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Résumé

We propose new domain decomposition methods for systems of partial

differential equations in two and three dimensions. The algorithms are

derived with the help of the Smith factorization of the operator. This

could also be validated by numerical experiments.

1 Introduction

Neumann-Neumann [BGLTV89] or FETI type algorithms are very popular
domain decompositions methods. They are currently used for very large scale
computations, see for example [DDO03] and references therein. These methods
are very well understood for symmetric definite positive scalar equations. For
nonsymmetric problems and systems of equations many questions are still open.
We propose in this note, a systematic construction of related algorithms for
systems of partial differential equations (PDE). The approach is based on the
Smith factorization of the system of PDEs. First, we explain the derivation of
the domain decomposition method for the Stokes system. Then the application
to the Oseen system [NR] and the Euler equations [DN05] is briefly discussed.

2 Analysis of the Stokes system via Smith fac-

torization

Let ν > 0, we write the 2D Stokes equations as :

AStokes





u
v
p



 =





−ν∆ 0 −∂x

0 −ν∆ −∂y

∂x ∂y 0









u
v
p



 =





fu

fv

0



 . (1)
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We first recall the definition of the Smith factorization of a matrix with poly-
nomial entries and apply it to systems of PDEs :

Theorem 2.1 Let n be an integer and A an invertible n× n matrix with poly-
nomial entries with respect to the variable λ : A = (aij(λ))1≤i,j≤n.
Then, there exist matrices E, D and F with polynomial entries satisfying the
following properties : det(E)=det(F )=1, D is a diagonal matrix and A = EDF .

More details can be found in [WRL95]. We first take formally the Fourier trans-
form of system (1) with respect to y (dual variable is k). We keep the partial
derivatives in x since in the sequel we shall consider a model probem where the
interface between the subdomain is orthogonal to the x direction. We note

ÂStokes =





−ν(∂xx − k2) 0 −∂x

0 −ν(∂xx − k2) −ik
∂x ik 0



 . (2)

We can perform the Smith factorization of ÂStokes by considering it as a matrix
with polynomials in ∂x entries. We have

ÂStokes = EDF (3)

where D11 = D22 = 1 and D33 = −ν∆̂2 with ∆̂ = ∂xx − k2. One should note
that a stream function formulation gives the same differential equation for the
stream function. In the same way, the three-dimensional case can be charac-
terized. In this case, the diagonal matrix D3D is a four by four matrix whose
entries are : D3D,11 = D3D,22 = 1, D3D,33 = −ν∆̂ and D3D,44 = −ν∆̂2. This
suggests that the derivation of a DDM for the bi-Laplacian is a key ingredient
for a DDM for the Stokes system.

3 A Domain Decomposition Method for the bi-

Lplacian

Let Ω be an open subset of R
2 and Γ = Ω̄ ∩ {x = 0} be a symmetry axis

of Ω. For simplicity, in the note we assume homogeneous Dirichlet conditions
on the boundary ∂Ω. The domain Ω is decomposed into Ω1 = Ω ∩ {x < 0} and
Ω2 = Ω ∩ {x > 0}. We consider the following algorithm :
Starting with an initial guess satisfying w0

1 = w0
2 and ∆(w0

1) = ∆(w0
2) on Γ, the

correction steps are expressed as follows for i = 1, 2 :

− ν∆2(w̄k+1

i ) = 0 in Ωi (4)

∂ni
∆w̄k+1

i = −(∂n1
∆wk

1 + ∂n2
∆wk

2 )/2 (5)

and ∂ni
w̄k+1

i = −(∂n1
wk

1 + ∂n2
wk

2 )/2 on Γ (6)

followed by an update step :

− ν∆2(wk+1

i ) = g in Ωi (7)

∆wk+1

i = ∆wn
i + (∆w̄k+1

1 + ∆w̄k+1

2 )/2 (8)

and wk+1

i = wk
i + (w̄k+1

1 + w̄k+1
2 )/2 on Γ (9)
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By symmetry arguments, we have converge in two steps to the solution of
−ν∆2(w) = g in Ω.

4 The algorithm for the Stokes system

Thanks to the Smith factorization (3), it is possible to translate the above
algorithm for the bi-Laplacian operator into an algorithm for the Stokes system.
It suffices to replace equations (4),(7) by the Stokes equations and in the inter-
face conditions (5),(6),(8),(9) w by the last component of F (u, v, p)T . In order
to write the resulting algorithm in an intrinsic form, we introduce the stress
~σ(~u, p) on the interface for a velocity ~u = (u, v) and a pressure p. For any vector
~u its normal (resp. tangential) component on the interface is ~un (resp. ~uτ ). We
denote ~σn and ~στ the normal and tangential parts of ~σ, respectively. The new
algorithm for the Stokes system for the same geometry as above reads :
Starting with an initial guess satisfying ~u0

1,τ1
= ~u0

2,τ2
and ~σ0

1,n1
= −~σ0

2,n2
on Γ,

the correction steps is expressed as follows for i = 1, 2 :

AStokes( ~̄wk+1

i , q̄k+1

i )T = 0 in Ωi (10)

~̄wk+1

i,ni
= (−1)i(~uk

1,n1
+ ~uk

2,n2
)/2 (11)

and στi
( ~̄wk+1

i , q̄k+1

i ) = −(στ1
(~̄uk

1 , p̄
k
2) + στ2

(~̄uk
2 , p̄k

2))/2 on Γ (12)

followed by an update step :

AStokes(~u
k+1

i , pk+1

i )T = f in Ωi (13)

~uk+1

i,τi
= ~uk

i,τi
+ ( ~̄wk+1

1,τ1
+ ~̄wk+1

2,τ2
)/2 on Γ (14)

~σni
(~uk+1

i , pk+1

i ) = ~σni
(~uk

i , pk
i )

+(−1)i−1(~σn1
( ~̄wk+1

1 , q̄k+1

1 ) − ~σn2
( ~̄wk+1

2 , q̄k+1

2 ))/2 on Γ (15)

The boundary conditions in the correction step involve the normal velocity and
the tangential stress whereas in the update step they involve the tangential ve-
locity and the normal stress. In 3D, the algorithm has the same definition. By
construction, it converges in two steps. In the iterative version of the Neumann-
Neumann algorithm for the Stokes system [TP97], [PW02], the boundary condi-
tions of the correction step involve all the components of the stress whereas the
update step involves all the components of the velocity. It can be shown that the
convergence in two steps is then lost. More precisely, one obtains a convergence
rate of 1/3 in the case Ω = R

2, cf [NR].

5 Algorithm for other systems of PDEs

The derivation of the algorithm for the Stokes system is based on the use
of the Smith factorization and on the existence of superconvergent algorithms
for scalar PDEs. The same procedure can be performed for the Oseen equa-
tions [NR]. In this case, the diagonal form of the operator is the product of
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a convection-diffusion operator and of a Laplacian operator. Using ([AN97])-
[ATNV00]) for the convection-diffusion, it is possible to derive an algorithm for
the fourth order problem that converges in two steps. Translating this algorithm
on the system, we obtain an algorithm converging in two steps for the Oseen
system. The same work was done for the compressible Euler system [DN05]. In
this case, the diagonal form of the operator is a product of a convective operator
with a Helmholtz convective wave equation. The Smith factorization has also
been used to design PML for the time-dependent compressible Euler equations,
[Nat].

6 Preliminary Numerical results for the Stokes

system

The domain Ω = (−A, B)× (0, 1) is decomposed into two subdomains Ω1 =
(−A, 0) × (0, 1) and Ω2 = (0, B) × (0, 1). We compare the algorithm of § 4 to
the iterative version of the Neumann-Neumann algorithm. The stopping criteria
is that the jumps of the normal derivative of the tangential component of the
velocity are reduced by the factor 10−4. In table 1 (left) A = B = 1, we see that
both algorithms are not sensitive with respect to the mesh size. Of course, due
to the discrete approximation we cannot expect the optimal convergence in two
steps. But we only need one more step to achieve the error bound. We have also
varied the width of the subdomains, (middle table). As expected the convergence
of the Neumann-Neumann method deteriorates. For large aspect ratios, the
method diverges (– in the table), since there exists an eigenvalue of the operator
corresponding to the Richardson iteration with a modulus larger than 1. But still
in this case convergence can be enforced by its use as a preconditioner in Krylov
method as it is usually the case. Our new algorithm seems to be surprisingly
robust with respect to the subdomain widths. For moderate variations we always
need 3 iterations steps. If we choose very thin subdomains, for instance A = 1,
B = 20, the stopping criterion is achieved in only 7 steps. In table 1 (right),
we have added a reaction term c > 0 to the first two equations of the Stokes
system. For instance c may be the inverse of the time step in a time-dependent
computation. We see that the new algorithm is fairly stable.
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h new alg N-N
0.02 3 10
0.025 3 12
0.05 3 11
0.5 3 11
0.1 3 11
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B new alg N-N
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3 3 11
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10 3 –
20 7 –

c new alg N-N
0.001 3 11
0.01 3 16
0.1 3 19
1 3 19
10 3 16
100 3 10

Tab. 1 – Comparison between the new algorithm and the Neumann-Neumann
algorithm (NN) : Iteration counts for different mesh sizes (left), aspect ratio
(middle) and different reaction terms (right)
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