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Lorenz or Coulomb in Galilean Electromagnetism ? 

 
Germain Rousseaux 
INLN – UMR 6618 CNRS, 
1361 route des Lucioles, 
06560 Valbonne 
__________________________________________________________________________________________ 
Résumé.  L’électromagnetisme galiléen fut découvert il y a trente ans par Lévy-Leblond & Le Bellac. Cependant, 
ces auteurs ont uniquement exploré les consequences pour les champs et non pour les potentiels. En suivant De 
Montigny & al., nous montrons que la condition de jauge de Coulomb est la limite magnétique de la condition de 
jauge de Lorenz alors que cette dernière s’applique dans la limite électrique de Lévy-Leblond & Le Bellac. 
Contrairement à De Montigny & al., nous utilisons des ordres de grandeurs motivés par des considérations physiques 
dans notre démonstration. 
 
Abstract. Galilean Electromagnetism was discovered thirty years ago by Levy-Leblond & Le Bellac. However, 
these authors only explored the consequences for the fields and not for the potentials. Following De Montigny & al., 
we show that the Coulomb gauge condition is the magnetic limit of the Lorenz gauge condition whereas the Lorenz 
gauge condition applies in the electric limit of Lévy-Leblond & Le Bellac. Contrary to De Montigny & al. who used 
Galilean tensor calculus, we use orders of magnitude based on physical motivations in our derivation. 
__________________________________________________________________________________________
 
 
1. Introduction 
 
 Does there exist a galilean limit of Maxwell equations ? According to Lévy-Leblond & Le 
Bellac, the answer is positive [1]. Indeed, they have shown that there exist not one as in 
mechanics but two well defined Galilean limits of the full set of Maxwell equations : the 
magnetic limit and the electric limit. The two Galilean limits were introduced by Lévy-Leblond 
and Le Bellac without demonstration. More precisely, they have show that two particular 
approximations of the full set of Maxwell equations were compatible with the two Galilean 
transformations for the field they “derived”.  

If one denotes γ = 1− v2 cL
2( )−1 2

 where cL  is the light velocity, the relativistic 
transformations for the fields in vacuum between two inertial frames with relative velocity v are : 

′ E = γ E + v × B( )+
1 −γ( ) v.E( )v

v2  and ′ B = γ B − 1 cL
2( )v × E( )+

1− γ( ) v.B( )v
v2  

In vacuum, one obtains the magnetic limit by stating that v cL << 1 and E << cLB . 
Conversely, the electric limit is obtained by stating that v cL << 1 and E >> cLB . Hence, one 
ends up with two set of low-velocity formula from the Lorentz transformations [1]: 

Electric Limit : 
′ B = B − 1 cL

2( )v × E′ E = E  and  
Magnetic Limit : 

′ E = E + v × B  and ′ B = B 
These two limits are practically very important since they correspond to the so-called 

electroquasistatic and magnetoquasistatic approximations of engineering electromagnetism as 
described in Haus & Melcher e-book [2]. Moreover, magnetohydrodynamics relies on the 
magnetic limit whereas electrohydrodynamics relies on the electric limit of Maxwell equations. 



Severals authors have discussed recently Lévy-Leblond & Le Bellac paper. Holland & 
Brown argued that the limit process applied to the scalar and vector potential would break gauge 
invariance such that they did not explore as Lévy-Leblond & Le Bellac the consequences for the 
so-called gauge conditions [3]. De Montigny & al. in a series of papers revisited also Galilean 
electromagnetism with the help of a “Galilean tensor calculus” which consists in expressing 
nonrelativistic equations in a covariant form with a five-dimensionnal Riemannian manifold ([4] 
and references therein). In their review on Galilean Electromagnetism, De Montigny & al. have 

shown that the Lorenz gauge condition 01. 2 =
∂
∂

+∇
t
V

cL

A  which is covariant with respect to the 

Lorentz transformations becomes the Coulomb gauge condition 0. =∇ A  within the magnetic 
limit and that the Lorenz gauge condition keeps unchanged within the electric limit. The present 
author has reached independently the same conclusions [5] by imposing directly Galilean 
covariance with respect to the gauge conditions depending on the Galilean transformations for the 
potentials, first introduced by Levy-Leblond & Le Bellac, which differ according to the two 
limits : 

Electric Limit :

 and A'= A −
vV
cL

2  VV ='

Magnetic Limit :
 and AA ='  v.A−= VV '

by recalling that the Galilean transformations for the temporal and spatial derivations are : 
'∇=∇  

t'v ∂=∇+∂ .t  
 

Here we would like to show a physically meaningful derivation based on orders of 
magnitude of the Galilean limits for the Lorentz-covariant Lorenz gauge condition. 
 
2. The Galilean limits of Lorenz gauge condition 
 

Now, how do Lévy-Leblond and Le Bellac know that E << cLB  or E >> cLB . Indeed, it 
is a rather formal assumption which is not justified at all a priori whereas it is true ! 

We argue that the derivation of Lévy-Leblond & LeBellac is equivalent to evaluate the 
order of magnitude of the following parameters : 

τ
ε

Lc
L

=  and 
Lc

j
ρ

ξ ~
~

=  

where L (τ represents the order of magnitude of a typical scale (time) of the problem and j~  ( ρ~ ) 
represents the order of magnitude of  the current (charges) density in the system under 
examination. 

As a matter of fact, the values of the electric and magnetic fields depend on their sources, 
that is, on the distribution of the charge and current densities. If one evaluates the order of 
magnitude of the fields in function of the sources using Gauss and Ampère’s equations, one ends 
up with : 

˜ B 
L

≈ µ0
˜ j  and  

˜ E 
L

≈
˜ ρ 
ε0

 



which leads to : 
cL

˜ B 
˜ E 

≈
˜ j 

˜ ρ cL

= ξ  

Hence, one has shown that assuming E >> cLB  ( E << cLB ) is the consequence of 
assuming  ( ). ξ << 1 ξ >> 1
In addition, Ampère’s equation leads to : 

˜ B ≈
˜ v ̃  E 
cL

2  
and Faraday’s equation gives : 

˜ E ≈ ˜ v ̃  B  
which are compatible only if : ˜ v ≈ cL  (Lorentz-covariant electromagnetism). 
 

As a consequence, either we have 
˜ B ≈

˜ v ̃  E 
cL

2
 which is compatible with  (the time 

derivative of the magnetic field drops) and 

0E ≈×∇

EjB 0 t
Lc

∂+=×∇ 2

1µ  (the electric limit) or we have 

˜ E ≈ ˜ v ̃  B  which is compatible with jB 0µ≈×∇  (the time derivative of the electric field drops) and 
 (the magnetic limit). E-B ×∇=∂ t

 Once again, we underline forcefully that we have only shown compatibility between some 
approximations of the full set of “Maxwell equations” with Galilean relativity. We will now 
present what we think to be a demonstration of the two Galilean limits. 

Indeed, the author has recently proposed to use the so-called Riemann-Lorenz formulation 
(the potentials are the basic quantities) instead of the so-called Heaviside-Hertz formulation (the 
fields are the basic quantities) in order to describe any experimental fact relative to Classical 
Electromagnetism [5]. The Riemann-Lorenz procedure consists in using the following postulate : 
“Any experimental fact of Classical Electromagnetism can be explained through the use of a 
scalar and a vector potential which are solutions of a set of Riemann equations with source terms 
(current density for the vector potential and charge density for the scalar potential) assuming that 
both potentials are constrained to fulfill the Lorenz equation. With respect to the interaction with 
the matter, the Lorentz force usually written in terms of the fields can be rewritten in terms of the 
potentials as the time derivative of the sum of the kinetic momentum plus the electromagnetic 
momentum equal to minus the gradient of the difference between the scalar potential and the 
scalar product of the velocity of the charge with the vector potential” : 

∇ 2V −
1
cL

2
∂2V
∂t 2 = −

ρ
ε0

  and  ∇ 2A −
1
cL

2
∂2A
∂t 2 = −µ0j  : Riemann equations 

01. 2 =
∂
∂

+∇
t
V

cL

A  : Lorenz equation 

d
dt

(mv + qA) = −∇(V − v.A) : Lorentz force 

 The purpose of this article is not to discuss the validity of this postulate but to show what 
it implies with respect to Galilean Electromagnetism using the potentials. 
 Assuming that the sources vanish at infinity, the potential are expressed by the so-called 
retarded formula : 



∫∫∫
−

= τ
ρ

πε
d

PM
cPMtP

tMV L )/,(
4

1),(
0

 and ∫∫∫
−

= τ
π

µ
d

PM
cPMtPtM L )/,(

4
),( 0 jA  

We explicitly assume that the potentials are defined up to a constant which, for an infinite 
volume, is taken to be zero. If the volume of investigation is bounded like in a Faraday cage, the 
contribution of all the sources outside the volume resumes to a constant which is different from 
zero as can be shown easily with the Green formula. 

In the quasi-static approximation where 1<<ε , the so-called retarded formula for the 
potentials become [6] : 

∫∫∫≈ τρ
πε

d
PM

tPtMV ),(
4

1),(
0

 and ∫∫∫≈ τ
π

µ
d

PM
tPtM ),(

4
),( 0 jA  

These approximations are the solutions of Poisson equations for the potentials which are the 
quasi-static limits of the Riemann equations with source terms [6] : 

jA 0
2 µ−≈∇  and 

0

2

ε
ρ

−≈∇ V  

From this last remark, we can evaluate the order of magnitude of the potentials in function of the 
sources j~  and ρ~   which are given a priori : 

˜ A ≈ µ0

4π

˜ j ϑ
L

 and ˜ V ≈
1

4πε0

˜ ρ ϑ
L

 

Contrary to Holland & Brown [3], we explicitly break gauge invariance of the Heaviside-
Hertz formulation by giving orders of magnitude to the potentials. When one say that we can 
evaluate the order of magnitude of the potentials, one assume that we evaluate the order of 
magnitude of the potentials with respect to the constant on the boundary of the domain which is 
null if infinite and without sources at infinity. Hence, the tilde means the order of magnitude of a 
difference of potentials. Indeed, only the concept of difference of potential does have a physical 
meaning in the Riemann-Lorenz formulation. Yet, we point out forcefully that a difference of 
potential is not equal to a field : for example, the static field inside a capacitor is equal to the 
difference of potential between the two plates divided by the distance between them. A volt per 
meter is not the same object as a volt… 

Now, one can form the following non-dimensional ratio : 
cL

˜ A 
˜ V 

≈
cLµ0

˜ j 
˜ ρ 

ε0

=
˜ j 

˜ ρ cL

= ξ  

 We would like to know what become the Lorenz gauge condition as well as the charge 

conservation 0. =
∂
∂

+∇
t

j ρ  within the Galilean limits. We evaluate the orders of magnitude of 

each component of the spatial terms in these equations with respect to the temporal  term :   

ε
ξτ

τ

=≈≈

∂
∂

∇

V
Ac

L
c

c
V
L
A

t
V

c

LL

LL

~
~

~

~

1
22

.A
 and 

ε
ξ

ρ
τ

τ
ρρ

=≈≈

∂
∂
∇

~
~

~

~

L

L

c
j

L
cL

j

t

.j
 

As one can see, it implies the same ratio between ε and ξ . Now, according to Lévy-
Leblond & Le Bellac the quadri-current has the following Galilean limits : 



Electric Limit :
ρρ ='  and vjj' ρ−=  

which leads to ξe =
˜ j 

˜ ρ cL

≈
˜ ρ ̃  v 
˜ ρ cL

≈ ε 

Magnetic Limit :

 
2'
Lc

v.j−=ρρ jj' and =  

which leads to ερ
ξ 1~~

~
~
~

2

≈≈=
L

L

L
m

cc
jv
j

c
j  

Hence,  is different whether one considers the electric or the magnetic limit.  ξ
For Lorentz covariant Electromagnetism, we have obviously )1(O≈ε  and )1(O≈ξ  which 

implies that the two terms in the Lorenz gauge are of the same order of magnitude : Lorenz gauge 
condition is Lorentz covariant which is well known. 

In the quasi-static approximation where 1<<ε , we get : 
Electric Limit : 

 and )1(Oe ≈ε
ξ  1<<≈εξe

The Lorenz gauge 01. 2 =
∂
∂

+∇
t
V

cL

A  is now Galilean covariant with respect to the electric 

transformations of the potentials. 
Magnetic Limit : 

 and 1>>ε
ξm  11>>≈εξm

Hence, the Coulomb gauge  is the approximation of the Lorenz gauge within the 
magnetic limit and is now Galilean covariant with respect to the magnetic transformations of the 
potentials. The same conclusion applies for the charge conservation. 

0. =∇ A

Using the Poisson equations for the potentials and either the Lorenz or the Coulomb 
gauge depending on the electric or the magnetic limit, one can easily derive the two sets of 
Galilean Maxwell equation for the fields proposed by Lévy-Leblond & Le Bellac [1]. The 
important point is to recognize that the two Galilean sets of equations in terms of the fields were 
stated without demonstration in [1] whereas here, we can demonstrate them starting with the 
potentials. 

 
3. Conclusion 
 

As a conclusion, we have shown that the Lorenz equation applies in both Lorentz-
covariant relativity as well as Galilean covariant electric limit of Lévy-Leblond and Le Bellac 
whereas the Coulomb gauge equation applies only within the Galilean covariant magnetic limit. 
We have explicitly broken gauge invariance in order to get these results in accordance with the 
Riemann-Lorenz formulation of Classical Electromagnetism. This last fact is a priori astonishing 
and contradictory but it was demontrated long ago that Galilean Covariance and Gauge 
Invariance were incompatible [6]. Galilean Electromagnetism is an unexpected field of actual 
research as one needs to explore all its consequence in our current understanding of the special 
theory of relativity. As recalled recently by J. Norton, this theory emerged from Albert Einstein’s 



struggle with Lorentz’s pre-1905 electromagnetic theory, which is a mixing of the magnetic and 
electric limit without the essential property of group additivity and which made it untenable [7]…  
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