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Abstract
We consider the problem of estimating an unknown function f in the heteroscedastic white noise

setting under Lp risk. We exhibit the minimax rate of convergence over usual Besov spaces and over
weighted Besov spaces for a wide class of variance functions. We show via the maxiset approach
that the natural hard thresholding procedure constructed on warped wavelet bases is close to the
optimal over weighted Besov spaces.
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1 Introduction
Consider the heteroscedastic white noise model in which we observe Gaussian processes Yt governed by
the stochastic equation

dYt = f(t)dt +
1√
n

v(t)dWt, n ∈ N∗, t ∈ [0, 1]. (1)

The variance function v is known, positive and belongs to L2([0, 1]). The process Wt is a standard
Brownian motion on [0, 1]. The function f is an unknown function of interest. We wish to estimate f
on [0, 1] with small Lp risk

Ef (
∫ 1

0

|f̂(t)− f(t)|pdt)

where Ef is the expectation with respect the distribution Pf of processes Yt and f̂ denotes a measurable
function on [0, 1] with respect to the observations (1).

In the simplest case where v is constant, we observe the well known Gaussian white noise model
which has been considered in several papers starting from Ibragimov and Has'minskii (1977). Under
certain assumptions on the smoothness of f , the model (1) becomes an appropriate large sample limit
to more general non parametric models such as probability density estimation (see Nussbaum (1996))
or nonparametric regression (see Brown and Low (1996)). Minimax properties can be found in the book
of Tsybakov (2004).

In the case where v is spatially inhomogeneous, the curve estimation is signi�cantly more com-
plicated. For instance, Brown and Low (1996) have shown that if we consider the model (1) with the
variance function v = σ√

g then it is asymptotically equivalent (in Le Cam's sense) to the observation of
data (Y1, X1), ..., (Yn, Xn) where

Yi = f(Xi) + σ(Xi)εi. (2)

The variables Xi are i.i.d, independent of εi and with density g. The variables εi are normal i.i.d with
mean zero and variance 1. Other equivalences can be found in Grama and Nussbaum (1998). Quote
also Efromovich and Pinsker (1996) who use the equivalence between the models (1) and (2) in order to
estimate a smooth regression function under L2 risk.

In this paper, we are focused on the model (1) and we consider the problem in the framework of
wavelet analysis. Our study can be divided in two parts.
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In a �rst part, we investigate the estimation of f over usual Besov spaces denoted Bs,π,r(L) under
Lp risk. We show that if π ≥ p ≥ 1, v belongs to Lπ′([0, 1]) for π′ = max(π, 2) and 1

v belongs to L2([0, 1])
then the minimax rate of convergence is of the form

n−α1 where α1 =
s

1 + 2s
.

For other assumptions on the parameters (s, π, r), we show that if v is bounded from above and 1
v belongs

to L2([0, 1]) then the minimax rate of convergence over Bs,π,r(L) is of the form

(
ln(n)

n
)α2 where α2 =

s− 1
π + 1

p

2(s− 1
π + 1

2 )
.

In the case where π ≥ p > 2, the following question naturally arises : can we obtain this minimax
rate over such a space for any v which do not belong to Lπ? The answer is no. We exhibit such a
function for which the minimax rate over usual Besov spaces is of the form n−β where β < α.

This result motivates us to devote a second part in which we investigate other function spaces more
adapted to our model. Our choice will be made on Besov spaces constructed on a wavelet basis warped
by a factor depending on v. Such spaces were introduced in analysis by Qui (1982) and were developed in
statistics by Kerkyacharian and Picard (2004). These authors have established good estimation results
in a regression setting with random design (i.e (2) with σ(.) = 1) without assumption of boundedness
from above and below for g. The key of the success of our study rests on the following argument : under
certain conditions on the warping factor which refer to Muckenhoupt theory, the warped wavelet bases
possess some interesting geometrical properties in Lp norm which allow us to consider function spaces
and procedures deeply linked to the model. Using these analytical tools, we show that if π ≥ p > 1, v
and 1

v belong to L2([0, 1]) and if v is subject to a property of Muckenhoupt type then the minimax rate
over weighted Besov spaces BG

s,π,r(L) de�ned starting from G, the primitive of 1
v2 , is of the form

n−α1 where α1 =
s

1 + 2s
.

Thus it is not necessary that the variance functions v are bounded from above or depend directly on π
to obtain this result.

In a second part, we use this warped wavelet basis to construct a natural procedure which stay as
close as possible to the standard thresholding. In order to measure its performance under Lp risk, we
adopt the maxiset point of view. This statistical tool developed by Cohen, De Vore, Kerkyacharian and
Picard (2000) consists in investigating the maximal space (or maxiset) where a procedure has a given
rate of convergence. One of the main advantages of this approach is to provide a functional set which is
authentically connected to the procedure and the model. Thus, by choosing the rate

(ln(n))α1n−α1 where α1 =
sp

1 + 2s

and considering π ≥ p > 1, we prove that the BG
s,π,r(L) introduced in the �rst part are included into the

maxiset of our procedure. So, we conclude that it is 'near to the optimal' i.e it attains the minimax rate
of convergence (up to a logarithmic factor) over these spaces.

The paper is organized as follows.
Section 2 de�nes the basic tools (Muckenhoupt weights, warped wavelet basis ...), inequalities and
function spaces we shall need in the study. In Section 3 we investigate the minimax rate over usual
Besov spaces. Section 4 investigates and discusses the minimax properties over the weighted Besov
spaces. Section 5 is devoted to the performance of a natural hard thresholding procedure when the
unknown function of interest belongs to these weighted spaces. In Section 6, we describe other statistical
models and we explain why we can obtain results similar to those in the heteroscedastic white noise.
Finally, Section 7 is devoted to the proofs of technical lemmas.

2 Muckenhoupt conditions, warped wavelet bases and function
spaces

Throughout this paper, for a weight m (i.e non negative locally integrable function) on [0, 1], we set

Lp
m([0, 1]) =

{
f measurable on [0, 1] | ‖f‖p

m,p =
∫ 1

0

|f(t)|pm(t)dt < +∞}
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where Lp([0, 1]) = Lp
1([0, 1]) denotes the usual Lebesgue space.

2.1 Muckenhoupt condition
First recall the notion of Muckenhoupt weight.

De�nition 2.1 (Muckenhoupt condition). Let 1 < p < ∞ and q such that 1
p + 1

p = 1. A weight m

is said to verify the Ap condition (or belong to Ap) if and only if there exists a constant C > 0 such that
for any measurable function h and any subinterval I of [0, 1] we have

(
1
|I|

∫

I

|h(x)|dx) ≤ C(
1

m(I)

∫

I

|h(x)|pm(x)dx)
1
p (3)

where |I| denotes the Lebesgue measure of I and m(I) =
∫

I
m(x)dx.

If m veri�es the Ap condition then it is called 'Muckenhoupt weights'.
Example 2.1. The weight m(x) = xσ satis�es the Ap condition with p > 1 if and only if −1 < σ < p−1.

The previous condition has been introduced by Muckenhoupt (1972) and widely used afterwards
in the context of Calderón-Zygmund theory. The Ap condition characterizes the boundedness of certain
integral operators on Lp

m spaces like the Hardy-Littlewood maximal operator or the Hilbert transform.
For the complete theory, see the book of Stein (1993).

2.2 Warped wavelet bases and Muckenhoupt weights
First we introduce the warped wavelet bases which can be viewed as a generalization of the regular
wavelet bases. Second we set some important results that will be useful in the sequel of this paper.

Let N be an integer of the form 2u where u denotes a 'reasonable' integer. We denote by

ξT = {φτ,k(T (.)), k ∈ ∆τ ; ψj,k(T (.)); j ≥ τ, k ∈ ∆j}, ∆j = {0, ..., 2j − 1},
the warped wavelet basis adapted on the interval [0, 1] constructed starting from

• ψ the wavelet associated with a multiresolution analysis on the line Vj = {φj,k, k ∈ Z} such that
Supp(φ) = Supp(ψ) = [−N +1, N ] and

∫
ψ(t)tldt = 0 for l = 0, ..., N −1. Let us recall that on the

unit interval there exists an integer τ such that one can built at each level j ≥ τ a wavelet system
(φj,k, ψj,k) where

φj,k(x) = 2
j
2 φ(2jx− k), k = N − 1, N, N + 1, ..., 2j −N

and
ψj,k(x) = 2

j
2 ψ(2jx− k), k = N − 1, N,N + 1, ..., 2j −N.

For each functions, we add N − 1 functions on the neighborhood of 0 which have the support
contained in [0, (2N−2)2−j ] and N−1 functions on the neighborhood of 1 which have the support
contained in [1− (2N − 2)2−j , 1].

• a known function T : [0, 1] 7→ [0, 1] which is bijective and absolutely continuous.

We associate to this function the weight

w(.) =
1

T̃ (T−1(.))
(4)

where T̃ denotes the derivative of T and T−1 its inverse function. Remark that for any measurable
positive function z, w satis�es

∫ 1

0

z(T (x))dx =
∫ 1

0

z(x)w(x)dx.

See Meyer (1990) and Daubechies (1992) for wavelet bases on the real line. See Cohen, Daubechies,
Jawerth and Vial (1992) for wavelet bases on the interval.
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Let ∞ > p > 1. If w veri�es the Ap condition then, for any ν ≥ τ , a function f of Lp([0, 1]) can be
decomposed on ξT as

f(x) = PT
ν (f)(x) +

∑

j≥ν

∑

k∈∆j

βT
j,kψj,k(T (x)),

where
PT

ν (f)(x) =
∑

k∈∆ν

αT
ν,kφν,k(T (x)), αT

j,k =
∫ 1

0

f(T−1(t))φj,k(t)dt

and
βT

j,k =
∫ 1

0

f(T−1(t))ψj,k(t)dt.

Let us recall some properties linked to ξT .
Property 2.1. Let v > 0. There exists a constant C > 0 such that

∑

k∈∆j

|φj,k(x)|v ≤ C2
jv
2 , x ∈ [0, 1]. (5)

This inequality is always true if we exchanged φ by ψ.
Property 2.2. If w ∈ Ap then there exist two constant c > 0 and C > 0 such that for j ≥ τ we have

c2
jp
2

∑

k∈∆j

|αT
j,k|pw(Ij,k) ≤ ‖PT

j (f)‖p
p ≤ C2

jp
2

∑

k∈∆j

|αT
j,k|pw(Ij,k).

These inequalities are always true if we exchanged φ by ψ.

2.3 Function spaces
For any measurable function f de�ned on [0, 1], we denote the associated N -th order modulus of smooth-
ness as

ρN (t, f, T, π) = sup
|h|≤t

(∫

JNh

|
N∑

k=0

(
N

k

)
(−1)kf(T−1(T (u) + kh))|πdu

) 1
π

where JNh = {x ∈ [0, 1] : T (x) + Nh ∈ [0, 1]}. Let N > s > 0, ∞ ≥ q, p > 1. We say that a function f
of Lπ([0, 1]) belongs to the weighted Besov spaces BT

s,π,r(L) if and only if
(∫ 1

0

(
ρN (t, f, T, π)

ts

)r 1
t
dt

) 1
r

≤ L < ∞.

These spaces can be viewed as a generalization of usual Besov spaces.
Starting from the warped wavelet basis on the unit interval, if w ∈ Ap we have

‖f‖T
s,π,r ≤ L ⇐⇒ (

∑

j≥τ−1

(2j(s+ 1
2 )(

∑

k∈Rj

|βT
j,k|πw(Ij,k))

1
π )r)

1
r ≤ L. (6)

for π ≥ p and N > s ≥ q(w) where

q(w) =

{
infv>1{w satisfies the Av condition} if w is not a constant on [0, 1],
0 if w is constant on [0, 1].

(7)

Moreover, under the same conditions as previously, we have

‖f‖T
s,π,r ≤ L =⇒ (

∑

j≥τ

(2js‖PT
j (f)− f‖π)r)

1
r ≤ L (8)

with the usual modi�cation if r = ∞.

For further details on this subsection, we refer the reader to the article of Kerkyacharian and Picard
(2004).
Notations 2.1. If T = Id, we simply denote ξT = ξ, αT

j,k = αj,k, βT
j,k = βj,k, PT

j (f) = Pj(f) and
BT

s,π,r(L) = Bs,π,r(L).
Notations 2.2. In the sequel, the constants C, C ′, C ′′, c, c′, c′′ represent any constants we shall need,
and can di�erent from one line to one other.
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3 Minimax study over usual Besov spaces
The �rst part of this section is devoted to the proofs of the two following theorems.

Theorem 3.1. Let ∞ > p ≥ 1 and ∞ ≥ π ≥ p. Assume we observe model (1) with v satisfying

(A1) v ∈ Lmax(π,2)([0, 1]) and (A2)
1
v
∈ L2([0, 1]).

Then for N > s > 0 and ∞ ≥ r ≥ 1 we have

inf
f̂

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ³ n−α1p

where
α1 =

s

1 + 2s
.

Theorem 3.2. Let ∞ > p > 2. Assume we observe model (1) with v satisfying

(B1) ‖v‖∞ < ∞ and (B2)
1
v
∈ L2([0, 1]).

Then for N > s > 0, p
2s+1 ≥ π > 2

2s+1 and p−2
2(s− 1

π + 1
2 )
≥ r ≥ 1 we have

inf
f̂

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ³ (

ln(n)
n

)α2p

where
α2 =

s− 1
π + 1

p

2(s− 1
π + 1

2 )
.

3.1 Proof of Theorem 3.1: upper bound and lower bound
3.1.1 Upper bound
Here, we use the standard method which consists in representing the unknown function f on a regular
wavelet basis and studying the upper bound attained by the associated linear wavelet procedure.

Theorem 3.3. Let ∞ > p ≥ 1 and π ≥ p. Assume (A1). Consider f̂ l the linear estimator de�ned by

f̂ l(x) =
∑

k∈∆j(n)

α̂j(n),kφj(n),k(x), α̂j(n),k =
∫ 1

0

φj(n),k(t)dYt. (9)

Then for N > s > 0 and ∞ ≥ r ≥ 1 we have

sup
f∈Bs,π,r(L)

Ef (‖f̂ l − f‖p
p) ≤ Cn−α1p

for j(n) the integer satisfying 2j(n) ' n
1

1+2s .

Proof of Theorem 3.3. Using Hölder's inequality, for π ≥ p we have

Ef (‖f̂ l − f‖p
p) ≤ C(Ef (‖f̂ l − f‖π

π))
p
π (10)

Using Minkowski's inequality and the elementary inequality

(|x + y|)π ≤ 2π−1(|x|π + |y|π), x, y ∈ R,

the Lπ risk of f̂ can be decomposed as follows:

Ef (‖f̂ l − f‖π
π) ≤ C(Ef (‖f̂ l − Pj(n)(f)‖π

π) + ‖Pj(n)(f)− f‖π
π)

= C(S1 + S2). (11)
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Since f ∈ Bs,π,r(L) ⊂ Bs,π,∞(L), the equivalence (8) gives us

S2 ≤ L2−j(n)sπ (12)

Using the de�nition of f̂ l and Property 2.2, one gets

S1 = Ef (‖
∑

k∈∆j(n)

(α̂j(n),k − αj(n),k)φj(n),k(.)‖π
π)

≤ C(2j(n)( π
2−1)

∑

k∈∆j(n)

Ef (|α̂j(n),k − αj(n),k|π))

= C2j(n)( π
2−1)S∗1 . (13)

Let us consider ρj,k de�ned by

ρj,k =

√∫ 1

0

v2(t)φ2
j,k(t)dt. (14)

We have clearly

α̂j(n),k − αj(n),k =
1√
n

∫ 1

0

v(t)φj(n),k(t)dWt ∼ ρj(n),kεn with εn ∼ N (0,
1
n

).

To study S∗1 , we need the following lemma which will be proved in Appendix.
Lemma 3.1. Let n ∈ N∗. If Vn ∼ N (0, 1

n ) then for κ ≥ 2
√

2π there exists a constant C > 0 only
depending on p such that

• P(|Vn| ≥ κ
2

√
ln(n)

n ) ≤ Cn−
π
2 ,

• E(|Vn|π) ≤ Cn−
π
2 .

Using the second point of Lemma 3.1, one gets

S∗1 ≤ Cn−
π
2

∑

k∈∆j(n)

ρπ
j(n),k. (15)

In the case where 2 > π ≥ 1, Hölder's inequality and Property 2.1 yield
∑

k∈∆j(n)

ρπ
j(n),k ≤ (

∑

k∈∆j(n)

∫ 1

0

v2(t)φ2
j(n),k(t)dt)

π
2 (

∑

k∈∆j(n),k

1)1−
π
2

≤ C(2j(n)

∫ 1

0

v2(t)dt)
π
2 2j(n)(1−π

2 )

≤ C ′2j(n). (16)
In the case where∞ ≥ π ≥ 2, applying Hölder's inequality with the measure dν = φ2

j(n),k(t)dt and using
Property 2.1, one gets

∑

k∈∆j(n)

ρπ
j(n),k ≤

∫ 1

0

vπ(t)
∑

k∈∆j(n)

φ2
j(n),k(t)dt

≤ C2j(n)‖v‖π
π

= C2j(n). (17)
Thus, considering (13), (16), (15) and (17) we obtain for ∞ ≥ π ≥ 1,

S1 ≤ C2j(n)sπn−
π
2 . (18)

Taking in account that 2j(n) ' n
1

1+2s , the inequalities (11), (12) and (18) imply that

Ef (‖f̂ l − f‖π
π) ≤ C(2

j(n)π
2 n−

π
2 + 2−j(n)sπ) ≤ C ′n−α1π.

Considering (10), we deduce that for π ≥ p ≥ 1,

sup
f∈Bs,π,r(L)

Ef (‖f̂ l − f‖p
p) ≤ Cn−α1p.

This completes the proof of Theorem 3.3.
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3.1.2 Lower Bound
Now, introduce a theorem which will be intensively used in the sequel.

Theorem 3.4. Let j a �xed integer, (ωj,k)k∈Rj
a �xed sequence and ε a sequence such that ε =

(εk)k∈Rj
∈ {−1, 1} 2j

2N where

Rj = {(2N − 1)l −N ; l = 1, 2, ...,
2j

2N
}. (19)

Consider the functions

gε(x) = γj

∑

k∈Rj

ωj,kεkψj,k(T (x)) (20)

where γj is chosen in such a way that gε belongs to BT
s,π,r(L).

For such ε, put ε∗k = (ε′i)i∈Rj
de�ned by

ε′i = εi1{i 6=k} − εi1{i=k}.

Then for any estimator f̂ we have

Uj = sup
gε∈BT

s,π,r(L)

Egε(‖f̂ − gε‖p
p)

≥ e−λ

2
γp

j

∑

k∈Rj

ωp
j,k inf

εi∈{−1,+1}
i 6=k

Pgε(∧n(gε∗k , gε) > e−λ)‖ψj,k(T (.))‖p
p

where ∧n(gε∗k , gε) denotes the likelihood ratio between the laws induced by gε∗k and gεk
de�ned by

∧n(gε∗k , gε) =
dPgε∗

k

dPgε

. (21)

Proof of Theorem 3.4. Since T is increasing, for all k belonging to Rj we have the ST
j,k's de�ned by

ST
j,k = Supp(ψj,k(T (.))) = [T−1(

k −N + 1
2j

), T−1(
k + N

2j
)]

which satisfy
ST

j,k ∩ ST
j,k′ = ∅ for k 6= k′, k, k′ ∈ Rj

and
∪

k∈Rj

Sj,k = [0,
2N − 1

2N
] ⊂ [0, 1].

Denote by G the set of all gε de�ned by (20). For any estimator f̂ , let

W 1
j,k =

∫

ST
j,k

|f̂(x)− γjεkωj,kψj,k(T (x))|pdx

and
W 2

j,k =
∫

ST
j,k

|f̂(x) + γjεkωj,kψj,k(T (x))|pdx.

Using the fact that the ST
j,k are disjoint, for any positive sequence (δj,k)k∈Rj , we have

Uj ≥ 1
card(G)

∑
ε

Egε(‖f̂ − gε‖p
p)

≥ 1
card(G)

∑

k∈Rj

∑
ε

Egε(
∫

ST
j,k

|f̂(x)− γjεkωj,kψj,k(T (x))|pdx) (22)

By the de�nition of ε∗k and the fact that for all k ∈ Rj

Card(G) = 2Card(ε, εi ∈ {−1,+1}, i 6= k, i, k ∈ Rj),
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we obtain

Uj ≥ 1
card(G)

∑

k∈Rj

∑

εi∈{−1,+1}
i 6=k

Egε
(W 1

j,k + ∧n(gε∗k , gε)W 2
j,k)

≥ 1
2

∑

k∈Rj

inf
εi∈{−1,+1}

i 6=k

δp
j,kEgε

(1{W 1
j,k≥δp

j,k} + e−λ1{∧n(gε∗
k

,gε)>e−λ}1{W 2
j,k≥δp

j,k})

≥ e−λ

2

∑

k∈Rj

inf
εi∈{−1,+1}

i6=k

δp
j,kEgε

(1{∧n(gε∗
k

,gε)>e−λ}(1{W 2
j,k≥δp

j,k} + 1{W 1
j,k≥δp

j,k})). (23)

Now, consider the sequence δj,k de�ned by

δj,k = γjωj,k‖ψj,k(T (.))‖p.

Using Minkowsky's inequality, we see that

(W 1
j,k)

1
p + (W 2

j,k)
1
p ≥ 2γjωj,k‖ψj,k(T (.))‖p = 2δj,k.

Therefore

1{W 2
j,k≥δp

j,k} ≥ 1{W 1
j,k≤δp

j,k}. (24)

Putting (22), (23) and (24) together, we deduce that

Uj ≥ e−λ

2
γp

j

∑

k∈Rj

ωp
j,k inf

εi∈{−1,+1}
i6=k

Pgε(∧n(gε∗k , gε) > e−λ)‖ψj,k(T (.))‖p
p.

Theorem 3.4 can be viewed as a generalization of a result which appeared in the book Härdle,
Picard, Kerkyacharian and Tsybakov (1998).

Theorem 3.5. Let ∞ > p ≥ 1. Assume (A2). Then there exists a positive constant c > 0 such that for
N > s > 0, ∞ ≥ π ≥ 1 and ∞ ≥ r ≥ 1 we have

inf
f̂

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≥ cn−α1p.

Proof of Theorem 3.5. In the sequel, j denotes an integer to be chosen below. Consider the functions gε

de�ned by (20) with
ωj,k = 1 and T = Id.

Using the equivalence (6) and the fact than |εi| = 1, one gets

‖gε‖s,π,r ≤ γj2j(s+ 1
2 )(

∑

k∈Rj

2−j)
1
π ≤ Cγj2j(s+ 1

2 ).

Thus, for j large, only the following constraint on γj is necessary to guarantee that gε ∈ Bs,π,r(L):

γj ≤ LC−12−j(s+ 1
2 ).

Now, consider the following lemma which will be proved in Appendix.
Lemma 3.2. If we chose γj = n−

1
2 then there exist λ > 0 and p0 > 0 not depending on n such that

∑

k∈Rj

inf
εi∈{−1,+1}

i 6=k

Pgε(∧n(gε∗k , gε) > e−λ) ≥ p02j .
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It follows from Lemma 3.2 and Theorem 3.4 that:

sup
gε∈Bs,π,r(L)

Egε
(‖f̂ − gε‖p

p) ≥ e−λ

2
γp

j

∑

k∈Rj

inf
εi∈{−1,+1}

i6=k

Pgε
(∧n(gε∗k , gε) > e−λ)‖ψj,k‖p

p

≥ e−λ

2
2

jp
2 ‖ψ‖p

p(
1√
n

)pp0.

Choosing j such that γj = n−
1
2 ' 2−j(s+ 1

2 ) (i.e 2j ' n
1

1+2s ), one gets

inf
f̂

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≥

e−λ

2
‖ψ‖p

p(
2

j
2√
n

)pp0. ≥ c′′n−α1p.

This ends the proof of Theorem 3.5.

Combining Theorem 3.3 and Theorem 3.5, we obtain Theorem 3.1.

Remark 3.1. If v is a positive constant then we obtain the usual minimax result.

Example 3.1. Let ∞ > π ≥ p ≥ 1. Consider v(t) = t−
σ
2 for −1 < σ < 2

π . It is clear that conditions
(A1) and (A2) hold. Therefore we can apply Theorem 3.1.

The following subsection proposes to investigate the minimax rate over Bs,π,r(L) under Lp loss for
other assumptions on the variance function.

3.2 Proof of Theorem 3.2: upper bound and lower bound
3.2.1 Upper bound
Theorem 3.6. Let∞ > p > 2. Assume (B1). Let us consider the following hard thresholding procedure:

f̂@(x) =
∑

j,k∈Λ2
n

β̂j,k1
{|β̂j,k|≥κ

q
ln(n)

n }
ψj,k(x) (25)

where we have set

β̂j,k =
∫ 1

0

ψj,k(t)dYt

and Λ2
n = {(j, k); j ≤ j2(n), k ∈ ∆j} for j2(n) the integer verifying

2j2(n) ≤ n

ln(n)
< 2j2(n)+1. (26)

Then for N > s > 0, p
2s+1 ≥ π > 2

2s+1 and p−2
2(s− 1

π )+1
≥ r ≥ 1, this procedure satis�es

sup
f∈Bs,π,r(L)

Ef (‖f̂@ − f‖p
p) ≤ C(

ln(n)
n

)α2p.

Proof of Theorem 3.6. Our strategy is the following : we exhibit the maxiset of the procedure f̃@ and
we show that Bs,π,r(L) is included into this maximal space. To isolate such a maxiset, �ve conditions
must be checked.

• Two on them concern the geometrical properties of ξ,

• one concerns a weight inequality,

• two of them concern the estimator β̂j,k.

The proof rests on the article of Kerkyacharian and Picard (2000). For further details on the maxiset
theory see Cohen, De Vore, Kerkyacharian and Picard (2000) and Autin (2004).

It is well-known that the wavelet basis with compact support are unconditional basis of Lp (see Meyer
(1990)) and satis�es the Temlyakov's property (see Temlyakov (2000)) so the geometrical conditions
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hold.
Let us now investigate the weight condition. By de�nition of j2(n) (see (26)), we have

(
ln(n)

n
)

p
2

∑

k∈Λ2
n

‖ψj,k(.)‖p
p ≤ C(

ln(n)
n

)
p
2

∑

j≤j2(n)

2
jp
2 ≤ C ′(

ln(n)
n

)
p
2 2

j2(n)p
2 ≤ C ′′.

The proof of this condition is complete. Now, consider the following Lemma:
Lemma 3.3. For j ≤ j2(n) and k ∈ ∆j, we have the following inequalities:

• Ef (|β̂j,k − βj,k|2p) ≤ C( ln(n)
n )p,

• Pf (|β̂j,k − βj,k| ≥ κ
2

√
ln(n)

n ) ≤ C( ln(n)
n )p.

The proof is given in Appendix.

Combining all these results, we can apply the maxiset theorem which said that for any ∞ > p > 1,
1 > ν̃ > 0 and κ a large enough constant, there exists a positive constant C such that the following
equivalence holds:

Ef (‖f̃ − f‖p
p) ≤ C(

ln(n)
n

)ν̃p ⇐⇒ f ∈M(p, ν̃)

where
M(p, ν̃) = E1 ∩ E2,

E1 = {f ; sup
u>0

u(1−ν̃)p
∑

j≥τ−1

∑

k∈∆j

1{|βj,k|>u}‖ψj,k(.)‖p
p < ∞}

and
E2 = {f ; sup

l>τ−1
2

lν̃p
2 ‖

∑

j≥l

∑

k∈∆j

βj,kψj,k(.)‖p
p < ∞}.

To �nish the proof of Theorem 3.6, we use the �rst point of the following lemma:
Lemma 3.4. For ∞ > p > 2, N > s > 0, p

2s+1 ≥ π > 2
2s+1 and p−2

2(s− 1
π )+1

≥ r we have

Bs,π,r(L) ⊂M(p, α2).

For ∞ > p > 1, N > s > 0, π > p
2s+1 and ∞ ≥ r ≥ 1 we have

Bs,π,r(L) ⊂M(p, α1).

The proof is just a slight modi�cation of a proof which appeared in Kerkyacharian and Picard
(2004).

Remark 3.2. From Theorem 3.1 and the second point of Lemma 5.2, we deduce that the hard thresh-
olding procedure (45) is "near" optimal (i.e optimal up to a logarithmic factor) over Bs,π,r(L) in the
case where (B1), (B2) hold and π > p

2s+1 .

3.2.2 Lower bound
Theorem 3.7. Let ∞ > p ≥ 1. Assume (B2). Then there exists a positive constant c > 0 such that for
N > s > 0, p

1+2s ≥ π > 2
1+2s and ∞ ≥ r ≥ 1 we have

inf
f̂

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≥ c(

ln(n)
n

)α2p.

Proof of Theorem 3.7. Let us de�ne the following family

{g0 = 0; gk = γjψj,k, k ∈ Rj}

where Rj is de�ned by (19). Now, introduce a theorem which allows us to prove Theorem 3.7.
Theorem 3.8. Assume the following conditions are ful�lled:
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• ∀k ∈ Rj, γj is chosen such that gk ∈ Bs,π,r(L),

• There exists a constant p0 > 0 satisfying
∑

k∈Rj

Pgk
(Λ(g0, gk) ≥ 2−λ∗j) ≥ p02j (27)

for a �xed λ∗ such that 1 > λ∗ > 0.

Then for any estimator f̂ we have

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≥ 2−p2j( p

2−1)γp
j ‖ψ‖p

p

p0

2
.

Proof of Theorem 3.8. For sake of simplicity, let us denote by d the Lp metric, i.e. for any f and g which
belong to Lp([0, 1 ])

d(f, g) = (
∫ 1

0

|f(t)− g(t)|pdt)
1
p .

Put

δj =
γj

2
2j( 1

2− 1
p )‖ψ‖p. (28)

From Tchebitchev's inequality, we see that

δ−p
j sup

f∈Bs
π,r(L)

Ef (‖f̂ − f‖p
p) ≥ δ−p

j sup
k∈Rj∪{0}

Egk
(‖f̂ − gk‖p

p)

≥ sup
k∈Rj∪{0}

Pgk
(‖f̂ − gk‖p ≥ δj)

≥ max(
1

Card(Rj)

∑

k∈Rj

Pgk
(d(f̂ , gk) ≥ δj),Pg0(d(f̂ , g0) ≥ δj)). (29)

Since Card(Rj) = (2N)−12j , it su�ces to prove that

max(2−j
∑

k∈Rj

Pgk
(d(f̂ , gk) ≥ δj),Pg0(d(f̂ , g0) ≥ δj)) ≥ p0

2
. (30)

Assume on the contrary that (30) is false. Then there exists an estimator, say f∗, such that

max(2−j
∑

k∈Rj

Pgk
(d(f∗, gk) ≥ δj),Pg0(d(f∗, g0) ≥ δj)) <

p0

2
.

In particular

Pg0(d(f∗, g0) ≥ δj) <
p0

2
(31)

and

2−j
∑

k∈Rj

Pgk
(d(f∗, gk) < δj) > (2N)−1 − p0

2
. (32)

Putting (32) and the assumption (27) together, we obtain that for any k ∈ Rj

∑

k∈Rj

Pgk
({d(f∗, gk) < δj} ∩ {Λ(g0, gk) ≥ 2−λ∗j}) ≥

∑

k∈Rj

Pgk
(d(f∗, gk) < δj)

+
∑

k∈Rj

Pgk
(Λ(g0, gk) ≥ 2−λ∗j)− (2N)−12j

> ((2N)−1 − p0

2
)2j + p02j − (2N)−12j

>
p0

2
2j . (33)
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We now use the δj de�ned in (28). First for all k ∈ Rj

d(gk, g0) = γj‖ψj,k‖p = 2δj

and the triangular inequality implies that

∪
k∈Rj

{d(f∗, gk) < δj} ⊂ {d(f∗, g0) ≥ δj}.

Second for all k 6= k′ ∈ Rj we have

d(gk, g′k) = γj(‖ψj,k‖p + ‖ψj,k′‖p)
≥ γj‖ψj,k‖p

= 2δj .

Consequently the events {d(f∗, gk) < δj} are disjoint for k 6= k′ ∈ Rj . It follows from (33) that

Pg0(d(f∗, g0) ≥ δj) ≥ Pg0( ∪
k∈Rj

d(f∗, gk) < δj))

=
∑

k∈Rj

Pg0(d(f∗, gk) < δj))

=
∑

k∈Rj

Egk
(Λ(g0, gk)1{d(f∗,gk)<δj})

=
∑

k∈Rj

Egk
(Λ(g0, gk)1{d(f∗,gk)<δj})

≥ 2−λ∗j
∑

k∈Rj

Egk
(1{d(f∗,gk)<δj}1{Λ(g0,gk)≥2−λ∗j})

= 2−λ∗j
∑

k∈Rj

Pgk
({d(f∗, gk) < δj} ∩ {Λ(g0, gk) ≥ 2−λ∗j})

>
p0

2
2(1−λ∗)j .

Then we contradict (31). So, combining (29) and (30), we deduce that for any estimator f̂ we have

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≥ 2−p2j( p

2−1)γp
j ‖ψ‖p

p

p0

2
. (34)

Using the equivalence (8), one gets

‖gk‖s,π,r ≤ Cγj2j(s+ 1
2− 1

π ).

In order to have the functions gk which belong to Bs,π,r(L), chose

γj ≤ LC−12−j(s+ 1
2− 1

π ).

Now consider the following lemma:

Lemma 3.5. Let γj = c0

√
ln(n)

n . If there exists a constant c > 0 such that

ln(2j) ≥ c ln(n) (35)

then for a �xed 1 > λ∗ > 0 and a c0 small enough there exists a constant p0 > 0 satisfying
∑

k∈Rj

Pgk
(Λ(g0, gk) ≥ 2−λ∗j) ≥ p02j . (36)
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Thus, choosing

γj = c0

√
ln(n)

n
, i.e 2j ' (

√
n

ln(n)
)

1
s+ 1

2−
1
π

and remarking that for n large enough we have

ln(2j) ≥ 1
2(s + 1

2 − 1
π )

(ln(n)− ln(ln(n))) + ln(c) ≥ 1
4(s + 1

2 − 1
π )

ln(n) ≥ 1
4N + 2

ln(n),

the condition (35) and a fortiori, the condition (27) are satis�ed. So Theorem 3.8 implies that

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≥ 2−p2j( p

2−1)γp
j ‖ψ‖p

p

p0

2

≥ c(
ln(n)

n
)

p
2 (

√
n

ln(n)
)

p
2−1

s+ 1
2−

1
π

= c(
ln(n)

n
)α2p.

This ends the proof of Theorem 3.7.

Putting Theorem 3.6 and Theorem 3.7 together, we establish Theorem (3.2)

3.3 When v does not belong to Lπ([0, 1])

The last part of this section is center around the following question:

Question 3.1. Can we have the same minimax rate than Theorem 3.1 over Bs,π,r(L) for any functions
v which do not satisfy the assumption 'v belongs to Lπ([0, 1])'?

The answer is contained into the following theorem:

Theorem 3.9. Let ∞ > p > 2 and ∞ ≥ π ≥ p. Assume that we observe model (1) with

v(t) = t−
σ
2 for

2
p

< σ < 1. (37)

Then for N > s > 0 and ∞ ≥ r ≥ 1 we have

n−α′p & inf
f̂

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) & n−α̃p

where
α′ =

s

2s + 1 + σ − 2
π

and

α̃ =





s
2s+1

π−p
π(σp−2) ≥ s,

s+ 1
p− 1

π

2s+1+σ− 2
π

s > π−p
π(σp−2) .

Proof of Theorem 3.9. First, introduce the following lemma which will be proved in Appendix.
Lemma 3.6. Let π > 2. Let us consider ρj,k de�ned by (14) and ηj,k de�ned by

ηj,k =

√∫ 1

0

1
v2(t)

ψ2
j,k(t)dt (38)

where v is de�ned by (37). Then there exist two constant C > 0 and c > 0 such that

c2
jσπ
2 ≤

∑

k∈Rj

η−π
j,k ≤

∑

k∈Rj

ρπ
j,k ≤ C2

jσπ
2 . (39)
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3.3.1 Upper bound
Let us consider the linear estimator f̂ l de�ned in (9) where v is de�ned by (37). Putting the inequality
(39) in (15), one gets

sup
f∈Bs,π,r(L)

Ef (‖f̂ l − f‖p
p) ≤ C(2j(n)( π

2−1)n−
π
2

∑

k∈Rj

ρπ
j,k + 2−j(n)sπ)

p
π

≤ C(2j(n)( π
2−1+ σπ

2 )n−
π
2 + 2−j(n)sπ)

p
π

≤ C ′n−α′p

for j(n) the integer satisfying 2j(n) ' n
1

1+2s+σ− 2
π .

3.3.2 Lower bound
Consider the functions gε introduced in (20) with

ωj,k = η−1
j,k and T = Id

where ηj,k is de�ned by (38). Using the the equivalence (6) and the inequality (39), we see that

‖gε‖s,π,r ≤ γj2j(s+ 1
2 )(

∑

k∈Rj

η−π
j,k 2−j)

1
π ≤ Cγj2j(s+ 1

2+ σ
2− 1

π ).

So if we chose the integer j such that γj ' 2−j(s+ 1
2+ σ

2− 1
π ) (i.e n

1
2s+1+σ− 2

π ' 2j) then gε belongs to
Bs,π,r(L). Now, consider the following Lemma which will be proved in Appendix.

Lemma 3.7. If we chose γj = n−
1
2 then there exist λ > 0 and p0 > 0 not depending on n such that

inf
εi∈{−1,+1}

i 6=k

Pgε(∧n(gε∗k , gε) > e−λ) ≥ p0, ∀k ∈ Rj .

Putting Lemma 3.7 and Theorem 3.4 together, we obtain

sup
gε∈Bs,π,r(L)

Egε(‖f̂ − gε‖p
p) ≥ e−λ

2
γp

j

∑

k∈Rj

inf
εi∈{−1,+1}

i 6=k

ωp
j,kPgε(∧n(gε∗k , gε) > e−λ)‖ψj,k‖p

p

≥ e−λ

2
2j( p

2−1)p0(
1√
n

)p‖ψ‖p
p

∑

k∈Rj

η−p
j,k .

Using the inequality (39), one gets

inf
f̂

sup
f∈Bs,π,r(L)

Ef (‖f̂ − f‖p
p) ≥ c(n−

1
2 2j( 1

2+ σ
2− 1

p ))p

≥ c′n−α̃p.

This ends the proof of Theorem 3.9.

Remark 3.3. Under the assumptions of Theorem 3.9, it clear that for π = p, we have

inf
f̂

sup
f∈Bs,p,r(L)

Ef (‖f̂ − f‖p
p) ³ n−α∗p

where
α∗ =

s

1 + 2s + σ − 2
p

.

So we have prove that if the variance function v does not belong to Lπ′ then the mininax rate over
usual Besov bodies under Lp risk can be slower than n−α for α = sp

1+2s . In particular, Theorem 3.9
shows that this rate of convergence can truly depend on the nature of v.

This arises a new question:
Question 3.2. Can we �nd functional spaces over which the minimax rate under the Lp risk stay 'stable'
for any functions v which do not necessarily belong to Lπ([0, 1]) ?

The answer is developed in the following section.
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4 Minimax study over weighted Besov spaces
This section is focused on the proof of the following Theorem:

Theorem 4.1. Let ∞ > p > 1 and ∞ ≥ π ≥ p. Assume that we observe model (1). Suppose that v
satis�es

(C1)
1
v
∈ L2([0, 1])

and that G de�ned by
G(t) =

∫ t

0

1
v2(y)

dy

is bijective with G(1) = 1. Assume also that

(C2) v2(G−1(.)) ∈ Ap.

Then for N > s > q(w) (see (7)) and ∞ ≥ r ≥ 1 we have

inf
f̂

sup
f∈BG

s,π,r(L)

Ef (‖f̂ − f‖p
p) ³ n−α1p

where
α1 =

s

1 + 2s
.

4.1 Proof of Theorem 4.1: upper bound and lower bound
4.1.1 Upper bound
Here we proceed as in Section 3 by taking in account that we work with the warped wavelet basis ξG.

Theorem 4.2. Let ∞ > p > 1 and ∞ ≥ π ≥ p. Assume (C1) and (C2). Let us consider f̂ l the linear
estimator de�ned by

f̂ l(x) =
∑

k∈∆j(n)

α̂j(n),kφj(n),k(G(x)), α̂j(n),k =
∫ 1

0

φj(n),k(G(t))
1

v2(t)
dYt.

Then for N > s > q(w) and ∞ ≥ r ≥ 1 we have

sup
f∈BG

s,π,r(L)

Ef (‖f̂ l − f‖p
p) ≤ Cn−α1p

for j(n) the integer satisfying 2j(n) ' n
1

1+2s .

Proof of Theorem 4.2. Starting from the inequality (10), it su�ces to consider the Lπ risk of f̂ l. Minkowski's
inequality yields

Ef (‖f̂ l − f‖π
π) ≤ C(Ef (‖f̂ l − PG

j(n)(f)‖π
π) + ‖PG

j(n)(f)− f‖π
π)

≤ C(Q1 + Q2). (40)

Note that conditions (C1) and (C2) imply that the equivalence (8) holds for T = G and w = v2(G−1(.))
(see 4). So

Q2 ≤ C2−j(n)sπ. (41)

Using the de�nition of f̂ l and Property 2.1, one gets

Q1 = Ef (‖
∑

k∈∆j(n)

(α̂j(n),k − αG
j(n),k)φj(n),k(G(.))‖π

π)

≤ C(2
j(n)π

2 (
∑

k∈∆j(n)

Ef (|α̂j(n),k − αG
j(n),k|π)w(Ij(n),k))

= C2
j(n)π

2 Q∗
1. (42)
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Using the change of variable y = G−1(t), we obtain

α̂j(n),k − αG
j(n),k =

1√
n

∫ 1

0

φj(n),k(G(t))
1

v(t)
dWt

so
α̂j(n),k − αG

j(n),k ∼ N (0,
1
n

).

Applying the second point of Lemma 3.1 we obtain

Q∗1 ≤ n−
π
2

∑

k∈∆j(n)

w(Ij(n),k) = n−
π
2 w([0, 1]) = n−

π
2 . (43)

Combining (40), (41), (42), (43) and taking in account that 2j(n) ' n
1

1+2s , we deduce that

Ef (‖f̂ l − f‖π
π) ≤ C(2

j(n)π
2 n−

π
2 + 2−j(n)sπ) ≤ C ′n−α1π.

Using the inequality (10), it comes that

sup
f∈BG

s,π,r(L)

Ef (‖f̂ l − f‖p
p) ≤ Cn−α1p.

This completes the proof of Theorem 4.2.

4.1.2 Lower Bound
Theorem 4.3. Let ∞ > p > 1. Assume (C1) and (C2). Then there exists a constant c > 0 such that
for N > s > q(w), ∞ ≥ π ≥ 1 and ∞ ≥ r ≥ 1 we have

inf
f̂

sup
f∈BG

s,π,r(L)

Ef (‖f̂ − f‖p
p) ≥ cn−α1p.

Proof of Theorem 4.3. In the sequel, j denotes an integer to be chosen below. Consider the functions gε

de�ned by (20) with
ωj,k = 1 and T = G.

The equivalence (6), the fact that |εi| = 1 and w([0, 1]) = 1 give us

‖gε‖G
s,π,r ≤ γj2j(s+ 1

2 )(
∑

k∈Rj

|εk|πw(Ij,k))
1
π ≤ γj2j(s+ 1

2 ).

Thus, for j large, only the following constraint on γj is necessary to guarantee that gε ∈ BG
s,π,r(L):

γj ≤ L2−j(s+ 1
2 ).

Now, introduce the following lemma which will be proved in Appendix.
Lemma 4.1. If we choosing γj = n−

1
2 then there exist λ > 0 and p0 not depending on n such that

inf
εi∈{−1,+1}

i 6=k

Pgε(∧n(gε∗k , gε) > e−λ) ≥ p0, ∀k ∈ Rj , n ∈ N∗.

Lemma 4.1 and Theorem 3.4 yield

sup
gε∈Bs,π,r(L)

Egε(‖f̂ − gε‖p
p) ≥ e−λ

2
γp

j

∑

k∈Rj

inf
εi∈{−1,+1}

i6=k

Pgε(∧n(gε∗k , gε) > e−λ)‖ψj,k(G)‖p
p

≥ e−λ

2
p0(

1√
n

)p
∑

k∈Rj

‖ψj,k(G)‖p
p.
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Since w = v2(G−1(.)) satis�es the Ap condition, we have

‖ψj,k(G)‖p
p ≥ (

∫

Sj,k

|ψj,k(x)|pw(x)dx)

≥ cw(Sj,k)(
1

|Sj,k|
∫

Sj,k

|ψj,k(x)|dx)p

≥ c2
jp
2 (2N − 1)−p

w(Sj,k)‖ψ‖p
1.

Using the fact that
∑

k∈Rj
w(Sj,k) = w([0, eN ]) where eN = 2N−1

2N and that n−
1
2 ' 2−j(s+ 1

2 ) (i.e
2j ' n

1
1+2s ), we deduce that

inf
f̂

sup
f∈BG

s,p,r(L)

Ef (‖f̂ − f‖p
p) ≥ cw(2N − 1)−p e−λ

2
e−λ(

2
j
2√
n

)pw([0, eN ])‖ψ‖p
1p0

≥ cn−α1p. (44)

Finally, by combining Theorem 4.2 and Theorem 4.3 we prove Theorem 4.1.

Remark 4.1. If v is a positive constant then we obtain the usual minimax result.

Remark 4.2. If v is bounded from below, the inequality (44) is an obvious consequence of the following
inequality:

∑

k∈Rj

‖ψj,k(G)‖p
p ≥ c

∑

k∈Rj

‖ψj,k‖p
p

≥ c′2
jp
2 .

4.2 Remarks and examples
The following lemma, proved in Kerkyacharian and Picard (2004), proposes another form for the condi-
tion (C2).

Lemma 4.2. Let p > 1 and q such that 1
p + 1

q = 1. Then v2(G−1(.)) satis�es the Ap condition if and
only if there exists a constant C > 0 such that

(
1
|I|

∫

I

1
v2q(x)

dx)
1
q ≤ C(

1
|I|

∫

I

1
v2(x)

dx)

for any subinterval I of [0, 1].

In order to illustrate our statistical results, consider some examples.

Example 4.1. Observe the model de�ned in (1) with v(t) = (σ + 1)−
1
2 t−

σ
2 . It is clear that v and 1

v
belongs to L2([0, 1]). Moreover

G(x) = xσ+1 , G−1(x) = x
1

σ+1 , w(x) = v2(G−1(x)) = x
−σ
σ+1

Then if 1 > σ > 1
p −1 we have p−1 > − σ

σ+1 > 0 so the function w satis�es the Ap condition. Therfore,
all conditions are satis�ed to apply Theorem 4.1.

Let p > 2, s > 1 and π ≥ p. The following table summarizes the results of Example 3.1 and
Example 4.1.

Model (1) where Space A Hypothesis inf f̂ supf∈A E(‖f̂ − f‖p
p)

Bs,p,r(L) 0 < σ < 2
p

³ n−α, α = sp
1+2s

v(t) = t−
σ
2 Bs,p,r(L) 2

p
< σ < 1 ³ n−β , β = 2s

1+2s+σ− 2
p

BG
s,p,r(L) 0 < σ < 1 ³ n−α, α = sp

1+2s

Thus, remark that for 2
p < σ < 1, the minimax rate over usual Besov spaces is strictly slower than

the minimax rate over weighted Besov spaces.
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Example 4.2. Consider

v(t) =
2
π

(1− t2σ)
1
4 t

1−σ
2 for

2
p

+ 1 < σ < 2.

One can show that v satis�es the conditions (C1) and (C2). Remark that this last function is not bounded
from above and below and does not belong to Lπ([0, 1]) for π ≥ p > 2.

Thus we have shown that weighted Besov spaces give us stable minimax results for certain variance
functions v which does not belonging to Lπ for π ≥ p > 2. Starting from these results, we propose to
investigate the performance of an adaptative procedure constructed on ξG over BG

s,π,r(L) in the case
where π ≥ p, r ≥ 1 and N > s > q(w).

5 Hard thresholding procedure and warped wavelet bases
Among other things, we showed in the previous part that linear procedure (40) are optimal over weighted
Besov spaces. This procedure is not adaptative, i.e achieve substantially slower rate of convergence if
the smoothness of the function that we wish to estimate is misspeci�ed. In recent years, a variety of
adaptive procedures have been proposed. Among them, let us quote the wavelet thresholding methods
introduced by Donoho and Johnstone which enjoy excellent statistical results for numerous risks (see
Donoho and Johnstone (1995) and Johnstone (1998)).

The following section is focused on the performance of a hard thresholding procedure constructed
on ξG over weighted Besov spaces BG

s,π,r(L).
Theorem 5.1. Let p > 1. Assume (C1) and (C2). Let us consider the following hard thresholding
estimator

f̃(x) =
∑

j,k∈Λ2
n

β̂j,k1
{|β̂j,k|≥κ

q
ln(n)

n }
ψj,k(G(x))

where

β̂j,k =
∫ 1

0

ψj,k(G(t))
1

v2(t)
dYt,

and Λ2
n = {(j, k); j ≤ j2(n), k ∈ ∆j} for j2(n) the integer verifying

2j2(n) ≤ n

ln(n)
< 2j2(n)+1. (45)

Then for κ > 0 a large enough constant, N > s > q(w), ∞ ≥ r ≥ 1 and ∞ ≥ π ≥ p, we have

f ∈ BG
s,π,r(L) ⇒ E(‖f̃ − f‖p

p) ≤ C

(
ln(n)

n

)α1p

where
α1 =

s

1 + 2s
.

Proof of Theorem 5.1. Here, we adopt the maxiset approach in the same way than the proof of Theorem
3.6.

The geometrical properties of the basis are a consequence of the following lemma.
Lemma 5.1. Under the conditions (C1) and (C2), the basis ξG

• satis�es Temlyakov's property i.e there exist two positive constants c and C such that for any �nite
set of integer F ⊆ N ∪ {τ − 1} ×∆j we have

c
∑

j,k∈F

‖ψj,k(G(.))‖p
p ≤ ‖(

∑

j,k∈F

|ψj,k(G(.))|2) 1
2 ‖p

p ≤ C
∑

j,k∈F

‖ψj,k(G(.))‖p
p,

• is unconditional for the Lp norm i.e there exists an absolute constant C such that if |uj,k| ≤ |vj,k|
for all (j, k) ∈ N ∪ {τ − 1} ×∆j, then

‖
∑

j≥τ−1

∑

k∈∆j

uj,kψj,k(G(.))‖p
p ≤ C‖

∑

j≥τ−1

∑

k∈∆j

vj,kψj,k(G(.))‖p
p.
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Proof of Lemma 5.1. The �rst point was shown by Garcia-Martell (1999) and the second point was
shown by Picard and Kerkyacharian (2003).

Property 2.2 and the de�nition of j2(n) (see (45)) yield

(
ln(n)

n
)

p
2

∑

k∈Λ2
n

‖ψj,k(G(.))‖p
p ≤ C(

ln(n)
n

)
p
2

∑

j≤j2(n)

2
jp
2 ≤ C ′(

ln(n)
n

)
p
2 2

j2(n)p
2 ≤ C ′′.

Thus, the weight condition holds.
Since ln(n) ≥ 1 for n ≥ 3, Lemma 3.1 yields

• Pf (|β̂j,k − βG
j,k| ≥ κ

2

√
ln(n)

n ) ≤ C( ln(n)
n )p,

• Ef (|β̂j,k − βG
j,k|2p) ≤ C( ln(n)

n )p.

We deduce that the statistical conditions are satis�ed.
Combining all these results, we can apply the maxiset theorem which said that for any ∞ > p > 1,

1 > ν̃ > 0 and κ large enough, there exists a positive constant C such that the following equivalence
holds

Ef (‖f̃ − f‖p
p) ≤ C(

ln(n)
n

)
ν̃p
2 ⇐⇒ f ∈M(p, ν̃, G)

where we have set
M(p, ν̃, G) = E1 ∩ E2,

E1 = {f ; sup
u>0

u(1−ν̃)p
∑

j≥τ−1

∑

k∈∆j

1{|βG
j,k|>u}‖ψj,k(G(.))‖p

p < ∞}

and
E2 = {f ; sup

l>τ−1
2

lν̃p
2 ‖

∑

j≥l

∑

k∈∆j

βG
j,kψj,k(G(.))‖p

p < ∞}.

The following lemma allows us to conlude:
Lemma 5.2. For N > s ≥ q(w) and π ≥ p > 1, we have the following embedding

BG
s,π,r(L) ⊂M(p,

2s

2s + 1
, G)

One part of the proof is given in Appendix.

Finally, we have proved that hard thresholding procedure de�ned in (45) achieves the minimax rate
of convergence up to a logarithmic factor over the weighted Besov space BG

s,π,r(L).

6 Extension of the results to other statistical models
This section introduces two statistical models on which we can reproduce our previous study.

6.1 Model extension
Consider the Gaussian white noise model in which we observe Gaussian processes Y

(1)
t governed by the

stochastic equation

dY
(1)
t = Hv(f)(t)dt +

1√
n

dWt, n ∈ N∗, t ∈ [0, 1],

where v is a function submited to the conditions (C1) and (C2). 4.1, Hv denotes the operator de�ned
by

Hv(f)(t) =
f(t)
v(t)

, t ∈ [0, 1]

and Wt is a standard Brownian motion on [0, 1]. The function f is an unknown function of interest.
By remarking that dY

(1)
t = 1

v(t)dYt where dYt is de�ned in (1) we can establish results similar to those
obtained in Theorem 4.1 and Theorem 5.1.
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6.2 Warped Gaussian noise model
Consider the Gaussian white noise model in which we observe Gaussian processes Y

(2)
t governed by the

stochastic equation

dY
(2)
t = KG(f)(t)dt +

1√
n

dWt, n ∈ N∗, t ∈ [0, 1],

where G is a known di�erentiable and bijective function with G′ = g, KG denotes the warped operator
de�ned by

KG(f)(t) = f(G−1(t)), t ∈ [0, 1]

and Wt is a standard Brownian motion on [0, 1]. The function f is an unknown function of interest.

If we suppose that g belongs to L1([0, 1]) with ‖g‖1 = 1 and 1
g(G−1(.)) satis�es the Ap condition

then we can show results similar to those obtained in Theorem 4.1 and Theorem 5.1 by using the warped
wavelet basis ξG and by considering β̂

(2)
j,k =

∫ 1

0
ψj,k(t)dY

(2)
t instead of β̂j,k.

Remark 6.1. Such a function g is not necessarily bounded from above and below. See for instance

g(x) =
π

2
αxα−1 cos (

π

2
xα),

1
p

< α < 1, x ∈ [0, 1].

7 Appendix: Proofs of technical Lemmas
Proof of Lemma 3.1. It is well known that if N ∼ N (

0, σ2
)
then we have the concentration inequality

P(|N | ≥ x) ≤ 2 exp(− x2

2σ2 ). Therefore, for κ ≥ 2
√

2p and n ≥ 3, we have

P

(
|Vn| ≥ κ

2

√
ln(n)

n

)
≤ 2 exp(−κ2n( ln(n)

n )
8

) = 2n−
κ2
8 ≤ 2n−p.

Moreover, it is well known that if N ∼ N (0, σ2) then E(|N |2p) = Kσ2p where K = 2p√
π

∫ +∞
0

xp− 1
2 e−xdx.

We deduce the existence of a constant C > 0 which satis�es E(|Vn|p) ≤ Cn−
p
2 .

Proof of Lemma 3.2. For h such that ‖h‖∞ < ∞, the condition (C2) implies that

Ef (exp (
n

2

∫ 1

0

h2(t)
v2(t)

dt)) ≤ exp(
n

2
‖h‖2∞‖

1
v
‖22) < ∞.

Following Novikov's condition and Girsanov's theorem, the likelihood ratio de�ned by (21) can be written
as follows:

∧n(gε∗k , gε) = exp (n
∫ 1

0

(gε∗k(t)− gε(t))
v2(t)

dYt − n

2

∫ 1

0

(g2
ε∗k

(t)− g2
ε(t))

v2(t)
dt).

Under Pgε , we see that

∧n(gε∗k , gε) = exp (−n

2

∫ 1

0

(gε∗k(t)− gε(t))2

v2(t)
dt +

√
n

∫ 1

0

(gε∗k(t)− gε(t))
v(t)

dWt).

Since gε∗k(t)− gε(t) = −2γjεkψj,k(t), by choosing γj = n−
1
2 we obtain

∧n(gε∗k , gε) = exp(−2
∫ 1

0

ψ2
j,k(t)
v2(t)

dt− 2εk

∫ 1

0

ψj,k(t)
v(t)

dWt).

Let
Uj,k = −2

∫ 1

0

ψ2
j,k(t)
v2(t)

dt and Vj,k = −2εk

∫ 1

0

ψj,k(t)
v(t)

dWt.

We have clearly

{∧n(gε∗k , gε) ≥ e−λ} ⊇ {Uj,k + Vj,k ≥ −λ} ⊇ {|Uj,k + Vj,k| ≤ λ}.
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Applying Tchebitchev's inequality, one obtains

Pgε(∧n(gε∗k , gε) ≥ e−λ) ≥ 1− Pgε(|Uj,k + Vj,k| > λ) ≥ 1− 1
λ

(Egε(|Uj,k|) + Egε(|Vj,k|))

= 1− 1
λ

(|Uj,k|+
√

2
π

√
|Uj,k|).

The condition (A2) and Property 2.1 imply that
∑

k∈Rj

|Uj,k| = 2
∫ 1

0

1
v2(t)

∑

k∈Rj

ψ2
j,k(t)dt ≤ C‖1

v
‖222j = C ′2j (46)

and
∑

k∈Rj

√
|Uj,k| =

√ ∑

k∈Rj

|Uj,k|
√ ∑

k∈Rj

1 ≤ C2j . (47)

Thus, for λ large enough we have
∑

k∈Rj

inf
εi∈{−1,+1}

i6=k

Pgε
(∧n(gε∗k , gε) > e−λ) ≥ c2j − c′

λ
2j

≥ c′′2j .

This ends the proof of Lemma 3.2.

proof of Lemma 3.3. Since ‖v‖∞ < ∞, it is obvious that

ηj,k =

√∫ 1

0

ψ2
j,k(t)v2(t)dt ≤ ‖v‖∞.

We conclude by applying Lemma 3.1 and the fact that ln(n) ≥ 1 for n large.

Proof of Lemma 3.5. Following Girsanov's theorem, under Pgk
we have

∧n(g0, gk) = exp (−n

2

∫ 1

0

(g0(t)− gk(t))2

v2(t)
dt +

√
n

∫ 1

0

(g0(t)− gk(t))
v(t)

dWt)

= exp (−n

2
γ2

j

∫ 1

0

ψ2
j,k(t)
v2(t)

dt− γj

√
n

∫ 1

0

ψj,k(t)
v(t)

dWt).

Set
U ′

j,k = −c2
0

ln(n)
2

∫ 1

0

ψ2
j,k(t)
v2(t)

dt and V ′
j,k = −c0

√
ln(n)

∫ 1

0

ψj,k(t)
v(t)

dWt,

we have clearly

{∧n(g0, gk) ≥ 2−λ∗j} ⊇ {U ′
j,k + V ′

j,k ≥ −λ∗ ln(2j)} ⊇ {|U ′
j,k + V ′

j,k| ≤ λ∗ ln(2j)}.
Applying Tchebitchev's inequality, one obtains

Pgε(∧n(g0, gk) ≥ 2−λ∗j) ≥ 1− Pgε(|U ′
j,k + V ′

j,k| ≥ λ∗ ln(2j)) ≥ 1− 1
λ∗ ln(2j)

(Egε(|U ′
j,k|) + Egε(|V ′

j,k|))

= 1− 1
λ∗ ln(2j)

(|U ′
j,k|+

√
2
π

√
|U ′

j,k|).

Choosing γj =
√

ln(n)
n and using the inequalities (46) and (47), we show that

∑

k∈Rj

Pg0(∧n(g0, gk) ≥ 2−λ∗j) ≥
∑

k∈Rj

(1− 1
λ∗ ln(2j)

(Eg0(|U ′
j,k|) +

√
2
π
Eg0(

√
|U ′

j,k|)))

≥ c2j − c′2j

λ∗ ln(2j)
(c2

0 ln(n) + c0

√
ln(n))

≥ c2j − c′2j ln(n)
λ∗ ln(2j)

(c2
0 + c0).
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Using assumption (35), for c0 small enough we see that
∑

k∈Rj

Pg0(∧n(g0, gk) ≥ 2−λ∗j) ≥ c2j − c′′c02j

λ∗

≥ p02j

and this ends the proof of Lemma 3.5.

Proof of Lemma 3.6. Upper bound: Since t−σ is decreasing and
∑

k≥1 k−β < ∞ for β > 1, we have

∑

k∈Rj

(
∫

Sj,k

t−σ(t)ψ2
j,k(t)dt)

π
2 ≤ ‖ψ‖π

∞2
jπ
2 (

∫ 2N−1
2j

0

t−σdt)
π
2 +

∑

k∈Rj |{N−1}
(
∫ 1

0

t−σ(t)ψ2
j,k(t)dt)

π
2

≤ C(2j σπ
2 + 2j σπ

2

∑

k∈Rj |{N−1}
(k −N + 1)−

σπ
2 )

≤ C ′2j σπ
2 .

Cauchy-Schwartz's inequality gives us

1 = (
∫ 1

0

ψ2
j,k(t)dt)π = (

∫ 1

0

v(t)
v(t)

ψj,k(t)ψj,k(t)dt)π ≤ ρπ
j,kηπ

j,k

so
∑

k∈Rj

η−π
j,k ≤

∑

k∈Rj

ρπ
j,k ≤ C2

jσπ
2 .

Lower bound: Since t−σ is decreasing, we have

c2j σπ
2 ≤

∑

k∈Rj

(
k + N

2j
)−

σπ
2 ≤

∑

k∈Rj

ρπ
j,k. (48)

Since −1 < −σ < − 2
p < 0, t−σ veri�es the A2 condition (see Example 2.1). So the inequality (3) with

h = tσ yield

ηπ
j,kρπ

j,k ≤ ‖ψ‖2π
∞ (2j

∫

Sj,k

1
tσ

dt)
π
2 (2j

∫

Sj,k

tσdt)
π
2 ≤ C. (49)

Combining (48) and (49), we deduce that
∑

k∈Rj

η−π
j,k ≥ c

∑

k∈Rj

ρπ
j,k ≥ c′2

jσπ
2 .

This ends the proof of Lemma 3.6.

Proof of Lemma 3.7. Following Girsanov's theorem, one gets

∧n(gε∗k , gε) = exp (n
∫ 1

0

(gε∗k(t)− gε(t))
v2(t)

dYt − n

2

∫ 1

0

(g2
ε∗k

(t)− g2
ε(t))

v2(t)
dt).

Under Pgε , we have

∧n(gε∗k , gε) = exp (−n

2

∫ 1

0

(gε∗k(t)− gε(t))2

v2(t)
dt +

√
n

∫ 1

0

(gε∗k(t)− gε(t))
v(t)

dWt).

Since gε∗k(t)− gε(t) = −2η−1
j,kγjεkψj,k(t), by choosing γj = n−

1
2 we obtain

∧n(gε∗k , gε) = exp(−2η−2
j,k

∫ 1

0

ψ2
j,k(t)
v2(t)

dt− 2εkη−1
j,k

∫ 1

0

ψj,k(t)
v(t)

dWt)

= exp(−2− 2η−1
j,kεk

∫ 1

0

ψj,k(t)
v(t)

dWt).
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Since
−2η−1

j,kεk

∫ 1

0

ψj,k(t)
v(t)

dWt ∼ N (0, 4),

if we chose λ = 2, we have clearly

Pgε
(∧n(gε∗k , gε) > e−λ) =

1
2
.

This �nishes the proof of Lemma 3.7.

Proof of Lemma 4.1. Following Girsanov's theorem, under Pgε
we obtain

∧n(gε∗k , gε) = exp (−n

2

∫ 1

0

(gε∗k(t)− gε(t))2

v2(t)
dt +

√
n

∫ 1

0

(gε∗k(t)− gε(t))
v(t)

dWt).

Since gε∗k(t)− gε(t) = −2γjεkψj,k(G(t)), by choosing γj = n−
1
2 it follows that

∧n(gε∗k , gε) = exp(−2
∫ 1

0

ψ2
j,k(G(t))
v2(t)

dt− 2εk

∫ 1

0

ψj,k(G(t))
v(t)

dWt)

= exp(−2− 2εk

∫ 1

0

ψj,k(G(t))
v(t)

dWt).

Since
−2εk

∫ 1

0

ψj,k(G(t))
v(t)

dWt ∼ N (0, 4),

if we chose λ = 2, we have clearly

Pgε(∧n(gε∗k , gε) > e−λ) =
1
2
.

This �nished the proof of Lemma 4.1.

Proof of Lemma 5.2. For the following embedding

BG
s,π,∞(L) ⊂ {f , sup

u>0
u

π
1+2s

∑

j≥τ−1

∑

k∈∆j

1{|βG
j,k|>u}‖ψj,k(G(.))‖π

π < ∞}

see Kerkyacharian and Picard (2004).
Assume that f belongs to BG

s,p,∞(L) for all s ≥ 0. Using Property 2.1 and Property 2.2, for any l ≥ τ−1
one gets

‖
∑

j≥l

∑

k∈∆j

βG
j,kψj,k(G(.))‖π2

ls
1+2s ≤

∑

j≥l

‖
∑

k∈∆j

βG
j,kψj,k(G(.))‖π2

ls
1+2s

≤ C
∑

j≥l

2
j
2 (

∑

k∈∆j

|βG
j,k|πw(Ij,k))

1
π 2

ls
1+2s

≤ CL
∑

j≥l

2
ls

1+2s−js ≤ C ′
∑

j≥l

2(l−j)s ≤ C ′′.

So:
BG

s,π,∞(L) ⊆ {f , sup
l>0

2−
lsπ

1+2s ‖f −
∑

j≥l

∑

k∈∆j

βG
j,kψj,k(G(.))‖π

π < ∞}.

This completes the proof of Lemma 5.2.

Acknowledgment

The author thanks the Editor, the Associate Editor and the referees for their thorough and useful
comments which have helped to improve the presentation of the paper.



A maxiset approach of a Gaussian white noise model. 24

References
Autin, F. (2004). Point de vue maxiset en estimation non paramétrique. Thèse de l'université Paris VII.

Brown, L.D. and Low, M.G. (1996). Asymptotic equivalence of nonparametric regression and white noise.
Ann. Statist. 24, 2384-2398.

Cohen, A., Daubechies, I., Jawerth, B. and Vial, P.(1992) Multiresolution analysis, wavelets and fast
algorithms on an interval Comptes Rendus Acad. Sc. Paris.

Cohen, A., De Vore, R., Kerkyacharian, G., and Picard, D. (2000). Maximal q-paces with given rate of
convergence for thresholding algorithms. Appl. Comput. Harmon. Anal.,11, 167-191.

Daubechies, I. (1992). Ten Lectures on Wavelets. SIAM, Philadelphia.

Donoho, D.L., Johnstone, I.M. (1995). Adaptating to unknown smoothness via wavelet shrinkage. J . Am
Stat. Assoc, 90(432), 1200-1224.

Efromovich, S. and Pinsker, M.S. (1996). Sharp-optimal and adaptative estimation for heteroscedastic
nonparametric regression. Statistica Sinica 6, 925-942.

Garcia-Cuerva, J. and Martell, B. (1999). Wavelet characterisation of weighted spaces. Journal of Geo-
metric Analysis.

Grama, I. and Nussbaum, M. (1998). Asymptotic equivalence for non parametric generalized linear
models. Probab. Theor. Related Fields 111, 493-533.

Härdle, W., Kerkyacharian, G., Picard, D., and Tsybakov, A. (1998). Wavelet, Approximation and
Statistical Applications. Lectures Notes in Statistics 129. Springer Verlag. New York.

Ibragimov, I.A. and Khaminskii, R.Z. (1977). On the estimation of an in�nite dimensional parameter in
Gaussian white noise. Soviet Math. Dokl. 236, No.5, 1053-1055.

Johnson, R. and Neugebauer, C.J. (1987). Homeomorphisms perserving Ap. Rev. Mat. Iberoamericana
3, 249-273.

Johnstone, I.M. (1998). Function estimation : White noise, sparsity and wavelets. Lectures notes 130p.

Kerkyacharian, G., Picard, D. (2000). Thresholding algorithms, maxisets and well concentred bases, with
discussion, Test, vol9, No2,P 283-345.

Kerkyacharian, G., Picard, D. (2003). Non-linear approximation and Muckenhoupt weights. Preprint.

Kerkyacharian, G., Picard, D. (2004). Regression in random design and warped wavelets. Bernoulli,
10(6), 1053-1105.

Meyer, Y. (1990). Ondelettes et Opérateurs, Hermann, Paris.

Muckenhoupt, B. (1972). Weighted norm ineqalities for the hardy maximal function.Trans. Amer. Math.
Hencec. 165, 207-226.

Nussbaum, M.(1996). Asymptotic equivalence of density estimation and white noise. Annals of Statistics,
24, 2399-2430.

Qui, B.H. (1982). Weighted Besov and Triebel spaces: Interpolation by the real method. Hiroshima Math-
ematical Journal. 581-605.

Stein, E. (1993). Harmonic Analysis : Real Variable Methods, Orthogonality, and Oscillatory Integrals.
Princeton University Press.

Tsybakov, A.B. (2004) Introduction à l'estimation non-parametrique. Springer.


