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Abstract

We consider the problem of estimating an unknown function f in the heteroscedastic white noise setting
under Lp risk. We show that the major connection which exists between Muckenhoupt theory and the
geometrical properties of warped wavelet bases {ψj,k(G)} allows us to consider spaces over which the
minimax rate is stable for a wide class of variance functions v, contrarily to the usual wavelet approach.
Adopting the maxiset point of view, we show that the hard thresholding procedure constructed on such
a warped wavelet basis is close to the optimal over weighted Besov classes.
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1 Introduction
Consider the heteroscedastic white noise model in which we observe Gaussian processes Yt governed by
the stochastic equation:

dYt = f(t)dt +
1√
n

v(t)dWt, n ∈ N∗, t ∈ [0, 1]. (1)

The variance function v is known, positive and belongs to L2([0, 1]). The process Wt is a standard
Brownian motion on [0, 1]. The function f is an unknown function of interest. We wish to estimate f
on [0, 1] given a realization y = {Yt, t ∈ [0, 1]} with small Lp risk:

E(
∫ 1

0

|f̂(t)− f(t)|pdt).

In the simplest case where v is constant, we observe the well known Gaussian white noise model
which has been considered in several papers starting from Ibragimov and Has'minskii (1977). Numerous
results were established in that case under certain assumptions on the smoothness of f , model (1) is
an appropriate large sample limit to more general non parametric models such as probability density
estimation (see Nussbaum (1996)) or nonparametric regression (see Brown and Low (1996)). Minimax
properties can be found in the book of Tsybakov (2004).

In the case where v is spatially inhomogeneous, the curve estimation is signi�cantly more compli-
cated. For instance, Brown and Low (1996) have shown that model (1) with v = σ√

g is asymptotically
equivalent to the observation of data (Y1, X1), ..., (Yn, Xn) with:

Yi = f(Xi) + σ(Xi)εi (2)

The variables Xi are i.i.d, independent of εi and with density g. The variables εi are normal i.i.d with
mean zero and variance 1. Other equivalence can be found in Grama and Nussbaum (1998). Also let
us quote Efromovich and Pinsker (1996) who use model (1) in order to estimate a smooth regression
function under L2 loss for the case of model (2).

In this paper, we consider the problem in the framework of wavelet analysis. Our goal is to show
that the union of Muckenhoupt theory with warped wavelet bases {ψj,k(G)} proved themselves powerful
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tools which allow us to consider adaptative procedures and spaces over which they reach the minimax
rate (up to a logarithmic factor) under Lp-risk without assumption of boundedness from above and
below for v. This study can be divided into three parts.

In a �rst part, we investigate the estimation of f from (1) over the usual Besov space Bs,π,r(L)
under Lp risk (see De�nition 2.4). We show that if v and 1

v belong to Lp([0, 1]) then the minimax rate
of convergence is of the form n−α where α = sp

1+2s . So the following question naturally arises : can we
obtain this minimax rate over such a space for any v or 4

v which do not belong to Lp for p > 2? The
answer is no. We exhibit such a function for which the minimax rate over usual Besov spaces is of the
form n−β where β < α.

This result motivates us to devote a second part in which we investigate another functional space
more adapted to our model. Our choice will be made on Besov bodies constructed on a wavelet basis
{ψj,k(G)} warped by a factor G depending on v. Such spaces were developed by Kerkyacharian and
Picard (2004) who establish good estimation results in a regression setting with random design (i.e (2)
with σ(.) = 1) without assumption of boundedness from above and below for g. The key of the success of
this study rests on the following argument : under certain conditions on v which refer to Muckenhoupt
theory, the warped wavelet basis possesses some interesting geometrical properties in Lp norm which
allow us to consider functional sets and procedures deeply linked to the model. Using these analytical
tools, we show that if v, 1

v belong to L2 and if v is subject to a property of Muckenhoupt type then
the minimax rate over weighted Besov spaces BG

s,π,r(L) de�ned starting from the primitive of 1
v2 (see

De�nition 2.4) is of the form n−α where α = sp
1+2s . This space has the advantage to take in account the

variance functions v which do not necessarily satisfy the assumptions 'v and 1
v belong to Lp for p > 2'.

In a second part, we use such a basis to construct a natural procedure which stay as close as pos-
sible to the standard thresholding. In order to measure its performance under Lp risk, we adopt the
maxiset point of view. This statistical tool developed by Cohen, De Vore, Kerkyacharian and Picard
(2000) consists in investigating the maximal space (or maxiset) where a procedure has a given rate of
convergence. One of the main advantages of this approach is to provide a functional set which is au-
thentically connected to the procedure and the model. Thus, by choosing the rate (ln(n))αn−α where
α = sp

1+2s , we prove that the weighted Besov space introduced in the �rst part is included into the
maxiset of our procedure. That allows us to conclude that it attains the minimax rate of convergence
(up to a logarithmic factor) under Lp risk over this space.

The paper is organized as follows.
Section 2 de�nes the basic tools (Muckenhoupt weights, warped wavelet basis ...), inequalities and
functional spaces we shall need in the study. In Section 3 we investigate the minimax rate over usual
Besov spaces and we show that it truly depends on v. Section 4 investigates and discusses the minimax
properties over a weighted Besov space. Section 5 is devoted to the performance of the associated hard
thresholding procedure where the unknown function of interest belongs to these spaces. In Section 6,
we introduce other statistical models and we explain why we can obtain results similar to those in the
heteroscedastic white noise. Finally, Section 7 is devoted to the proofs of technical lemmas.

2 Muckenhoupt conditions, warped wavelet bases and functional
spaces

Throughout this paper, for a weight m (i.e non negative locally integrable function) on [0, 1], we set:

Lp
m([0, 1]) =

{
f measurable on [0, 1] | ‖f‖p

m,p =
∫ 1

0

|f(t)|pm(t)dt < +∞}
.

Lp([0, 1]) = Lp
1([0, 1]) denotes the usual Lebesgue space.

2.1 Muckenhoupt condition
Let us �rst recall the following notion:
De�nition 2.1 (Muckenhoupt condition). Let 1 ≤ p < ∞ and q such that 1

p + 1
p = 1. A non-negative

locally integrable function m is said to verify the Ap condition if and only if there exists a constant C > 0
such that for any measurable functions h and any subintervals I of [0, 1] we have:

(
1
|I|

∫

I

|h(x)|dx) ≤ C(
1

m(I)

∫

I

|h(x)|pm(x)dx)
1
p (1)
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where |I| denotes the Lebesgue measure and m(I) =
∫

I
m(x)dx.

Any w which veri�es the Ap condition are called Muckenhoupt weights.
Example 2.1. The weight m(x) = xσ satis�es the Ap condition with p > 1 if and only if −1 < σ < p−1.

The previous condition has been introduced by Muckenhoupt in (1972) and widely used afterwards
in the context of Calderón-Zygmund theory. The Ap condition characterizes the boundedness of certain
integral operators on Lp

m spaces like the Hardy-Littlewood maximal operator or the Hilbert transform.
For the complete theory, see the book of Stein (1993).

Let us introduce one of the most interesting property related to this theory.
Lemma 2.1. Let 1 < p < ∞. If w satis�es the Ap condition then there exists a constant C > 0 such
that for any subintervals S ⊆ B ⊆ [0, 1] we have:

w(B)(
|S|
|B| )

p ≤ Cw(S)

Proof of Lemma 2.1. It su�ces to apply (1) with the function h = 1S and the interval I = B.

2.2 Warped wavelet bases and Muckenhoupt weights
In this subsection we introduce the warped wavelet bases which can be viewed as a generalization of the
regular wavelet bases. Then we state some important results that will be useful throughout the paper.
De�nition 2.2 (Warped wavelet bases). Let N be an integer of the form 2u + 1 where u belongs to
{0, 1, 2, 3, 4}. We denote by

ξT = {φτ,k(T (.)), k ∈ ∆τ ; ψj,k(T (.)); j ≥ τ, k ∈ ∆j}, ∆j = {0, ..., 2j − 1},
the warped wavelet basis adapted on the interval [0, 1] constructed starting from

• ψ the wavelet associated with a multiresolution analysis on the line Vj = {φj,k, k ∈ Z} such that
Supp(φ) = Supp(ψ) = [−N +1, N ] and

∫
ψ(t)tldt = 0 for l = 0, ..., N −1. Let us recall that on the

unit interval there exists an integer τ such that one can built at each level j ≥ τ a wavelet system
(φj,k, ψj,k) where the scaling functions are de�ned by:

φj,k(x) = 2
j
2 φ(2jx− k), k = N − 1, N, N + 1, ..., 2j −N

with
Sj,k = Supp(φj,k) = [

k −N + 1
2j

,
k + N

2j
].

We add N−1 functions on the neighborhood of 0 which have the support contained in [0, (2N−2)2−j ]
and N−1 functions on the neighborhood of 1 which have the support contained in [1−(2N−2)2−j , 1].
The wavelet functions are de�ned by

ψj,k(x) = 2
j
2 ψ(2jx− k), k = N − 1, N, N + 1, ..., 2j −N

where
Sj,k = Supp(ψj,k) = [

k −N + 1
2j

,
k + N

2j
].

We add N−1 functions on the neighborhood of 0 which have the support contained in [0, (2N−2)2−j ]
and N−1 functions on the neighborhood of 1 which have the support contained in [1−(2N−2)2−j , 1].
Let us de�ne the integer τ − 1 as ψτ−1,k = φτ,k.

• a known function T : [0, 1] 7→ [0, 1] which is bijective and absolutely continuous.
We associate to this function the weight w(.) = 1

T̃ (T−1(.))
where T̃ denotes the derivative of T and T−1

its inverse function. Remark that for any measurable positive function z, w satis�es:
∫ 1

0

z(T (x))dx =
∫ 1

0

z(x)w(x)dx. (2)

See Meyer (1990) and Daubechies (1992) for wavelet bases on the real line. See Cohen, Daubechies,
Jawerth and Vial (1992) for further details on wavelet bases on the interval. The warped wavelet basis
ξT was introduced by Picard and Kerkyacharian (2004).
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2.3 Some properties linked to ξT

Let us start by setting an inequality which refers to the usual wavelet basis.

Lemma 2.2. Let v > 0. There exists a constant C > 0 such that:
∑

k∈∆j

|φj,k(x)|v ≤ C2
jv
2 ,

∑

k∈∆j

|ψj,k(x)|v ≤ C2
jv
2 , x ∈ [0, 1]. (3)

The proof is given in the Appendix.

The following lemmas show that if w de�ned in (2) veri�es a condition of Muckenhoupt type then
ξT behaves quite similarly to a regular wavelet basis.

Lemma 2.3 (Decomposition on ξT ). Let 1 < p < ∞. If w veri�es the Ap condition then, for any
ν ≥ τ , a function f of Lp([0, 1]) can be decomposed on ξT as

f(x) = PT
ν (f)(x) +

∑

j≥ν

∑

k∈∆j

βT
j,kψj,k(T (x)),

where
PT

ν (f)(x) =
∑

k∈∆ν

αT
ν,kφν,k(T (x)), αT

j,k =
∫ 1

0

f(T−1(t))φj,k(t)dt

and
βT

j,k =
∫ 1

0

f(T−1(t))ψj,k(t)dt.

Lemma 2.4. Under the assumptions of Lemma 2.3, there exist two constant c > 0 and C > 0 depending
only on ψ, φ and w such that for j ≥ τ we have:

c2
jp
2

∑

k∈∆j

|βT
j,k|pw(Ij,k) ≤ ‖

∑

k∈∆j

βT
j,kψj,k(T (.))‖p

p ≤ C2
jp
2

∑

k∈∆j

|βT
j,k|pw(Ij,k)

and:

c2
jp
2

∑

k∈∆j

|αT
j,k|pw(Ij,k) ≤ ‖

∑

k∈∆j

αT
j,kφj,k(T (.))‖p

p ≤ C2
jp
2

∑

k∈∆j

|αT
j,k|pw(Ij,k)

where Ij,k = [ k
2j , k+1

2j ] and w(I) =
∫

I
w(x)dx.

Proof of Lemmas 2.3 and 2.4. See Kerkyacharian and Picard (2004).

These two lemmas will be in the heart of our minimax study. See Section 3 and Section 4.

2.4 Functional spaces
Let us de�ne the Besov bodies constructed on ξT and weighted Besov spaces which play a determinant
role in the sequel.

De�nition 2.3 (weighted Besov body). Let L > 0 be a constant. Under the same assumptions of
Lemma 2.3, we say that a function f of Lp([0, 1]) belongs to the Besov body bT

s,p,∞(L) if and only if we
have:

‖f‖T
s,p,∞ = sup

j≥τ−1
(2j(s+ 1

2 )(
∑

k∈∆j

|βT
j,k|pw(Ij,k))

1
p ) ≤ L < ∞.

De�nition 2.4 (Weighted Besov spaces). For any measurable function f we set:

∆T,h(f)(x) = f(T−1(T (x) + h))− f(x).

Recursively ∆2
T,h(f)(x) = ∆T,h(∆T,h(f))(x) and identically, for N ∈ N∗,

∆N
T,h(f)(x) = ∆T,h(∆N−1

T,h (f))(x) =
N∑

k=0

(
N

k

)
(−1)kf(T−1(T (x) + kh)).
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We denote the associated N -th order modulus of smoothness as:

ρN (t, f, T, p) = sup
|h|≤t

(∫

JNh

|∆N
T,h(f)(u)|pdu

) 1
p

where JNh = {x ∈ [0, 1] : T (x) + Nh ∈ [0, 1]}. For s > 0, 1 < p, q ≤ +∞, �x integer N > s. We say
that a function f of Lp([0, 1]) belongs to the weighted Besov spaces BT

s,p,r(L) if and only if:
(∫ 1

0

(
ρN (t, f, T, p)

ts

)r 1
t
dt

) 1
r

≤ L < ∞.

These spaces can be viewed as a generalization of the usual Besov spaces. The main interest of
such spaces lies in the fact that they can model important forms of spacial inhomogeneity.

Notations 2.1. If T = Id, we simply denote ξT = ξ, αT
j,k = αj,k, βT

j,k = βj,k, PT
j (f) = Pj(f),

bT
s,p,∞(L) = bs,p,∞(L) and BT

s,p,r(L) = Bs,p,r(L).

Lemma 2.5. Under the assumptions of Lemma 2.3, we have the following equivalence:

f ∈ bT
s,p,∞(L) ⇐⇒ f ∈ BT

s,π,r(L)

for N > s ≥ q(w), π ≥ p and r > 0 where

q(w) =

{
infv>1{w satisfies the Av condition} if w is not a constant,
0 if w is the identity.

Proof of Lemma 2.5. See Kerkyacharian and Picard (2004)

Remark 2.1. In the sequel, the constants C, C ′, C ′′, c, c′, c′′ represent any constants we shall need,
and can di�erent from one line to one other.

3 Minimax study over the usual Besov spaces
Let us state the main result of this section:

Theorem 3.1. Let 2 ≤ p < ∞. If v and 1
v belong to Lp([0, 1]) then for s > 0 we have the following

minimax result:
inf
f̂

sup
f∈bs,p,∞(L)

Ef (‖f̂ − f‖p
p) ³ n−α

where
α =

sp

1 + 2s
.

The sequel is devoted to the proof of this theorem.

3.1 Proof of Theorem 3.1: upper bound and lower bound
3.1.1 Upper bound
Here, we use the standard method which consists in representing the unknown function f on a regular
wavelet basis and studying the upper bound attained by the associated linear wavelet procedure.

Theorem 3.2. Let 2 ≤ p < ∞, s > 0. Suppose that v belongs to Lp([0, 1]). Let us consider f̂ l the linear
estimator de�ned by:

f̂ l(x) =
∑

k∈∆j(n)

α̂j(n),kφj(n),k(x), α̂j(n),k =
∫ 1

0

φj(n),k(t)dYt.

Then we obtain the following upper bound:

sup
f∈bs,p,∞(L)

E(‖f̂ l − f‖p
p) ≤ Cn−α

for j(n) the integer satisfying 2j(n) ' n
1

1+2s .



A maxiset approach of a Gaussian white noise model. 6

Proof of Theorem 3.2. Using the Minkowski inequality and the elementary inequality
(|x + y|)p ≤ 2p−1(|x|p + |y|p), x, y ∈ R, (1)

the Lp risk of f̂ can be decomposed as follows:
E(‖f̂ l − f‖p

p) ≤ C(E(‖f̂ l − Pj(n)(f)‖p
p) + ‖Pj(n)(f)− f‖p

p)
= C(S1 + S2). (2)

Expanding the function f on the basis ξ at level ν = j(n), assuming that f ∈ bs,p,∞(L) and considering
Lemma 2.4, one gets:

S2 = ‖
∑

j≥j(n)

∑

k∈∆j

βj,kψj,k(.)‖p
p ≤ C(

∑

j≥j(n)

2j( 1
2− 1

p )(
∑

k∈∆j

|βj,k|p)
1
p )p

≤ C(L
∑

j≥j(n)

2−js)p = C ′2−j(n)sp(
∑

j≥0

2−js)p ≤ C ′′2−j(n)sp. (3)

Using the de�nition of f̂ l and Lemma 2.4, one gets:

S1 = E(‖
∑

k∈∆j(n)

(α̂j(n),k − αj(n),k)φj(n),k(.)‖p
p)

≤ C(2j(n)( p
2−1)

∑

k∈∆j(n)

E(|α̂j(n),k − αj(n),k|p))

= C2j(n)( p
2−1)S∗1 . (4)

Let us consider ρj,k de�ned as:

ρj,k =

√∫ 1

0

v2(t)φ2
j,k(t)dt. (5)

We have clearly

α̂j(n),k − αj(n),k =
1√
n

∫ 1

0

v(t)φj(n),k(t)dWt ∼ ρj(n),kεn with εn ∼ N (0,
1
n

).

Let us now consider the following lemma:
Lemma 3.1. If Vn ∼ N (0, 1

n ) then for κ ≥ 2
√

2p and n ∈ N∗ there exists a constant C > 0 only
depending on p such that:

• P(|Vn| ≥ κ
2

√
ln(n)

n ) ≤ Cn−
p
2 ,

• E(|Vn|p) ≤ Cn−
p
2 .

The proof is given in the Appendix.
Using the second point of the previous lemma, one gets:

S∗1 ≤ Cn−
p
2

∑

k∈∆j(n)

ρp
j(n),k (6)

Applying the Hölder inequality with the measure dν = φ2
j(n),k(t)dt and Lemma 2.2, one gets:

∑

k∈∆j(n)

ρp
j(n),k ≤ Cn−

p
2

∫ 1

0

vp(t)
∑

k∈∆j(n)

φ2
j(n),k(t)dt

≤ C ′n−
p
2 2j(n)‖v‖p

p = C ′′n−
p
2 2j(n). (7)

Combining (4), (6) and (7) we obtain:

S1 ≤ C2j(n)spn−
p
2 . (8)

Taking in account that 2j(n) ' n
1

1+2s , one gets:

sup
f∈bs,p,∞(L)

E(‖f̂ l − f‖p
p) ≤ C(2

j(n)p
2 n−

p
2 + 2−j(n)sp) ≤ C ′n−

sp
1+2s .

This completes the proof of Theorem 3.2.
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3.1.2 Lower Bound
Theorem 3.3. Under the assumptions of Theorem 3.1, there exists a positive constant c > 0 such that
for s > 0:

inf
f̂

sup
f∈bs,p,∞(L)

E(‖f̂ − f‖p
p) ≥ cn−α.

The proof of this Theorem rests on the Assouad's lemma.

Proof of Theorem 3.3. In the sequel, j denotes an integer to be chosen below and ε denotes a sequence
such that ε = (εk)k∈Rj

∈ {−1,+1} 2j

2(N−1) with Rj = {(2N − 1)l − N ; l = 1, 2, ..., 2j

2(N−1)}. This set is
chosen in such a way that Sj,k (see De�nition 2.2) veri�es Sj,k ∩Sj,k′ = ∅ for k, k′ ∈ Rj with k 6= k′ and
∪k∈Rj Sj,k = [0, 2N−1

2(N−1) ] ⊂ [0, 1]. In the sequel, we denote eN = 2N−1
2(N−1) . Let us set:

gε(x) = γj

∑

k∈Rj

η−1
j,kεkψj,k(x) (9)

where ηj,k is de�ned by:

ηj,k =

√∫ 1

0

1
v2(t)

ψ2
j,k(t)dt. (10)

In the sequel, we denote G the set of all such gε. Let us now consider the following proposition:
Lemma 3.2. Let 2 ≤ p < ∞. If we assume that v and 1

v belongs to Lp([0, 1]) then there exist two
constant C > 0 and c > 0 such that:

c2j ≤
∑

k∈Rj

η−p
j,k ≤ C2j .

The proof is given in the Appendix.
Using the de�nition of bs,p,∞(L), Proposition 3.2 and the fact than |εi| ≤ 1, one gets:

‖gε‖1s,p,∞ ≤ γj2j(s+ 1
2 )(

∑

k∈Rj

η−p
j,k2−j)

1
p ≤ C

1
p γj2j(s+ 1

2 ).

Thus, for j large, only the following constraint on γj is necessary to guarantee that gε ∈ b1
s,p,∞(L):

γj ≤ LC−
1
p 2−j(s+ 1

2 ).

Let us now consider the following lemma.
Lemma 3.3. Here and later, we denote Pf (= Pn

f ) the law of the process de�ned in (1) and Ef (= En
f )

the associated expectation. For ε ∈ {−1,+1} 2j

2(N−1) , put ε∗k = (ε′i)i∈Rj such that ε′i = εi1{i 6=k}− εi1{i=k}.
If there exist λ > 0 and p0 > 0 such that

Pgε(∧n(gε∗k , gε) > e−λ) ≥ p0, n ∈ N∗

where we wrote:
∧n(gε∗k , gε) =

dPgε∗
k

dPgε

then for any estimator f̂ there exists a constant c > 0 depending only on φ, ψ and N such that :

Uj = maxgεEgε(‖f̂ − gε‖p
p) ≥ ce−λγp

j 2
jp
2 p0.

Proof of Lemma 3.3. Let us set:

V 1
j,k =

∫

Sj,k

|f̂(x)− γjεkη−1
j,kψj,k(x)|pdx

and
V 2

j,k =
∫

Sj,k

|f̂(x) + γjεkη−1
j,kψj,k(x)|pdx
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As the Sj,k are disjoint, for any positive sequence (δj,k)k∈Rj
we have:

Uj ≥ 1
card(G)

∑

k∈Rj

∑

εi∈{−1,+1}
i6=k

Egε
(δp

j,k1{V 1
j,k≥δp

j,k}) (11)

+ ∧n(gε∗k , gε)δ
p
j,k1{V 2

j,k≥δp
j,k}). (12)

For precise mathematical statements see the book of Härdle, Picard, Kerkyacharian and Tsybakov (1998)
and the book of Tsybakov (2004). Now let us consider the sequence δj,k de�ned as:

δj,k = γj2j( 1
2− 1

p )η−1
j,k‖ψ‖p.

The Minkowsky inequality yields:

(V 2
j,k)

1
p + (V 1

j,k)
1
p ≥ (

∫

Sj,k

|2γjη
−1
j,kψj,k(x)|pdx)

1
p = 2δj,k.

So:

1{V 2
j,k≥δp

j,k} ≥ 1{V 1
j,k≤δp

j,k}. (13)

Using the Markov inequality, we have:

min(Egε(∧n(gε∗k , gε)), 1) ≥ e−λPgε(∧n(gε∗k , gε) ≥ e−λ), ∀λ > 0. (14)

Combining (11), (11) and (14) we obtain:

Uj ≥ 1
card(G)

∑

k∈Rj

∑

εi∈{−1,+1}
i 6=k

δp
j,ke−λPgε(∧n(gε∗k , gε) ≥ e−λ)

Since Proposition 3.2 implies:
∑

k∈Rj

δp
j,k = γp

j 2
jp
2 −j‖ψ‖p

p

∑

k∈Rj

η−p
j,k ≥ cγp

j 2
jp
2 (15)

and Card(G) = 2Card(εi ∈ {−1,+1}, i 6= k), we deduce:

Uj ≥ cγp
j

e−λ

2
2

jp
2 p0.

Proposition 3.1. If we chose γj = n−
1
2 then there exist λ > 0 and p0 > 0 such that:

Pgε(∧n(gε∗k , gε) > e−λ) ≥ p0, ∀ε ∈ {−1, 1}, n ∈ N∗.
The proof is given in Appendix.

Injecting the result of this proposition in Lemma 3.3 with γj = n−
1
2 ' 2−j(s+ 1

2 ) (i.e 2j ' n
1

1+2s ), one
gets:

inf
f̂

sup
f∈bs,p,∞(L)

E(‖f̂ − f‖p
p) ≥ cγp

j

e−λ

2
2

jp
2 p0 = c′(

1√
n

2
j
2 )p ≥ c′′n−

sp
1+2s .

This ends the proof of Theorem 3.3.

Combining Theorem 3.2 and Theorem 3.3, we obtain Theorem 3.1.

Remark 3.1. Thanks to Proposition 2.5, we can extend the result of Theorem 3.1 to Bs,π,r(L) for
π ≥ p, r > 0 and N > s > 0.

Remark 3.2. If v is a positive constant then we obtain a traditional minimax result.

Example 3.1. Let p ≥ 2. It is clear that v(t) = t−
σ
2 and 1

v belong to Lp([0, 1]). Thus, we can apply
Theorem 3.1.

The following subsection proposes to investigate the minimax rate over bs,p,∞(L) under Lp loss for
other assumptions on the variance function.
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3.2 When v or 1
v
does not belong to Lp for p > 2

This part is center around the following question:

Question 3.1. Can we have the same minimax rate than Theorem 3.1 over bs,p,∞(L) for any functions
v which do not satisfy the asssumptions 'v and 1

v belong to Lp for p > 2' ?

The answer is contained into the following theorem:

Theorem 3.4. Let 2 < p < ∞. Let us consider the function v(t) = t−
σ
2 for 2

p < σ < 1. Then for s > 0
we have the following minimax result:

inf
f̂

sup
f∈bs,p,∞(L)

Ef (‖f̂ − f‖p
p) ³ n−α̃

where
α̃ =

sp

2s + 1 + σ − 2
p

.

Proof of Theorem 3.4. Let us introduce the following lemma:
Lemma 3.4. Let p > 2. Let us consider ηj,k de�ned in (10) and ρj,k de�ned in (5) where the function
v is de�ned in Theorem 3.4. Then there exist two constant C > 0 and c > 0 such that:

c2
jσp
2 ≤

∑

k∈Rj

η−p
j,k ≤

∑

k∈Rj

ρp
j,k ≤ C2

jσp
2 . (16)

The proof is given in the Appendix.

3.2.1 Upper bound
Let us consider the linear estimator f̂ l de�ned in (1) where v is function de�ned in Theorem 3.4. Putting
the inequality (16) into (7), one gets:

sup
f∈bs,p,∞(L)

E(‖f̂ l − f‖p
p) ≤ C(2j(n)( p

2−1+ σp
2 )n−

p
2 + 2−j(n)sp) ≤ C ′n

− sp

1+2s+σ− 2
p

for j(n) the integer satisfying 2j(n) ' n
1

1+2s+σ− 2
p .

3.2.2 Lower bound
Let us consider the function gε de�ned in (9) where γj = n−

1
2 and v(t) = t−

σ
2 with 2

p < σ < 1. Using
the inequality (16), we have:

‖gε‖1s,p,∞ ≤ n−
1
2 2j(s+ 1

2 )(
∑

k∈Rj

η−p
j,k2−j)

1
p ≤ Cn−

1
2 2j(s+ 1

2+ σ
2− 1

p ).

So if we chose the integer j such that n−
1
2 ' 2−j(s+ 1

2+ σ
2− 1

p ) (i.e n
1

2s+1+σ− 2
p ' 2j) then gε belongs to

bs,p,∞(L). Injecting inequality (16) into (15) and using arguments similar to the proof of Theorem 3.3,
we justify the existence of a constant c > 0 such that:

inf
f̂

sup
f∈bs,p,∞(L)

Ef (‖f̂ − f‖p
p) ≥ c(n−

1
2 2j( 1

2+ σ
2− 1

p ))p ≥ c′n
− sp

2s+1+σ− 2
p .

This ends the proof of Theorem 3.4.

So we have prove that if the variance function v does not belong to Lp then the mininax rate over
usual Besov bodies under Lp risk can be slower than n−α where α = sp

1+2s . In particular, Theorem 3.4
shows that this rate of convergence can truly depends on the nature of v.

This arises a new question:

Question 3.2. Can we �nd functional spaces over which the minimax rate under the Lp risk stay 'stable'
for the functions v do not necessarily belong to Lp for p > 2 ?

The answer is developed in the following section.
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4 Minimax study over weighted Besov spaces
This section is focused on the proof of the following Theorem.

Theorem 4.1. Let 2 ≤ p < ∞, s > 0. Assume that the functions v and 1
v belongs to L2([0, 1]) with

‖ 1
v‖22 = 1, the primitive function G(t) =

∫ t

0
1

v2(y)dy is bijective and the function v2(G−1(.)) satis�es the
Ap condition. Then we have the following minimax rate:

inf
f̂

sup
f∈bG

s,p,∞(L)

Ef (‖f̂ − f‖p
p) ³ n−α

where
α =

sp

1 + 2s
.

As we shall see in the following proof, the Ap condition is truly at the heart of this result.

4.1 Proof of Theorem 4.1: upper bound and lower bound
4.1.1 Upper bound
Here we proceed as in Section 3 by taking in account that we work with the warped wavelet basis ξG.

Theorem 4.2. We follow the assumptions and the notations of Theorem 4.1. Let us consider f̂ l the
linear estimator de�ned by:

f̂ l(x) =
∑

k∈∆j(n)

α̂j(n),kφj(n),k(G(x)), α̂j(n),k =
∫ 1

0

φj(n),k(G(t))
1

v2(t)
dYt.

Then for s > 0 we obtain the following upper bound:

sup
f∈bG

s,p,∞(L)

E(‖f̂ l − f‖p
p) ≤ Cn−α

for j(n) the integer satisfying 2j(n) ' n
1

1+2s .

Proof of Theorem 4.2. Using the Minkowski inequality and the inequality (1), the Lp risk of f̂ l can be
decomposed as follows:

E(‖f̂ l − f‖p
p) ≤ C(E(‖f̂ l − PG

j(n)(f)‖p
p) + ‖PG

j(n)(f)− f‖p
p)

≤ C(Q1 + Q2). (1)

Since conditions of Lemma 2.3 are satis�ed with T = G and w = v2(G−1(.)), we can expand f on the
warped wavelet basis ξG at level ν = j(n). Assuming that f ∈ bG

s,p,∞(L), Lemma 2.4 yields:

Q2 = ‖
∑

j≥j(n)

∑

k∈∆j

βG
j,kψj,k(G(.))‖p

p ≤ C(
∑

j≥j(n)

2
j
2 (

∑

k∈∆j

|βG
j,k|pw(Ij,k))

1
p )p

≤ C(L
∑

j≥j(n)

2−js)p = C ′2−j(n)sp(
∑

j≥0

2−js)p ≤ C ′′2−j(n)sp. (2)

Using the de�nition of f̂ l and Lemma 2.4, one gets:

Q1 = E(‖
∑

k∈∆j(n)

(α̂j(n),k − αG
j(n),k)φj(n),k(G(.))‖p

p)

≤ C(2
j(n)p

2 (
∑

k∈∆j(n)

E(|α̂j(n),k − αG
j(n),k|p)w(Ij(n),k))

= C2
j(n)p

2 Q∗1. (3)

Using the change of variable y = G−1(t), one gets :

α̂j(n),k − αG
j(n),k =

1√
n

∫ 1

0

φj(n),k(G(t))
1

v(t)
dWt ∼ N (0,

1
n

).
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Applying the second point of Lemma 3.1 and considering the fact that
∑

k∈∆j(n)
w(Ij(n),k) = w([0, 1]) =

1, we obtain:

Q∗1 ≤ n−
p
2

∑

k∈∆j(n)

w(Ij(n),k) = n−
p
2 (4)

Combining (1), (2), (3), (4) and taking in account that 2j(n) ' n
1

1+2s , one gets:

sup
f∈bG

s,p,∞(L)

E(‖f̂ l − f‖p
p) ≤ C(2

j(n)p
2 n−

p
2 + 2−j(n)sp) ≤ C ′n−

sp
1+2s .

This completes the proof of Theorem 4.2.

4.1.2 Lower Bound
Theorem 4.3. Under the assumptions of Theorem 3.1, there exists a constant c > 0 such that for s > 0:

inf
f̂

sup
f∈bG

s,p,∞(L)

E(‖f̂ − f‖p
p) ≥ cn−α.

The technique of the proof is similar to Section 3. As we shall see, the Muckenhoupt condition is
determinant to proof this theorem.

Proof of Theorem 4.3. In the sequel, j denotes an integer to be chosen below and ε denotes a sequence
such that ε = (εk)k∈Rj

∈ {−1, +1} 2j

2(N−1) with Rj = {(2N − 1)l − N ; l = 1, 2, ..., 2j

2(N−1)}. Since G is
increasing, for all k belongs to this set we have SG

j,k = Supp(ψj,k(G(.))) = [G−1(k−N+1
2j ), G−1(k+N

2j )]
which veri�es SG

j,k ∩ SG
j,k′ = ∅ for k 6= k′ and ∪k∈Rj Sj,k = [0, eN ] ⊂ [0, 1]. Let us consider

gε(x) = γj

∑

k∈Rj

εkψj,k(G(x)).

Let us denote by G the set of all such gε. The de�nition of bG
s,p,∞(L) and the fact that |εi| ≤ 1 give us:

‖gε‖G
s,p,∞ ≤ γj2j(s+ 1

2 )(
∑

k∈Rj

|εk|pw(Ij,k))
1
p ≤ γj2j(s+ 1

2 )w([0, 1]).

Thus, for j large, only the following constraint on γj is necessary to guarantee that gε ∈ bG
s,p,∞(L):

γj ≤ Lw([0, 1])−12−j(s+ 1
2 ).

Let us now consider the following lemma.

Lemma 4.1. For ε ∈ {−1, +1} 2j

2(N−1) , put ε∗k = (ε′i)i∈Rj such that ε′i = εi1{i 6=k} − εi1{i=k}. If there
exist λ > 0 and p0 > 0 such that

Pgε(∧n(gε∗k , gε) > e−λ) ≥ p0, n ∈ N∗

where we wrote:
∧n(gε∗k , gε) =

dPgε∗
k

dPgε

and if w veri�es the Ap condition then for any estimator f̂ there exists a constant c > 0 depending only
on w, φ, ψ and N such that :

Vj = maxgεE(‖f̂ − gε‖p
p) ≥ ce−λγp

j 2
jp
2 p0.

Proof of Lemma 4.1. Let us set:

W 1
j,k =

∫

Sj,k

|f̂(G−1(x))− γjεkψj,k(x)|pw(x)dx
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and
W 2

j,k =
∫

Sj,k

|f̂(G−1(x)) + γjεkψj,k(x)|pw(x)dx.

As the SG
j,k are disjoint, for any positive sequence (δj,k)k∈Rj

we have:

Vj ≥ 1
card(G)

∑
ε

Egε(‖f̂ − gε‖p
p)

≥ 1
card(G)

∑

k∈Rj

∑
ε

Egε
(
∫

SG
j,k

|f̂(x)− γjεkψj,k(G(x))|pdx)

=
1

card(G)

∑

k∈Rj

∑

εi∈{−1,+1}
i 6=k

Egε
(W 1

j,k + ∧n(gε∗k , gε)W 2
j,k)

≥ 1
card(G)

∑

k∈Rj

∑

εi∈{−1,+1}
i 6=k

Egε
(δp

j,k1{W 1
j,k≥δp

j,k})

+ ∧n(gε∗k , gε)δ
p
j,k1{W 2

j,k≥δp
j,k}). (5)

For further details, see the book Härdle, Picard, Kerkyacharian and Tsybakov (1998) and the book of
Tsybakov (2004). Let us consider the sequence δj,k de�ned as:

δj,k = γj(2N − 1)−12
j
2 (w(Sj,k)

1
p ‖ψ‖1.

Using the Minkowsky inequality in Lp
w-norm, one gets:

(W 1
j,k)

1
p + (W 2

j,k)
1
p ≥ 2(

∫

Sj,k

|γjεkψj,k(x)|pw(x)dx)
1
p .

Since w satis�es the Ap condition, we have:

(
∫

Sj,k

|γjψj,k(x)|pw(x)dx)
1
p ≥ γj(w(Sj,k))

1
p (

1
|Sj,k|

∫

Sj,k

|ψj,k(x)|dx)

≥ γj2
j
2 (2N − 1)−1(w(Sj,k))

1
p ‖ψ‖1 = δj,k.

Starting from these previous inequalities, we deduce:

1{W 2
j,k≥δp

j,k} ≥ 1{W 1
j,k≤δp

j,k}. (6)

Combining (5), (14) and (6) we obtain:

Vj ≥ 1
card(G)

∑

k∈Rj

∑

εi∈{−1,+1},i 6=k

δp
j,ke−λPgε(∧n(gε∗k , gε) ≥ e−λ).

Since ∑

k∈Rj

δp
j,k = (2N − 1)−pγp

j 2
jp
2 w([0, eN ])‖ψ‖p

1

and Card(G) = 2Card(εi ∈ {−1,+1}, i 6= k), one gets:

Vj ≥ (2N − 1)−p
γp

j

2
e−λ2

jp
2 w([0, eN ])‖ψ‖p

1p0 = ce−λγp
j 2

jp
2 p0.

Proposition 4.1. If we choosing γj = n−
1
2 then there exist λ > 0 and p0 such that:

Pgε(∧n(gε∗k , gε) > e−λ) ≥ p0, ∀ε, n ∈ N∗.
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The proof is given in the Appendix.
Thus, by taking γj = n−

1
2 ' 2−j(s+ 1

2 ) (i.e 2j ' n
1

1+2s ), Lemma 4.1 gives us:

inf
f̂

sup
f∈bG

s,p,∞(L)

Ef (‖f̂ − f‖p
p) ≥ cγp

j e−λ2
jp
2 p0 = c′(

1√
n

2
j
2 )p ≥ c′′n−

sp
1+2s .

Finally, by combining Theorem 4.2 and Theorem 4.3 we deduce the minimax bound of Theorem
4.1.

Remark 4.1. Thanks to the Proposition 2.5, we can extend the minimax result of Theorem 4.1 over
BG

s,π,r(L) for N > s ≥ p, π ≥ p and r > 0.

Remark 4.2. If v is a positive constant then we obtain a traditional minimax result.

4.2 Remarks and examples
The following lemma proposes another de�nition of the assumption 'v2(G−1(.)) veri�es the Ap condition'.

Lemma 4.2 (About the Muckenhoupt property of Theorem 4.1). Let p > 1 and q such that
1
p + 1

q = 1. Then v2(G−1(.)) veri�es the Ap condition if and only if there exists a constant C > 0 such
that:

(
1
|I|

∫

I

1
v2q(x)

dx)
1
q ≤ C(

1
|I|

∫

I

1
v2(x)

dx)

for any subintervals I of [0, 1].

Proof of Lemma 4.2. See Kerkyacharian and Picard (2004).

In order to illustrate our statistical results, consider some applications.

Example 4.1. Let us observe the model de�ned in (1) with v(t) = (σ + 1)−
1
2 t−

σ
2 . It is clear that v

and 1
v belongs to L2([0, 1]). Moreover G(x) = xσ+1, G−1(x) = x

1
σ+1 , w(x) = v2(G−1(x)) = x

−σ
σ+1 with

0 < − σ
σ+1 < p − 1 for 1 > σ > 1

p − 1 so the function w satis�es the Ap condition. Thus all conditions
are satis�ed to apply Theorem 4.1.

Let p ≥ 2 and s ≥ 0. The following table combines the results of Example 3.1 and 4.1 in the case
where the previous function is not bounded from above (i.e 0 < σ < 1):

Model (1) where Space A Hypothesis inf f̂ supf∈A E(‖f̂ − f‖p
p)

b1
s,p,∞(L) 0 < σ < 2

p
³ n−α, α = sp

1+2s

v(t) = t−
σ
2 b1

s,p,∞(L) 2
p

< σ < 1 ³ n−β , β = 2s

1+2s+σ− 2
p

bG
s,p,∞(L) 0 < σ < 1 ³ n−α, α = sp

1+2s

We remark that for 2
p < σ < 1, the minimax rate over the usual Besov space is strictly slower than

the minimax rate over the weighted Besov space.

Example 4.2 (Other interesting functions). We can apply Theorem 4.1 with functions more 'com-
plicated' such as v(t) = (ln(2))−(σ+1)(1+ t)

1
2 (ln(1+ t))−

σ
2 for 2

p < σ < 1 or else, v(t) = 2
π (1− t2σ)

1
4 t

1−σ
2

with 2
p + 1 < σ < 2. Remark that this last function is not bounded from above and below and does not

belong to Lp([0, 1]) for p > 2.

Thus we have shown that weighted Besov spaces give us stable minimax results for the variance
functions v not belonging to Lp for p > 2. Starting from these results, we propose to investigate the
performance of an adaptative procedure constructed on ξG over BG

s,π,r(L) when π ≥ p, r > 0 and s ≥ 0.
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5 Hard thresholding procedure and warped wavelet bases
Among other things, we showed in the previous part that linear procedure (1) are optimal over weighted
Besov spaces. This procedure is not adaptative, i.e achieve substantially slower rate of convergence if
the smoothness of the function that we wish to estimate is misspeci�ed. In recent years, a variety of
adaptive procedures have been proposed. Among them, let us quote the wavelet thresholding methods
introduced by Donoho and Johnstone which enjoy excellent statistical results in various risks (see Donoho
and Johnstone (1995) and Johnstone (1998)). The following section focused on the performance of a
hard thresholding procedure constructed on ξG over weighted Besov spaces.

Let us state the main results of this section:

Theorem 5.1. Assume that assumptions of Theorem 4.1 holds. Let us consider the following hard
thresholding estimator:

f̃(x) =
∑

j,k∈Λ2
n

β̂j,k1
{|β̂j,k|≥κ

q
ln(n)

n }
ψj,k(G(x)), β̂j,k =

∫ 1

0

ψj,k(G(t))
1

v2(t)
dYt,

where Λ2
n = {(j, k); j ≤ j2(n), k ∈ ∆j} for j2(n) the integer verifying

2j2(n) ≤ n

ln(n)
< 2j2(n)+1. (1)

Then for κ > 0 a large enough constant and s > 0, we have the following upper bound:

f ∈ bG
s,p,∞(L) ⇒ E(‖f̃ − f‖p

p) ≤ C

(
ln(n)

n

)α

where
α =

sp

1 + 2s
.

Proof of Theorem 5.1. Our strategy is the following : we exhibit the maxiset of the procedure f̃ and we
show that bG

s,p,∞(L) is included into it. To isolate such a space, we must verify �ve assumptions. Two
on them concern the geometrical properties of ξT , one concerns a weight inequality and �nally, two of
them concern estimator β̂j,k. The proof rests on the article of Picard and Kerkyacharian (2000). For
further details on the maxiset theory see Cohen, Picard and Kerkyacharian (2000) and Autin (2004).

The geometrical properties of the basis are a consequence of the following lemma:
Lemma 5.1. Under the assumptions of Theorem 4.1, the basis ξG

• satis�es the Temlyakov property i.e there exist two positive constants c and C such that for any
�nite set of integer F ⊆ N ∪ {τ − 1} ×∆j we have:

c
∑

j,k∈F

‖ψj,k(G(.))‖p
p ≤ ‖(

∑

j,k∈F

|ψj,k(G(.))|2) 1
2 ‖p

p ≤ C
∑

j,k∈F

‖ψj,k(G(.))‖p
p,

• is unconditional for the Lp norm i.e there exists an absolute constant C such that if |uj,k| ≤ |vj,k|
for all (j, k) ∈ N ∪ {τ − 1} ×∆j, then:

‖
∑

j≥τ−1

∑

k∈∆j

uj,kψj,k(G(.))‖p
p ≤ C‖

∑

j≥τ−1

∑

k∈∆j

vj,kψj,k(G(.))‖p
p.

Proof of Lemma 5.1. The �rst point was shown by Garcia-Martell (1999) and the second point was
shown by Picard and Kerkyacharian (2003).

Proposition 2.4 and de�nition of j2(n) (see (1)) yield:

(
ln(n)

n
)

p
2

∑

k∈Λ2
n

‖ψj,k(G(.))‖p
p ≤ C(

ln(n)
n

)
p
2

∑

j≤j2(n)

2
jp
2 ≤ C ′(

ln(n)
n

)
p
2 2

j2(n)p
2 ≤ C ′′.

Thus, the weight condition holds.
Since ln(n) ≥ 1 for n ≥ 3, Lemma 3.1 yields:



A maxiset approach of a Gaussian white noise model. 15

• P(|β̂j,k − βG
j,k| ≥ κ

2

√
ln(n)

n ) ≤ C( ln(n)
n )p,

• E(|β̂j,k − βG
j,k|2p) ≤ C( ln(n)

n )p.

We deduce that the statistical conditions are satis�ed.
Combining all these results, we can apply the maxiset theorem : For any 1 < p < ∞, 0 < ν̃ < 1 and

κ a large enough constant, there exists a positive constant C such that the following equivalence holds:

E(‖f̃ − f‖p
p) ≤ C(

ln(n)
n

)
ν̃p
2 ⇐⇒ f ∈M(p, ν̃, G).

where we have set:
M(p, ν̃, G) = E1 ∩ E2

where:
E1 = {f ; sup

u>0
u(1−ν̃)p

∑

j≥τ−1

∑

k∈∆j

1{|βG
j,k|>u}‖ψj,k(G(.))‖p

p < ∞}

and
E2 = {f ; sup

l>τ−1
2

lν̃p
2 ‖

∑

j≥l

∑

k∈Λj

βG
j,kψj,k(G(.))‖p

p < ∞}.

We conclude by the following lemma:
Lemma 5.2. For s ≥ 0 we have the following embedding:

bG
s,p,∞(L) ⊂M(p,

2s

2s + 1
, G)

The proof is given in Appendix.

Remark 5.1. Using Proposition 2.5, this result can be extended to the weighted Besov spaces BG
s,π,r(L)

with π ≥ p, r > 0 and s ≥ 0.

Finally, we have proved that hard thresholding procedure de�ned in (1) achieves the minimax rate
of convergence up to a logarithmic factor over the weighted Besov space BG

s,p,∞(L).

6 Extension of the results to other statistical models
This section introduces two statistical models using linear operators over which we can reproduce the
same study than previously.

6.1 Simple model extension
Consider the Gaussian white noise model in which we observe Gaussian processes Y

(1)
t governed by the

stochastic equation:

dY
(1)
t = Hv(f)(t)dt +

1√
n

dWt, n ∈ N∗, t ∈ [0, 1],

where v is a function submits to the assumptions of Theorem 4.1, Hv denotes the operator de�ned by
Hv(f)(.) = f(.)

v(.) and Wt is a standard Brownian motion on [0, 1]. The function f is an unknown function
of interest.
By remarking that dY

(1)
t = 1

v(t)dYt where dYt is de�ned in (1) we can establish results similar to those
obtained in Theorem 4.1 and Theorem 5.1.
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6.2 Warped Gaussian noise model
Consider the Gaussian white noise model in which we observe Gaussian processes Y

(2)
t governed by the

stochastic equation:

dY
(2)
t = KG(f)(t)dt +

1√
n

dWt, n ∈ N∗, t ∈ [0, 1],

where G is a known di�erentiable and bijective function with G′ = g, KG denotes the warped operator
de�ned by KG(f)(.) = f(G−1(.)) and Wt is a standard Brownian motion on [0, 1]. The function f is an
unknown function of interest.

If we suppose that g belongs to L1([0, 1]) with ‖g‖1 = 1 and 1
g(G−1(.)) satis�es the Ap condition

then we can show results similar to those obtained in Theorem 4.1 and Theorem 5.1 by using the warped
wavelet basis ξG and by condering β̂

(2)
j,k =

∫ 1

0
ψj,k(t)dY

(2)
t instead of β̂j,k.

Remark 6.1. Such a function g is not necessarily bounded above or below. For instance, let us consider

g(x) =
π

2
αxα−1 cos (

π

2
xα),

1
p

< α < 1, x ∈ [0, 1]

7 Appendix
This section contains proofs of Lemma 2.2, Lemma 3.1, Lemma 3.2, Proposition 3.1, Lemma 3.4, Propo-
sition 4.1 and Lemma 5.2.

Proof of lemma 2.2. By construction of ξ, we have:

T =
∑

k∈∆j

|φj,k(x)|v = T1 + T2 + T3

The compacity of φ gives us:

T1 =
N−2∑

k=0

|φj,k(x)|v ≤ (N − 1)2
jv
2 ‖φ‖v

∞

and

T3 =
2j−1∑

k=2j−N+1

|φj,k(x)|v ≤ (N − 1)2
jv
2 ‖φ‖v

∞.

For the second term, let us introduce the following sets:

Sj,k,i = [
k −N + 1 + i

2j
,
k −N + i + 2

2j
] and S̃j,i = [

i

2j
,
2j + i− 2N + 2

2j
].

Thus,

T2 =
2j−N∑

k=N−1

|φj,k(x)|v =
2j−N∑

k=N−1

2N−2∑

i=0

|φj,k(x)|v1Sj,k,i
(x)

≤ 2
jv
2 ‖φ‖v

∞

2j−N∑

k=N−1

2N−2∑

i=0

1Sj,k,i
(x) = 2

jv
2 ‖φ‖v

∞

2N−2∑

i=0

1S̃j,i
(x)

≤ 2
jv
2 ‖φ‖v

∞(2N − 1).

We deduce that there exists C > 0 such that T ≤ C2
jv
2 . Of course, φ and ψ can be exchanged. This

ends the proof of Lemma 2.2.

Proof of Lemma 3.1. It is well known that if N ∼ N (
0, σ2

)
then we have the concentration inequality

P(|N | ≥ x) ≤ 2 exp(− x2

2σ2 ). Therefore, for κ ≥ 2
√

2p and n ≥ 3, we have:

P

(
|Vn| ≥ κ

2

√
ln(n)

n

)
≤ 2 exp(−κ2n( ln(n)

n )
8

) = 2n−
κ2
8 ≤ 2n−p.
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Moreover, it is well known that if N ∼ N (0, σ2) then E(|N |2p) = Kσ2p where K = 2p√
π

∫ +∞
0

xp− 1
2 e−xdx.

We deduce the existence of a constant C > 0 which satis�es E(|Vn|p) ≤ Cn−
p
2 .

Proof of Lemma 3.2. Upper bound: Here we consider the ρj,k de�ned in (5). Using Cauchy -Schwartz
inequality and Hölder inequality with the measure dν = ψ2

j,k(t)dt, one gets:

1 = (
∫ 1

0

ψ2
j,k(t)dt)p ≤ ρp

j,kηp
j,k ≤

∫ 1

0

vp(t)ψ2
j,k(t)dtηp

j,k.

Using Lemma 2.2, we obtain:
∑

k∈Rj

η−p
j,k ≤

∫ 1

0

vp(t)
∑

k∈∆j

ψ2
j,k(t)dt ≤ C2j‖v‖p

p = C ′2j .

Lower bound: The Cauchy-Schwartz inequality yields:

c2j = Card(Rj) =
∑

k∈Rj

η
p
2
j,kη

− p
2

j,k ≤
√ ∑

k∈Rj

ηp
j,k

√ ∑

k∈Rj

η−p
j,k (1)

Using Hölder inequality with the measure dν = ψ2
j,k(t)dt and Lemma 2.2, we obtain:

∑

k∈Rj

ηp
j,k ≤

∫ 1

0

1
vp(t)

∑

k∈∆j

ψ2
j,k(t)dt ≤ C2j‖1

v
‖p

p = C ′2j . (2)

Inequalities (1) and (2) yield: ∑

k∈Rj

η−p
j,k ≥ c2j .

This completes the proof of Lemma 3.2.

Proof of Proposition 3.1. Following Girsanov's theorem, one gets:

∧n(gε∗k , gε) = exp (n
∫ 1

0

(gε∗k(t)− gε(t))
v2(t)

dYt − n

2

∫ 1

0

(g2
ε∗k

(t)− g2
ε(t))

v2(t)
dt).

Under Pgε , we have :

∧n(gε∗k , gε) = exp (−n

2

∫ 1

0

(gε∗k(t)− gε(t))2

v2(t)
dt +

√
n

∫ 1

0

(gε∗k(t)− gε(t))
v2(t)

dWt).

Since gε∗k(t)− gε(t) = −2η−1
j,kγjεkψj,k(t), by choosing γj = n−

1
2 we obtain:

∧n(gε∗k , gε) = exp(−2η−2
j,k

∫ 1

0

ψ2
j,k(t)
v2(t)

dt− 2εkη−1
j,k

∫ 1

0

ψj,k(t)
v(t)

dWt)

= exp(−2− 2η−1
j,kεk

∫ 1

0

ψj,k(t)
v(t)

dWt).

Since −2η−1
j,kεk

∫ 1

0
ψj,k(t)

v(t) dWt ∼ N (0, 4), this entail the existence of λ > 0 and p0 > 0 such that
Pgε(∧n(gε∗k , gε) > e−λ) ≥ p0.

Proof of Lemma 3.4. Upper bound: Let v2(Sj,k) =
∫

Sj,k
v2(t)dt. Since t−σ veri�es the Ap condition for

2
p < σ < 1, Lemma 2.1 implies the existence of a constant C > 0 such that v2(Sj,k) ≤ Cv2(Ij,k). Thus

∑

k∈Rj

(
∫ 1

0

v2(t)ψ2
j,k(t)dt)

p
2 ≤ ‖ψ‖2∞2

jp
2

∑

k∈Rj

(v2(Sj,k))
p
2 ≤ C ′2

jp
2

∑

k∈Rj

(v2(Ij,k))
p
2 .

Using the following elementary inequality

(1 + z)α − 1 ≤ αz for z ∈ [0, 1], 0 < α < 1,
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one gets:
(v(Ij,k))

p
2 = 2j(σ−1) p

2 k(−σ+1) p
2 ((1 +

1
k

)−σ+1 − 1)
p
2 ≤ (1− σ)2j(σ−1) p

2 k−
σp
2 .

Since
∑

k≥1 k−β < ∞ for β > 1, we deduce:
∑

k∈Rj

ρp
j,k ≤ C ′2j σp

2

∑

k≥1

k−
σp
2 ≤ C ′′2j σp

2 .

The Cauchy -Schwartz inequality gives us:

1 = (
∫ 1

0

ψ2
j,k(t)dt)p = (

∫ 1

0

v(t)
v(t)

ψj,k(t)ψj,k(t)dt)p ≤ ρp
j,kηp

j,k

so:
∑

k∈Rj

η−p
j,k ≤

∑

k∈Rj

ρp
j,k ≤ C2

jσp
2 .

Lower bound: Since −1 < −σ < − 2
p < 0, v2 veri�es the A2 condition (see Example 2.1). So:

(
1

v2(Sj,k)

∫

Sj,k

v2(t)ψ2
j,k(t)dt)

1
2 ≥ c

1
|Sj,k|

∫

Sj,k

|ψj,k(t)|dt

= c(2N − 1)−12
j
2 ‖ψ‖1

= c′2
j
2 .

Therefore:
∑

k∈Rj

ρp
j,k ≥ c′2

jp
2

∑

k∈Rj

(v2(Sj,k))
p
2 (3)

Since v2 is decreasing, we have supk∈Rj
v2(Sj,k) =

∫ 2N−1
2j

0 t−σdt = (1 − σ)−1(2N − 1)1−σ2j(σ−1). We
deduce:

2
jp
2

∑

k∈Rj

(v2(Sj,k))
p
2 ≥ 2

jp
2 ( sup

k∈Rj

v2(Sj,k))
p
2

= c′2
jp
2 2j(σ−1) p

2

= c′2
jσp
2 . (4)

Using the compacity of ψ and the A2 condition with the function h = v−2, one gets:

ηp
j,kρp

j,k ≤ ‖ψ‖2p
∞(2j

∫

Sj,k

v2(t)dt)
p
2 (2j

∫

Sj,k

1
v2(t)

dt)
p
2 ≤ C. (5)

Combining (3), (4) and (5), one gets:
∑

k∈Rj

η−p
j,k ≥ c

∑

k∈Rj

ρp
j,k ≥ c2

jσp
2 .

This ends the proof of Lemma 3.4.

Proof of Proposition 4.1. Following Girsanov's theorem, under Pgε we have:

∧n(gε∗k , gε) = exp (−n

2

∫ 1

0

(gε∗k(t)− gε(t))2

v2(t)
dt +

√
n

∫ 1

0

(gε∗k(t)− gε(t))
v2(t)

dWt).

Since gε∗k(t)− gε(t) = −2γjεkψj,k(G(t)), in choosing γj = n−
1
2 we obtain:

∧n(gε∗k , gε) = exp(−2
∫ 1

0

ψ2
j,k(G(t))
v2(t)

dt− 2εk

∫ 1

0

ψj,k(G(t))
v(t)

dWt)

= exp(−2− 2εk

∫ 1

0

ψj,k(G(t))
v(t)

dWt)

Since −2εk

∫ 1

0
ψj,k(G(t))

v(t) dWt ∼ N (0, 4), this entail the existence of λ > 0 and p0 > 0 such that
Pgε(∧n(gε∗k , gε) > e−λ) ≥ p0.
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Proof of Lemma 5.2. For the following embedding

bG
s,p,∞(L) ⊂ {f , sup

u>0
u

p
1+2s

∑

j,k∈Λ

1{|βG
j,k|>u}‖ψj,k(G(.))‖p

p < ∞}

see Picard and Kerkyacharian (2004).
Assume that f belongs to bG

s,p,∞(L) for all s ≥ 0. Using Lemma 2.4, for any l ≥ τ − 1 one gets:

‖
∑

j≥l

∑

k∈∆j

βG
j,kψj,k(G(.))‖p2

ls
1+2s ≤

∑

j≥l

‖
∑

k∈∆j

βG
j,kψj,k(G(.))‖p2

ls
1+2s

≤ C
∑

j≥l

2
j
2 (

∑

k∈∆j

|βG
j,k|pw(Ij,k))

1
p 2

ls
1+2s

≤ CL
∑

j≥l

2
ls

1+2s−js ≤ C ′
∑

j≥l

2(l−j)s ≤ C ′′.

So:
bG
s,p,∞(L) ⊆ {f , sup

l>0
2−

lsp
1+2s ‖f −

∑

j≥l

∑

k∈∆j

βG
j,kψj,k(G(.))‖p

p < ∞}.

This completes the proof of Lemma 5.2.
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