t)dt. (42)Then there exist two onstant C > 0 and c > 0 suh that

c2
jσπ
2 ≤

∑

k∈Rj

η−π
j,k ≤

∑

k∈∆j

ρπ
j,k ≤ C2

jσπ
2 . (43)3.3.1 Upper boundLet us onsider the linear estimator f̂ l de�ned in (12) where v is de�ned by (41). Putting the inequalities(18) and (43) together, one gets

sup
f∈Bs,π,r(L)

Ef (‖f̂ l − f‖p
p) ≤ C(2j0( π

2 −1)n−π
2

∑

k∈∆j0

ρπ
j,k + 2−j0sπ)

p
π

≤ C′(2j0( π
2 −1+ σπ

2 )n−π
2 + 2−j0sπ)

p
π

≤ C′′n−α′pfor j0 the integer satisfying 2j0 ≃ n
1

1+2s+σ− 2
π .



A maxiset approah of Gaussian white noise models. (nonde�nitive version) 153.3.2 Lower boundConsider the funtions gǫ introdued in (24) with
ωj,k = η−1

j,k and T = Idwhere ηj,k is de�ned by (42). Sine the wavelet oe�ients of gε, denoted below by β∗
j,k, are equal to

η−1
j,kγjεk, the inequality (43) gives us

2j(s+ 1
2 )(
∑

k∈Rj

|β∗
j,k|π2−j)

1
π = γj2

j(s+ 1
2 )(
∑

k∈Rj

η−π
j,k 2−j)

1
π

≤ Cγj2
j(s+ 1

2+ σ
2 − 1

π
).Using Property 2.4 with q(w) = 0 and taking j large enough, only the following onstraint on γj isneessary to guarantee that gε ∈ Bs,π,r(L):

γj ≤ C′2−j(s+ 1
2+ σ

2 − 1
π

)where C′ denotes a onstant suitably hosen. Now, onsider the following Lemma whih will be provedin Appendix.Lemma 3.6. If we hose γj = n− 1
2 then there exist λ > 0 and p0 > 0 not depending on n suh that

inf
εi∈{−1,+1}

i6=k

Pgǫ
(∧n(gε∗

k
, gǫ) > e−λ) ≥ p0, ∀k ∈ Rj .Putting Lemma 3.6 and Theorem 3.4 together, we obtain

sup
gε∈Bs,π,r(L)

Egǫ
(‖f̂ − gε‖p

p) ≥ e−λ

2
γ

p
j

∑

k∈Rj

inf
εi∈{−1,+1}

i6=k

ω
p
j,kPgǫ

(∧n(gε∗
k
, gǫ) > e−λ)‖ψj,k‖p

p

≥ e−λ

2
2j( p

2−1)p0(
1√
n

)p‖ψ‖p
p

∑

k∈Rj

η
−p
j,k .Using the inequality (43) and the fat that n 1

2s+1+σ− 2
π ≃ 2j, one gets

inf
f̂

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≥ c(n− 1

2 2j( 1
2+ σ

2 − 1
p
))p

≥ c′n−α̃p.This ends the proof of Theorem 3.8.Remark 3.3. Let p > 2. Consider the funtion v∗ de�ned by (41). It lear that for N > s > 0, π = pand r ≥ 1 we have
inf
f̂

sup
f∈Bs,p,r(L)

Ef (‖f̂ − f‖p
p) ≍ n−α∗pwhere

α∗ =
s

1 + 2s+ σ − 2
p

.So we have prove that if v does not belong to L
π([0, 1]) for π ≥ p then the mininax rate over usualBesov balls under L

p risk an be slower than n−α1p. In partiular, Theorem 3.8 shows that this rate ofonvergene an truly depend on the nature of v.This arises a new question:Question 3.2. Can we �nd funtion spaes over whih the minimax rate under the L
p risk stay 'stable' forothers funtions v i.e whih does not belong to L

π([0, 1]) ?The answer is developed in the following setion.



A maxiset approah of Gaussian white noise models. (nonde�nitive version) 164 Minimax study over weighted Besov ballsNow, we analyze the minimax properties in L
p loss over weighted Besov balls. This setion is fousedon the proof of the following theorem:Theorem 4.1. Let ∞ > p > 1 and ∞ ≥ π ≥ p. Assume that we observe model (1). Suppose that thefuntion G de�ned by

G(t) =

∫ t

0

1

v2(y)
dyis bijetive with G(1) = 1. Assume also that

v2(G−1(.)) ∈ Ap. (44)Then for N > s > q(w) (see (8)) and ∞ ≥ r ≥ 1 we have
inf
f̂

sup
f∈BG

s,π,r(L)

Ef (‖f̂ − f‖p
p) ≍ n−α1p.4.1 Proof of Theorem 4.1: upper bound and lower bound4.1.1 Upper boundHere we proeed as in Theorem 3.3 by taking in aount the fat that we work with the warped waveletbasis ξG.Theorem 4.2. Let ∞ > p > 1 and ∞ ≥ π ≥ p. Assume that the ondition (44) holds. Let us onsider

f̂ l the linear estimator de�ned by
f̂ l(x) =

∑

k∈∆j0

α̂j0,kφj0,k(G(x))where
α̂j0,k =

∫ 1

0

φj0,k(G(t))
1

v(t)
dYt.Then for N > s > 0 and ∞ ≥ r ≥ 1 there exists a onstant C > 0 suh that

sup
f∈BG

s,π,r(L)

Ef (‖f̂ l − f‖p
p) ≤ Cn−α1pfor j0 the integer depending on n suh that 2j0 ≃ n

1
1+2s .Proof of Theorem 4.2. Starting from the inequality (13), it su�es to onsider the L

π risk of f̂ l. Minkowski'sinequality yields
Ef (‖f̂ l − f‖π

π) ≤ C(Ef (‖f̂ l − PG
j0

(f)‖π
π) + ‖PG

j0
(f) − f‖π

π)

≤ C(Q1 +Q2). (45)The ondition (44) and the embedding Ap ⊆ Aπ for π ≥ p imply that Property 2.5 holds for T = G and
w = v2(G−1(.)) (see (5)). So

Q2 ≤ C2−j0sπ . (46)Using the de�nition of f̂ l and Property 2.1, one gets
Q1 = Ef (‖

∑

k∈∆j0

(α̂j0,k − αG
j0,k)φj0,k(G(.))‖π

π)

≤ C(2
j0π

2 (
∑

k∈∆j0

Ef (|α̂j0,k − αG
j0,k|π)w(Ij0,k))

= C2
j0π

2 Q∗
1. (47)
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α̂j0,k − αG

j0,k =
1√
n

∫ 1

0

φj0,k(G(t))
1

v(t)
dWtso

α̂j0,k − αG
j0,k ∼ N (0,

1

n
).Applying the seond point of Lemma 3.1 we obtain

Q∗
1 ≤ Cn−π

2

∑

k∈∆j0

w(Ij0 ,k)

= Cn−π
2 . (48)Combining (45), (46), (47), (48) and taking in aount that 2j0 ≃ n

1
1+2s , we dedue that

Ef (‖f̂ l − f‖π
π) ≤ C(2

j0π

2 n−π
2 + 2−j0sπ)

≤ C′n−α1π.Using the inequality (13), it omes that
sup

f∈BG
s,π,r(L)

Ef (‖f̂ l − f‖p
p) ≤ Cn−α1p.This ompletes the proof of Theorem 4.2.4.1.2 Lower BoundTheorem 4.3. Let ∞ > p > 1. Assume that the ondition (44) holds. Then there exists a onstant

c > 0 suh that for N > s > q(w), ∞ ≥ π ≥ 1 and ∞ ≥ r ≥ 1 we have
inf
f̂

sup
f∈BG

s,π,r(L)

Ef (‖f̂ − f‖p
p) ≥ cn−α1p.Proof of Theorem 4.3. Let j an integer to be hosen below. Consider the funtions gǫ de�ned by (24)with

ωj,k = 1 and T = G.Sine the warped wavelet oe�ients of gε, denoted below by βG∗
j,k , are equal to γjεk, we have

2j(s+ 1
2 )(
∑

k∈Rj

|βG∗
j,k |πw(Ij,k))

1
π = γj2

j(s+ 1
2 )(
∑

k∈Rj

w(Ij,k))
1
π

≤ γj2
j(s+ 1

2 ).Using Property 2.4, the embedding Ap ⊆ Aπ (whih is true for π ≥ p) and taking j large enough, onlythe following onstraint on γj is neessary to guarantee that gε ∈ BG
s,π,r(L):

γj ≤ C′2−j(s+ 1
2 )where C′ denotes a onstant suitably hosen. Now, introdue the following lemma whih will be provedin Appendix.Lemma 4.1. If we hose γj = n− 1

2 then there exist λ > 0 and p0 not depending on n suh that
inf

εi∈{−1,+1}
i6=k

Pgǫ
(∧n(gε∗

k
, gǫ) > e−λ) ≥ p0, ∀k ∈ Rj , n ∈ N

∗.Lemma 4.1 and Theorem 3.4 yield
sup

gε∈BG
s,π,r(L)

Egǫ
(‖f̂ − gε‖p

p) ≥ e−λ

2
γ

p
j

∑

k∈Rj

inf
εi∈{−1,+1}

i6=k

Pgǫ
(∧n(gε∗

k
, gǫ) > e−λ)‖ψj,k‖p

w,p

≥ e−λ

2
p0(

1√
n

)p
∑

k∈Rj

‖ψj,k‖p
w,p. (49)(50)



A maxiset approah of Gaussian white noise models. (nonde�nitive version) 18Sine w = v2(G−1(.)) satis�es the Ap ondition, the hange of variable y = G(x) gives us
‖ψj,k‖p

w,p = (

∫

Sj,k

|ψj,k(x)|pw(x)dx)

≥ cw(Sj,k)(
1

|Sj,k|

∫

Sj,k

|ψj,k(x)|dx)p

≥ c2
jp
2 (2N − 1)

−p
w(Sj,k)‖ψ‖p

1. (51)Using Lemma 2.1, we obtain
∑

k∈Rj

w(Sj,k) = w([
C∗ − 1

2j
, 1 − 1

2j
])

≥ (1 − C∗
2j

)pw([0, 1])

≥ (1 − 2N − 2

2τ
)pw([0, 1])

= c. (52)Putting (49), (51) and (52) together and hoosing n− 1
2 ≃ 2−j(s+ 1

2 ) (i.e 2j ≃ n
1

1+2s ), we see that
inf
f̂

sup
f∈BG

s,p,r(L)

Ef (‖f̂ − f‖p
p) ≥ c(

2
j
2√
n

)p (53)
≥ c′n−α1p. (54)Finally, by ombining Theorem 4.2 and Theorem 4.3 we prove Theorem 4.1.Remark 4.1. If v is a positive onstant then we obtain the usual minimax result.Remark 4.2. If v is bounded below, then the inequality (53) beome an obvious onsequene of theinequality

∑

k∈Rj

‖ψj,k‖p
w,p ≥ c

∑

k∈Rj

‖ψj,k‖p
p

≥ c′2
jp
2 .In this ase, one an show that Theorem 4.1 is always true if we onsider the warping funtion

Gm(x) =

∫ x

0

1

vm(x)
dx, m ≥ 2instead of G and if we assume that vm(G−1

m ) ∈ Ap.4.2 Other results and examplesThe following lemma, proved in Kerkyaharian and Piard (2005), proposes another version of theondition (44).Lemma 4.2. Let p > 1 and q suh that 1
p

+ 1
q

= 1. Then v2(G−1(.)) satis�es the Ap ondition i� thereexists a onstant C > 0 suh that
(

1

|I|

∫

I

1

v2q(x)
dx)

1
q ≤ C(

1

|I|

∫

I

1

v2(x)
dx)for any subinterval I of [0, 1].In order to illustrate our statistial results, onsider some examples.



A maxiset approah of Gaussian white noise models. (nonde�nitive version) 19Example 4.1. Observe the model de�ned in (1) with the operator Hv1 where
v1(t) = cσt

−σ
2 , σ >

1

p
− 1and cσ = (σ + 1)−

1
2 . It is lear that 1

v1
belongs to L

2([0, 1]). Moreover
G(x) = xσ+1 , G−1(x) = x

1
σ+1 and w(x) = v2

1(G−1(x)) = x
−σ
σ+1 .Then if σ > 1

p
− 1 we have p− 1 > − σ

σ+1 > −1 so the funtion w satis�es the Ap ondition. Therefore,all onditions are satis�ed to apply Theorem 4.1.Let p > 2, s > 1 and π = p. The following table summarizes the results of Example 3.2, Remark3.3 and Example 4.1.Model (1) where Spae A σ values inf
f̂

supf∈A E(‖f̂ − f‖p
p)

Bs,p,r(L) 0 < σ < 2
p

≍ n−α1p, α1 = s
1+2s

v1(t) = cσt
−σ

2 Bs,p,r(L) 2
p
< σ < 1 ≍ n−α∗p, α∗ = s

1+2s+σ− 2
p

BG
s,p,r(L) 0 < σ ≍ n−α1p, α1 = s

1+2sFor 2
p
< σ < 1, remark that the minimax rate over usual Besov balls is stritly slower than theminimax rate over weighted Besov balls.Remark 4.3. The previous table show that if we hose G(t) = c−2

σ tσ+1 with 2
p
< σ < 1, then for p > 2,

r ≥ 1 and s > 1 the following inlusion
Bs,p,r(L) ⊆ BG

s,p,r(L)is impossible. Beause if we assume the ontrary then it should exist c > 0 and C > 0 suh that
cn−α∗p ≤ inf

f̂

sup
f∈Bs,p,r(L)

Ef (‖f̂ − f‖p
p)

≤ inf
f̂

sup
f∈BG

s,p,r(L)

Ef (‖f̂ − f‖p
p)

≤ Cn−α1p.This ontradits the fat that α∗ < α1 and implies the non-embedding.The following examples exhibit funtions v whih not satisfy v ∈ L
π but satisfy the Mukenhouptondition.Example 4.2. Observe the model de�ned in (1) with the operator Hv3 where

v3(t) = (
π

2
αtα−1 cos (

π

2
tα))−

1
2 ,

1

p
< α < 1.It is easy to see that

{

limt→0 v3(t) = 0,
limt→1 v3(t) = ∞.Moreover, we have

G(x) =

∫ x

0

1

v2
3(y)

dy = sin (
π

2
xα), G−1(x) = (

2

π
arcsin(x))

1
αand by de�nition

w(x) = v2
3(G

−1(x)) = C
(arcsin(x))

1−α
α√

1 − x2
.Sine w is ontinuous on ]0, 1[, we only need to study w at the points 0 and 1.At the neighborhood of 0, we have

w(x) ∼ C′x
1−α

α
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α ∈ Ap for −1 < 1−α

α
< p− 1 i.e α > 1

p
.At the neighborhood of 1 we have

w(x) ∼ C′′ 1√
1 − xand 1√

1−x
∈ Ap. Thus we onlude that w belongs to Ap and that we an apply Theorem 4.1. Note thatthere exists other funtions of this type. See for instane

v4(t) = (
π

2
α cos(

π

2
t)(sin(

π

2
t))α−1)−

1
2 ,

1

p
< α < 1whih gives the weight

w(t) = v2
4(G

−1(t)) =
x

1−α
α

√

1 − x
2
α

.Thus we have shown that weighted Besov balls give us stable minimax results for ertain v whihdoes not belonging to L
π for π ≥ p > 2. Starting from these results, we propose to investigate theperformane of an adaptive proedure onstruted on ξG over BG

s,π,r(L) in the ase where π ≥ p, r ≥ 1and N > s > q(w).5 Hard thresholding proedure and warped wavelet basesAmong other things, we prove that the linear proedure de�ned by (45) are optimal over weightedBesov balls. This proedure is not adaptive, i.e ahieve substantially slower rate of onvergene if thesmoothness of the funtion that we wish to estimate is misspei�ed.In reent years, a variety of adaptive proedures have been proposed. Among them, let us quotethe wavelet thresholding methods introdued by Donoho and Johnstone whih enjoy exellent statistialresults for numerous risks. See Donoho and Johnstone (1995) and Johnstone (1998).The following setion is foused on the performane of a hard thresholding proedure onstrutedon ξG over weighted Besov balls BG
s,π,r(L).Theorem 5.1. Let p > 1. Assume that the ondition (44) holds. Let us onsider the following hardthresholding estimator:

f̃(x) =
∑

j∈Λ∗

∑

k∈∆j

β̂j,k1
{|β̂j,k|≥κ

√

ln(n)
n

}
ψj,k(G(x)) (55)where

β̂j,k =

∫ 1

0

ψj,k(G(t))
1

v(t)
dYt,with Λ∗ = {j; τ − 1 ≤ j ≤ j∗} for j∗ the integer verifying

2j∗ ≤ n

ln(n)
< 2j∗+1. (56)We have adopted the following notation:

β̂τ−1,k = α̂τ,k =

∫ 1

0

φτ,k(G(t))
1

v(t)
dYt.Then for κ > 0 a large enough onstant, N > s > 0, ∞ ≥ r ≥ 1 and ∞ ≥ π ≥ p, we have

sup
f∈BG

s,π,r(L)

E(‖f̃ − f‖p
p) ≤ C

(

ln(n)

n

)α1p

.Proof of Theorem 5.1. Here we propose to exhibit the maxiset of the proedure f̃ and to show that
Bs,π,r(L) is inluded into this maximal spae. To isolate suh a maxiset, �ve onditions must be heked.

• Two on them onern the geometrial properties of ξG,
• one onerns a weight inequality,
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• two of them onern the estimator β̂j,k.The proof rests on the artile of Piard and Kerkyaharian (2000). For further details on the maxisettheory see Cohen, Piard and Kerkyaharian (2000) and Autin (2004).The geometrial properties of the basis are onentrated in the following lemma:Lemma 5.1. The ondition (44) implies that ξG

• satis�es Temlyakov's property i.e there exist two positive onstants c and C suh that for any �niteset of integer F ⊆ N ∪ {τ − 1} × ∆j we have
c
∑

j,k∈F

‖ψj,k(G(.))‖p
p ≤ ‖(

∑

j,k∈F

|ψj,k(G(.))|2) 1
2 ‖p

p ≤ C
∑

j,k∈F

‖ψj,k(G(.))‖p
p,

• is unonditional for the L
p norm i.e there exists an absolute onstant C suh that if |uj,k| ≤ |vj,k|for all (j, k) ∈ N ∪ {τ − 1} × ∆j , then

‖
∑

j≥τ−1

∑

k∈∆j

uj,kψj,k(G(.))‖p
p ≤ C‖

∑

j≥τ−1

∑

k∈∆j

vj,kψj,k(G(.))‖p
p.Proof of Lemma 5.1. The �rst point was shown by Garia-Martell (1999) and the seond point wasshown by Kerkyaharian and Piard (2003).Property 2.2 and the de�nition of j∗ (see (56)) yield

(
ln(n)

n
)

p
2

∑

k∈Λ∗

‖ψj,k(G(.))‖p
p ≤ C(

ln(n)

n
)

p
2

∑

j≤j∗

2
jp
2

≤ C′(
ln(n)

n
)

p
2 2

j∗p

2

≤ C′′.Thus, the weight ondition holds.Sine ln(n) ≥ 1 for n ≥ 3, Lemma 3.1 yields
• Pf(|β̂j,k − βG

j,k| ≥ κ
2

√

ln(n)
n

) ≤ C( ln(n)
n

)p,
• Ef (|β̂j,k − βG

j,k|2p) ≤ C( ln(n)
n

)p.We dedue that the statistial onditions are satis�ed.Combining all these results, we an apply the maxiset theorem whih said that for any ∞ > p > 1,
1 > ν̃ > 0 and κ large enough, there exists a positive onstant C suh that the following equivaleneholds

Ef (‖f̃ − f‖p
p) ≤ C(

ln(n)

n
)

ν̃p
2 ⇐⇒ f ∈ M(p, ν̃, G)where we have set

M(p, ν̃, G) = E1 ∩ E2,

E1 = {f ; sup
u>0

u(1−ν̃)p
∑

j≥τ−1

∑

k∈∆j

1{|βG
j,k

|>u}‖ψj,k(G(.))‖p
p <∞}and

E2 = {f ; sup
l>τ−1

2
lν̃p
2 ‖
∑

j≥l

∑

k∈∆j

βG
j,kψj,k(G(.))‖p

p <∞}.The following lemma allows us to onlude:Lemma 5.2. For N > s ≥ 1
2 and π ≥ p > 1, we have the following embedding

BG
s,π,r(L) ⊂ M(p,

2s

2s+ 1
, G)One part of the proof is given in Appendix.Finally, we have proved that hard thresholding proedure de�ned in (55) ahieves the minimax rateof onvergene up to a logarithmi term over weighted Besov balls BG

s,π,r(L).



A maxiset approah of Gaussian white noise models. (nonde�nitive version) 226 Warped Gaussian noise modelConsider the Gaussian white noise model in whih we observe Gaussian proesses Y ∗
t governed by thestohasti equation

dY ∗
t = KH(f)(t)dt+

1√
n
dWt, n ∈ N

∗, t ∈ [0, 1], (57)where KH : B([0, 1]) → B([0, 1]) denotes the warping operator de�ned by
KH(f)(t) = f(H−1(t)), t ∈ [0, 1],

G is a funtion measurable on [0, 1] whih are known, inreasing, bijetive and absolutely ontinuoussuh that
H ′ = h, H(0) = 0 and H(1) = 1.

Wt is a standard Brownian motion on [0, 1]. The funtion f is the unknown funtion of interest. Thebasi assumptions are
• h ∈ L

1([0, 1]),

• supx∈[0,1] |f(x)| <∞.Starting from the model (57), one an set two theorems very similar to Theorem 6.1 and Theorem 6.2.Theorem 6.1. Let ∞ > p ≥ 1 and ∞ ≥ π ≥ p. Assume that h satis�es the following ondition:
1

h
∈ L

π∗([0, 1]) (58)where π∗ = max(π
2 , 1). Then for N > s > 0 and ∞ ≥ r ≥ 1 we have

inf
f̂

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≍ n−α1p.Theorem 6.2. Let ∞ > p > 1. Assume that v satis�es the following ondition:

‖ 1

h
‖∞ <∞. (59)Then for N > s > 1

π
, ∞ ≥ π ≥ 1, ∞ ≥ r ≥ 1 and ǫ < 0 we have

inf
f̂

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≍ (

ln(n)

n
)α2pFor ǫ = 0, there exist C > 0 and c > 0 satisfying

c(
ln(n)

n
)α2p ≤ inf

f̂

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≤ C(

ln(n)

n
)α2p(ln(n))(

p
2−π

r
)+ .Proofs of Theorem 6.1 and 6.2. For the upper bounds, it su�es to onsider the estimators

φ̂j,k =

∫ 1

0

φj,k(H−1(t))
1

h(H−1(t))
dY ∗

t , β̂j,k =

∫ 1

0

ψj,k(H−1(t))
1

h(H−1(t))
dY ∗

t ,to remark that
β̂j,k − βj,k ∼ N (0, (η∗j,k)2)with
η∗j,k = (

∫ 1

0

ψ2
j,k(t)

1

h(t)
dt)

1
2 ,to use same proedures whih appeared in Theorem 3.1, Theorem 3.2 and the same tehniques of theirproofs. The lower bound is an immediate onsequene of Theorem 3.4 and Property 2.1.Moreover, one an easily show the following theorems:
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1

h(H−1(.))
∈ Ap. (60)Then for N > s > q(w) (see (8)) and ∞ ≥ r ≥ 1 we have

inf
f̂

sup
f∈BH

s,π,r(L)

Ef (‖f̂ − f‖p
p) ≍ n−α1p.Theorem 6.4. Let p > 1. Assume that the ondition (60) holds. Let us onsider the following hardthresholding proedure (55) with G = H and

β̂j,k =

∫ 1

0

ψj,k(H−1(t))
1

h(H−1(t))
dY ∗

t .Then for κ > 0 a large enough onstant, N > s > 0, ∞ ≥ r ≥ 1 and ∞ ≥ π ≥ p, we have
sup

f∈BH
s,π,r(L)

E(‖f̃ − f‖p
p) ≤ C

(

ln(n)

n

)α1p

.Remark 6.1. Note that the assumption (60) authorizes the fat that h is not bounded from above andnot bounded from above. For instane, onsider
h(x) =

π

2
αxα−1 cos (

π

2
xα),

1

p
< α < 1, x ∈ [0, 1].7 Appendix: Proofs of tehnial LemmasProof of Lemma 3.1. It is well known that if N ∼ N

(

0, σ2
) then we have the following onentrationinequality:

P(|N | ≥ x) ≤ 2 exp(− x2

2σ2
).Thus, for κ ≥ 2

√
2p and n ≥ 3, we have

Pf

(

|Vn| ≥
κ

2

√

ln(n)

n

)

≤ 2 exp(−κ
2n( ln(n)

n
)

8
) = 2n−κ2

8 ≤ 2n−p.Moreover, it is well known that if N ∼ N (0, σ2) then for all α > 1 there exists C > 0 suh that
Ef (|Vn|α) ≤ Cn−α

2 .Proof of Lemma 3.2. Sine ‖f‖∞ <∞ and 1
v
belongs to L

2([0, 1]), one gets
Ef (exp (

n

2

∫ 1

0

f2(t)

v2(t)
dt)) ≤ exp(

n

2
‖f‖2

∞‖1

v
‖2
2) <∞.Following Novikov's ondition and Girsanov's theorem, the likelihood ratio de�ned by (25) an be writtenas follows:

∧n(gε∗
k
, gǫ) = exp (n

∫ 1

0

(gε∗
k
(t) − gǫ(t))

v(t)
dYt −

n

2

∫ 1

0

(g2
ε∗

k
(t) − g2

ε(t))

v2(t)
dt).Under Pgǫ

, we see that
∧n(gǫ∗

k
, gǫ) = exp (−n

2

∫ 1

0

(gε∗
k
(t) − gǫ(t))

2

v2(t)
dt+

√
n

∫ 1

0

(gε∗
k
(t) − gǫ(t))

v(t)
dWt).Sine gε∗

k
(t) − gǫ(t) = −2γjǫkψj,k(t), by hoosing γj = n− 1

2 we obtain
∧n(gε∗

k
, gǫ) = exp(−2

∫ 1

0

ψ2
j,k(t)

v2(t)
dt− 2ǫk

∫ 1

0

ψj,k(t)

v(t)
dWt).
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Uj,k = −2

∫ 1

0

ψ2
j,k(t)

v2(t)
dt and Vj,k = −2ǫk

∫ 1

0

ψj,k(t)

v(t)
dWt.We have learly

{∧n(gε∗
k
, gǫ) ≥ e−λ} ⊇ {Uj,k + Vj,k ≥ −λ} ⊇ {|Uj,k + Vj,k| ≤ λ}.Applying Chebyhev's inequality and remarking that Ef (|W |) =

√

2
π
for W ∼ N (0, 1), one obtains

Pgǫ
(∧n(gε∗

k
, gǫ) ≥ e−λ) ≥ 1 − Pgǫ

(|Uj,k + Vj,k| > λ) ≥ 1 − 1

λ
(Egǫ

(|Uj,k|) + Egǫ
(|Vj,k|))

= 1 − 1

λ
(|Uj,k| +

2√
π

√

|Uj,k|).Property 2.1 yields
∑

k∈Rj

|Uj,k| = 2

∫ 1

0

1

v2(t)

∑

k∈Rj

ψ2
j,k(t)dt ≤ C‖1

v
‖2
22

j = C′2j (61)and
∑

k∈Rj

√

|Uj,k| ≤
√

∑

k∈Rj

|Uj,k|
√

∑

k∈Rj

1 ≤ C2j. (62)Thus, for λ large enough we have
∑

k∈Rj

inf
εi∈{−1,+1}

i6=k

Pgǫ
(∧n(gε∗

k
, gǫ) > e−λ) ≥ c2j − c′

λ
2j

≥ c′′2j .This ends the proof of Lemma 3.2.proof of Lemma 3.3. Sine ‖v‖∞ <∞, we have
ηj,k =

√

∫ 1

0

ψ2
j,k(t)v2(t)dt ≤ ‖v‖∞.Applying Lemma 3.1, the onentration inequality is obvious. Using the same lemma, one gets

Pf (|β̂j,k − βj,k| >
κ′

2

√

j

n
) ≤ 2 exp(− n(k′)2

8‖v‖2
∞

j

n
)

≤ C2−κjfor κ′ =
√

8‖v‖2
∞κ. This ends the proof of Lemma 3.3.Proof of Lemma 3.4. Following Girsanov's theorem, under Pgk

we have
∧n(g0, gk) = exp (−n

2

∫ 1

0

(g0(t) − gk(t))2

v2(t)
dt+

√
n

∫ 1

0

(g0(t) − gk(t))

v(t)
dWt)

= exp (−n
2
γ2

j

∫ 1

0

ψ2
j,k(t)

v2(t)
dt− γj

√
n

∫ 1

0

ψj,k(t)

v(t)
dWt).Setting

U ′
j,k = −c20

ln(n)

2

∫ 1

0

ψ2
j,k(t)

v2(t)
dt and V ′

j,k = −c0
√

ln(n)

∫ 1

0

ψj,k(t)

v(t)
dWt,we have learly

{∧n(g0, gk) ≥ 2−λ∗j} ⊇ {U ′
j,k + V ′

j,k ≥ −λ∗ ln(2j)} ⊇ {|U ′
j,k + V ′

j,k| ≤ λ∗ ln(2j)}.
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Pgk

(∧n(g0, gk) ≥ 2−λ∗j) ≥ 1 − Pgk
(|U ′

j,k + V ′
j,k| ≥ λ∗ ln(2j)) ≥ 1 − 1

λ∗ ln(2j)
(Egk

(|U ′
j,k|) + Egk

(|V ′
j,k|))

= 1 − 1

λ∗ ln(2j)
(|U ′

j,k| +
2√
π

√

|U ′
j,k|).Choosing γj =

√

ln(n)
n

and using the inequalities (61) and (62), we show that
∑

k∈Rj

Pgk
(∧n(g0, gk) ≥ 2−λ∗j) ≥

∑

k∈Rj

(1 − 1

λ∗ ln(2j)
(Egk

(|U ′
j,k|) +

2√
π

Egk
(
√

|U ′
j,k|)))

≥ c2j − c′2j

λ∗ ln(2j)
(c20 ln(n) + c0

√

ln(n))

≥ c2j − c′2j ln(n)

λ∗ ln(2j)
(c20 + c0).Using assumption (39), for c0 small enough we see that

∑

k∈Rj

Pgk
(∧n(g0, gk) ≥ 2−λ∗j) ≥ c2j − c′′c02j

λ∗

≥ p02
j.and this ends the proof of Lemma 3.4.Proof of Lemma 3.5. Upper bound: We have the following splits:

∑

k∈∆j

ρπ
j,k =

N−1
∑

k=0

ρπ
j,k +

2j−N−1
∑

k=N

ρπ
j,k +

2j−1
∑

k=2j−N

ρπ
j,k. (63)For the �rst term, we have

N−1
∑

k=0

ρπ
j,k ≤ N‖ψ‖π

∞2
jπ
2 (

∫
2N−1

2j

0

t−σdt)
π
2

≤ C2
jπ
2 (2j(σ−1) π

2 )

= C2j σπ
2 . (64)Sine t−σ is dereasing and ∑k≥1 k

−β <∞ for β > 1, one an bound the seond term as
2j−N−1
∑

k=N

ρπ
j,k ≤ 2j σπ

2

2j−N−1
∑

k=N

(k −N + 1)−
σπ
2

≤ C2j σπ
2 . (65)Remark that the funtion z(t) = t−σ+1 is onave on ]0, 1] for 2

p
< σ < 1. So

2j−1
∑

k=2j−N

ρπ
j,k ≤ N‖ψ‖π

∞2
jπ
2 (

∫ 1

1− 2N−1

2j

t−σdt)
π
2

≤ C2
jπ
2 (1 − (1 − (2N − 1)2−j)−σ+1)

π
2

≤ C′2j σπ
2 . (66)Cauhy-Shwartz's inequality gives us

1 = (

∫ 1

0

ψ2
j,k(t)dt)π

= (

∫ 1

0

v∗(t)

v∗(t)
ψj,k(t)ψj,k(t)dt)π

≤ ρπ
j,kη

π
j,k. (67)
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∑

k∈Rj

η−π
j,k ≤

∑

k∈∆j

ρπ
j,k ≤ C2

jσπ
2 .Lower bound: Sine t−σ is dereasing for 2

p
< σ < 1, we have learly

c2j σπ
2 ≤

∑

k∈Rj

(
k +N

2j
)−

σπ
2 ≤

∑

k∈Rj

η−π
j,k . (68)This ends the proof of Lemma 3.5.Proof of Lemma 3.6. Following Girsanov's theorem, under Pgǫ

we have
∧n(gǫ∗

k
, gǫ) = exp (−n

2

∫ 1

0

(gε∗
k
(t) − gǫ(t))

2

v2
∗(t)

dt+
√
n

∫ 1

0

(gε∗
k
(t) − gǫ(t))

v∗(t)
dWt).Sine gε∗

k
(t) − gǫ(t) = −2η−1

j,kγjǫkψj,k(t), by hoosing γj = n− 1
2 we obtain

∧n(gε∗
k
, gǫ) = exp(−2η−2

j,k

∫ 1

0

ψ2
j,k(t)

v2
∗(t)

dt− 2ǫkη
−1
j,k

∫ 1

0

ψj,k(t)

v∗(t)
dWt)

= exp(−2 − 2η−1
j,kǫk

∫ 1

0

ψj,k(t)

v∗(t)
dWt).Sine

−2η−1
j,kǫk

∫ 1

0

ψj,k(t)

v∗(t)
dWt ∼ N (0, 4),if we hose λ = 2, we have learly

Pgǫ
(∧n(gε∗

k
, gǫ) > e−λ) =

1

2
.This ends the proof of Lemma 3.6.Proof of Lemma 4.1. Following Girsanov's theorem, under Pgǫ

we obtain
∧n(gǫ∗

k
, gǫ) = exp (−n

2

∫ 1

0

(gε∗
k
(t) − gǫ(t))

2

v2(t)
dt+

√
n

∫ 1

0

(gε∗
k
(t) − gǫ(t))

v(t)
dWt).Sine gε∗

k
(t) − gǫ(t) = −2γjǫkψj,k(G(t)), by hoosing γj = n− 1

2 it follows that
∧n(gε∗

k
, gǫ) = exp(−2

∫ 1

0

ψ2
j,k(G(t))

v2(t)
dt− 2ǫk

∫ 1

0

ψj,k(G(t))

v(t)
dWt)

= exp(−2 − 2ǫk

∫ 1

0

ψj,k(G(t))

v(t)
dWt).Sine

−2ǫk

∫ 1

0

ψj,k(G(t))

v(t)
dWt ∼ N (0, 4),if we hose λ = 2, we have learly

Pgǫ
(∧n(gε∗

k
, gǫ) > e−λ) =

1

2
.This �nished the proof of Lemma 4.1.
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BG

s,π,r(L) ⊂ {f , sup
u>0

u
π

1+2s

∑

j≥τ−1

∑

k∈∆j

1{|βG
j,k

|>u}‖ψj,k(G(.))‖π
π <∞}see Kerkyaharian and Piard (2005).Assume that f belongs to BG

s,π,r(L) ⊂ BG
s,π,∞(L) for all s ≥ 0. Using Minkowski's inequality andProperty 2.2, for any l ≥ τ − 1 one gets

‖
∑

j≥l

∑

k∈∆j

βG
j,kψj,k(G(.))‖π2

ls
1+2s ≤

∑

j≥l

‖
∑

k∈∆j

βG
j,kψj,k(G(.))‖π2

ls
1+2s

≤ C
∑

j≥l

2
j
2 (
∑

k∈∆j

|βG
j,k|πw(Ij,k))

1
π 2

ls
1+2s

≤ CL
∑

j≥l

2
ls

1+2s
−js ≤ C′

∑

j≥l

2(l−j)s ≤ C′′.So
BG

s,π,∞(L) ⊆ {f , sup
l>τ−1

2
lsπ

1+2s ‖
∑

j≥l

∑

k∈∆j

βG
j,kψj,k(G(.))‖π
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