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A maxiset approah of a Gaussian white noise modelChesneau ChristopheMay 9, 2005Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, 175 rue deChevaleret, F-75013 Paris, Frane. hristophe.hesneau4�wanadoo.frAbstratWe onsider the problem of estimating an unknown funtion f in a Gaussian white noise settingunder Lp risk. We investigate the minimax rate of onvergene over usual Besov spaes and overweighted Besov spaes. We show via the maxiset approah that the natural hard thresholdingproedure onstruted on warped wavelet bases is lose to the optimal over weighted Besov spaes.Minimax, Mukenhoupt weights, Maxiset, Gaussian noise, warped wavelets, wavelet thresholding.Primary : 62G07, Seondary : 62G20, 42B20.1 IntrodutionConsider the Gaussian white noise model in whih we observe proesses Yt governed bydYt = Hv(f)(t)dt + 1pndWt; n 2 N� ; t 2 [0; 1℄ (1)where the operator Hv : [0; 1℄! [0; 1℄ is de�ned byHv(f)(t) = f(t)v(t) :The known funtion v is supposed to satisfy the ondition ' 1v belongs to L2 ([0; 1℄)'. The proess Wt isa standard Brownian motion on [0; 1℄. The unknown funtion of interest f is supposed to be boundedfrom above. We wish to estimate f on [0; 1℄ given a realization fYt; t 2 [0; 1℄g with small Lp riskEf (Z 10 jf̂(t)� f(t)jpdt)where Ef is the expetation with respet the distribution Pf of proesses Yt and f̂ denotes a measurablefuntion on [0; 1℄ with respet to the observations (1).In the simplest ase where v is onstant, we observe the well known Gaussian white noise modelwhih has been onsidered in several papers starting from Ibragimov and Has'minskii (1977). Underertain assumptions on the smoothness of f , the model (1) beomes an appropriate large sample limitto more general non parametri models suh as probability density estimation (see Nussbaum (1996))or nonparametri regression (see Brown and Low (1996)). Minimax properties an be found in the bookof Tsybakov (2004).In the ase where v is spatially inhomogeneous, the urve estimation is signi�antly more ompli-ated. For instane, onsider the observation of data (Y1; X1); :::; (Yn; Xn) whereYi = f(Xi) + �(Xi)�i: (2)where the random variables Xi are i.i.d, independent of �i, with density g and the epsiloni's are normali.i.d with mean zero and variane 1. Brown and Low (1996) have shown that if � and g satisfy someondition of boundedness and f belongs to ertain Sobolev lasses then the modeldZt = v(t)dYt; t 2 [0; 1℄ (3)1



A maxiset approah of a Gaussian white noise model. 2is asymptotially equivalent (in Le Cam's sense) to (2) under the alibration v = �pg . An appliation ofthis result an be found in Efromovih and Pinsker (1996). For other equivalenes onerning (3), seeGrama and Nussbaum (1998).In this paper, we are foused on the model (1) and we onsider the problem in the framework ofwavelet analysis. Our study an be divided in two parts.In a �rst part, we investigate the estimation of f over usual Besov spaes Bs;�;r(L) under Lp risk.We show that if � � p � 1 and v belongs to L�0 ([0; 1℄) for �0 = max(�; 2) then the minimax rate ofonvergene is of the form n��1 where �1 = s1 + 2s:For other values on the parameters (s; �; r), we show that if v is bounded from above then the minimaxrate of onvergene over Bs;�;r(L) is of the form( ln(n)n )�2 where �2 = s� 1� + 1p2(s� 1� ) + 1 :In the ase where � � p > 2, the following question naturally arises : an we obtain the sameminimax rate over suh a spae for any v whih does not belong to L� ([0; 1℄)? Using an expliit example,we show that the answer is 'No'.This result motivates us to devote a seond part in whih we investigate other funtion spaesmore adapted to our model. Our hoie will be made on Besov spaes onstruted on a wavelet basiswarped by a fator depending on v. Suh spaes were introdued in analysis by Qui (1982) and werereently developed in statistis by Kerkyaharian and Piard (2004). These authors have establishedgood estimation results in a regression setting with random design (i.e (2) with �(:) = 1) for verygeneral densities g. The key of the suess of our study rests on the following argument : under ertainonditions on the warping fator whih refer to Mukenhoupt theory, the warped wavelet bases possesssome interesting geometrial properties in Lp norm whih allow us to onsider funtion spaes andproedures deeply linked to the model. Using these analytial tools, we show that if � � p > 1, vbelongs to L2 ([0; 1℄) and if v is subjet to a property of Mukenhoupt type then the minimax rate overweighted Besov spaes BGs;�;r(L) de�ned starting from G, the primitive of 1v2 , is of the formn��1 where �1 = s1 + 2s:The hypotheses made on v are more general than bounded onditions and do not depend diretly of theparameter �.In a seond part, we use this warped wavelet basis to onstrut a natural proedure whih stay aslose as possible to the standard thresholding. In order to measure its performane under Lp risk, weisolate the assoiated maxiset. This statistial tool developed by Cohen, De Vore, Kerkyaharian andPiard (2000) onsists in investigating the maximal spae (or maxiset) where a proedure has a givenrate of onvergene. One of the main advantages of this approah is to provide a funtional set whih isauthentially onneted to the proedure and the model. Thus, by hoosing the rate(ln(n))�1n��1 where �1 = s1 + 2sand onsidering � � p > 1, we prove that our weighted Besov spaes BGs;�;r(L) are inluded into themaxiset of our proedure. So, we onlude that it is 'near to the optimal' i.e it attains the minimax rateof onvergene (up to a logarithmi fator) over these spaes.The paper is organized as follows.Setion 2 de�nes the basi tools (Mukenhoupt weights, warped wavelet basis ...), inequalities andfuntion spaes we shall need in the study. In Setion 3 we investigate the minimax rate over usualBesov spaes. Setion 4 investigates and disusses the minimax properties over the weighted Besovspaes. Setion 5 is devoted to the performane of a natural hard thresholding proedure when theunknown funtion of interest belongs to these weighted spaes. In Setion 6, we desribe an anotherstatistial model and we explain why we an have results similar to those obtained in our Gaussian whitenoise. Finally, Setion 7 is devoted to the proofs of tehnial lemmas.



A maxiset approah of a Gaussian white noise model. 32 Mukenhoupt ondition, warped wavelet bases and funtionspaesThroughout this paper, for a weight m (i.e non negative loally integrable funtion) on [0; 1℄, we setLpm ([0; 1℄) = �f measurable on [0; 1℄ j kfkpm;p = Z 10 jf(t)jpm(t)dt < +1	where Lp ([0; 1℄) = Lp1 ([0; 1℄) denotes the usual Lebesgue spae.2.1 Mukenhoupt onditionFirst reall the notion of Mukenhoupt weight.De�nition 2.1 (Mukenhoupt ondition). Let 1 < p < 1 and q suh that 1p + 1p = 1: A weight mis said to verify the Ap ondition (or belong to Ap) if and only if there exists a onstant C > 0 suh thatfor any measurable funtion h and any subinterval I of [0; 1℄ we have( 1jI j ZI jh(x)jdx) � C( 1m(I) ZI jh(x)jpm(x)dx) 1p (4)where jI j denotes the Lebesgue measure of I and m(I) = RI m(x)dx.If m veri�es the Ap ondition then it is a 'Mukenhoupt weight'.Example 2.1. The weight m(x) = x� satis�es the Ap ondition with p > 1 i� �1 < � < p� 1.The previous ondition has been introdued by Mukenhoupt (1972) and widely used afterwardsin the ontext of Calderón-Zygmund theory. The Ap ondition haraterizes the boundedness of ertainintegral operators on Lpm spaes like the Hardy-Littlewood maximal operator or the Hilbert transform.For the omplete theory, see the book of Stein (1993).2.2 Warped wavelet bases and Mukenhoupt weightsFirst we introdue the warped wavelet bases whih an be viewed as a generalization of the regularwavelet bases. Seond we set some results whih will be intensively used in the sequel of this paper.Let N be an integer of the form 2u where u belongs to N� . We denote by�T = f��;k(T (:)); k 2 �� ;  j;k(T (:)); j � �; k 2 �jg; �j = f0; :::; 2j � 1g;the warped wavelet basis adapted on the interval [0; 1℄ onstruted starting from�  the wavelet assoiated with a multiresolution analysis on the line Vj = f�j;k; k 2 Zg suh thatSupp(�) = Supp( ) = [�N +1; N ℄ and R  (t)tldt = 0 for l = 0; :::; N�1. Let us reall that on theunit interval there exists an integer � suh that one an built at eah level j � � a wavelet system(�j;k;  j;k) where �j;k(x) = 2 j2�(2jx� k); k = N � 1; N;N + 1; :::; 2j �Nand  j;k(x) = 2 j2 (2jx� k); k = N � 1; N;N + 1; :::; 2j �N:For eah funtions, we add N � 1 funtions on the neighborhood of 0 whih have the supportontained in [0; (2N�2)2�j ℄ and N�1 funtions on the neighborhood of 1 whih have the supportontained in [1� (2N � 2)2�j ; 1℄.� a known funtion T : [0; 1℄ 7! [0; 1℄ whih is bijetive and absolutely ontinuous.We assoiate to this funtion the weightw(:) = 1~T (T�1(:)) (5)



A maxiset approah of a Gaussian white noise model. 4where ~T denotes the derivative of T and T�1 its inverse funtion. Remark that for any measurablepositive funtion z de�ned on [0; 1℄, w satis�esZ 10 z(T (x))dx = Z 10 z(x)w(x)dx:See Meyer (1990) and Daubehies (1992) for wavelet bases on the real line. See Cohen, Daubehies,Jawerth and Vial (1992) for wavelet bases on the interval.Let 1 > p > 1. If w veri�es the Ap ondition then, for any � � � , any funtion f of Lp ([0; 1℄) anbe deomposed on �T as f(x) = P T� (f)(x) +Xj�� Xk2�j �Tj;k j;k(T (x));where P Tj (f)(x) = Xk2�j �Tj;k�j;k(T (x)); �Tj;k = Z 10 f(T�1(t))�j;k(t)dtand �Tj;k = Z 10 f(T�1(t)) j;k(t)dt:Let us reall some properties linked to �T .Property 2.1. Let v > 0. There exists a onstant C > 0 suh thatXk2�j j�j;k(x)jv � C2 jv2 ; x 2 [0; 1℄:This inequality is always true if we exhanged � by  .Property 2.2. If w 2 Ap then there exist two onstant  > 0 and C > 0 suh that for j � � we have2 jp2 Xk2�j j�Tj;kjpw(Ij;k) � kP Tj (f)kpp � C2 jp2 Xk2�j j�Tj;kjpw(Ij;k):These inequalities are always true if we exhanged � by  .2.3 Funtion spaesFor any measurable funtion f de�ned on [0; 1℄, we denote the assoiated N -th order modulus of smooth-ness as �N (t; f; T; �) = supjhj�t ZJNh j NXk=0�Nk�(�1)kf(T�1(T (u) + kh))j�du! 1�where JNh = fx 2 [0; 1℄ : T (x) +Nh 2 [0; 1℄g. Let N > s > 0, 1 � �; r > 1. We say that a funtion fof L� ([0; 1℄) belongs to the weighted Besov spaes BTs;�;r(L) if and only if�Z 10 ��N (t; f; T; �)ts �r 1t dt� 1r � L <1with the usual modi�ation if r = 1. These spaes an be viewed as a generalization of usual Besovspaes.Starting from the warped wavelet basis on the unit interval, if w 2 Ap we havekfkTs;�;r � L() ( Xj���1(2j(s+ 12 )(Xk2Rj j�Tj;kj�w(Ij;k)) 1� )r) 1r � L: (6)for � � p > 1 and N > s � q(w) whereq(w) = (infv>1fw satis�es the Av onditiong if w is not a onstant on [0; 1℄;0 if w is onstant on [0; 1℄: (7)



A maxiset approah of a Gaussian white noise model. 5Moreover, under the same ondition of Mukenhoupt we havekfkTs;�;r � L =) (Xj��(2jskP Tj (f)� fk�)r) 1r � L (8)with the usual modi�ation if r =1.For further details on this subsetion, we refer the reader to the artile of Kerkyaharian and Piard(2004).Notations 2.1. If T = Id, we simply denote �T = �, �Tj;k = �j;k, �Tj;k = �j;k, P Tj (f) = Pj(f) andBTs;�;r(L) = Bs;�;r(L).Notations 2.2. In the sequel, the onstants C, C 0, C 00, , 0, 00 represent any onstants we shall need,and an di�erent from one line to one other.3 Minimax study over usual Besov spaesLet us reall that one observe model (1) under the two following assumptions on v and f :� 1v belongs to L2 ([0; 1℄),� kfk1 <1:The �rst part of this setion is devoted to the proofs of the two following theorems.Theorem 3.1. Let 1 > p � 1 and 1 � � � p. Assume that v satis�es the following ondition:v 2 L�0 ([0; 1℄) (9)where �0 = max(�; 2). Then for N > s > 0 and 1 � r � 1 we haveinf̂f supf2Bs;�;r(L) Ef (kf̂ � fkpp) � n��1pwhere �1 = s1 + 2s :Theorem 3.2. Let 1 > p > 2. Assume that v satis�es the following ondition:kvk1 <1: (10)Then for N > s > 1� , p2s+1 � � � 1 and p�22(s� 1� )+1 � r � 1 we haveinf̂f supf2Bs;�;r(L) Ef (kf̂ � fkpp) � ( ln(n)n )�2pwhere �2 = s� 1� + 1p2(s� 1� ) + 1 :3.1 Proof of Theorem 3.1: upper bound and lower bound3.1.1 Upper boundHere, we use the standard method whih onsists in representing the unknown funtion f on a regularwavelet basis and studying the upper bound attained by the assoiated linear wavelet proedure.Theorem 3.3. Let 1 > p � 1 and � � p. Assume that the ondition (9) holds. Consider f̂ l the linearestimator de�ned by f̂ l(x) = Xk2�j(n) �̂j(n);k�j(n);k(x) (11)



A maxiset approah of a Gaussian white noise model. 6where �̂j(n);k = Z 10 �j(n);k(t)v(t)dYt:Then for N > s > 0 and 1 � r � 1 there exists a onstant C > 0 suh thatsupf2Bs;�;r(L) Ef (kf̂ l � fkpp) � Cn��1pfor j(n) the integer satisfying 2j(n) ' n 11+2s .Proof of Theorem 3.3. Using Hölder's inequality, for � � p we haveEf (kf̂ l � fkpp) � C(Ef (kf̂ l � fk��)) p� (12)Using Minkowski's inequality and the elementary inequality(jx+ yj)� � 2��1(jxj� + jyj�); x; y 2 R;the L� risk of f̂ an be deomposed as follows:Ef (kf̂ l � fk��) � C(Ef (kf̂ l � Pj(n)(f)k��) + kPj(n)(f)� fk��)= C(S1 + S2): (13)Sine f 2 Bs;�;r(L) � Bs;�;1(L), the equivalene (8) gives usS2 � L2�j(n)s� (14)Using the de�nition of f̂ l and Property 2.2, one getsS1 = Ef (k Xk2�j(n)(�̂j(n);k � �j(n);k)�j(n);k(:)k��)� C(2j(n)( �2�1) Xk2�j(n) Ef (j�̂j(n);k � �j(n);kj�))= C2j(n)(�2�1)S�1 : (15)Let us onsider �j;k de�ned by �j;k =sZ 10 v2(t)�2j;k(t)dt: (16)We have learly�̂j(n);k � �j(n);k = 1pn Z 10 v(t)�j(n);k(t)dWt � �j(n);k�n with �n � N (0; 1n):To study S�1 , we need the following lemma whih will be proved in Appendix.Lemma 3.1. Let n 2 N� . If Vn � N (0; 1n ) then for � � 2p2� there exists a onstant C > 0 onlydepending on p suh that� P(jVnj � �2q ln(n)n ) � Cn��2 ,� E(jVn j�) � Cn��2 :Using the seond point of Lemma 3.1, one getsS�1 � Cn��2 Xk2�j(n) ��j(n);k: (17)



A maxiset approah of a Gaussian white noise model. 7First onsider the ase where 2 > � � 1. Hölder's inequality, Property 2.1 and ondition (9) yieldXk2�j(n) ��j(n);k � ( Xk2�j(n) Z 10 v2(t)�2j(n);k(t)dt)�2 ( Xk2�j(n);k 1)1��2� C(2j(n) Z 10 v2(t)dt)�2 2j(n)(1� �2 )� C 02j(n): (18)Seond investigate the ase where 1 � � � 2. Applying Hölder's inequality with the measure d� =�2j(n);k(t)dt, using Property 2.1 and ondition (9), one getsXk2�j(n) ��j(n);k � Z 10 v�(t) Xk2�j(n) �2j(n);k(t)dt� C2j(n)kvk��= C 02j(n): (19)Thus, onsidering (15), (18), (17) and (19) we obtain for � � 1,S1 � C2j(n)s�n��2 : (20)Taking in aount that 2j(n) ' n 11+2s , the inequalities (13), (14) and (20) imply thatEf (kf̂ l � fk��) � C(2 j(n)�2 n��2 + 2�j(n)s�)� C 0n��1�:Considering (12), we dedue that for � � p � 1,supf2Bs;�;r(L) Ef (kf̂ l � fkpp) � Cn��1p:This ompletes the proof of Theorem 3.3.3.1.2 Lower BoundNow, introdue a theorem whih will be intensively used in the sequel.Theorem 3.4. Let j a �xed integer, (!j;k)k2Rj a �xed sequene and " a sequene suh that " =("k)k2Rj 2 f�1; 1g 2j2N where Rj = f(2N � 1)l�N ; l = 1; 2; :::; 2j2N g: (21)For suh �, put "�k = ("0i)i2Rj de�ned by"0i = "i1fi6=kg � "i1fi=kg:Consider the funtions g"(x) = j Xk2Rj !j;k"k j;k(T (x)) (22)where j is hosen in suh a way that g� belongs to BTs;�;r(L). Then for any estimator f̂ we haveUj = supg�2BTs;�;r(L) Eg� (kf̂ � g�kpp)� e��2 pj Xk2Rj !pj;k inf"i2f�1;+1gi6=k Pg�(^n(g"�k ; g�) > e��)k j;k(T (:))kppwhere ^n(g"�k ; g�) denotes the likelihood ratio between the laws indued by g"�k and g"k de�ned by^n(g"�k ; g�) = dPg"�kdPg" : (23)



A maxiset approah of a Gaussian white noise model. 8Proof of Theorem 3.4. Sine T is inreasing, for all k belonging to Rj we have the STj;k's de�ned bySTj;k = Supp( j;k(T (:))) = [T�1(k �N + 12j ); T�1(k +N2j )℄whih satisfy STj;k \ STj;k0 = ; for k 6= k0; k; k0 2 Rjand [k2RjSj;k = [0; 2N � 12N ℄ � [0; 1℄:Denote by G the set of all g" de�ned by (22). For any estimator f̂ , letW 1j;k = ZSTj;k jf̂(x) � j"k!j;k j;k(T (x))jpdxand W 2j;k = ZSTj;k jf̂(x) + j"k!j;k j;k(T (x))jpdx:Using the fat that the STj;k are disjoint, for any positive sequene (Æj;k)k2Rj , we haveUj � 1ard(G)X" Eg" (kf̂ � g"kpp)� 1ard(G) Xk2RjX" Eg" (ZSTj;k jf̂(x) � j�k!j;k j;k(T (x))jpdx) (24)By the de�nition of ��k and the fat that for all k 2 RjCard(G) = 2Card(�; �i 2 f�1;+1g; i 6= k; i; k 2 Rj);we obtain Uj � 1ard(G) Xk2Rj X"i2f�1;+1gi6=k Eg" (W 1j;k + ^n(g"�k ; g�)W 2j;k)� 12 Xk2Rj inf"i2f�1;+1gi6=k Æpj;kEg" (1fW 1j;k�Æpj;kg + e��1f^n(g"�k ;g�)>e��g1fW 2j;k�Æpj;kg)� e��2 Xk2Rj inf"i2f�1;+1gi6=k Æpj;kEg" (1f^n(g"�k ;g�)>e��g(1fW 2j;k�Æpj;kg + 1fW 1j;k�Æpj;kg)): (25)Now, onsider the sequene Æj;k de�ned byÆj;k = j!j;kk j;k(T (:))kp:Using Minkowski's inequality, we see that(W 1j;k) 1p + (W 2j;k) 1p � 2j!j;kk j;k(T (:))kp = 2Æj;k:Therefore 1fW 2j;k�Æpj;kg � 1fW 1j;k�Æpj;kg: (26)Putting (24), (25) and (26) together, we dedue thatUj � e��2 pj Xk2Rj !pj;k inf"i2f�1;+1gi6=k Pg�(^n(g"�k ; g�) > e��)k j;k(T (:))kpp:



A maxiset approah of a Gaussian white noise model. 9Theorem 3.4 an be viewed as a generalization of a result whih appeared in the book Härdle,Kerkyaharian, Piard and Tsybakov (1998).Theorem 3.5. Let 1 > p � 1. Then there exists a onstant  > 0 suh that for N > s > 0, 1 � � � 1and 1 � r � 1 we have inf̂f supf2Bs;�;r(L) Ef (kf̂ � fkpp) � n��1p:Proof of Theorem 3.5. In the sequel, j denotes an integer to be hosen below. Consider the funtions g�de�ned by (22) with !j;k = 1 and T = Id:Using the equivalene (6) and the fat than j�ij = 1, one getskg"ks;�;r � j2j(s+ 12 )(Xk2Rj 2�j) 1� � Cj2j(s+ 12 ):Thus, for j large, only the following onstraint on j is neessary to guarantee that g" 2 Bs;�;r(L):j � LC�12�j(s+ 12 ):Now, onsider the following lemma whih will be proved in Appendix.Lemma 3.2. If we hose j = n� 12 then there exist � > 0 and p0 > 0 not depending on n suh thatXk2Rj inf"i2f�1;+1gi6=k Pg�(^n(g"�k ; g�) > e��) � p02j :It follows from Lemma 3.2 and Theorem 3.4 that:supg"2Bs;�;r(L) Eg� (kf̂ � g"kpp) � e��2 pj Xk2Rj inf"i2f�1;+1gi6=k Pg�(^n(g"�k ; g�) > e��)k j;kkpp� e��2 2 jp2 k kpp( 1pn )pp0:Choosing j suh that j = n� 12 ' 2�j(s+ 12 ) (i.e 2j ' n 11+2s ), one getsinf̂f supf2Bs;�;r(L) Ef (kf̂ � fkpp) � e��2 k kpp( 2 j2pn)pp0� 00n��1p:This ends the proof of Theorem 3.5.Combining Theorem 3.3 and Theorem 3.5, we obtain Theorem 3.1.Remark 3.1. If v is a positive onstant then we obtain the usual minimax result.Example 3.1. Let 1 > � � p � 1. Consider the model (1) with the operator Hv1(f),v1(t) = t��2 for � 1 < � < 2�0 :It is lear that the ondition (9) holds. So we an apply Theorem 3.1.Example 3.2. Let 1 > � � p � 1. Consider the model (1) with the operator Hv2(f),v2(t) = (1� t)�t�� for 0 < � < 12 and 0 < � < 1�0 :Remark that v2 is not bounded from above and below and that the ondition (9) holds. So we an applyTheorem 3.1.The following subsetion proposes to investigate the minimax rate over Bs;�;r(L) under Lp loss forother assumptions on v.



A maxiset approah of a Gaussian white noise model. 103.2 Proof of Theorem 3.2: upper bound and lower bound3.2.1 Upper boundTheorem 3.6. Let 1 > p > 2. Assume that the ondition (10) holds. Let us onsider the followinghard thresholding proedure: f̂�(x) = Xj;k2�2n �̂j;k1fj�̂j;kj��q ln(n)n g j;k(x) (27)where we have set �̂j;k = Z 10  j;k(t)v(t)dYtand �2n = f(j; k); j � j2(n); k 2 �jg for j2(n) the integer verifying2j2(n) � nln(n) < 2j2(n)+1: (28)Then for N > s > 1� , p2s+1 � � � 1 and p�22(s� 1� )+1 � r � 1, there exists a onstant C > 0 suh thatsatis�es supf2Bs;�;r(L) Ef (kf̂� � fkpp) � C( ln(n)n )�2p:Proof of Theorem 3.6. Our strategy is the following : we exhibit the maxiset of the proedure ~f� andwe show that Bs;�;r(L) is inluded into this maximal spae. To isolate suh a maxiset, �ve onditionsmust be heked.� Two on them onern the geometrial properties of �,� one onerns a weight inequality,� two of them onern the estimator �̂j;k.The proof rests on the artile of Kerkyaharian and Piard (2000). For further details on the maxisettheory see Cohen, De Vore, Kerkyaharian and Piard (2000) and Autin (2004).It is well-known that the wavelet basis with ompat support are unonditional basis of Lp (see Meyer(1990)) and satis�es the Temlyakov's property (see Temlyakov (2000)) so the geometrial onditionshold.Let us now investigate the weight ondition. By de�nition of j2(n) (see (28)), we have( ln(n)n ) p2 Xk2�2n k j;k(:)kpp � C( ln(n)n ) p2 Xj�j2(n) 2 jp2� C 0( ln(n)n ) p2 2 j2(n)p2� C 00:The proof of this ondition is omplete. Now, onsider the following Lemma:Lemma 3.3. For j � j2(n) and k 2 �j , the ondition (10) implies the following inequalities:� Ef (j�̂j;k � �j;kj2p) � C( ln(n)n )p;� Pf(j�̂j;k � �j;kj � �2q ln(n)n ) � C( ln(n)n )p:The proof is given in Appendix.Combining all these results, we an apply the maxiset theorem whih said that for any 1 > p > 1,1 > ~� > 0 and � a large enough onstant, there exists a positive onstant C suh that the followingequivalene holds: Ef (k ~f � fkpp) � C( ln(n)n )~�p () f 2M(p; ~�)



A maxiset approah of a Gaussian white noise model. 11where M(p; ~�) = E1 \ E2;E1 = ff ; supu>0u(1�~�)p Xj���1 Xk2�j 1fj�j;kj>ugk j;k(:)kpp <1gand E2 = ff ; supl>��1 2 l~�p2 kXj�l Xk2�j �j;k j;k(:)kpp <1g:To �nish the proof of Theorem 3.6, we use the �rst point of the following lemma:Lemma 3.4. For 1 > p > 2, N > s > 1� , p2s+1 � � > 22s+1 and p�22(s� 1� )+1 � r we haveBs;�;r(L) �M(p; �2):For 1 > p > 1, N > s > 0, � > p2s+1 and 1 � r � 1 we haveBs;�;r(L) �M(p; �1):The proof is just a slight modi�ation of a proof whih appeared in Kerkyaharian and Piard(2004).Remark 3.2. From Theorem 3.1 and the seond point of Lemma 5.2, we dedue that the hard thresh-olding proedure (27) is "near" optimal (i.e optimal up to a logarithmi fator) over Bs;�;r(L) in thease where (10) holds and � > p2s+1 .3.2.2 Lower boundTheorem 3.7. Let 1 > p � 1. Then there exists a onstant  > 0 suh that for N > s > 1� ,p1+2s � � � 1 and 1 � r � 1 we haveinf̂f supf2Bs;�;r(L) Ef (kf̂ � fkpp) � ( ln(n)n )�2p:Proof of Theorem 3.7. Let us de�ne the following familyfg0 = 0; gk = j j;k; k 2 Rjgwhere Rj is de�ned by (21). In order to prove Theorem 3.7, let us introdue a theorem whih an beview as an adapted version of Lemma 10:1 of Härdle, Kerkyaharian, Piard and Tsybakov (1998).Theorem 3.8. Assume the following onditions are ful�lled:� 8k 2 Rj , j is hosen suh that gk 2 Bs;�;r(L);� There exists a onstant p0 > 0 satisfyingXk2Rj Pgk(�(g0; gk) � 2���j) � p02j (29)for a �xed �� suh that 1 � �� > 0.Then for any estimator f̂ we havesupf2Bs;�;r(L) Ef (kf̂ � fkpp) � 2�p2j( p2�1)pj k kpp p02 :Proof of Theorem 3.8. For sake of simpliity, let us denote by d the Lp metri, i.e. for any f and g whihbelong to Lp ([0, 1 ℄) d(f; g) = (Z 10 jf(t)� g(t)jpdt) 1p :Put Æj = j2 2j( 12� 1p )k kp: (30)



A maxiset approah of a Gaussian white noise model. 12From Chebyhev's inequality, we see thatÆ�pj supf2Bs�;r(L) Ef (kf̂ � fkpp) � Æ�pj supk2Rj[f0g Egk (kf̂ � gkkpp)� supk2Rj[f0gPgk(kf̂ � gkkp � Æj)� max( 1Card(Rj) Xk2Rj Pgk(d(f̂ ; gk) � Æj);Pg0(d(f̂ ; g0) � Æj)): (31)Sine Card(Rj) = (2N)�12j , it su�es to prove thatmax(2�j Xk2Rj Pgk(d(f̂ ; gk) � Æj);Pg0(d(f̂ ; g0) � Æj)) � p02 : (32)Assume on the ontrary that (32) is false. Then there exists an estimator, say f�, suh thatmax(2�j Xk2Rj Pgk(d(f�; gk) � Æj);Pg0(d(f�; g0) � Æj)) < p02 :In partiular Pg0(d(f�; g0) � Æj) < p02 (33)and 2�j Xk2Rj Pgk(d(f�; gk) < Æj) > (2N)�1 � p02 : (34)Putting (34) and the assumption (29) together, we obtain that for any k 2 RjXk2Rj Pgk(fd(f�; gk) < Æjg \ f�(g0; gk) � 2���jg) � Xk2Rj Pgk(d(f�; gk) < Æj)+ Xk2Rj Pgk(�(g0; gk) � 2���j)� (2N)�12j> ((2N)�1 � p02 )2j + p02j � (2N)�12j> p02 2j : (35)We now use the Æj de�ned in (30). First for all k 2 Rjd(gk; g0) = jk j;kkp = 2Æjand the triangular inequality implies that[k2Rjfd(f�; gk) < Æjg � fd(f�; g0) � Æjg:Seond for all k 6= k0 2 Rj we haved(gk; g0k) = j(k j;kkp + k j;k0kp)� jk j;kkp= 2Æj :



A maxiset approah of a Gaussian white noise model. 13Consequently the events fd(f�; gk) < Æjg are disjoint for k 6= k0 2 Rj . It follows from (35) thatPg0(d(f�; g0) � Æj) � Pg0( [k2Rjd(f�; gk) < Æj))= Xk2Rj Pg0(d(f�; gk) < Æj))= Xk2Rj Egk (�(g0; gk)1fd(f�;gk)<Æjg)� 2���j Xk2Rj Egk (1fd(f�;gk)<Æjg1f�(g0;gk)�2���jg)= 2���j Xk2Rj Pgk(fd(f�; gk) < Æjg \ f�(g0; gk) � 2���jg)> p02 2(1���)j :Then we ontradit (33). So, ombining (31) and (32), we dedue that for any estimator f̂ we havesupf2Bs;�;r(L) Ef (kf̂ � fkpp) � 2�p2j( p2�1)pj k kpp p02 : (36)Using the equivalene (8), one getskgkks;�;r � Cj2j(s+ 12� 1� ):In order to have the funtions gk whih belong to Bs;�;r(L), hosej � LC�12�j(s+ 12� 1� ):Now onsider the following lemma:Lemma 3.5. Let j = 0q ln(n)n . If there exists a onstant  > 0 suh that for n large enoughln(2j) �  ln(n) (37)then for a �xed 1 � �� > 0 and a 0 small enough there exists a onstant p0 > 0 satisfyingXk2Rj Pgk(�(g0; gk) � 2���j) � p02j : (38)Thus, hoosing j = 0r ln(n)n ; i:e 2j ' (r nln(n) ) 1s+12� 1�and remarking that for n large enough we haveln(2j) � 12(s+ 12 � 1� ) (ln(n)� ln(ln(n))) + ln()� 14(s+ 12 � 1� ) ln(n)� 14N + 2 ln(n);the ondition (37) and a fortiori, the ondition (29) are satis�ed. So Theorem 3.8 implies thatsupf2Bs;�;r(L) Ef (kf̂ � fkpp) � 2�p2j( p2�1)pj k kpp p02� ( ln(n)n ) p2 (r nln(n) ) p2�1s+12� 1�= ( ln(n)n )�2p:This ends the proof of Theorem 3.7.Putting Theorem 3.6 and Theorem 3.7 together, we establish Theorem (3.2)



A maxiset approah of a Gaussian white noise model. 143.3 When v does not belong to L�0 ([0; 1℄)The last part of this setion is enter around the following question:Question 3.1. Can we have the same minimax rate than Theorem 3.1 over Bs;�;r(L) for any funtionv whih does not satisfy the assumption 'v belongs to L�0 ([0; 1℄)'?The answer is ontained in the following theorem:Theorem 3.9. Let 1 > p > 2 and 1 � � � p. Assume that we observe model (1) withv(t) = t��2 for 2p < � < 1: (39)Then for N > s > 0 and 1 � r � 1 there exist two onstant C > 0 and  > 0 suh thatCn��0p � inf̂f supf2Bs;�;r(L) Ef (kf̂ � fkpp) � n�~�pwhere �0 = s2s+ 1 + � � 2�and ~� =8<: s2s+1 ��p�(�p�2) > s > 0; � > ps+ 1p� 1�2s+1+�� 2� N > s � ��p�(�p�2) ; � � p:Proof of Theorem 3.9. First, introdue the following lemma whih will be proved in Appendix.Lemma 3.6. Let � > 2. Let us onsider �j;k de�ned by (16) and �j;k de�ned by�j;k =sZ 10 1v2(t) 2j;k(t)dt (40)where v is de�ned by (39). Then there exist two onstant C > 0 and  > 0 suh that2 j��2 � Xk2Rj ���j;k � Xk2�j ��j;k � C2 j��2 : (41)3.3.1 Upper boundLet us onsider the linear estimator f̂ l de�ned in (11) where v is de�ned by (39). Putting the inequalities(17) and (41) together, one getssupf2Bs;�;r(L) Ef (kf̂ l � fkpp) � C(2j(n)( �2�1)n��2 Xk2�j(n) ��j;k + 2�j(n)s�) p�� C 0(2j(n)( �2�1+��2 )n��2 + 2�j(n)s�) p�� C 00n��0pfor j(n) the integer satisfying 2j(n) ' n 11+2s+�� 2� .3.3.2 Lower boundConsider the funtions g� introdued in (22) with!j;k = ��1j;k and T = Idwhere �j;k is de�ned by (40). Using the the equivalene (6) and the inequality (41), we see thatkg"ks;�;r � j2j(s+ 12 )(Xk2Rj ���j;k 2�j) 1� � Cj2j(s+ 12+�2� 1� ):So if we hose the integer j suh that j ' 2�j(s+ 12+�2� 1� ) (i.e n 12s+1+�� 2� ' 2j) then g� belongs toBs;�;r(L). Now, onsider the following Lemma whih will be proved in Appendix.



A maxiset approah of a Gaussian white noise model. 15Lemma 3.7. If we hose j = n� 12 then there exist � > 0 and p0 > 0 not depending on n suh thatinf"i2f�1;+1gi6=k Pg�(^n(g"�k ; g�) > e��) � p0; 8k 2 Rj :Putting Lemma 3.7 and Theorem 3.4 together, we obtainsupg"2Bs;�;r(L) Eg� (kf̂ � g"kpp) � e��2 pj Xk2Rj inf"i2f�1;+1gi6=k !pj;kPg�(^n(g"�k ; g�) > e��)k j;kkpp� e��2 2j( p2�1)p0( 1pn )pk kpp Xk2Rj ��pj;k :Using the inequality (41), one getsinf̂f supf2Bs;�;r(L) Ef (kf̂ � fkpp) � (n� 12 2j( 12+�2� 1p ))p� 0n�~�p:This ends the proof of Theorem 3.9.Remark 3.3. If the ondition (10) holds, it lear that for � = p we haveinf̂f supf2Bs;p;r(L) Ef (kf̂ � fkpp) � n���pwhere �� = s1 + 2s+ � � 2p :So we have prove that if the variane funtion v does not belong to L�0 ([0; 1℄) then the mininaxrate over usual Besov bodies under Lp risk an be slower than n��1p. In partiular, Theorem 3.9 showsthat this rate of onvergene an truly depend on the nature of v.This arises a new question:Question 3.2. Can we �nd funtion spaes over whih the minimax rate under the Lp risk stay 'stable'for any funtion v whih does not neessarily belong to L�0 ([0; 1℄) ?The answer is developed in the following setion.4 Minimax study over weighted Besov spaesThis setion is foused on the proof of the following Theorem:Theorem 4.1. Let 1 > p > 1 and 1 � � � p. Assume that we observe model (1). Suppose that thefuntion G de�ned by G(t) = Z t0 1v2(y)dyis bijetive with G(1) = 1. Assume also thatv2(G�1(:)) 2 Ap: (42)Then for N > s > q(w) (see (7)) and 1 � r � 1 we haveinf̂f supf2BGs;�;r(L) Ef (kf̂ � fkpp) � n��1pwhere �1 = s1 + 2s :



A maxiset approah of a Gaussian white noise model. 164.1 Proof of Theorem 4.1: upper bound and lower bound4.1.1 Upper boundHere we proeed as in Setion 3 by taking in aount that we work with the warped wavelet basis �G.Theorem 4.2. Let 1 > p > 1 and 1 � � � p. Assume that the ondition (42) holds. Let us onsiderf̂ l the linear estimator de�ned bŷf l(x) = Xk2�j(n) �̂j(n);k�j(n);k(G(x))where �̂j(n);k = Z 10 �j(n);k(G(t)) 1v(t)dYt:Then for N > s > q(w) and 1 � r � 1 there exists a onstant C > 0 suh thatsupf2BGs;�;r(L) Ef (kf̂ l � fkpp) � Cn��1pfor j(n) the integer satisfying 2j(n) ' n 11+2s .Proof of Theorem 4.2. Starting from the inequality (12), it su�es to onsider the L� risk of f̂ l. Minkowski'sinequality yields Ef (kf̂ l � fk��) � C(Ef (kf̂ l � PGj(n)(f)k��) + kPGj(n)(f)� fk��)� C(Q1 +Q2): (43)Note that the ondition (42) implies that the equivalene (8) holds for T = G and w = v2(G�1(:)) (see(5)). So Q2 � C2�j(n)s� : (44)Using the de�nition of f̂ l and Property 2.1, one getsQ1 = Ef (k Xk2�j(n)(�̂j(n);k � �Gj(n);k)�j(n);k(G(:))k��)� C(2 j(n)�2 ( Xk2�j(n) Ef (j�̂j(n);k � �Gj(n);kj�)w(Ij(n);k))= C2 j(n)�2 Q�1: (45)Using the hange of variable y = G�1(t), we obtain�̂j(n);k � �Gj(n);k = 1pn Z 10 �j(n);k(G(t)) 1v(t)dWtso �̂j(n);k � �Gj(n);k � N (0; 1n ):Applying the seond point of Lemma 3.1 we obtainQ�1 � Cn��2 Xk2�j(n) w(Ij(n);k)= Cn��2 : (46)Combining (43), (44), (45), (46) and taking in aount that 2j(n) ' n 11+2s , we dedue thatEf (kf̂ l � fk��) � C(2 j(n)�2 n��2 + 2�j(n)s�)� C 0n��1�:Using the inequality (12), it omes thatsupf2BGs;�;r(L) Ef (kf̂ l � fkpp) � Cn��1p:This ompletes the proof of Theorem 4.2.



A maxiset approah of a Gaussian white noise model. 174.1.2 Lower BoundTheorem 4.3. Let 1 > p > 1. Assume that the ondition (42) holds. Then there exists a onstant > 0 suh that for N > s > q(w), 1 � � � 1 and 1 � r � 1 we haveinf̂f supf2BGs;�;r(L) Ef (kf̂ � fkpp) � n��1p:Proof of Theorem 4.3. In the sequel, j denotes an integer to be hosen below. Consider the funtions g�de�ned by (22) with !j;k = 1 and T = G:The equivalene (6), the fat that j�ij = 1 and w([0; 1℄) = 1 give uskg"kGs;�;r � Cj2j(s+ 12 )(Xk2Rj j�kj�w(Ij;k)) 1�� Cj2j(s+ 12 ):Thus, for j large, only the following onstraint on j is neessary to guarantee that g" 2 BGs;�;r(L):j � C�1L2�j(s+ 12 ):Now, introdue the following lemma whih will be proved in Appendix.Lemma 4.1. If we hoosing j = n� 12 then there exist � > 0 and p0 not depending on n suh thatinf"i2f�1;+1gi6=k Pg�(^n(g"�k ; g�) > e��) � p0; 8k 2 Rj ; n 2 N� :Lemma 4.1 and Theorem 3.4 yieldsupg"2Bs;�;r(L) Eg� (kf̂ � g"kpp) � e��2 pj Xk2Rj inf"i2f�1;+1gi6=k Pg�(^n(g"�k ; g�) > e��)k j;k(G)kpp� e��2 p0( 1pn )p Xk2Rj k j;k(G)kpp:Sine w = v2(G�1(:)) satis�es the Ap ondition, we havek j;k(G)kpp � (ZSj;k j j;k(x)jpw(x)dx)� w(Sj;k)( 1jSj;kj ZSj;k j j;k(x)jdx)p� 2 jp2 (2N � 1)�pw(Sj;k)k kp1:Using the fat that Pk2Rj w(Sj;k) = w([0; eN ℄) where eN = 2N�12N and that n� 12 ' 2�j(s+ 12 ) (i.e2j ' n 11+2s ), we dedue thatinf̂f supf2BGs;p;r(L) Ef (kf̂ � fkpp) � w(2N � 1)�p e��2 e��( 2 j2pn )pw([0; eN ℄)k kp1p0� n��1p: (47)Finally, by ombining Theorem 4.2 and Theorem 4.3 we prove Theorem 4.1.Remark 4.1. If v is a positive onstant then we obtain the usual minimax result.Remark 4.2. If v is bounded from below, the inequality (47) is an immediate onsequene of the followinginequality: Xk2Rj k j;k(G)kpp �  Xk2Rj k j;kkpp� 02 jp2 :



A maxiset approah of a Gaussian white noise model. 184.2 Remarks and examplesThe following lemma, proved in Kerkyaharian and Piard (2004), proposes another version of theondition (42).Lemma 4.2. Let p > 1 and q suh that 1p + 1q = 1. Then v2(G�1(:)) satis�es the Ap ondition if andonly if there exists a onstant C > 0 suh that( 1jI j ZI 1v2q(x)dx) 1q � C( 1jI j ZI 1v2(x)dx)for any subinterval I of [0; 1℄.In order to illustrate our statistial results, onsider some examples.Example 4.1. Observe the model de�ned in (1) withv1(t) = �t��2where (� + 1)� 12 . It is lear that v1 and 1v1 belongs to L2 ([0; 1℄). MoreoverG(x) = x�+1 ; G�1(x) = x 1�+1 ; w(x) = v2(G�1(x)) = x ���+1Then if 1 > � > 1p�1 we have p�1 > � ��+1 > 0 so the funtion w satis�es the Ap ondition. Therefore,all onditions are satis�ed to apply Theorem 4.1.Let p > 2, s > 1 and � = p. The following table summarizes the results of Example 3.2, Remark3.3 and Example 4.1.Model (1) where Spae A � values inf f̂ supf2A E(kf̂ � fkpp)Bs;p;r(L) 0 < � < 2p � n��; � = sp1+2sv1(t) = �t��2 Bs;p;r(L) 2p < � < 1 � n�� ; � = sp1+2s+�� 2pBGs;p;r(L) 0 < � < 1 � n��; � = sp1+2sFor 2p < � < 1, remark that the minimax rate over usual Besov spaes is stritly slower than theminimax rate over weighted Besov spaes.Example 4.2. Consider v(t) = 2� (1� t2�) 14 t 1��2 for 2p + 1 < � < 2:One an show that v satis�es all onditions of Theorem 4.1. Remark that this last funtion is not boundedfrom above and below and does not belong to L� ([0; 1℄) for � � p > 2.Thus we have shown that weighted Besov spaes give us stable minimax results for ertain v whihdoes not belonging to L� for � � p > 2. Starting from these results, we propose to investigate theperformane of an adaptative proedure onstruted on �G over BGs;�;r(L) in the ase where � � p, r � 1and N > s > q(w).5 Hard thresholding proedure and warped wavelet basesAmong other things, we showed in the previous part that linear proedure (43) are optimal over weightedBesov spaes. This proedure is not adaptative, i.e ahieve substantially slower rate of onvergene ifthe smoothness of the funtion that we wish to estimate is misspei�ed. In reent years, a variety ofadaptive proedures have been proposed. Among them, let us quote the wavelet thresholding methodsintrodued by Donoho and Johnstone whih enjoy exellent statistial results for numerous risks (seeDonoho and Johnstone (1995) and Johnstone (1998)).The following setion is foused on the performane of a hard thresholding proedure onstrutedon �G over weighted Besov spaes BGs;�;r(L).



A maxiset approah of a Gaussian white noise model. 19Theorem 5.1. Let p > 1. Assume that the ondition (42) holds. Let us onsider the following hardthresholding estimator ~f(x) = Xj;k2�2n �̂j;k1fj�̂j;kj��q ln(n)n g j;k(G(x))where �̂j;k = Z 10  j;k(G(t)) 1v(t)dYt;and �2n = f(j; k); j � j2(n); k 2 �jg for j2(n) the integer verifying2j2(n) � nln(n) < 2j2(n)+1: (48)Then for � > 0 a large enough onstant, N > s > q(w), 1 � r � 1 and 1 � � � p, we havesupf2BGs;�;r(L) E(k ~f � fkpp) � C � ln(n)n ��1pwhere �1 = s1 + 2s :Proof of Theorem 5.1. Here, we adopt the maxiset approah in the same way than the proof of Theorem3.6. The geometrial properties of the basis are a onsequene of the following lemma.Lemma 5.1. The ondition (42) implies that �G� satis�es Temlyakov's property i.e there exist two positive onstants  and C suh that for any �niteset of integer F � N [ f� � 1g ��j we have Xj;k2F k j;k(G(:))kpp � k( Xj;k2F j j;k(G(:))j2) 12 kpp � C Xj;k2F k j;k(G(:))kpp;� is unonditional for the Lp norm i.e there exists an absolute onstant C suh that if juj;kj � jvj;kjfor all (j; k) 2 N [ f� � 1g ��j , thenk Xj���1 Xk2�j uj;k j;k(G(:))kpp � Ck Xj���1 Xk2�j vj;k j;k(G(:))kpp:Proof of Lemma 5.1. The �rst point was shown by Garia-Martell (1999) and the seond point wasshown by Kerkyaharian and Piard (2003).Property 2.2 and the de�nition of j2(n) (see (48)) yield( ln(n)n ) p2 Xk2�2n k j;k(G(:))kpp � C( ln(n)n ) p2 Xj�j2(n) 2 jp2� C 0( ln(n)n ) p2 2 j2(n)p2� C 00:Thus, the weight ondition holds.Sine ln(n) � 1 for n � 3, Lemma 3.1 yields� Pf(j�̂j;k � �Gj;kj � �2q ln(n)n ) � C( ln(n)n )p,� Ef (j�̂j;k � �Gj;kj2p) � C( ln(n)n )p.



A maxiset approah of a Gaussian white noise model. 20We dedue that the statistial onditions are satis�ed.Combining all these results, we an apply the maxiset theorem whih said that for any 1 > p > 1,1 > ~� > 0 and � large enough, there exists a positive onstant C suh that the following equivaleneholds Ef (k ~f � fkpp) � C( ln(n)n ) ~�p2 () f 2M(p; ~�;G)where we have set M(p; ~�;G) = E1 \ E2;E1 = ff ; supu>0 u(1�~�)p Xj���1 Xk2�j 1fj�Gj;kj>ugk j;k(G(:))kpp <1gand E2 = ff ; supl>��1 2 l~�p2 kXj�l Xk2�j �Gj;k j;k(G(:))kpp <1g:The following lemma allows us to onlude:Lemma 5.2. For N > s � q(w) and � � p > 1, we have the following embeddingBGs;�;r(L) �M(p; 2s2s+ 1 ; G)One part of the proof is given in Appendix.Finally, we have proved that hard thresholding proedure de�ned in (48) ahieves the minimax rateof onvergene up to a logarithmi fator over the weighted Besov spae BGs;�;r(L).6 Warped Gaussian noise modelConsider the Gaussian white noise model in whih we observe Gaussian proesses Y (1)t governed by thestohasti equation dY (1)t = KG(f)(t)dt+ 1pndWt; n 2 N� ; t 2 [0; 1℄;where KG denotes the warping operator de�ned byKG(f)(t) = f(G�1(t)); t 2 [0; 1℄;G is a known di�erentiable and bijetive funtion withG0 = g;and Wt is a standard Brownian motion on [0; 1℄. The funtion f is an unknown funtion of interest andit is supposed to be bounded from above.If we suppose that g belongs to L1 ([0; 1℄) with kgk1 = 1 and that1g(G�1(:)) 2 Apthen we an show results similar to those obtained in Theorem 4.1 and Theorem 5.1 by using the warpedwavelet basis �G and by onsidering the estimator�̂(1)j;k = Z 10  j;k(t)dY (1)tinstead of �̂j;k.Remark 6.1. Suh a funtion g is not neessarily bounded from above and below. Consider for instaneg(x) = �2�x��1 os (�2x�); 1p < � < 1; x 2 [0; 1℄:



A maxiset approah of a Gaussian white noise model. 217 Appendix: Proofs of tehnial LemmasProof of Lemma 3.1. It is well known that if N � N �0; �2� then we have the following onentrationinequality: P(jN j � x) � 2 exp(� x22�2 ):Thus, for � � 2p2p and n � 3, we haveP jVnj � �2r ln(n)n ! � 2 exp(��2n( ln(n)n )8 ) = 2n��28 � 2n�p:Moreover, it is well known that if N � N (0; �2) then E(jN j2p ) = K�2p where K = 2pp� R +10 xp� 12 e�xdx.We dedue the existene of a onstant C > 0 whih satis�es E(jVn jp) � Cn� p2 .Proof of Lemma 3.2. Sine kfk1 <1 and 1v belongs to L2 ([0; 1℄), one getsEf (exp (n2 Z 10 f2(t)v2(t) dt)) � exp(n2 kfk21k1v k22) <1:Following Novikov's ondition and Girsanov's theorem, the likelihood ratio de�ned by (23) an be writtenas follows: ^n(g"�k ; g�) = exp (n Z 10 (g"�k(t)� g�(t))v(t) dYt � n2 Z 10 (g2"�k (t)� g2"(t))v2(t) dt):Under Pg� , we see that^n(g��k ; g�) = exp (�n2 Z 10 (g"�k (t)� g�(t))2v2(t) dt+pn Z 10 (g"�k (t)� g�(t))v(t) dWt):Sine g"�k(t)� g�(t) = �2j�k j;k(t), by hoosing j = n� 12 we obtain^n(g"�k ; g�) = exp(�2 Z 10  2j;k(t)v2(t) dt� 2�k Z 10  j;k(t)v(t) dWt):Let Uj;k = �2 Z 10  2j;k(t)v2(t) dt and Vj;k = �2�k Z 10  j;k(t)v(t) dWt:We have learly f^n(g"�k ; g�) � e��g � fUj;k + Vj;k � ��g � fjUj;k + Vj;k j � �g:Applying Chebyhev's inequality, one obtainsPg�(^n(g"�k ; g�) � e��) � 1� Pg�(jUj;k + Vj;k j > �) � 1� 1� (Eg� (jUj;kj) + Eg� (jVj;k j))= 1� 1� (jUj;kj+ 2p�qjUj;kj):Property 2.1 yields Xk2Rj jUj;kj = 2 Z 10 1v2(t) Xk2Rj  2j;k(t)dt � Ck1v k222j = C 02j (49)and Xk2RjqjUj;kj �sXk2Rj jUj;kjsXk2Rj 1 � C2j : (50)Thus, for � large enough we haveXk2Rj inf"i2f�1;+1gi6=k Pg�(^n(g"�k ; g�) > e��) � 2j � 0� 2j� 002j :This ends the proof of Lemma 3.2.



A maxiset approah of a Gaussian white noise model. 22proof of Lemma 3.3. Sine kvk1 <1, it is obvious that�j;k =sZ 10  2j;k(t)v2(t)dt � kvk1:We onlude by applying Lemma 3.1 and the fat that ln(n) � 1 for n large.Proof of Lemma 3.5. Following Girsanov's theorem, under Pgk we have^n(g0; gk) = exp (�n2 Z 10 (g0(t)� gk(t))2v2(t) dt+pnZ 10 (g0(t)� gk(t))v(t) dWt)= exp (�n2 2j Z 10  2j;k(t)v2(t) dt� jpn Z 10  j;k(t)v(t) dWt):Set U 0j;k = �20 ln(n)2 Z 10  2j;k(t)v2(t) dt and V 0j;k = �0pln(n) Z 10  j;k(t)v(t) dWt;we have learlyf^n(g0; gk) � 2���jg � fU 0j;k + V 0j;k � ��� ln(2j)g � fjU 0j;k + V 0j;kj � �� ln(2j)g:Applying Chebyhev's inequality, one obtainsPg�(^n(g0; gk) � 2���j) � 1� Pg�(jU 0j;k + V 0j;kj � �� ln(2j)) � 1� 1�� ln(2j) (Eg� (jU 0j;kj) + Eg� (jV 0j;k j))= 1� 1�� ln(2j) (jU 0j;kj+ 2p�qjU 0j;kj):Choosing j =q ln(n)n and using the inequalities (49) and (50), we show thatXk2Rj Pg0(^n(g0; gk) � 2���j) � Xk2Rj(1� 1�� ln(2j) (Eg0 (jU 0j;kj) + 2p� Eg0 (qjU 0j;kj)))� 2j � 02j�� ln(2j) (20 ln(n) + 0pln(n))� 2j � 02j ln(n)�� ln(2j) (20 + 0):Using assumption (37), for 0 small enough we see thatXk2Rj Pg0(^n(g0; gk) � 2���j) � 2j � 0002j��� p02j :and this ends the proof of Lemma 3.5.Proof of Lemma 3.6. Upper bound: We have the following splits:Xk2�j ��j;k = N�2Xk=0 ��j;k + Xk2Rj ��j;k + 2j�1Xk=2j�N+1 ��j;k: (51)For the �rst term, we have N�2Xk=0 ��j;k � (N � 1)k k�12 j�2 (Z 2N�22j0 t��dt)�2� C2 j�2 (2j(��1) �2 )= C2j ��2 : (52)



A maxiset approah of a Gaussian white noise model. 23Sine t�� is dereasing and Pk�1 k�� <1 for � > 1, one an bound the seond term asXk2Rj ��j;k � k k�12 j�2 (Z 2N�12j0 t��dt)�2 + Xk2Rj jfN�1g(ZSj;k t��(t) 2j;k(t)dt)�2� C(2j ��2 + 2j ��2 Xk2Rj jfN�1g(k �N + 1)���2 )� C 02j ��2 : (53)Remark that the funtion z(t) = t��+1 is onave on ℄0; 1℄ for 2p < � < 1, we have2j�1Xk=2j�N+1 ��j;k � (N � 1)k k�12 j�2 (Z 11� 2N�22j t��dt)�2� C2 j�2 (1� (1� (2N � 2)2�j)��+1)�2� C 02j ��2 : (54)Cauhy-Shwartz's inequality gives us1 = (Z 10  2j;k(t)dt)�= (Z 10 v(t)v(t) j;k(t) j;k(t)dt)�� ��j;k��j;k (55)so, ombining (51), (52), (53), (54) and (55) we obtainXk2Rj ���j;k � Xk2�j ��j;k � C2 j��2 :Lower bound: Sine t�� is dereasing, we have2j ��2 � Xk2Rj(k +N2j )���2 � Xk2Rj ��j;k: (56)Sine �1 < �� < � 2p < 0, t�� veri�es the A2 ondition (see Example 2.1). So the inequality (4) withh = t� yield ��j;k��j;k � k k2�1 (2j ZSj;k 1t� dt)�2 (2j ZSj;k t�dt)�2 � C: (57)Combining (56) and (57), we dedue thatXk2Rj ���j;k �  Xk2Rj ��j;k � 02 j��2 :This ends the proof of Lemma 3.6.Proof of Lemma 3.7. Following Girsanov's theorem, under Pg� we have^n(g��k ; g�) = exp (�n2 Z 10 (g"�k (t)� g�(t))2v2(t) dt+pn Z 10 (g"�k (t)� g�(t))v(t) dWt):Sine g"�k(t)� g�(t) = �2��1j;kj�k j;k(t), by hoosing j = n� 12 we obtain^n(g"�k ; g�) = exp(�2��2j;k Z 10  2j;k(t)v2(t) dt� 2�k��1j;k Z 10  j;k(t)v(t) dWt)= exp(�2� 2��1j;k�k Z 10  j;k(t)v(t) dWt):



A maxiset approah of a Gaussian white noise model. 24Sine �2��1j;k�k Z 10  j;k(t)v(t) dWt � N (0; 4);if we hose � = 2, we have learly Pg�(^n(g"�k ; g�) > e��) = 12 :This ends the proof of Lemma 3.7.Proof of Lemma 4.1. Following Girsanov's theorem, under Pg� we obtain^n(g��k ; g�) = exp (�n2 Z 10 (g"�k (t)� g�(t))2v2(t) dt+pn Z 10 (g"�k (t)� g�(t))v(t) dWt):Sine g"�k(t)� g�(t) = �2j�k j;k(G(t)), by hoosing j = n� 12 it follows that^n(g"�k ; g�) = exp(�2 Z 10  2j;k(G(t))v2(t) dt� 2�k Z 10  j;k(G(t))v(t) dWt)= exp(�2� 2�k Z 10  j;k(G(t))v(t) dWt):Sine �2�k Z 10  j;k(G(t))v(t) dWt � N (0; 4);if we hose � = 2, we have learly Pg�(^n(g"�k ; g�) > e��) = 12 :This �nished the proof of Lemma 4.1.Proof of Lemma 5.2. For the following embeddingBGs;�;r(L) � ff ; supu>0 u �1+2s Xj���1 Xk2�j 1fj�Gj;kj>ugk j;k(G(:))k�� <1gsee Kerkyaharian and Piard (2004).Assume that f belongs to BGs;�;r(L) � BGs;�;1(L) for all s � 0. Using Property 2.1 and Property 2.2, forany l � � � 1 one getskXj�l Xk2�j �Gj;k j;k(G(:))k�2 ls1+2s � Xj�l k Xk2�j �Gj;k j;k(G(:))k�2 ls1+2s� CXj�l 2 j2 (Xk2�j j�Gj;kj�w(Ij;k)) 1� 2 ls1+2s� CLXj�l 2 ls1+2s�js � C 0Xj�l 2(l�j)s � C 00:So BGs;�;1(L) � ff ; supl>0 2� ls�1+2s kf �Xj�l Xk2�j �Gj;k j;k(G(:))k�� <1g:This ompletes the proof of Lemma 5.2.AknowledgmentThe author thanks the Editor, the Assoiate Editor and the referees for their thorough and usefulomments whih have helped to improve the presentation of the paper.
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