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Abstract

We consider the problem of estimating an unknown function f in a Gaussian white noise setting
under L risk. We investigate the minimax rate of convergence over usual Besov spaces and over
weighted Besov spaces. We show via the maxiset approach that the natural hard thresholding
procedure constructed on warped wavelet bases is close to the optimal over weighted Besov spaces.

Minimax, Muckenhoupt weights, Maxiset, Gaussian noise, warped wavelets, wavelet thresholding.
Primary : 62G07, Secondary : 62G20, 42B20.

1 Introduction

Consider the Gaussian white noise model in which we observe processes th governed by

—dW eN, tel0,1] (1)
n

\/_ ts 5 B

where the operator H, : [0,1] — [0, 1] is defined by

dYy = Hy(f)(t)dt +

The known function v is supposed to satisfy the condition ’% belongs to L2 ([0,1])’. The process W; is
a standard Brownian motion on [0,1]. The unknown function of interest f is supposed to be bounded
from above. We wish to estimate f on [0, 1] given a realization {Y;, ¢t € [0,1]} with small L” risk

By ( / F) - fyPd)

where E; is the expectation with respect the distribution IP; of processes Y; and f denotes a measurable
function on [0, 1] with respect to the observations (1).

In the simplest case where v is constant, we observe the well known Gaussian white noise model
which has been considered in several papers starting from Ibragimov and Has’minskii (1977). Under
certain assumptions on the smoothness of f, the model (1) becomes an appropriate large sample limit
to more general non parametric models such as probability density estimation (see Nussbaum (1996))
or nonparametric regression (see Brown and Low (1996)). Minimax properties can be found in the book
of Tsybakov (2004).

In the case where v is spatially inhomogeneous, the curve estimation is significantly more compli-
cated. For instance, consider the observation of data (Y7, X1), ..., (Y,, X,) where

Y = f(Xi) + o(Xi)e;. (2)

where the random variables X; are i.i.d, independent of ¢;, with density g and the epsilon;’s are normal
i.i.d with mean zero and variance 1. Brown and Low (1996) have shown that if ¢ and g satisfy some
condition of boundedness and f belongs to certain Sobolev classes then the model

dZ, = v(t)dY;, te€ [0,1] (3)
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is asymptotically equivalent (in Le Cam’s sense) to (2) under the calibration v = -%2. An application of

gk

this result can be found in Efromovich and Pinsker (1996). For other equivalences concerning (3), see
Grama and Nussbaum (1998).

In this paper, we are focused on the model (1) and we consider the problem in the framework of
wavelet analysis. Our study can be divided in two parts.

In a first part, we investigate the estimation of f over usual Besov spaces B; r (L) under L? risk.
We show that if 7 > p > 1 and v belongs to L™ ([0,1]) for 7' = maz(r,2) then the minimax rate of

convergence is of the form
s

142s

—o1

n where a; =

For other values on the parameters (s, ,r), we show that if v is bounded from above then the minimax
rate of convergence over Bs (L) is of the form

1 S
n(n))az where ay =
n 2(s —

b+
1) +1

In the case where 7 > p > 2, the following question naturally arises : can we obtain the same
minimax rate over such a space for any v which does not belong to L™ ([0, 1])? Using an explicit example,
we show that the answer is 'No’.

This result motivates us to devote a second part in which we investigate other function spaces
more adapted to our model. Our choice will be made on Besov spaces constructed on a wavelet basis
warped by a factor depending on v. Such spaces were introduced in analysis by Qui (1982) and were
recently developed in statistics by Kerkyacharian and Picard (2004). These authors have established
good estimation results in a regression setting with random design (i.e (2) with o(.) = 1) for very
general densities g. The key of the success of our study rests on the following argument : under certain
conditions on the warping factor which refer to Muckenhoupt theory, the warped wavelet bases possess
some interesting geometrical properties in 1”7 norm which allow us to consider function spaces and
procedures deeply linked to the model. Using these analytical tools, we show that if 7 > p > 1, v
belongs to I.2([0, 1]) and if v is subject to a property of Muckenhoupt type then the minimax rate over
weighted Besov spaces BY (L) defined starting from G, the primitive of J, is of the form

8,m,T

s
142s

*1 where a; =

-
The hypotheses made on v are more general than bounded conditions and do not depend directly of the
parameter .

In a second part, we use this warped wavelet basis to construct a natural procedure which stay as
close as possible to the standard thresholding. In order to measure its performance under P risk, we
isolate the associated maziset. This statistical tool developed by Cohen, De Vore, Kerkyacharian and
Picard (2000) consists in investigating the maximal space (or maxiset) where a procedure has a given
rate of convergence. One of the main advantages of this approach is to provide a functional set which is
authentically connected to the procedure and the model. Thus, by choosing the rate

s
1+ 2s

(In(n))*'n="" where a1 =

and considering # > p > 1, we prove that our weighted Besov spaces BSGJW(L) are included into the
maxiset of our procedure. So, we conclude that it is 'near to the optimal’ i.e it attains the minimax rate

of convergence (up to a logarithmic factor) over these spaces.

The paper is organized as follows.

Section 2 defines the basic tools (Muckenhoupt weights, warped wavelet basis ...), inequalities and
function spaces we shall need in the study. In Section 3 we investigate the minimax rate over usual
Besov spaces. Section 4 investigates and discusses the minimax properties over the weighted Besov
spaces. Section 5 is devoted to the performance of a natural hard thresholding procedure when the
unknown function of interest belongs to these weighted spaces. In Section 6, we describe an another
statistical model and we explain why we can have results similar to those obtained in our Gaussian white
noise. Finally, Section 7 is devoted to the proofs of technical lemmas.
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2 Muckenhoupt condition, warped wavelet bases and function
spaces

Throughout this paper, for a weight m (i.e non negative locally integrable function) on [0, 1], we set

1
L%, ([0,1]) = {f measurable on [0,1] | ||f]|%, , = / F()Pm(t)dt < +o0}
0
where L ([0,1]) = L¥ ([0, 1]) denotes the usual Lebesgue space.

2.1 Muckenhoupt condition
First recall the notion of Muckenhoupt weight.

Definition 2.1 (Muckenhoupt condition). Let 1 < p < oc and q such that % + % = 1. A weight m

is said to verify the A, condition (or belong to Ap) if and only if there exists a constant C > 0 such that
for any measurable function h and any subinterval I of [0,1] we have

1 / 1 / 1

— [ |h(z)|dz) < C(——= [ |h(z)|Pm(z)dx)? 4

(o [ olde) < Ol [ h@)lPm(a)as) (@
where |I| denotes the Lebesgue measure of I and m(I) = [, m(z)dz.

If m verifies the A, condition then it is a "Muckenhoupt weight’.
Example 2.1. The weight m(z) = 27 satisfies the A, condition withp > 1 iff -1 <o <p—1.

The previous condition has been introduced by Muckenhoupt (1972) and widely used afterwards
in the context of Calderén-Zygmund theory. The A, condition characterizes the boundedness of certain
integral operators on L?, spaces like the Hardy-Littlewood maximal operator or the Hilbert transform.
For the complete theory, see the book of Stein (1993).

2.2 Warped wavelet bases and Muckenhoupt weights

First we introduce the warped wavelet bases which can be viewed as a generalization of the regular
wavelet bases. Second we set some results which will be intensively used in the sequel of this paper.

Let NV be an integer of the form 2* where u belongs to N*. We denote by
€7 ={ora(T(), k€ Ar; jn(T(): j 27 ke A}, Aj={0,...,2/ 1},
the warped wavelet basis adapted on the interval [0, 1] constructed starting from

e 1) the wavelet associated with a multiresolution analysis on the line V; = {¢; 1, k € Z} such that
Supp(¢) = Supp(y)) = [-N+1,N] and [ +(t)t'dt = 0 for I = 0,..., N — 1. Let us recall that on the
unit interval there exists an integer 7 such that one can built at each level 7 > 7 a wavelet system

(ks %j,1) where
bin(x) =280z — k), k=N—1,N,N+1,.,2/ - N

and ‘
bix() =259z —k), k=N —1,N,N+1,...,2 — N.

For each functions, we add N — 1 functions on the neighborhood of 0 which have the support
contained in [0, (2N —2)279] and N — 1 functions on the neighborhood of 1 which have the support

Y

contained in [1 — (2N — 2)277,1].
e a known function T : [0,1] — [0, 1] which is bijective and absolutely continuous.

We associate to this function the weight
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where T denotes the derivative of T and T~ its inverse function. Remark that for any measurable
positive function z defined on [0, 1], w satisfies

/01 (T () d = /01 2(2)w(z)dz.

See Meyer (1990) and Daubechies (1992) for wavelet bases on the real line. See Cohen, Daubechies,
Jawerth and Vial (1992) for wavelet bases on the interval.
Let oo > p > 1. If w verifies the A, condition then, for any v > 7, any function f of L ([0, 1]) can

be decomposed on ¢7 as
fl@) =Pl @)+ Y Blbin(T(x),
J>vkeA,

where

PI(f)() = Y alya(T(@)), ]k—/f )54 (t)dt

keEA;

and
Js k - / f ¢] k( )
Let us recall some properties linked to £7.

Property 2.1. Let v > 0. There exists a constant C' > 0 such that

Z |k ()" < 2%, zelo1.

keEA;
This inequality is always true if we exchanged ¢ by 1.

Property 2.2. If w € A, then there exist two constant ¢ > 0 and C' > 0 such that for j > 7 we have

2% 3"l Pw(lin) < |PF (I < 02% 3 Jaf, Pw(l;).

kEA; keA;

These inequalities are always true if we exchanged ¢ by 1.

2.3 Function spaces

For any measurable function f defined on [0, 1], we denote the associated N-th order modulus of smooth-

ness as
N
N = su N —1)k T(u Tdu
(t,f,Tﬂr)—8p</J 15 () 0ka@ ) + k) d)

|h|<t Nh L—p

™

where Jyp = {2 €[0,1]: T(z) + Nh € [0,1]}. Let N > s > 0, co > m,r > 1. We say that a function f
of L™ ([0, 1]) belongs to the weighted Besov spaces BT _ (L) if and only if

s,mT,T

X r 0
(/ (M) ldt) <L<o
0 ts t

with the usual modification if r = co. These spaces can be viewed as a generalization of usual Besov
spaces.
Starting from the warped wavelet basis on the unit interval, if w € A, we have

AT < D= (30 @D (S 187 (L)) %)) < L. (6)

j>r—1 kER;

forr>p>1and N > s > g(w) where

inf,~1{w satisfies the A, condition} if w is not a constant on [0, 1],
q(w) = e
0 if w is constant on [0, 1].
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Moreover, under the same condition of Muckenhoupt we have

A5 < L= Q@ IPf ()= flla)")" < L (8)

j>T
with the usual modification if r = co.

For further details on this subsection, we refer the reader to the article of Kerkyacharian and Picard
(2004).

Notations 2.1. If T = I;, we simply denote £ = ¢, a}jk = aj, B}:k = Bk, PjT(f) = P;(f) and
BI_ (L) = Bsr.(L).

s,m,T

Notations 2.2. In the sequel, the constants C, C', C", c, c', ¢" represent any constants we shall need,
and can different from one line to one other.

3 Minimax study over usual Besov spaces

Let us recall that one observe model (1) under the two following assumptions on v and f:
e 1 belongs to L*([0, 1]),
® [|flloc < o0.
The first part of this section is devoted to the proofs of the two following theorems.
Theorem 3.1. Let co > p > 1 and co > 7 > p. Assume that v satisfies the following condition:
v e L™ ([0,1]) (9)
where ©' = max(w,2). Then for N > s >0 and co > r > 1 we have

inf sup  Ey(|[f - flB) xn ™
f f€Bs (L)

where
s

T1+2s

aq

Theorem 3.2. Let co > p > 2. Assume that v satisfies the following condition:

[[v]Joc < 00. (10)
ThenforN>s>%, 2sil >7>1 andﬁZrEl we have
. p In(n)
inf sup  Ep(|lf = fIIP) = ( )*=P
f fEBs xn(L) n
where -
s——+ =
Qo = ul P .
2(s—1)+1

3.1 Proof of Theorem 3.1: upper bound and lower bound
3.1.1 Upper bound

Here, we use the standard method which consists in representing the unknown function f on a regular
wavelet basis and studying the upper bound attained by the associated linear wavelet procedure.

Theorem 3.3. Let co > p > 1 and m > p. Assume that the condition (9) holds. Consider fl the linear
estimator defined by

fliay= > Gmadimn(@) (11)

kGAj(n)
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where

/ b0 1 (B0 ()Y,

Then for N > s >0 and oo > r > 1 there exists a constant C' > 0 such that

sup  Er(If' - flIp) < Onmr
fE€Bs .= - (L)

for j(n) the integer satisfying 27(") ~ ni¥ss

Proof of Theorem 3.3. Using Hdélder’s inequality, for m > p we have

By (If' = flIB) < CEs (N f' = FIF) (12)
Using Minkowski’s inequality and the elementary inequality
(lz +yh)™ <277 (|2]" +[y|™), =y eR,
the L™ risk of f can be decomposed as follows:
Er(If' = £II7) < CE S = Piony (DIF) + 1Psmy (f) = FI7)
= O(Sl + SQ) (13)
Since f € Bs,xr(L) C Bs,x,00(L), the equivalence (8) gives us
Sy < L273m)sm (14)
Using the definition of fl and Property 2.2, one gets
Sio= Bl D2 (Gjtnyk — in) k) Binyk (NI
kGAj(n
< G B (16506 — @jn)kl™))
kEAj(n)
= C2ME-Dgx (15)

Let us consider p;; defined by

Pk = \/ / v (8)¢7, (1)dt. (16)

We have clearly

N . 1
Qj(n)k = Xj(n)k = \/_/ (t)dW; ~ pj(n).ken With €, ~ N(0, E)

To study Sy, we need the following lemma which will be proved in Appendix.

Lemma 3.1. Let n € N*. If V,, ~ N(0, %) then for k > 2v/2m there exists a constant C > 0 only
depending on p such that

P(V,] > 5y/) <ConF,
e E(|V,|") <Cn~%.

Using the second point of Lemma 3.1, one gets

S;<On™E YT M (17)
k€A (n)
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First consider the case where 2 > 7 > 1. Holder’s inequality, Property 2.1 and condition (9) yield

1

2 A < (D /U2(t)¢?(n),k(t)dt)%( S ol

EEA(n) k€A, "0 EEA;(n) .k
1
< C(Qﬂn)/ V2(8)dt) 5 29(m(1=F)
0
< 2, (18)

Second investigate the case where oc > m > 2. Applying Hoélder’s inequality with the measure dv =
¢§(n) . (t)dt, using Property 2.1 and condition (9), one gets

1
> s < /Ovﬂ(t) > G abdt

k€A (n) kEA;(n)
027 ™||o|7
i) (19)

IN

Thus, considering (15), (18), (17) and (19) we obtain for 7 > 1,
Sy < 09Ty~ % (20)
Taking in account that 29(?) ~ n™#% | the inequalities (13), (14) and (20) imply that

Ee (/' = fII7) < C( n—% 49 imsm)
< (C'n ™7,

i(n)m
2

Considering (12), we deduce that for 7 > p > 1,
sup  E(If' = fIIp) < Cn—7

fEBs x,r(L)

This completes the proof of Theorem 3.3. O

3.1.2 Lower Bound
Now, introduce a theorem which will be intensively used in the sequel.

Theorem 3.4. Let j a fized integer, (wji)recr, @ fived sequence and e a sequence such that ¢ =

(ek)rer; € {—1,1}% where

27
={2N-1)I-N; 1=1,2,.. 21
Ry = {ON —1)l-N; 1=1,2, ., 22} (21)
For such €, put €}, = (€})icr, defined by
5; = 5i1{i7ék} — Eil{i:k}-
Consider the functions
9:(x) =7 > wikertjx(T(x)) (22)
kER;
where 7y; is chosen in such a way that g. belongs to BS =r(L). Then for any estimator f we have
Uj = sup By (If — gcllp)
geeBs T, r(L)
> —7] dowh inf Py (Anlgeg,90) > e (T
s e{-1,+1}
kGR itk
where /\n(gsz,gé) denotes the likelihood ratio between the laws induced by ge: and g, defined by
dPp,_,
—_ k
An(QsiaQﬁ) = P (23)

9e



A maxiset approach of a Gaussian white noise model.

Proof of Theorem 3.4. Since T is increasing, for all k£ belonging to R; we have the S;f’;k’s defined by

k—=N+1_ . _ k+N

Shx = Supp(®jx(T()) = [T~ (). T (—;

)]

which satisfy
S]kmS]k/—@fOr k#kl, k,kIER]

and oN _ 1
ICELJRJ‘SjJC - [0,

] € [0,1].

Denote by G the set of all g. defined by (22). For any estimator f, let

Wi = [ 1@ = ersusuT@)Pda

ik
and

Wie= [ 15@) + e, @) Pdo.

ik

Using the fact that the S};k are disjoint, for any positive sequence (d;x)rer,, we have

v, 2 1 a1

card

card Z > E. /w ) = vjerw;rhjx (T (2))|Pdz)

keR B
By the definition of €} and the fact that for all k£ € R;
Card(G) = 2Card(e,¢; € {—1,+1}, i # k,i,k € R;),
we obtain

Uj Z Z ge (le,k + /\n(gEZ s gE)WjQ,k)

keR] €i e{ 1 1}

card

Z 5 Z e E{ 1+1}6J kEge (1{W1 >6P }+€ 1{/\ (95 ,g€)>e—x} {W2 >6;,k})

kER;
> Z inf 67 By, (Lnn(erg0>e 1 (Lgw2, >om 3 + Lows >67,1)-
heR, eie{ #1 A+1} k s Js 3, Js

Now, consider the sequence d; ; defined by
Sjk = VWi, k11,6 (T ())lp-
Using Minkowski’s inequality, we see that
(Wia)? + (Wie)7 2 2905 kll54(T()llp = 2055
Therefore
Liwz, v 3 2 Lyw <o? 3

Putting (24), (25) and (26) together, we deduce that

Uj > —Wf Wby inf Py (An(ger.g0) > e [ia (TP
kER; sie{ 141

(25)
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Theorem 3.4 can be viewed as a generalization of a result which appeared in the book Hérdle,
Kerkyacharian, Picard and Tsybakov (1998).

Theorem 3.5. Let oo > p > 1. Then there exists a constant ¢ > 0 such that for N > s > 0,00 > 7 >1
and oo > r > 1 we have

inf  sup By (|f - fI) > en .
f f€Bs = (L)

Proof of Theorem 3.5. In the sequel, j denotes an integer to be chosen below. Consider the functions g,
defined by (22) with
Wik = 1 and T = Id.

Using the equivalence (6) and the fact than |e;| = 1, one gets

lgells.mr < 72 0F2(Y 7 279) % < Oyt
kER;

Thus, for j large, only the following constraint on +; is necessary to guarantee that g. € B r r(L):
i < L0712*j(s+%).
Now, consider the following lemma which will be proved in Appendix.

Lemma 3.2. If we chose y; = n~% then there ezist A > 0 and po > 0 not depending on n such that

inf P, (An(ges,ge) > e ™) > pp2i.
> L 9. (An(9ez,9¢) > €7%) > po
kER; itk

It follows from Lemma 3.2 and Theorem 3.4 that:

su E Fog?) > — inf A £ ge) >e N ik|P
gEeBs,Er@) g (If = gellp) > 7] Z et Py, (An(gex, ge) Mebs el
> —Tlldﬂll”( )'p

1

T

Choosing j such that y; =n"2 ~ 2-3(5+3) (je 20 ~ nlfﬁ), one gets

m\uk

inf  sup  E(||f - fI7) > —||w||”<
f f€Bexr(L) g ? Vin

> 'nTo?P

)’p

This ends the proof of Theorem 3.5. O
Combining Theorem 3.3 and Theorem 3.5, we obtain Theorem 3.1.
Remark 3.1. If v is a positive constant then we obtain the usual minimaz result.

Example 3.1. Let oo > 7 > p > 1. Consider the model (1) with the operator Hy, (f),
_z 2
vi(t)=t 2 for —1<o0<—.
T

It is clear that the condition (9) holds. So we can apply Theorem 3.1.

Example 3.2. Let oo > 7 > p > 1. Consider the model (1) with the operator H,,(f),
- 1 1
va(t) = (1 —t)*¢ " for 0<a<§ and 0<f < —.
T

Remark that vy is not bounded from above and below and that the condition (9) holds. So we can apply
Theorem 3.1.

The following subsection proposes to investigate the minimax rate over By . (L) under L? loss for
other assumptions on v.
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3.2 Proof of Theorem 3.2: upper bound and lower bound
3.2.1 Upper bound

Theorem 3.6. Let oo > p > 2. Assume that the condition (10) holds. Let us consider the following
hard thresholding procedure:

= > Biwlys o ooy bie(®) @

JkEA2

where we have set
1
Bk = / Vi k(t)v(t)dY;
0

and A2 = {(j,k);j < ja(n), k € A;} for ja(n) the integer verifying

oi2(n) « " gia(n)+1 28
Then for N > s > %, 2sﬁ-1 >7>1 and ﬁ > r > 1, there exists a constant C > 0 such that

satisfies

sup (1% - £ < o2

)agp.
fE€Bs,n (L) n

Proof of Theorem 3.6. Our strategy is the following : we exhibit the maxiset of the procedure f¢ and
we show that Bs (L) is included into this maximal space. To isolate such a maxiset, five conditions
must be checked.

e Two on them concern the geometrical properties of &,
e one concerns a weight inequality,
¢ two of them concern the estimator ng

The proof rests on the article of Kerkyacharian and Picard (2000). For further details on the maxiset
theory see Cohen, De Vore, Kerkyacharian and Picard (2000) and Autin (2004).

It is well-known that the wavelet basis with compact support are unconditional basis of I? (see Meyer
(1990)) and satisfies the Temlyakov’s property (see Temlyakov (2000)) so the geometrical conditions
hold.

Let us now investigate the weight condition. By definition of j2(n) (see (28)), we have

E0he S e < oyE 3 9%

n n L
keA2 j<ja(n)

p _do(n)p
2

2

)

IA
Q

< CII
The proof of this condition is complete. Now, consider the following Lemma:

Lemma 3.3. For j < ja(n) and k € A, the condition (10) implies the following inequalities:

o B (1B — Bial?®) < C(2dyp,

o Py(|Bix — Binl > & In(n)y < o(nl)yp,

The proof is given in Appendix.

Combining all these results, we can apply the maxiset theorem which said that for any co > p > 1,
1> 7 > 0 and k a large enough constant, there exists a positive constant C' such that the following

equivalence holds:

In(n)

Ef(IIf = flIp) < O( )P = f € M(p,D)
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where
M(p,v) = E1 N By,
By ={f; supu 2" s, 0w i Ol < 0o}
j>T—=1keA;
and

By ={f; sup 2’”f||2 > BiwthixOIIE < 00}

>l kEA,
To finish the proof of Theorem 3.6, we use the first point of the following lemma:

> > and —L2=2— > r we have

Lemma 3.4. Foroo>p>2, N> s> 1 2“ 20— 1)+

T 2s+1
Bs,mr(L) C M(p, a2)-

Foroco>p>1, N >s>0, 7T>23+1 and co > r > 1 we have

Bs,mr(L) C M(p: 041).

The proof is just a slight modification of a proof which appeared in Kerkyacharian and Picard
(2004). O

Remark 3.2. From Theorem 3.1 and the second point of Lemma 5.2, we deduce that the hard thresh-
olding procedure (27) is "near’ optimal (i.e optimal up to a logarithmic factor) over Bs (L) in the
case where (10) holds and ™ > 55 .

3.2.2 Lower bound

Theorem 3.7. Let cc > p > 1. Then there exists a constant ¢ > 0 such that for N > s > L1

T’
1+2 >n>1and oo >r > 1 we have

) N In(n) .,
inf  sup B (IF - £1) > o2 o,
f f€B.a. (L) n

Proof of Theorem 3.7. Let us define the following family
{90 =0; gk = v¥jk, k € R}

where R; is defined by (21). In order to prove Theorem 3.7, let us introduce a theorem which can be
view as an adapted version of Lemma 10.1 of Hirdle, Kerkyacharian, Picard and Tsybakov (1998).

Theorem 3.8. Assume the following conditions are fulfilled:
e Yk € R;, vy, is chosen such that g, € Bs r(L),

e There exists a constant pg > 0 satisfying

Z Py (Algo, k) > 27277) > po2’ (29)
kER;

for a fized \* such that 1 > X\* > 0.

Then for any estimator f we have

Po
sup By (||f — fI[B) > 27725 vjllzbll”
fE€Bs x,»(L)

Proof of Theorem 3.8. For sake of simplicity, let us denote by d the P metric, i.e. for any f and g which
belong to LP ([0, 1 ])
)= 170 - g},

5 = 2P|l (30)

Put
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From Chebychev’s inequality, we see that

6;7 sup Er(If—fI) > 6,7 sup By (If — gil®)
feB; (L) ker;u{o0}
> sup Py (If = gkllp > 65)
kER; u{o}
> max( Z Py, (d(f, 98) > 6)), Pgo (d(f, 90) > 65)).
kGR

Since Card(R;) = (2N)~'27, it suffices to prove that

max(2~ Y By (d(F,00) > 65, By, (d(F,90) > 8)) > B
kER;

Assume on the contrary that (32) is false. Then there exists an estimator, say f*, such that

max(2 7 3" By, (d(f* g1) > 6), By (d(F*, g0) > 5)) < 22,

2
kER;
In particular
* p
Pgo (d(f*, 90) > 05) < 70
and
- Po
270 3" Py, (d(f*, i) < 05) > (2N)1—?.
kER;

Putting (34) and the assumption (29) together, we obtain that for any k € R;

S By ({d(f*,g0) < 053 0 {A(go.ge) > 2727)) > S B (A gr) < 6))

kER; kER;

+ > Py (Algo, i) >2727) — (2N) 7127

kER;
> ((2N)"' - %)21 +po2i — (2N) 120

Do i
> =27,
2

We now use the §; defined in (30). First for all k£ € R;

d(gr, 90) = YllVjkllp = 26;

and the triangular inequality implies that

{d(f*, gr) <05} C{d(f*, 90) > 6;}.

keR
Second for all k # k' € R; we have
dlgr:91) = V¥l + 150 llp)

> Yillvskll
2.

V

12

(32)
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Consequently the events {d(f*, gx) < 0;} are disjoint for k # k' € R;. It follows from (35) that

Poo(d(f*,90) > 5;) > Pyl U d(f*,gk) <6))
= > Py (d(f* i) <))
keR;
= Y By (90, 98) L ga(s+.g0)<0;1)
kER;
> 27Ny By (a0 <0} H(gogn) 227375
keR;
= 27V NP, ({d(f7, g9) < 653 N {A(g0, gx) = 2777}
kER;
Pog-a);
—2 .
> 2
Then we contradict (33). So, combining (31) and (32), we deduce that for any estimator f we have
b
sup By (|If - flIp) > 2 72/ %IW)II” o (36)
f€Bs,x,»(L)
O
Using the equivalence (8), one gets
lgrlls,mr < C'Yj2j(s+%7%)'
In order to have the functions g which belong to Bs (L), chose
v; < LC™12 43 -7)
Now consider the following lemma:
Lemma 3.5. Let v; = cgy/ # If there exists a constant ¢ > 0 such that for n large enough
In(27) > cln(n) (37)
then for a fired 1 > X* > 0 and a ¢g small enough there exists a constant py > 0 satisfying
> Py (Algo, i) > 277) > po2. (38)
keR;
Thus, choosing
Y L IO B =
REA n ~V In(n)
and remarking that for n large enough we have
. 1
In(27) > 1 —In(1 +1
M) 2 gy ) — () + o)
1
> 1
> L In(n)
~— 4N +2 ’
the condition (37) and a fortiori, the condition (29) are satisfied. So Theorem 3.8 implies that
7 b
sup B (If - fI)) > 2772 E Dokl
f€Bs = (L)
In(n), » n _%111_
> o
> o n ) ln(n)) ’
_ In(n) aap
= (21
This ends the proof of Theorem 3.7. O

Putting Theorem 3.6 and Theorem 3.7 together, we establish Theorem (3.2)
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3.3 When v does not belong to L™ ([0, 1])
The last part of this section is center around the following question:

Question 3.1. Can we have the same minimaz rate than Theorem 3.1 over Bg (L) for any function
v which does not satisfy the assumption v belongs to L™ ([0,1]) ¢

The answer is contained in the following theorem:

Theorem 3.9. Let 0o >p > 2 and co > w > p. Assume that we observe model (1) with
o 2
v(it)=t 2 for —<o<1. (39)
p

Then for N > s >0 and oo > r > 1 there exist two constant C > 0 and ¢ > 0 such that

Cn=®? >inf sup E(||f - fIB) > en %P
f f€Bs x (L)

where
, S
a=—-
2s+1+4+0— =%
and
s T—p
~ 2s5+1 w(op—2) >s5>0, m>p
R e N>s>_12 >
2s+1+0—2 >822 w(op—2)° ™Zp-

Proof of Theorem 3.9. First, introduce the following lemma which will be proved in Appendix.

Lemma 3.6. Let m > 2. Let us consider p; defined by (16) and n;, defined by

ik = J/O UQL(t) 7 p(t)dt (40)

where v is defined by (39). Then there exist two constant C > 0 and ¢ > 0 such that

2T <3< Y <02’ (41)

kER; keEA;

3.3.1 Upper bound

Let us consider the linear estimator f! defined in (11) where v is defined by (39). Putting the inequalities
(17) and (41) together, one gets

sup  Ep(If' = fIIp) < 0@MWEInmE N7 pr, 4 2miemys
fE€Bs,n (L) KEA ()
< C(QME-1+F)—F 4 gmi(mam)
< C/ln—a’p

1
for j(n) the integer satisfying 2/(") ~ p'+2s+7-%

3.3.2 Lower bound
Consider the functions g, introduced in (22) with
Wik = 7];2 and T = Iy

where 1, is defined by (40). Using the the equivalence (6) and the inequality (41), we see that

1 1 — _i\L i 140 1
lgells.mr < ,ng](s+2)( Z 77j,22 H= < C,ijJ(Hﬁz =)
keER;

1
So if we chose the integer j such that v; ~ 2796+3+5-%) (ie p?++7-% ~ 24) then g, belongs to
Bs »»(L). Now, consider the following Lemma which will be proved in Appendix.
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Lemma 3.7. If we chose v; = n=z then there ezist X > 0 and po > 0 not depending on n such that

inf P n(Ger s e Ay > , L N
Ez‘€{11117+1} 9 (An(gez,9¢) > e %) > po, Vk € R;
i#k

Putting Lemma 3.7 and Theorem 3.4 together, we obtain

-

A e
sup E € f_gs v Z —7P inf w? P € AnlGet s ge) > e_)\ 1/)',k b
il B 17 =) > S B W (00 > ¢l
> Uyl Y
2 5 Pol—= Njk-
2 \/T_L kaRJ' Tk
Using the inequality (41), one gets
inf sup  Bp(|f - flp) > e(nTrGHE)
f f€Bs xr(L)
Z C/n—&p
This ends the proof of Theorem 3.9. O

Remark 3.3. If the condition (10) holds, it clear that for 1 = p we have

inf  sup B (|f = fIB) xn "
f feBopn(L)

where
s

1—|—28+0’—;

*

So we have prove that if the variance function v does not belong to L™ ([0,1]) then the mininax
rate over usual Besov bodies under I? risk can be slower than n~*'?. In particular, Theorem 3.9 shows
that this rate of convergence can truly depend on the nature of .

This arises a new question:

Question 3.2. Can we find function spaces over which the minimaz rate under the 1P risk stay ’stable’
for any function v which does not necessarily belong to L™ ([0,1]) ¢

The answer is developed in the following section.

4 Minimax study over weighted Besov spaces

This section is focused on the proof of the following Theorem:

Theorem 4.1. Let co > p > 1 and oo > © > p. Assume that we observe model (1). Suppose that the
function G defined by
t
1
G(t) = / 1y
V=), 2w

is bijective with G(1) = 1. Assume also that
v (G1(.) € Ap. (42)
Then for N > s > q(w) (see (7)) and oo > r > 1 we have

inf sup By (| f - fII5) < n P
f feBg. (L)

where

M= T s
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4.1 Proof of Theorem 4.1: upper bound and lower bound
4.1.1 Upper bound

Here we proceed as in Section 3 by taking in account that we work with the warped wavelet basis .

Theorem 4.2. Let oo > p > 1 and oo > 7 > p. Assume that the condition (42) holds. Let us consider
f! the linear estimator defined by

= D Gimrdim 4 (Glx)
k€A (n)

where

! 1
k=A¢mmwm5@ﬁ@

Then for N > s > q(w) and oc > 1 > 1 there exists a constant C > 0 such that

sup By (/' - flIp) < Onmr
feBE )

for j(n) the integer satisfying 27(") ~ niFm
Proof of Theorem 4.2. Starting from the inequality (12), it suffices to consider the L™ risk of fl. Minkowski’s
inequality yields

Er(If = fII7) CEs (If" = Py (HIF) + 1Py () = FI7)
C(Q1+ Q). (43)
Note that the condition (42) implies that the equivalence (8) holds for T = G and w = v?(G71(.)) (see

(5)). So

<
<

Qo < 027 i(M)sm (44)
Using the definition of f! and Property 2.1, one gets

Q= Bl Y (Gjimyk — a5 1) bim .k (GODIE)
kGA-( )
J(n)ﬂ -
< (Y By — S 1 Mwimr)
kEAj(n)
= (45)
Using the change of variable y = G~1(t), we obtain
Qs j(n),k — a / ¢] ( )th
S0 .
dj(n),k — CM]G(,n)Jf ~ N(Ol E)
Applying the second point of Lemma 3.1 we obtain
Qf < Cn7F > wlime)
k€A (n)
= Cn 2. (46)

Combining (43), (44), (45), (46) and taking in account that 27(") ~ n#% , we deduce that

f il iz —j(n)sm
E(If - FIF) < €@ n % 4279
<

C'n- .

Using the inequality (12), it comes that

sup  Er(If' = fIIp) < On—.
feBE ., (L)

s\,

This completes the proof of Theorem 4.2. O
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4.1.2 Lower Bound

Theorem 4.3. Let co > p > 1. Assume that the condition (42) holds. Then there exists a constant
¢ > 0 such that for N > s > q(w), oo > 7 > 1 and oo > r > 1 we have

inf  sup By (|f = £I12) > en~7.
I feBE, (L)

Proof of Theorem 4.3. In the sequel, j denotes an integer to be chosen below. Consider the functions g,
defined by (22) with
wjr=1and T=G.

The equivalence (6), the fact that |e;| = 1 and w([0, 1]) = 1 give us
(4L ” 1
Cor < Cy20TD (3 ey |Tw(l; 1)) 7
kER;

< C’ijj(s+%).

A\

Hgs

Thus, for j large, only the following constraint on v; is necessary to guarantee that g. € BSijT(L):
v < Ol ils+3)
Now, introduce the following lemma which will be proved in Appendix.
Lemma 4.1. If we choosing v; = n~% then there exist A\ > 0 and po not depending on n such that

inf P, (An(ger,gc) >e ) >po, VkER;, neN.
si€{191,+1} g ( n(gsk ge) >e ") >po js T
itk

Lemma 4.1 and Theorem 3.4 yield

e~

sup E e f_gs 14 Z —'YP inf P € An ey 9e) > 67A w‘,k G)||p
oo Bl > 5 z;{H 0 (Ange5,90) > e D [0a(@:

e
> Tpo%w S 5@

kER;

Since w = v*(G~'(.)) satisfies the A, condition, we have
k(@I > (/5 |thj 1 () |Pw(z)dz)
Ik

1
> (S0 [ Wasw)dsy

2% (2N = 1)"Pw(S; )¢l

Y%

Using the fact that 3, cp w(Sjk) = w([0,en]) where ey = 2JTL and that n-z ~ 2796+ (je

27 ~ %), we deduce that

X gl
nf s B(If 1) 2 ew@N =17 ol en) v

f reBg, (L)

v

v

cn” 4P, (47)

Finally, by combining Theorem 4.2 and Theorem 4.3 we prove Theorem 4.1.
Remark 4.1. If v is a positive constant then we obtain the usual minimaz result.

Remark 4.2. If v is bounded from below, the inequality (47) is an immediate consequence of the following
inequality:

\Y

Yol @NE > e > il

kER; kER;

27,

v
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4.2 Remarks and examples

The following lemma, proved in Kerkyacharian and Picard (2004), proposes another version of the
condition (42).

Lemma 4.2. Let p > 1 and q such that % + % = 1. Then v*(G1(.)) satisfies the A, condition if and
only if there exists a constant C' > 0 such that

1/t
111 Jr v(x)

1/t
11| Jr v*(2)

Q=

dz)s < C( dx)

for any subinterval T of 0,1].
In order to illustrate our statistical results, consider some examples.

Example 4.1. Observe the model defined in (1) with
v1(t) = et
where (o + 1)72. It is clear that vi and Ul—l belongs to 1.2 ([0, 1]). Moreover
G(z) =2 |, G Yz) =27 , w(z)=02(G ' (z)) = a7¥T

Then if 1 > o > %— 1 we have p—1 > — %5 > 0 so the function w satisfies the A, condition. Therefore,

all conditions are satisfied to apply Theorem 4.1.

Let p > 2, s > 1 and m = p. The following table summarizes the results of Example 3.2, Remark
3.3 and Example 4.1.

Model (1) where | Space A | o values inf ; supye 4 E(|f — fI15)
Bspr(L) |0<a <3 | 07" a= &

vi(t) = c,t73 Bs p.r(L) % <o<l| =xnb 8= ﬁ
Bscjp7r(L) 0<o<l | xn% a= Hs_’;s

For % < 0 < 1, remark that the minimax rate over usual Besov spaces is strictly slower than the
minimax rate over weighted Besov spaces.

Example 4.2. Consider

1—0o

2 2
o(t) = Z(1—29)it = for ~4+1<0<2.
™ p

One can show that v satisfies all conditions of Theorem 4.1. Remark that this last function is not bounded
from above and below and does not belong to L™ ([0, 1]) for # > p > 2.

Thus we have shown that weighted Besov spaces give us stable minimax results for certain v which
does not belonging to L™ for # > p > 2. Starting from these results, we propose to investigate the
performance of an adaptative procedure constructed on ¢ over BE,T’,,(L) in the case where 7 > p, r > 1
and N > s > g(w).

5 Hard thresholding procedure and warped wavelet bases

Among other things, we showed in the previous part that linear procedure (43) are optimal over weighted
Besov spaces. This procedure is not adaptative, i.e achieve substantially slower rate of convergence if
the smoothness of the function that we wish to estimate is misspecified. In recent years, a variety of
adaptive procedures have been proposed. Among them, let us quote the wavelet thresholding methods
introduced by Donoho and Johnstone which enjoy excellent statistical results for numerous risks (see
Donoho and Johnstone (1995) and Johnstone (1998)).

The following section is focused on the performance of a hard thresholding procedure constructed

on £ over weighted Besov spaces B (L).
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Theorem 5.1. Let p > 1. Assume that the condition (42) holds. Let us consider the following hard
thresholding estimator

= 2 Biklgy s e Yis(G@)

jkeA2
where
B = / 03 4(GO) S Vi
and A2 = {(j,k);j < ja(n), k € A;} for ja(n) the integer verifying
9i2(n) < ln?n) < 9d2(m)+1 (48)

Then for k > 0 a large enough constant, N > s > q(w), co > r > 1 and oo > 7 > p, we have

sup  E(|If - fIp) < © (1117(1”))&@

feBE ., (L)

s\,

where
s

1+ 2s

a1 =

Proof of Theorem 5.1. Here, we adopt the maxiset approach in the same way than the proof of Theorem
3.6. The geometrical properties of the basis are a consequence of the following lemma.

Lemma 5.1. The condition ({2) implies that ¢

e satisfies Temlyakov’s property i.e there exist two positive constants ¢ and C' such that for any finite
set of integer F C NU {1 — 1} x A; we have

e Y (@B <Y [y @OD)P)ZIE < C Y (GO,

Jik€F JikeF J.kEF

e is unconditional for the LP norm i.e there exists an absolute constant C such that if |uj | < |v; ]
for all (j,k) e NU{r — 1} x A;, then

1D D untbin GOIE<CI D D vjwthir(GO)IE.

i>T—1keEA; j>T—1kEA;

Proof of Lemma 5.1. The first point was shown by Garcia-Martell (1999) and the second point was
shown by Kerkyacharian and Picard (2003). O

Property 2.2 and the definition of js(n) (see (48)) yield

In(n P ip
8 Y Gl < omihs 5 o
keA2 J<jz2(n)
< O,(ln(n))%Qm(;)p
n

I
Q

Thus, the weight condition holds.
Since In(n) > 1 for n > 3, Lemma 3.1 yields

o Pr(|Bjn — A% > &1/ < o)y

o Er(IBi = BG[) < o).
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We deduce that the statistical conditions are satisfied.

Combining all these results, we can apply the maxiset theorem which said that for any co > p > 1,
1> # > 0 and & large enough, there exists a positive constant C' such that the following equivalence
holds
In(n)

) F = feMpG)

Ef (I1f = flIh) < O(

where we have set
./\/l(p, ﬂ,G) = E1 n EQ,

Ev={f; supu =" 37 3 g0, syl e( GO < oo}
u>0 i>T—1keA; '

and

B = {f; lguglz’%nz 3" BGbk(GO)IIE < oo},

J>1 kEA;
The following lemma allows us to conclude:

Lemma 5.2. For N > s > q(w) and © > p > 1, we have the following embedding

2s
BG (L)CM(p:S—:G)

§,m,T

One part of the proof is given in Appendix.
O

Finally, we have proved that hard thresholding procedure defined in (48) achieves the minimax rate

of convergence up to a logarithmic factor over the weighted Besov space BSGJW(L).

6 Warped Gaussian noise model

(1)

Consider the Gaussian white noise model in which we observe Gaussian processes Y, ' governed by the

stochastic equation

—d eN', tel0,1]
W n

f ts ) I ’

where K denotes the warping operator defined by

Ec(f)(t) = f(G7(t), te[01],

G is a known differentiable and bijective function with

dvV = Kq(f)(t)dt +

G' =y,

and W; is a standard Brownian motion on [0, 1]. The function f is an unknown function of interest and
it is supposed to be bounded from above.

If we suppose that g belongs to L! ([0, 1]) with ||g||; = 1 and that

then we can show results similar to those obtained in Theorem 4.1 and Theorem 5.1 by using the warped
wavelet basis ¢“ and by considering the estimator

1
By Z/ Yiu()dy,”
0

instead of Bj,k.

Remark 6.1. Such a function g is not necessarily bounded from above and below. Consider for instance

m 1 T o 1
g(x) = —az* " cos(=z%), —-<a<l, zel01].
2 2 P [0,1]
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7 Appendix: Proofs of technical Lemmas

Proof of Lemma 3.1. Tt is well known that if N ~ N (0,02) then we have the following concentration

inequality:
72
P(IN| > z) < QGXP(—F)-

Thus, for k > 24/2p and n > 3, we have

2 ln(n) 2
. (w - ln(n)> P QQXP(_%) —on % < on .
n

Moreover, it is well known that if N ~ AN(0,0?) then E(|N|??) = Ko?" where K = \2/—; 0+°O aP ze " dg.

We deduce the existence of a constant C' > 0 which satisfies E(|V,,[?) < Cn~2. O

Proof of Lemma 3.2. Since || f|lsc < o0 and 1 belongs to L*([0,1]), one gets
n [t () nenz L
By lexp (5 [ i) < exp(GIAILIITIE) < o0

Following Novikov’s condition and Girsanov’s theorem, the likelihood ratio defined by (23) can be written
as follows:

g5 (1) —ge(t))dyt B g /1 (9z: () — g (t))dt)_

Ml 90 =exp(n [0 )

Under Py , we see that

A 96) = exp (— 2/0 %dwf/ 509D iy,

Since gex (t) — ge(t) = —2v;€xth;x(t), by choosing v; = n~% we obtain

/\n(gaz ,g) = exp(— / dj] k dt —2¢ / 1/)J , th)

LT ()

o (1)

Let

1 .
Ujp = —2 dt and Vj; = —2ek/ Ykl gy
o ot

We have clearly
{An(gez:9¢) 2 ey D2 {Ujn + Vi = =2} 2 {{Ujn + Vil < A}

Applying Chebychev’s inequality, one obtains

_ 1
Py (An(ger,9e) > €7 > 1=Pg( j,k+ij|>/\)Zl—x(Ege(lUj,k|)+Ee( k1))
1
= —(|U; U
/\(l 7 \/— Uk )-
Property 2.1 yields
Y Ul = t)dt < 0||—||221 C'ol (49)
kER; kE j

and

ST < D Ul [ D] 1< c. (50)

kER; kER; kER;

Thus, for A large enough we have

Z inf ]Pge (/\n(gEZagE) > ei)‘)

g;€{—1,+1
keER; {i#k 1

29 — —27

v

"2,
This ends the proof of Lemma 3.2. O

v
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proof of Lemma 3.3. Since ||v]|» < o0, it is obvious that

M—J/¢ ()t < o],

We conclude by applying Lemma 3.1 and the fact that In(n) > 1 for n large. O

Proof of Lemma 3.5. Following Girsanov’s theorem, under Py, we have
n ! (go(t
An(go,98) = exp(=3 / Mdt+\/_/ 9(’—())th)

v?(t)
5 (t _W‘/E/O %th).

’

v(t)

= exp(

Set
In(n) ' 5, Y i(t)
' 2 g, ' g
k= 0 ) dt and Vj, = cm/ln(n)/o o(0) Wi

we have clearly
{Anlgo,g) 2 2729} 2{U] 4 + Vi 2 =X In(2))} 2 {|Uj  + Vii| < A" In(2/)}.

Applying Chebychev’s inequality, one obtains

e e 1
Py, (An(gosgx) >2729) > 1=P, (U} + V]l > A In(27)) > 1 - W(Ege( Ui kl) + By, (IV] 1))
1
= 1-—F- U’ U!
A* ln(ZJ)(‘ \/_ | Jk|)
Choosing v, = # and using the inequalities (49) and (50), we show that
S Buo(nlan96) 2279 > 37 (1= o (B, (Ufl) + =y (/1U74)
kER; kER; A*In(27) VT 7
. c'2J 9
> 20— )\*T(Qj)(co In(n) + ¢o/In(n))
¢'27In(n)
jg_ -2 "\ 2
> 2 N2 (cg + co).
Using assumption (37), for ¢g small enough we see that
e o 2!
Z ]Pgo(/\n(gmgk) >2 A > /\3
kER;
> pe2’.
and this ends the proof of Lemma 3.5. O
Proof of Lemma 8.6. Upper bound: We have the following splits:
N— 23 _1
Z Pik = Z Pik + Z Pik + Z Pl k- (51)
keA; k=0 keER; k=27 —N+1
For the first term, we have
N—2 2N -2
im 27 s o
P < (V=D ([ 7 eran?
k=0 0
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Since ¢t77 is decreasing and )+, k=8 < oo for B > 1, one can bound the second term as

2N -1

S < ||¢||go2%</ e Y (/ ()02 (1)) F
kER; 0 kR, |{N—1} ¥ Sik
< CE@T 42T Y (k-N+1)77)
kERJ“{N—l}
< C'iY (53)

Remark that the function z(t) = ¢~ 7! is concave on ]0, 1] for % <o <1, we have

291

N
=
ol

IN

. 1
V-2 et

k=27 —N+1
C2% (1-(1- (2N —2)279) 7+1)i
0'21%. (54)

INIA

Cauchy-Schwartz’s inequality gives us

1:/¢

- / %zp] et (D))"
< PiEMik (55)
so, combining (51), (52), (53), (54) and (55) we obtain
SomE < Y <02

kER; kEA;

Lower bound: Since t~7 is decreasing, we have

- k+ N ,u
XF <Y () F LY o (56)
kER; kER;

Since —1 < —0 < —% < 0, t77 verifies the A, condition (see Example 2.1). So the inequality (4) with
h =17 yield
T T T(9] 1 z o z
e < WIEE [ ganier [ rwi <o (57)
Combining (56) and (57), we deduce that
Somize Y Mz’
keER; kER;

This ends the proof of Lemma 3.6. O

Proof of Lemma 3.7. Following Girsanov’s theorem, under PP, we have

(925 () = 9c(0) (g ()~ 9c0)
Moo =esp ([ EEOIOT gy [0 2000 gy

Since gex (1) — ge(t) = —Zn]f,i'yjekz/)j’k(t), by choosing v; = n~7 we obtain

Lap? (1) Vb k(t
An(ger,9e) = exp(—2nj,§/ Jék dt—2eknj,1/ %

exp( 2—2n]k k/ %k
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Since

1
e (t
2 e /0 %())dwtwv(o,zl),

if we chose A = 2, we have clearly

N | =

Py, (/\n(gs; 1 9e) > ei)‘)

This ends the proof of Lemma 3.7. O

Proof of Lemma 4.1. Following Girsanov’s theorem, under ;. we obtain

Mo 00 =exp (- [ RO O gy i [ 020 20D gy

Since gex () — ge(t) = —27;€xtpjk(G(t)), by choosing v; = n=z it follows that

An(9e,9e) = exp(— /¢ dt — 2¢ /%k th)

= exp( 2—26k/ %k ))th)
Since .
¥ik(G(t))
-2 ==t AWy ~ 4),
EkA ’U(t) Wi N(Oa ),
if we chose A = 2, we have clearly

Py, (/\n(gsz 1 9¢) > e_A)

This finished the proof of Lemma 4.1. O

N | =

Proof of Lemma 5.2. For the following embedding

Blrn(L) C{F swpu™ 3 3 s, sl lYaa(G)IIF < oo}

J>T—1kEA;

see Kerkyacharian and Picard (2004).
Assume that f belongs to BY, (L) C Bf

s m.oo(L) for all s > 0. Using Property 2.1 and Property 2.2, for
any | > 7 — 1 one gets

I BGabia(GO=27 < SIS BGaa (GO))lIR2m5
>l keA; >l keA;
< ON (Y IBGIw ) F2mE
i>l kEA;
< 0L221+2s JS<O’Z2’ s <o,
3>l 3>l
So
B, (D) C{f, sup 2 =30 BG(G)IE < o)
j>l keA;
This completes the proof of Lemma 5.2. O
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