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REAL ZEROS AND SIZE OF RANKIN-SELBERG

L-FUNCTIONS IN THE LEVEL ASPECT

G. RICOTTA

Abstract. In this paper, some asymptotic formulas are proved for the
harmonic mollified second moment of a family of Rankin-Selberg L-
functions. One of the main new input is a substantial improvement of
the admissible length of the mollifier which is done by solving a shifted
convolution problem by a spectral method on average. A first conse-
quence is a new subconvexity bound for Rankin-Selberg L-functions in
the level aspect. Moreover, infinitely many Rankin-Selberg L-functions
having at most eight non-trivial real zeros are produced and some new
non-trivial estimates for the analytic rank of the family studied are ob-
tained.
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1. Introduction and statement of the results

This paper is motivated by the striking result of J.B. Conrey and K.
Soundararajan proven in [CoSo]:

Theorem (J.B. Conrey-K. Soundararajan (2002)). There exists infinitely
many (at least 20% in a suitable sense) primitive quadratic Dirichlet char-
acters χ whose Dirichlet L-function L(χ, s) :=

∑
n χ(n)n−s does not vanish

on the critical segment [0, 1].
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2 G. RICOTTA

The family of L-functions considered in [CoSo] is G := ∪X∈{2m,m∈N}G(X)
with

G(X) :=
{
L (χ−8d, .) , 2 ∤ d, µ2(d) = 1,X ≤ d ≤ 2X

}

where χ−8d(n) :=
(−8d

n

)
is the Kronecker symbol. The proof, which is based

on the mollification method, exploits the following properties of the family
G:

• the functional equation of each L-function of this family has the
same sign;

• this sign equals +1 and consequently the order of vanishing at the
critical point 1

2 of each L-function is an even integer;
• the symmetry type of this family is symplectic - this entails that the

first zero is repelled from the real axis and justifies the method used
by the authors.

K. Soundararajan announced at the Journées Arithmétiques 2003 in Graz a
similar result for the families H± := ∪K∈{2m,m∈N∗}H±(K) with

H+(K) :=
{
L (f, .) , f ∈ Spk(1),K ≤ k ≤ 2K,k ≡ 0 mod 4

}
,

H−(K) :=
{
L (f, .) , f ∈ Spk(1),K ≤ k ≤ 2K,k ≡ 2 mod 4

}

where Spk(1) denotes the set of primitive cusp forms of level 1, weight k and
trivial nebentypus. It is then natural to try to generalize these results to
other families of L-functions. Throughout this article, g will be a fixed prim-
itive (arithmetically normalized namely with first Fourier coefficient equal
to one) cusp form of square-free level D, weight kg and trivial nebentypus
εD, and f will be a varying primitive cusp form of level q, weight k and
trivial nebentypus εq denoted by f ∈ Spk(q). We prove a result cognate to
that of [CoSo] for the family of Rankin-Selberg L-functions F := ∪q∈P

q∤D

F(q)

where:

∀q ∈ P, F(q) :=
{
L(f × g, .), f ∈ Spk(q)

}
.

From now on, L(f × g, .) is the Rankin-Selberg L-function described in sec-
tion 4 of [KoMiVa] associated to the pair (f, g) and P denotes the set of
prime numbers. The family F has the same properties (at least conjec-
turally) as the family G. The challenge lies in the fact that the analytic
conductor Q(f × g) say of any L(f × g, .) in F(q) is large by comparison
with the size of |F(q)|; one has

logQ(f × g)

log |F(q)| → 2 as q → +∞

while for the families G and H±, one has

logQ(χ−8d)

log |G(X)| → 1,
logQ(f)

log |H±(K)| → 1 as respectivelyX,K → +∞.

In particular, the second moment in our case (whose evaluation is neces-
sary to apply the mollification method) is already critical (in the sense
of [Mi2]); this is not the case of the families G and H±, for which the fourth
moment is critical. Moreover, the L-functions of the family F are Euler prod-
ucts of degree four (rather than one or two) which significantly increases the
combinatorial analysis.
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For q in P and k ≥ 2 an even integer, we define the following harmonic
averaging operator

∀q ∈ P, Ahq [α] :=

h∑

f∈Sp
k
(q)

αf :=
∑

f∈Sp
k
(q)

ωq(f)αf

for sequences of complex numbers indexed by Spk(q) and with the harmonic

weight ωq(f) := Γ (k−1)
(4π)k−1〈f,f〉q (〈., .〉q is the Petersson scalar product on the

space of cusp forms of level q, weight k and trivial nebentypus). We also
define the harmonic probability measure on Spk(q) by

µhq (E) :=
1

Ahq [1]

∑

f∈E
ωq(f)

for any subset E of Spk(q). With these notations, our analogue of the theorem
of J.B. Conrey and K. Soundararajan is:

Theorem A. Let g be a primitive cusp form of square-free level D, weight
kg ≥ 22 and trivial nebentypus. As q → +∞ among primes and f ranges
over the set of primitive cusp forms of level q, weight k ≥ kg + 6 and trivial
nebentypus, there are infinitely many (at least 1.8% in a suitable sense) f
in Spk(q) such that L(f × g, .) has at most eight non-trivial real zeros. More
precisely, for q a prime coprime with D, and k ≥ kg + 6, we have:

µhq
({
f ∈ Spk(q), L(f × g, .) has at most 8 zeros in [0, 1]

})
≥ 0.018 + og(1).

Remark 1.1. Under the Ramanujan-Petersson-Selberg conjecture (confer
H2(0) next page), we would obtain 4% of L(f × g, .) having at most 6 non-
trivial real zeros. However, even this strong and deep hypothesis does not
seem to give the existence of infinitely many Rankin-Selberg L-functions
having no zeros in [0, 1] by the present method.

Remark 1.2. In the course of the proof of theorem A, we also prove that
the analytic rank of the family F is bounded on average. More precisely,
set

(1.1) r(f × g) := ords= 1
2
L(f × g, s),

one has
1

Ahq [1]
Ahq [r(.× g)] ≤ 9.82 + og(1)

and we can replace the constant 9.82 by 7.66 under Ramanujan-Petersson-
Selberg conjecture. Moreover, following the method of [H-BMi], one can
even show the exponential decay of the analytic rank of the family F namely
there exists some absolute constants B,C > 0 such that:

1

Ahq [1]
Ahq [exp (Br(.× g))] ≤ C.
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The proof of theorem A relies on some asymptotic formulas for the har-
monic mollified second moment of the family F , which is defined by

(1.2) Wh(g;µ) := Ahq

[∣∣∣∣L
(
.× g,

1

2
+ µ

)∣∣∣∣
2
]

where for f ∈ Spk(q) and s ∈ C we have set

L(f × g, s) := L(f × g, s)M(f × g, s);

here, M(f ×g, .) is some Dirichlet polynomial (the so-called mollifier) of the
following shape

M(f × g, s) :=
∑

1≤ℓ≤L

xℓ(g, s)

ℓs
λf (ℓ)

where the length L ≥ 1 has to be as large as possible. Here, the (λf (ℓ))1≤ℓ≤L
are Hecke eigenvalues of f and the (xℓ(g, s))1≤ℓ≤L are well chosen mollifying
coefficients depending on s, g on some parameter 0 < Υ < 1 and on some
polynomial P satisfying P (0) = P ′(0) = P ′(Υ) = 0 and P (Υ) = 1 (see
section 4). Our key technical result is an asymptotic formula for Wh(g;µ)
when

ε0
log q

≤ |µ| ≪ 1

log q

for some small absolute constant ε0 > 0. Given u and v two real numbers
and ∆ > 0, we define:

V(u, v) := 1 +
exp (−u)

∆

(
sinhu

u
− sin v

v

)

×
∫ Υ

0
exp (−2u∆(1 − x))

∣∣∣∣P ′(x) +
P ′′(x)

2(u+ iv)∆

∣∣∣∣
2

dx.

Our main first result is an asymptotic formula for Wh(g;µ) in terms of
V(u, v); namely for

∆ :=
logL

log (q2)

which we call the relative (logarithmic) length of the mollifier, one has

(1.3) Wh(g;µ) = V(log
(
q2
)
ℜ(µ), log

(
q2
)
ℑ(µ)) + Errsec(q, L;µ)

+Ok,g

(
1

qδ
+

1

log q

{
L−2ℜ(µ)(1−Υ) if ℜ(µ) ≥ 0,

q−2ℜ(µ)L−4ℜ(µ) otherwise

)

for δ > 0 an absolute constant and Errsec(q, L;µ) some error term:

(1.4) Errsec(q, L;µ) = Ok,g

(
1

qα

)

for some α > 0 as soon as ∆ is small enough in which case ∆ is said to be
effective.

Remark 1.3. The asymptotic for the harmonic mollified second moment of
this family is the same as the asymptotic for the mollified second moment
of the family of Dirichlet L-functions considered by J.B. Conrey and K.
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Soundararajan. This is consistent with the Random Matrix Model, as these
two families are expected to have the same symmetry type.

Remark 1.4. In fact, we also prove that (1.3) holds with some weaker

assumptions on µ; namely when µ satisfies ε0
log q ≤ |µ|, − c

log q ≤ ℜ(µ) ≤ f1(q)
log q

and |ℑ(µ)| ≤ f2(q)
log q for some ε0 > 0, c > 0 and some non-negative functions

f1, f2 with the following properties:

lim
q→+∞

f1(q) = +∞, f1(q) = o(log q), f2(q) = O(log q).

In this case, (1.3) becomes:

(1.5) Wh(g;µ) = V(log
(
q2
)
ℜ(µ), log

(
q2
)
ℑ(µ)) + Errsec(q, L;µ)

+Ok,g

(
1

qδ
+
f1(q) + f2(q)

log q

{
L−2ℜ(µ)(1−Υ) if ℜ(µ) ≤ 0,

q−2ℜ(µ)L−4ℜ(µ) otherwise.

)

Our task now is to produce effective positive ∆. The existence of such ∆
is a consequence of the work of E. Kowalski, P. Michel and J. Vanderkam
([KoMiVa]) and their result leads to:

Proposition C. Let g be a primitive cusp form of square-free level D and
trivial nebentypus. Assume that q is prime, coprime with D. If |µ| ≪ 1

log q

then for any natural integer L ≥ 1,

(1.6) Errsec(q, L;µ) = Oε,k,g

(
(qL)ε

(
L

5
2 q−

1
12 + L

21
4 q−

1
4

))

for any ε > 0. In particular, every ∆ < 1
60 = 0.01666... is effective.

This is a consequence of an asymptotic formula for the harmonic twisted
second moment of this family given by

(1.7) Mh
g (µ; ℓ) := Ahq

[
L

(
.× g,

1

2
+ µ

)
L

(
.× g,

1

2
+ µ

)
λ.(ℓ)

]

where µ ∈ C, q ∈ P, ℓ ≥ 1 and λ.(ℓ) is a Hecke eigenvalue. It is shown in
[KoMiVa] that (confer Theorem 5.1 in this paper):

Theorem (E. Kowalski-P. Michel-J. Vanderkam (2002)). Let g be a prim-
itive cusp form of square-free level D and trivial nebentypus and µ be a
complex number. Assume that q is prime, coprime with D. If |ℜ(µ)| ≪ 1

log q

then for any natural integer 1 ≤ ℓ < q,

(1.8) (qD)2ℜ(µ)Mh
g (µ; ℓ) = MT(µ) + Errtwist(q, ℓ;µ)

where MT(µ) stands for the main term and is described in section 5 and a
bound for the error term is given by

(1.9) Errtwist(q, ℓ;µ) = Oε,k,g

(
(qℓ)ε(1 + |ℑ(µ)|)B

(
ℓ

3
4 q−

1
12 + ℓ

17
8 q−

1
4

))

for some absolute constant B > 0 and for any ε > 0.

Nevertheless, this is not sufficient to obtain Theorem A1. Our second

main input is a large improvement of the effective value of ∆ by the in-
troduction of the spectral theory of automorphic forms. To state our result,

1with ∆ < 1
60

we would obtain a positive proportion of L(f × g, .) having at most 22

zeros on [0, 1].
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we introduce the following hypothesis which measures the approximation
towards the Ramanujan-Petersson-Selberg conjecture.

Hypothesis H2(θ). For any cuspidal automorphic form π onGL2(Q)\GL2(AQ)

with local Hecke parameters α
(1)
π (p), α

(2)
π (p) for p <∞ and µ

(1)
π (∞), µ

(2)
π (∞)

at infinity, the following bounds are available:

|α(j)
π (p)| ≤ pθ, j = 1, 2,∣∣∣ℜ

(
µ(j)
π (∞)

)∣∣∣ ≤ θ, j = 1, 2,

provided πp, π∞ are unramified, respectively.

We say that θ is admissible if H2(θ) is satisfied. At the moment, the
smallest admissible value of θ is θ0 = 7

64 thanks to the works of H. Kim, F.
Shahidi and P. Sarnak (confer [KiSh] and [KiSa]).
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Proposition D. Let α be in ]0, 1[. Let g be a primitive cusp form of square-
free level D, weight kg > 1+ 5

2(1−α) and trivial nebentypus and µ be a complex

number. Assume that q is prime, coprime with D and that k ≥ kg + 6. If θ
is admissible and |ℜ(µ)| ≪ 1

log q then for any natural integer ℓ ≥ 1,

(1.10)

Errtwist(q, ℓ;µ) = Oε,k,g

(
(qℓ)ε(1 + |ℑ(µ)|)B

(
ℓ2+θq−( 1

2
−θ) + ℓ

9
4
+ θ

2
−αq−(α− 1

2
−θ)
))

and for any natural integer L ≥ 1,
(1.11)

Errsec(q, L;µ) = Oε,k,g

(
(qL)ε(1 + |ℑ(µ)|)B

(
L2+2θq−( 1

2
−θ) + L

11
2

+θ−2αq−(α− 1
2
−θ)
))

for some absolute constant B > 0 and for any ε > 0. Consequently, under
H2(θ), every ∆ < ∆max(θ) := 1−2θ

4(5+2θ) is effective granted that k and kg are

large enough.

Remark 1.5. We note that:

∆max(θ0) =
25

668
= 0.03742...

∆max(0) =
1

20
= 0.05.

The error term in (1.8) comes from the resolution of a shifted convolution
problem by the authors, which builds on the δ-symbol method of W. Duke,
J.B. Friedlander and H. Iwaniec ([DuFrIw]). This error term is improved
using a technique of P. Sarnak (confer [Sa]) which makes systematic use of
spectral theory of automorphic forms (see section 6). However, this method
alone would only enable us to take ∆ < 1−2θ

8(4+θ) and we have to supplement it

by additional refinements (in particular by considering the shifted convolu-
tion problem on average and detecting cancellations throughout large sieve
inequalities) which lead to an effective length of 1−2θ

4(7+2θ) . Finally, Proposition

D is obtained thanks to an estimate of triple products on average over the
spectrum of B. Krötz and R.J. Stanton ([KrSt] and see also [Ko2]).

Another consequence of our refinements is an improvement over the pre-
viously known subconvexity bounds for Rankin-Selberg L-functions in the
level aspect obtained by the amplification method:

Theorem B. Let g be a primitive cusp form of square-free level D, weight
kg ≥ 20 and trivial nebentypus. Let us assume that q is a prime large enough
and that k ≥ kg + 6. If θ is admissible then for any natural integer j and
any f in Spk(q), we have

(1.12)

∣∣∣∣L(j)

(
f × g,

1

2
+ it

)∣∣∣∣≪ε,k,j,g (1 + |t|)B q 1
2
−ω(θ)+ε,

for any ε > 0 where t is real, the exponent B is absolute and ω(θ) := 1−2θ
4(9+4θ) .

Remark 1.6. In [KoMiVa], a subconvex bound is obtained but with ω(θ)
replaced by 1

80 = 0.0125. Note that ω(θ0) = 25
1208 = 0.020695... and that

ω(0) = 1
36 = 0.027777...
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One may wonder what happens when one tries to remove the harmonic
weights in Theorem A. In [KoMi], E. Kowalski and P. Michel provided a
general technique to deduce asymptotic formulas for the natural average
Aq[α] :=

∑
f∈Sp

k
(q) αf from asymptotic formulas for the harmonic average

as long as the coefficients αf do not increase or oscillate too much as q goes
to infinity. In our case, one can deduced the same asymptotic formula as in
(1.3) for

W(g;µ) :=
1

Aq[1]
Aq

[∣∣∣∣L
(
.× g,

1

2
+ µ

)∣∣∣∣
2
]

but with the length of the mollifier strictly smaller than ω(θ). In other words,
it seems that getting rid of the harmonic weights has a cost in this situation.

Notations. From now on, µ will denote a complex number and τ = ℜ(µ),
t = ℑ(µ), δ = iℑ(µ). We also set µ1 := µ and µ2 := µ. In several
places, given an Euler product L(s) =

∏
p∈P Lp(s) , we write L(N)(s) :=∏

p|N Lp(s) and L(N)(s) :=
∏
p∤N Lp(s) for any natural integer N . We set:

log2(x) := log (log x). τ(n) equals the number of divisors of n and µ(n) is
the Möbius function at n. We will denote by ε and B > 0 some absolute
positive constants whose definition may vary from line to line. The notations
f(q) ≪A g(q) or f(q) = OA(q) mean that |f(q)| is smaller than a constant
which only depends on A times g(q) at least for q large enough. Similarly,
f(q) = o(1) means that limq→+∞ f(q) = 0. Finally, if E is a property, the
Kronecker symbol δE equals 1 if E is satisfied and 0 else.

For all background and notations about classical modular forms and Rankin-
Selberg L-functions, we refer the reader to sections 3 and 4 of [KoMiVa] and
to Appendix C.

Acknowledgments. I sincerely thank my advisor, Professor Philippe Michel,
for all his comments and remarks which got the better of my doubts. I also
think of Professors Etienne Fouvry and Emmanuel Kowalski for their ad-
vices and encouragements. I wish to thank the Fields Institute of Toronto,
where part of this work was done, for the excellent working conditions. I
also acknowledge the referee for a careful reading of the manuscript.

2. A review of classical modular forms

In this section, we recall general facts about modular forms. The main
reference is [Iw2]. For N ≥ 1, we consider Γ0(N) the congruence subgroup of
level N and εN the trivial Dirichlet character of modulus N . All elements of
GL+

2 (R) act on the upper-half plane H by linear-fractional transformations

and this defines an action of the group SL2(R) on it. For γ =

(
a b
c d

)
in

GL+
2 (R) and z in H we set j(γ, z) := cz + d. Let m be an even natural

integer. For γ in GL+
2 (R) and h : H → C, we define:

∀z ∈ H, h|mγ (z) :=
(det(γ))

m
2

j(γ, z)m
h(γ.z).
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This formula clearly defines an action of SL2(R) on the space of complex
valued functions on H, which is said to be of weight m.

2.1. Cusp forms. A holomorphic function h : H 7→ C which satisfies:

∀γ ∈ Γ0(N), h|mγ = h

and is holomorphic at the cusps of Γ0(N) is a modular form of level N ,
weight m and trivial nebentypus εN . Such a modular form is a cusp form if
y

m
2 h(z) is bounded on the upper-half plane. We denote by Sm(N) this set

of cusp forms which is equipped with the Petersson inner product:

〈h1, h2〉N =

∫

Γ0(N)\H
ymh1(z)h2(z)

dxdy

y2
.

One can obtain the Fourier expansion at infinity of each such cusp form h:

∀z ∈ H, h(z) =
∑

n≥1

ψh(n)n
m−1

2 e(nz)

where e(z) := exp (2iπz).

2.2. Hecke operators. For every natural integer ℓ ≥ 1, the Hecke operator
of weight m, nebentypus εN and rank ℓ on Sm(N) is defined by:

∀z ∈ H, (Tℓ(h)) (z) :=
1√
ℓ

∑

ad=ℓ

εN (a)
∑

0≤b<d
h

(
az + b

d

)
.

Thus, we remark that Tℓ is independent of m and we can prove that it is
hermitian if gcd(ℓ,N) = 1. Moreover, we can show that the algebra spanned
by the Hecke operators is a commutative one. More precisely, we have the
following composition property:

(2.1) ∀(ℓ1, ℓ2) ∈ (N∗)2, Tℓ1 ◦ Tℓ2 =
∑

d|(ℓ1,ℓ2)
εN (d)T ℓ1ℓ2

d2
.

A cusp form which is also an eigenfunction of the Tℓ for gcd(ℓ,N) = 1 is
called a Hecke cusp form and an orthonormal basis of Sm(N) made of Hecke
cusp forms is called a Hecke eigenbasis.
Atkin-Lehner theory. The main reference of this part is [AtLe]. Briefly
speaking, we obtain, with the previous notations, a splitting of Sm(N) in

Som(N) ⊕⊥〈.,〉N Snm(N) where:

Som(N) = VectC

{
g(dz), N ′ | N, d | N

N ′ , d 6= 1, g ∈ Sm(N ′)

}
,(2.2)

Snm(N) = (Som(N))⊥〈.,.〉N(2.3)

where ”o” stands for old and ”n” for new. These two spaces are invariant
under the action of the Hecke operators Tl for gcd(l,N) = 1. A primitive
cusp form h is a Hecke cusp form which is new and satisfies:

ψh(1) = 1.

Such an element h is automatically an eigenfunction of the other Hecke
operators and also of the Atkin-Lehner operators which will be defined later
and satisfies ψh(ℓ) = λh(ℓ) for all integer ℓ where Tℓ(h) = λh(ℓ)h (λh(ℓ) is the
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Hecke eigenvalue of rank ℓ). The set of primitive cusp forms will be denoted
by Spm(N). Let h be a cusp form with Hecke eigenvalues (λh(ℓ))(ℓ,N)=1. The

composition property (2.1) of the Hecke operators entails that for all ℓ1 and
for gcd (ℓ2, N) = 1:

ψh(ℓ1)λh(ℓ2) =
∑

d|(ℓ1,ℓ2)
εN (d)ψh

(
ℓ1ℓ2
d2

)
,(2.4)

ψh(ℓ1ℓ2) =
∑

d|(ℓ1,ℓ2)
µ(d)εN (d)ψh

(
ℓ1
d

)
λh

(
ℓ2
d

)
(2.5)

and this relation holds for all ℓ1, ℓ2 if h is primitive. The adjointness relation
is:

(2.6) ∀gcd(ℓ,N) = 1, λh(ℓ) = λh(ℓ), ψh(ℓ) = ψh(ℓ)

and this remains true for all ℓ if h is a primitive cusp form.

2.3. Bounds for Hecke eigenvalues of cusp forms. Let h be a primitive
cusp form of level N , weight m and trivial nebentypus εN . Remember that:

∀ℓ ∈ N∗, Tℓh = λh(ℓ)h.

For a prime p, let αh,1(p) and αh,2(p) be the complex roots of the following
quadratic equation:

X2 − λh(p)X + εN (p) = 0.

It follows from the work of Eichler-Shimura-Igusa and Deligne that the
Ramanujan-Petersson bound holds true:

(2.7) |αh,1(p)|, |αh,2(p)| ≤ 1 and so ∀ℓ ≥ 1, |λh(ℓ)| ≤ τ(ℓ).

Setting σh(n) :=
∑

d|n |λh(d)|, it entails that:

(2.8) ∀X > 0,
∑

n≤X
σh(n)2 ≪ε,h X

1+ε.

for all ε > 0.

2.4. Atkin-Lehner operators. The results of this part were established by
A. Atkin and J. Lehner. We assume that N = N1N2 with gcd (N1, N2) = 1.
Let x, y, z, w four integers satisfying:

y ≡ 1 mod (N1) ,

x ≡ 1 mod (N2) ,

N2
1xw −Nyz = N1.

If ωN1
=

(
xN1 y
zN wN1

)
then WN1

=
mωN1

is a linear endomorphism of

Sm(N) independent of x, y, z and w. If N1 = N then WN1
is the classical

Fricke involution given by ωN =

(
0 1

−N 0

)
. The following proposition

holds:
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Proposition 2.1 (A. Atkin-W. Li (1970)). If N1 | N and gcd
(
N1,

N
N1

)
= 1

then:

∀h ∈ Snm(N), WN1h = ηh(N1)h

where ηh(N1) = ±1.

3. A review of Rankin-Selberg L-functions

Throughout this section, g1 belongs to Spk1(D1) and g2 belongs to Spk2(D2).

3.1. About Rankin-Selberg L-functions. The Rankin-Selberg L-function
of g1 and g2 is the following L-function defined a priori for ℜ(s) > 1 by:

L(g1 × g2, s) := ζ(D1D2)(2s)
∑

l≥1

λg1(l)λg2(l)

ls
.

It admits an Eulerian product L(g1 × g2, .) :=
∏
p∈P Lp(g1 × g2, .) where:

∀p ∈ P,∀s ∈ C, Lp(g1 × g2, s) =
∏

1≤i,j≤2

(
1 − αg1,i(p)αg2,j(p)p

−s)−1
.

By Rankin-Selberg theory, L(g1 × g2, .) admits a meromorphic continuation
to the complex plane with at most simple poles at s = 0, 1 which occur
only if g1 = g2. This L-function satisfies a functional equation. When
gcd (D1,D2) = 1, it takes the following form. We set:

∀s ∈ C, Λ (g1 × g2, s) :=

(
D1D2

4π2

)s
Γ

(
s+

|k1 − k2|
2

)
Γ

(
s+

k1 + k2

2
− 1

)
L (g1 × g2, s) .

The functional equation is then:

∀s ∈ C, Λ (g1 × g2, s) = ε (g1 × g2)Λ (g1 × g2, 1 − s)

where the sign of the functional equation in our case is ε(g1 × g2) = 1.

3.2. About symmetric square L-functions. Closely related to L(g1 ×
g1, .) is the following Dirichlet series defined for ℜ(s) > 1:

L(Sym2(g1), s) := ζ(D1)(2s)
∑

l≥1

λg1(l
2)

ls
.

The Eulerian product of L(Sym2(g1), .) is given by
∏
p∈P Lp(Sym2(g1), .)

with:

∀p ∈ P,∀s ∈ C, Lp(Sym2(g1), s) =
∏

1≤i≤j≤2

(
1 − αg1,i(p)αg1,j(p)p

−s)−1
.

Hence, we get L(g1 × g1, s) = ζ(D1)(s)L(Sym2g1, s) for all complex number
s.
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4. Proof of Theorem A and estimates for the analytic rank

4.1. Principle of the proof. Let b > 0, c > 0 and σ0 > 1 some real num-

bers. B(q) will denote the rectangular box with vertices
(

1
2 − c

log q ,± b
log q

)

and
(
σ0,± b

log q

)
. Let N be a natural integer and Spk(q,N) be the set of

primitive cusp forms f in Spk(q) whose Rankin-Selberg L-function L(f ×g, .)
admits

• a zero of order 2n1 at 1
2 ,

• and n2 zeros (counted with multiplicities) in
]

1
2 , 1
]

such that 2n1 + 2n2 ≥ 2(N + 1). Let us remark that Spk(q)\S
p
k(q,N) is pre-

cisely the set of modular forms f in Spk(q) whose Rankin-Selberg L-function
L(f × g, .) has at most 2N zeros in [0, 1]. We are producing some N such
that (as q tends to infinity among the primes)

µhq
(
Spk(q,N)

)
≤ s0(N) + og(1)

with s0(N) < 1 a constant which depends only on N and conclude that
for at least 100(1 − s0(N)) percent of primitive cusp forms of weight k and
trivial nebentypus, L(f × g, .) has at most 2N non-trivial zeros on the real
axis (and in fact in a small box B(q)).

4.2. Selberg’s lemma.

Lemma 4.1. Let ψ be a holomorphic function which does not vanish on a
half plane ℜ(z) ≥ W . Let B be the rectangular box of vertices W0 ± iH,
W1 ± iH where H > 0 and W0 < W < W1. We have:

4H
∑

β+iγ∈B
ψ(β+iγ)=0

cos
( πγ

2H

)
sinh

(
π(β −W0)

2H

)
=

∫ H

−H
cos

(
πt

2H

)
log |ψ(W0 + it)|dt

+

∫ W1

W0

sinh

(
π(α−W0

2H

)
log |ψ(α + iH)ψ(α − iH)|dα

−ℜ
(∫ H

−H
cos

(
π
W1 −W0 + it

2iH

)
(logψ)(W1 + it)

)
dt.

A proof of this lemma is given in [CoSo] and relies on the fact that
∫

∂B
k(s)(log f)(s)ds = 0

with k(s) := cos
(
π s−W0

2iH

)
. Let us mention the properties which will be useful

to us:

• k is purely imaginary on ℑ(s) = H and satisfies over there k(s) =
−k (s),

• ℜ(k) ≥ 0 in B.

4.3. The successive steps. We follow the method of J.B. Conrey and
K. Soundararajan ([CoSo]). Lemma 4.1 applied to the box B(q) and the
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function L(f × g, .) entails that
(4.1)

4b sinh
(πc

2b

)
r(f×g)+4b

∑

β≥ 1
2
− c

log q

β 6= 1
2

L(f×g,β)=0

sinh

(
π
(
c+ log q

(
β − 1

2

))

2b

)
≤

3∑

j=1

Iqf (j)

where

Iqf (1) =

∫ b

−b
cos

(
πt

2b

)
log

∣∣∣∣L
(
f × g,

1

2
− c

log q
+ i

t

log q

)∣∣∣∣dt,

Iqf (2) =

∫ (σ0− 1
2) log q

−c
sinh

(
π(x+ c)

2b

)
log

∣∣∣∣L
(
f × g,

1

2
+

x

log q
+ i

b

log q

)∣∣∣∣
2

dx,

Iqf (3) = −ℜ
(∫ b

−b
cos

(
π

(
σ0 − 1

2

)
log q + c+ it

2ib

)
(logL(f × g, .))

(
σ0 + i

t

log q

)
dt

)
.

One can show (confer [Ri]) that if f belongs to Spk(q,N) then the left-hand

side of (4.1) is larger than (N + 1) × 8b sinh
(
πc
2b

)
. Thus,

µhq
(
Spk(q,N)

)
≤ 1

N + 1

1

8b sinh
(
πc
2b

) 1

Ahq [1]
Ahq




3∑

j=1

Iq. (j)


 .

The concavity of the log function leads to

(4.2) µhq
(
Spk(q,N)

)
≤ 1

N + 1

1

8b sinh
(
πc
2b

)
(
Jq,h1 + Jq,h2 +

1

Ahq [1]
Ahq [I

q
. (3)]

)

where

Jq,h1 :=

∫ b

0
cos

(
πt

2b

)
log

(
1

Ahq [1]
Ahq

[∣∣∣∣L
(
.× g,

1

2
+

−c+ it

log q

)∣∣∣∣
2
])

dt,

Jq,h2 :=

∫ (σ0− 1
2) log q

−c
sinh

(
π(x+ c)

2b

)
log

(
1

Ahq [1]
Ahq

[∣∣∣∣L
(
.× g,

1

2
+
x+ ib

log q

)∣∣∣∣
2
])

dx.

Similarly, we have from (4.1):

(4.3)
1

Ahq [1]
Ahq [r(.× g)] ≤ 2

1

8b sinh
(
πc
2b

)
(
Jq,h1 + Jq,h2 +

1

Ahq [1]
Ahq [I

q
. (3)]

)
.

We need the right-hand side of (4.2) and (4.3) to be small. Unfortu-

nately, the weight function sinh
(
π(x+c)

2b

)
which appears in Jq,h2 grows ex-

ponentially on the horizontal sides of the box. This problem is solved
by mollifying: one replaces L(f × g, .) by L(f × g, .) such that the ex-

ponential growth of sinh
(
π(x+c)

2b

)
is balanced by the exponential decay of

log
(

1
Ah

q [1]
Wh

(
g; x+iblog q

))
.

Remark 4.1. Naively, one would like to be able to choose a kernel k hav-
ing the properties listed above in section 4.2 and such that the correspond-

ing weight function (in Jq,h2 ) does not grow exponentially on the horizontal
sides of B(q). Unfortunately, as K. Soundararajan remarked at the Journées
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Arithmétiques 2003 in Graz, such kernel does not exist. So, it appears that
the mollification step is a necessity.

4.4. Choosing the mollifier. Note that on the half plane ℜ(s) > 1, L(f ×
g, s) =

∑
n≥1 af×g(n)n−s where

af×g(n) =
∑

n=n2
1n2

εq(n1)εD(n1)λf (n2)λg(n2)

satisfies |af×g(n)| ≪ε n
ε for any ε > 0. We need the Dirichlet coefficients of

the inverse of L(f × g, .):

Lemma 4.2. For ℜ(s) > 1 one has

1

L(f × g, s)
=K(g, 2s)

∑

ℓ=ℓ1ℓ22ℓ
3
3

µ2(ℓ1ℓ2ℓ3)µ(ℓ1ℓ3)εq(ℓ3)εD(ℓ2ℓ3)λg(ℓ1ℓ3)

K(ℓ)(g, s)ℓs
λf (ℓ1ℓ

2
2ℓ3)

where K(g, s) :=
∏
p∈P Kp(g, s) is an absolutely convergent Euler product

on ℜ(s) > 2 given by

∀p ∈ P, Kp(g, s) := 1 + εq(p)λg(p
2)p−s + εqD(p)p−2s.

Proof of lemma 4.2. We give no details. Setting L(f × g, s)−1 :=∑
ℓ≥1 uℓℓ

−s, one shows that uℓ = 0 except if ℓ = ℓ1ℓ
2
2ℓ

3
3ℓ

4
4 with ℓ1, ℓ2, ℓ3, ℓ4

square-free numbers pairwise coprime:

uℓ = µ(ℓ1ℓ3)εqD(ℓ3ℓ4)λf (ℓ1ℓ3)λg(ℓ1ℓ3)
∑

ℓ2=ℓ′2ℓ
′′
2

εq(ℓ
′′
2)εD(ℓ′2)λf (ℓ

′2
2 )λg(ℓ

′′2
2 ).

Note that K(g, s) is an absolutely convergent Euler on ℜ(s) > 2 as:

∀p ∈ P, Kp(g, s) := 1 +O

(
1

pℜ(s)

)
.

�

Let 0 < Υ < 1 be a real number and P be a polynomial satisfying P (Υ) = 1,
P (0) = P ′(0) = P ′(Υ) = 0. Let L ≥ 1 be a natural integer. We set:

FΥ
L (ℓ) =





1 if 1 ≤ ℓ ≤ L1−Υ

P

(
log (L

ℓ )
logL

)
if L1−Υ ≤ ℓ ≤ L

0 else.

The mollifier we choose is

M(f × g, s) = K(g, 2s)
∑

ℓ=ℓ1ℓ22ℓ
3
3

µ2(ℓ1ℓ2ℓ3)µ(ℓ1ℓ3)εD(ℓ3)εq(ℓ2ℓ3)λg(ℓ1ℓ3)

K(ℓ)(g, 2s)−1ℓs

λf (ℓ1ℓ
2
2ℓ3)F

Υ
L (ℓ1ℓ

2
2ℓ3)

=
∑

ℓ≥1

xℓ(g, s)

ℓs
λf (ℓ)

where

xℓ(g, s) = K(g, 2s)
∑

ℓ=ℓ1ℓ22ℓ3

µ2(ℓ1ℓ2ℓ3)µ(ℓ1ℓ3)εq(ℓ3)εD(ℓ2ℓ3)λg(ℓ1ℓ3)F
Υ
L (ℓ)

K(ℓ)(g, 2s)ℓ
2s
3
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so that M(f × g, .) is a Dirichlet polynomial of length at most L which
approximates L(f ×g, .)−1. From the shape of the mollifier, we immediately
deduce

(4.4) L(f × g, s) = 1 +Oε

(
L(1−Υ)(1+ε−ℜ(s))

)

on ℜ(s) > 1 + ε for any ε > 0. As a consequence, L(f × g, .) has no zeros

to the right of 1 + log2 q
log q (at least for q large enough). Moreover, for q large

enough, |L(f × g, s) − 1| < 1 on ℜ(s) > 1 + ε and we choose the branch of
the logarithm given by

(logL(f × g, .)) (s) :=
∑

n≥1

(−1)n+1

n
(L(f × g, s) − 1)n

on ℜ(s) > 1+ε. We are going to give a useful integral expression of the coeffi-
cients xℓ(g, s) of the mollifier following a technique introduced in [KoMiVa2].
To each polynomial A(X) =

∑
k≥0 akX

k and to each real number M , we
associate the following transform:

∀s ∈ C, ÂM (s) =
∑

k≥0

ak
k!

(s logM)k
.

We have the following result:

Lemma 4.3. Let m ≥ 1 be a natural integer.

1

2iπ logM

∫

(3)

(
M

m

)s
ÂM (s)

ds

s2
= δm<M

(∫ (1)

A

)(
log
(
M
m

)

logM

)

where
∫ (1)

A is the first antiderivative of A without constant of integration.

Proof of lemma 4.3. By linearity, it is enough to prove this lemma for
A(X) = Xk with k ∈ N∗. Setting y = M

m
, it consists in proving that

1

2iπ

∫

(3)
ys

ds

sk+2
= δy>1

logk+1 (y)

(k + 1)!

which is standard using suitable contour shifts (confer [KoMiVa2]).

�

To the polynomial P , we associate R(X) := P ((1−Υ)X + Υ)− 1 and we
have the integral expression of the coefficients of the mollifier:

Proposition 4.4. Let ℓ ≥ 1 be a natural integer and s be a complex number.

xℓ(g, s) =
1

2iπ logL

∫

(3)
L(1−Υ)s

(
P̂ ′
L(s)LΥs − 1

1 − Υ
R̂′
L1−Υ(s)

)
K(g, 2s)

×
∑

ℓ=ℓ1ℓ22ℓ3

µ2(ℓ1ℓ2ℓ3)µ(ℓ1ℓ3)εq(ℓ3)εD(ℓ2ℓ3)λg(ℓ1ℓ3)

K(ℓ)(g, 2s)ℓ
2s
3 ℓ

s

ds

s2
.

Proof of proposition 4.4. The main point is that we have:

FΥ
L (ℓ) =

1

2iπ logL

∫

(3)

(
L1−Υ

ℓ

)s(
P̂ ′
L(s)LΥs − 1

1 − Υ
R̂′
L1−Υ(s)

)
ds

s2
.
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The previous integral expression of FΥ
L (ℓ) is a direct consequence of lemma

4.3.

�

4.5. End of the proof. We repeat the same procedure as in section 4.3 but
with the mollified Rankin-Selberg L-function instead of the Rankin-Selberg
L-function itself. Then, (4.2) and (4.3) become

(4.5) µhq
(
Spk(q,N)

)
≤ 1

N + 1

1

8b sinh
(
πc
2b

)
(
Jq,h1 + Jq,h2 +

1

Ahq [1]
Ahq [I

q
. (3)]

)

and

(4.6)
1

Ahq [1]
Ahq [r(.× g)] ≤ 2

1

8b sinh
(
πc
2b

)
(
Jq,h1 + Jq,h2 +

1

Ahq [1]
Ahq [I

q
. (3)]

)
.

where

Jq,h1 :=

∫ b

0
cos

(
πt

2b

)
log

(
1

Ahq [1]
Wh

(
g;

−c+ it

log q

))
dt,

Jq,h2 :=

∫ (σ0− 1
2) log q

−c
sinh

(
π(x+ c)

2b

)
log

(
1

Ahq [1]
Wh

(
g;
x+ ib

log q

))
dx.

We set b̃ := 2b, c̃ := 2c and we choose σ0 := 1 +
log2 q
log q and we assume that

∆ is effective. Theorem A.1 leads to:

(4.7)
1

Ahq [1]
Ahq [I

q
. (3)] ≪ (log q)

(
π

b̃
−4∆(1−Υ)

)
q

π

2b̃
−2∆(1−Υ).

This is an error term under the following assumption on the height of the
box:

b̃ >
π

4∆(1 − Υ)
.

Proposition D leads to:

Jq,h1 =
1

2

∫ b̃

0
cos

(
πt

2b̃

)
log (V (−c̃, t))dt+Og

(
1

qδ
+

1

log q

)
.

Let 0 < β < 1 be some real number. We set:

Jq,h2 =

∫ logβ (q)

−c
· · · +

∫ (σ0− 1
2) log q

logβ (q)
· · · := Jq,h2,1 + Jq,h2,2 .

Our choice of the height of the box (so that all integrals converge), Propo-
sition D , Remark 1.4 and (1.3) entail that

Jq,h2,1 ≤ 1

2

∫ +∞

0
sinh

(
πx

2b̃

)
logV

(
x− c̃, b̃

)
dx+

exp
(
π logβ (q)

b̃

)

qδ
+

1

log1−β (q)
,

Jq,h2,2 ≪ exp

(
−
(

4∆(1 − Υ) − π

b̃

))
logβ(q)
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and we conclude that

µhq
(
Spk(q,N)

)
≤ 1

N + 1

1

8b̃ sinh
(
πc̃

2b̃

)
(∫ b̃

0
cos

(
πt

2b̃

)
log (V (−c̃, t))dt

+

∫ ∞

0
sinh

(
πx

2b̃

)
log
(
V
(
x− c̃, b̃

))
dx

)
+ og(1)

and that

1

Ahq [1]
Ahq [r(.× g)] ≤ 2

1

8b̃ sinh
(
πc̃

2b̃

)
(∫ b̃

0
cos

(
πt

2b̃

)
log (V (−c̃, t))dt

+

∫ ∞

0
sinh

(
πx

2b̃

)
log
(
V
(
x− c̃, b̃

))
dx

)
+ og(1).

We choose under H2(θ), P (x) = 3
(
x
Υ

)2 − 2
(
x
Υ

)3
, b̃ = π

4∆(1−Υ)−10−10 , ∆ =

∆max(θ)−10−10 and we minimize 2 the right-hand side by a numerical choice
of the remaining parameters. Under H2(θ0)

3, the choice Υ = 0.44, c̃ = 23
gives

µhq
(
Spk(q,N)

)
≤ 4.91

N + 1
+ og(1)

and
1

Ahq [1]
Ahq [r(.× g)] ≤ 9.82 + og(1).

Finally, N must be 4.

�

5. The harmonic mollified second moment near the critical

point

5.1. The second harmonic twisted moment. E. Kowalski, P. Michel
and J. Vanderkam computed this moment under some sensible conditions
on D and k, q.

We recall here some notations used in [KoMiVa]. For z, s some complex
numbers, we set

Gg,z(s) :=

(
4π2
)z

Γ
(

1
2 + z +

|k−kg|
2

)
Γ
(

1
2 + z +

k+kg

2 − 1
)
(
ξ
(

1
2 + s− z

)

ξ
(

1
2

)
)5

Pg(s)

Pg(z)

where ξ(s) = s(1− s)π−
s
2Γ
(
s
2

)
ζ(s) and Pg(s) is an even polynomial whose

coefficients are real and depend only on k and kg chosen such that the func-

tion Pg(s)Γ
(

1
2 + s+

|k−kg|
2

)
Γ
(

1
2 + s+

k+kg

2 − 1
)

is analytic on ℜ(s) >

−A where A > 1
2 . We observe that

(5.1) ∀(z, s) ∈ C2, Gg,z(−s) = εz(f × g)Gg,−z(s)

2The program (inte.mws) is available at http://www.dms.umontreal.ca/∼ricotta.
3Under H2(0), we get 3.83

N+1
and 7.66 if we choose Υ = 0.45 and c̃ = 23.7.
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with

εz(f × g) :=

(
4π2
)z
Γ
(

1
2 − z +

|k−kg|
2

)
Γ
(

1
2 − z +

k+kg

2 − 1
)

(4π2)−z Γ
(

1
2 + z +

|k−kg|
2

)
Γ
(

1
2 + z +

k+kg

2 − 1
)

Then, we set:

Hg,z(s) :=
(
4π2
)−s

Γ

(
1

2
+ s+

|k − kg|
2

)
Γ

(
1

2
+ s+

k + kg
2

− 1

)
Gg,z(s).

So, it follows that Hg,z(z) = 1.

We need to introduce some extra notations. For any (α, β) = (±µ,±µ)
and any natural integer ℓ ≥ 1, we set

Mg((α, β); ℓ) :=
ϕ(q)

q
√
ℓ

resu=α
1

2iπ

∫

(3)
Jg(u, v; (α, β); ℓ)(qD)u+v dv

(u− α)(v − β)

with

Jg(u, v; (α, β); ℓ) := Hg,α(u)ζ
(D)(1 + 2u)Hg,β(v)ζ

(qD)(1 + 2v)

× νg(ℓ;u, v)
L(g × g, 1 + u+ v)

ζD(2(1 + u+ v))

where
(5.2)

νg(ℓ;u, v) :=
∑

δε=ℓ

1

δuεv

∏

p|δε


∑

k≥0

λg(p
k+vp(δ))λg(p

k+vp(ε))

pk(1+u+v)




∑

k≥0

λg(p
k)λg(p

k)

pk(1+u+v)




−1

.

Finally, we set:

εf×g(µ, µ) = 1,

εf×g(−µ, µ) = εµ(f × g),

εf×g(µ,−µ) = εµ(f × g),

εf×g(−µ,−µ) = εµ(f × g)εµ(f × g).

One has:

Theorem 5.1 (E. Kowalski-P. Michel-J. Vanderkam (2002)). Let g be a
primitive cusp form of square-free level D and trivial nebentypus. Assume
that q is prime, coprime with D. If |τ | ≪ 1

log q then for any natural integer

1 ≤ ℓ < q,

(qD)2τ Mh
g (µ; ℓ) =

∑

(α,β)=(±µ,±µ)

εf×g(α, β)Mg((α, β); ℓ) + Errtwist(q, ℓ;µ)

where

Errtwist(q, ℓ;µ) = Oε,k,g

(
(qℓ)ε (1 + |t|)B

(
ℓa1q−b1 + ℓa2q−b2

))

for any ε > 0 with a1 = 3
4 , b1 = 1

12 and a2 = 17
8 , b2 = 1

4 .

Remark 5.1. Actually, theorem 5.1 was only proved for k < 12 so that
Sk(q) has no old forms. We explain in appendix B how to remove this
condition using a technique of H. Iwaniec, W. Luo and P. Sarnak ([IwLuSa]).
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Coming back to the notation of the introduction, we have:

MT (µ) :=
∑

(α,β)=(±µ,±µ)

εf×g(α, β)Mg((α, β); ℓ).

5.2. The harmonic mollified second moment near 1
2 . By opening the

square and using multiplicative properties of Hecke eigenvalues, one gets

Wh(g;µ) = (qD)−2τ
∑

ℓ1,ℓ2≥1

1

ℓ
1
2
+µ1

1 ℓ
1
2
+µ2

2

∑

d≥1

εq(d)

d1+2τ
xdℓ1

(
g,

1

2
+ µ1

)
xdℓ2

(
g,

1

2
+ µ2

)

× (qD)2τMh
g (µ; ℓ1ℓ2)

where one has set µ1 := µ and µ2 := µ. Our next step is to evaluate Wh(g;µ)

for µ within a distance O
(

1
log q

)
of the origin (Proposition C). We set for

(α, β) = (±µ,±µ):

(5.3) Wg(α, β) := (qD)−2τ
∑

ℓ1,ℓ2≥1

1

ℓ
1
2
+µ1

1 ℓ
1
2
+µ2

2

∑

d≥1

εq(d)

d1+µ1+µ2

× xdℓ1

(
g,

1

2
+ µ1

)
xdℓ2

(
g,

1

2
+ µ2

)
Mg((α, β); ℓ1ℓ2).

Theorem 5.1 leads to:

Proposition 5.2. Let g be a primitive cusp form of square-free level D and
trivial nebentypus. Assume that q is prime, coprime with D. If |τ | ≪ 1

log q

then for any natural integer 1 ≤ L <
√
q,

(5.4) Wh(g;µ) =
∑

(α,β)=(±µ,±µ)

εf×g(α, β)Wg(α, β) + Errsec(q, L;µ)

where

Errsec(q, L;µ) :=(qD)−2τ
∑

1≤ℓ1,ℓ2,d,
dℓ1≤L,
dℓ2≤L

xdℓ1
(
g, 1

2 + µ1

)
xdℓ2

(
g, 1

2 + µ2

)

ℓ
1
2
+µ1

1 ℓ
1
2
+µ2

2 d1+µ1+µ2

Errtwist(q, ℓ1ℓ2;µ)

satisfies
(5.5)

Errsec(q, L;µ) = Oǫ,k,g

(
(qL)ε(1 + |t|)B

(
L2(a1+ 1

2)q−b1 + L2(a2+ 1
2)q−b2

))

for any ε > 0. As a consequence, ∆ < inf

(
b1

4(a1+ 1
2)
, b2

4(a2+ 1
2)

)
= 1

60 is

effective.

Proof of proposition 5.2. We only have to check the order of magnitude
of the error term. We get:

|Errsec(q, L;µ)| ≤
∑

d≥1

1

d1+2τ

∑

ℓ1,ℓ2≥1

∣∣xdℓ1
(
g, 1

2 + µ1

)∣∣

ℓ
1
2
+τ

1

∣∣xdℓ2
(
g, 1

2 + µ2

)∣∣

ℓ
1
2
+τ

2

×
(
(ℓ1ℓ2)

a1q−b1 + (ℓ1ℓ2)
a2q−b2

)
.
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As
∣∣xdℓi

(
g, 1

2 + µi
)∣∣ ≪ε L

ε
∑

dℓi=m1m
2
2m3

1, (dℓi)
−τ = O(1) and ai − 1

2 ≥ 0,

we remark that

|Errsec(q, L;µ)| ≪ε (qL)ε
∑

d≥1

1

d

∑

1≤ℓ1,ℓ2≤L
d

(
L2(a1− 1

2
)q−b1 + L2(a2− 1

2
)q−b2

)

which leads to the result.

�

We study now the main term of the second harmonic mollified moment.

Proposition 5.3. Let g be a primitive cusp form of square-free level D and
trivial nebentypus. If |τ | ≪ 1

log q then there exists δ > 0 such that
∑

(α,β)=(±µ,±µ)

εf×g(α, β)Wg(α, β) =
∑

(α,β)=(±µ,±µ)

Ψ(α, β)V(α,β)(µ)+Oε,g(q
−δ)

where for any (α, β) = (±µ,±µ)

V(α,β)(µ) :=
∑

ℓ≥1

νg(ℓ;α, β)
∑

ℓ1ℓ2=ℓ

∑

d≥1

1

d1+µ1+µ2

xdℓ1
(
g, 1

2 + µ1

)

ℓ1+µ1
1

xdℓ2
(
g, 1

2 + µ2

)

ℓ1+µ2
2

and

Ψ(α, β) :=
ϕ(q)

q
(qD)−2τ+α+βεf×g(α, β)L(g × g, 1 + α+ β)

× ζ(D)(1 + 2α)ζ(qD)(1 + 2β)

ζ(D)(2(1 + α+ β))
.

Proof of proposition 5.3. According to (5.3) and the integral expres-
sion of the coefficients of the mollifier (confer proposition 4.4), one gets for
(α, β) = (±µ,±µ):

Wg(α, β) =
φ(q)

q (logL)2
resu=α

1

(2iπ)3

∫

(3)

∫

(3)

∫

(3)

×mg(u, v, s1, s2)
ds1
s21

ds2
s22

dv

(u− α)(v − β)

where we have set:

mg(u, v, s1, s2) := (qD)u+vHg,α(u)Hg,β(v)hg(u, v, s1, s2)

×L(1−Υ)s1

(
P̂ ′
L(s1)L

Υs1 − 1

1 − Υ
R̂′
L1−Υ(s1)

)
L(1−Υ)s2

(
P̂ ′
L(s2)L

Υs2 − 1

1 − Υ
R̂′
L1−Υ(s2)

)

× ζ(D)(1 + 2u)ζ(qD)(1 + 2v)

ζ(D)(1 + s1 + 2µ1)ζ(D)(1 + s2 + 2µ2)ζ(D)(2(1 + u+ v))

× L(g × g, 1 + u+ v)L(g × g, 1 + s1 + s2 + µ1 + µ2)

L(g × g, 1 + u+ s2 + µ2)L(g × g, 1 + v + s2 + µ2)

× L(g × g, 1 + s1 + 2µ1)L(g × g, 1 + s2 + 2µ2)

L(g × g, 1 + u+ s1 + µ1)L(g × g, 1 + v + s1 + µ1)
.

Here, hg satisfies hg(u, v, s1, s2) = hg(v, u, s1, s2) and defines an holomorphic
function given by an absolutely convergent Euler product if u, v, s1 and s2
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all have real part greater than some small negative real number (−10−6 say).
Thus, the pole at u = α is simple and so:

Wg(α, β) =
φ(q)

q (logL)2
1

(2iπ)3

∫

(3)

∫

(3)
mg(α, v, s1, s2)

ds1
s21

ds2
s22

dv

v − β
.

As a function of v, the integrand has three simple poles at v = β, −α and 0.
We shift the v-contour to

(
−1

2 + ε
)

hitting these three poles and we remark

that the remaining integral is bounded by q−δ for some δ > 0. Thus, at an
admissible cost, we have

∑

(α,β)=(±µ,±µ)

εf×g(α, β)Wg(α, β)=
∑

(α,β)=(±µ,±µ)

εf×g(α, β)(r1(α, β) + r2(α, β) + r3(α, β))

where r1(α, β) (respectively r2(α, β), r3(α, β)) is the contribution of the
residue at v = β (respectively −α, 0) which comes from Wg(α, β). We
remark that

εf×g(α, β)r2(α, β) = −εf×g(−α,−β)r2(−α,−β),

εf×g(α, β)r3(α, β) = −εf×g(α,−β)r3(α,−β)

according to (5.1). Summing up, we get at an admissible cost

ε (g;µ) W(g;µ) =
∑

(α,β)=(±µ,±µ)

εf×g(α, β)r1(α, β)

which is exactly the main term in proposition 5.3.

�

We set for any integers m,n ≥ 1 and for any (α, β) = (±µ,±µ):

Vg(m,n;α, β) :=
∏

p∈P
p||m
p||n

νg(p
3;α, β)

νg(p;α, β)νg(p2;α, β)
,

Wg(m,n;α, β) :=
∏

p∈P
p||m
p||n

νg(p
2;α, β)

νg(p;α, β)2
.

Lemma 5.4. Let µ ∈ C and (α, β) = (±µ,±µ). We have

V(α,β)(µ) =
∑

w≥1

1

w1+µ1+µ2

∑

uv|w
τ(α,β)(u, v)Su,v,w(α, β;µ1)Su,v,w(α, β;µ2)

where for z ∈ {µ1, µ2}

τ(α,β)(u, v) =
µ(u)νg(u

2;α, β)νg(v
2;α, β)Vg(u, v;α, β)2

uv
,

Su,v,w(α, β; z) =
∑

ℓ≥1

νg(ℓ;α, β)Vg(ℓ, v;α, β)Wg(ℓ, u;α, β)

ℓ1+z
xwℓ

(
g,

1

2
+ z

)
.

Proof of lemma 5.4. One gets setting ℓ1 = ka and ℓ2 = kb with a∧ b = 1:

V(α,β)(µ) =
∑

k≥1

∑

a∧b=1

νg(k
2ab;α, β)

k1+µ1+µ2a1+µ1b1+µ2

∑

d≥1

xdka
(
g, 1

2 + µ1

)
xdkb

(
g, 1

2 + µ2

)

d1+µ1+µ2
.
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As νg is a multiplicative function, ka and kb are cube-free integers and
a ∧ b = 1, we have:

νg(k
2ab;α, β) = νg(k

2;α, β)νg(a;α, β)νg(b;α, β)Vg(a, k;α, β)Vg(b, k;α, β).

Hence,

V(α,β)(µ) =
∑

k,c,d≥1

νg(k
2;α, β)µ(c)

(kcd)1+µ1+µ2kc

×
∑

a≥1

νg(ac;α, β)Vg(ac, k;α, β)

a1+µ1
xdka

(
g,

1

2
+ µ1

)

×
∑

b≥1

νg(bc;α, β)Vg(bc, k;α, β)

b1+µ2
xdkb

(
g,

1

2
+ µ2

)
.

Once again, we get

νg(ac;α, β) = νg(a;α, β)νg(c;α, β)Wg(a, c;α, β)

which leads to the right expression stated in the lemma.

�

We set for any (α, β) = (±µ,±µ)

V≤
(α,β)(µ) :=

∑

1≤w≤L1−Υ

1

w1+µ1+µ2

∑

uv|w
τ(α,β)(u, v)Su,v,w(α, β;µ1)Su,v,w(α, β;µ2),

V>(α,β)(µ) :=
∑

L1−Υ<w≤L

1

w1+µ1+µ2

∑

uv|w
τ(α,β)(u, v)Su,v,w(α, β;µ1)Su,v,w(α, β;µ2)

and we refer to these by the summation of respectively the short range and
long range terms.

5.2.1. Contribution of the short range terms.
Treatment of Su,v,w(α, β; z) when 1 ≤ w ≤ L1−Υ . We set for any complex

number z and any natural integer ℓ ≥ 1

φz(ℓ) :=
∑

ℓ=ℓ1ℓ22ℓ3

µ2(ℓ1ℓ2ℓ3)µ(ℓ1ℓ3)εD(ℓ2ℓ3)

ℓ1+2z
3

λg(ℓ1ℓ3)

so that

xℓ

(
g,

1

2
+ z

)
= K(g, 1 + 2z)

∑

ℓ≥1

φz(ℓ)F
Υ
L (ℓ)K(ℓ)(g, 1 + 2z)−1.

We also set for any integers u, v,w ≥ 1 with uv | w, any real y > 0, any
complex number s and any polynomial R:

(5.6)

Tu,v,w(s;α, β, z) = K(g, 1 + 2z)
∑

ℓ≥1

νg(ℓ;α, β)Vg(ℓ, v;α, β)Wg(ℓ, u;α, β)

ℓ1+s+z

×
∑

wℓ=ℓ1ℓ22ℓ3

µ2(ℓ1ℓ2ℓ3)µ(ℓ1ℓ3)εD(ℓ2ℓ3)

ℓ1+2z
3

λg(ℓ1ℓ3)K(wℓ)(g, 1 + 2z)−1,
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(5.7)

Tu,v,w,y,R(α, β, z) = K(g, 1+2z)
∑

1≤ℓ≤ y
w

νg(ℓ;α, β)Vg(ℓ, v;α, β)Wg(ℓ, u;α, β)

ℓ1+z

×
∑

wℓ=ℓ1ℓ22ℓ3

µ2(ℓ1ℓ2ℓ3)µ(ℓ1ℓ3)εD(ℓ2ℓ3)

ℓ1+2z
3

λg(ℓ1ℓ3)K(wℓ)(g, 1+2z)−1R

(
log
(
y
wℓ

)

log y

)
.

Finally, we define for any prime number p and any complex number s

L0
p(s, α, β, z) = Kp(g, 1 + 2z) +

νg(p;α, β)φz(p)

p1+s+z
+
νg(p

2;α, β)φz(p
2)

p2(1+s+z)

and also

L1
p(u, v,w; s, α, β, z) = Kp(g, 1 + 2z)

(
1+

× νg(p, u;α, β)Vg(p, v;α, β)Wg(p, u;α, β)φz(wp)

p1+s+zφz(w)

)
.

We will need a nice zero-free region for L(g × g, 1 + .) (confer [KoMiVa]):

Lemma 5.5. Given g as above, there exists cg > 0 depending only on g
such that the function L(g × g, 1 + .) has no zeros in the domain

{
s ∈ C,ℜ(s) ≥ −cg

log (2 + |ℑ(s)|)

}
.

Moreover, this function, its inverse and its derivatives up to any order α are

bounded in modulus in this domain by Cg,α,δ (1 + ℑ(s))δ for any δ > 0.

This will be useful in the following lemma:

Lemma 5.6. Let z ∈ {µ1, µ2}, (α, β) = (±µ,±µ), y > w and uv | w. We
have:

(5.8) Tu,v,w(s;α, β, z) = φz(w)K(w)(g, 1 + 2z)−1h1(u, v,w; s, α, β, z)

× L(q)(Sym2(g), 1 + 2z)

L(g × g, 1 + s+ z + α)L(g × g, 1 + s+ z + β)

where h1 is a holomorphic function when all the complex variables have real
part greater than some small negative real number given by an absolutely
convergent Euler product h1(u, v,w; s, α, β, z) :=

∏
p∈P h1,p(u, v,w; s, α, β, z)

with

(5.9)

∀p ∈ P, h1,p(u, v,w; s, α, β, z) =
Lp(g × g, 1 + s+ z + α)Lp(g × g, 1 + s+ z + β)

L
(q)
p (Sym2(g), 1 + 2z)

×





L0
p(s, α, β, z) if p ∤ w,

L1
p(u, v,w; s, α, β, z) if p || w,

Kp(g, 1 + 2z) if p2 || w.
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As a consequence, if µ is a bounded complex number satisfying |τ | ≪ 1
log q

and R a polynomial satisfying R(0) = R′(0) = 0 then

(5.10)

Tu,v,w,y,R(α, β, z) =

{
ress=0 φz(w)K(w)(g, 1 + 2z)−1h1(u, v,w; s, α, β, z)

× L(q)(Sym2(g), 1 + 2z)

sL(g × g, 1 + s+ z + α)L(g × g, 1 + s+ z + β)

∑

ℓ≥0

1

(s log y)ℓ
R(ℓ)

(
log
(
y
w

)

log y

)}

+Og

( |φz(w)|
log2 y

( y
w

)−(τ+inf (ℜ(α),ℜ(β)))
exp

(
−A0

√
log
( y
w

)))

for some A0 > 0.

Proof of lemma 5.6. The equation (5.8) follows by comparing two Euler
products. According to lemma D.1 and its definition, the function h1 is given
by an Euler product of the following shape (everything was made for and
the Ramanujan-Petersson bound for Hecke eigenvalues of g are available)
(5.11)

∀p ∈ P, h1,p(u, v,w; s, α, β, z) = 1 +Ou,v,w

(∑

i∈I

1

p2+ℜ(ais+biα+ciβ+diz)

)

for some finite index set I and some integers ai, bi, ci and di. Thus, if all
the complex variables have some slightly negative real parts such that

∀i ∈ I, ℜ(ais+ biα+ ciβ + diz) ≥ −1 + δ

for some fixed δ > 0 then this Euler product absolutely converges and defines
a holomorphic function. To get (5.10), we use the Taylor expansion of R:

Tu,v,w,y,R(α, β, z) =
∑

j≥2

R(j)(0)

(log y)j
1

2iπ

∫

(3)
K(w)(g, 1+2z)−1h1(u, v,w; s, α, β, z)

× φz(w)
L(q)(Sym2(g), 1 + 2z)

L(g × g, 1 + s+ z + α)L(g × g, 1 + s+ z + β)

( y
w

)s ds

sj+1
.

According to the assumptions on µ, we can find F1 > 0 such that ℜ(z + α)

and ℜ(z + β) ≥ −F1
log y . We move the integral to the line ℜ(s) = F1+1

log ( y
w)

without crossing any pole and then we cut the integral at the segment[
F1+1

log ( y
w )

− iT, F1+1
log ( y

w )
+ iT

]
at an admissible cost ofO

(
|φz(w)| log

(
y
w

)2
T−2

)

where T := exp
(√

log
(
y
w

))
. We move the previous line segment to

[
− inf (ℜ(z + α),ℜ(z + β)) − F2

log T
− iT,− inf (ℜ(z + α),ℜ(z + β)) − F2

log T
+ iT

]

where F2 > 0 is chosen such that this line segment is included in a free-zero
area for L(g × g, 1 + . + z + α)L(g × g, 1 + . + z + β) given by lemma 5.5.
We cross a multiple pole at s = 0 whose residue is precisely the main term
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in (5.10). The remaining integrals contribute as

Og

(
|φz(w)|

(
log

(
Ty

w

))2
(
T−2 +

( y
w

)− inf (ℜ(z+α),ℜ(z+β))− F2
log T

))
.

�

This leads directly to:

Proposition 5.7. Let z ∈ {µ1, µ2}, (α, β) = (±µ,±µ) and u, v ≥ 1. If µ is
a bounded complex number satisfying |τ | ≪ 1

log q and 1 ≤ w ≤ L1−Υ then

(5.12) Su,v,w(α, β, z) = δ(z+α)(z+β)6=0φz(w)K(w)(g, 1 + 2z)−1

× h1(u, v,w; 0, α, β, z)
L(q)(Sym2(g), 1 + 2z)

L(g × g, 1 + z + α)L(g × g, 1 + z + β)

+Og

(
|φz(w)|
log2 q

(
L1−Υ

w

)−(τ+inf (ℜ(α),ℜ(β)))

exp

(
−A0

√
log

(
L1−Υ

w

)))
.

Proof of proposition 5.7. Let Q(X) := 1−P (Υ+(1−Υ)X). We remark
that:

Su,v,w(α, β, z) = Tu,v,w,L,P (α, β, z) + Tu,v,w,L1−Υ,Q(α, β, z)

When applying lemma 5.6 twice, the reader may remark that the only con-
tribution comes from the values of P and Q and that the other main terms
coming from the values of the derivatives of P and Q cancel each other; this
concludes the proof.

�

Treatment of V≤
(α,β)(µ). We set:

(5.13) Lp(s, α, β) =


 ∏

z∈{µ1,µ2}
L0
p(0, α, β, z)




+ p−(1+s)

{
 ∏

z∈{µ1,µ2}

φz(p)L
1
p(1, 1, p; 0, α, β, z)

Kp(g, 1 + 2z)




+ νg(p
2;α, β)p−1


 ∏

z∈{µ1,µ2}

φz(p)L
1
p(1, p, p; 0, α, β, z)

Kp(g, 1 + 2z)




− νg(p;α, β)2p−1


 ∏

z∈{µ1,µ2}

φz(p)L
1
p(p, 1, p; 0, α, β, z)

Kp(g, 1 + 2z)



}

+


 ∏

z∈{µ1,µ2}
φz(p

2)


 p−2(1+s)

{
1 + νg(p

2;α, β)p−1

− νg(p;α, β)2p−1 − νg(p;α, β)2νg(p
2;α, β)Vg(p, p;α, β)2p−2

+ νg(p
4;α, β)p−2

}
.
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Lemma 5.8. Let µ ∈ C, (α, β) = (±µ,±µ) and z ∈ {µ1, µ2}.

(5.14)
∑

w≥1

1

w1+s

∑

uv|w
τ(α,β)(u, v)

×
∏

z∈{µ1,µ2}

(
φz(w)

K(w)(g, 1 + 2z)
h1(u, v,w; 0, α, β, z)

)
=

L(g × g, 1 + s)h2(s, α, β)

where h2 is a holomorphic function when all the complex variables have some
real part greater than some small negative real number given by an absolutely
convergent Euler product h2(s, α, β) :=

∏
p∈P h2,p(s, α, β) with

(5.15)

∀p ∈ P, h2,p(s, α, β) =
∏

z∈{µ1,µ2}

(
Lp(g × g, 1 + z + α)Lp(g × g, 1 + z + β)

L
(q)
p (Sym2(g), 1 + 2z)

)

× Lp(g × g, 1 + s)Lp(s, α, β).

As a consequence, if |τ | ≪ 1
log q then

(5.16)
∑

1≤w≤x

1

w1+µ1+µ2

∑

uv|w
τ(α,β)(u, v)

×
∏

z∈{µ1,µ2}

(
φz(w)

K(w)(g, 1 + 2z)
h1(u, v,w; 0, α, β, z)

)
=

L(g × g, 1 + µ1 + µ2)h2(µ1 + µ2, α, β)
(
1 − x−2τ

)
+Og

(
x−2τ

)
.

Proof of lemma 5.8. The first part (5.14) comes from a computation of
Euler products. Once again, the shape of the Euler product which defines
h2 is
(5.17)

∀p ∈ P, h2,p(u, v,w; s, α, β, z) = 1 +Ou,v,w

(∑

i∈I

1

p2+ℜ(ais+biα+ciβ+diz)

)

for some finite index set I and some integers ai, bi, ci and di. Thus, for ex-
actly the same reasons as in the proof of lemma 5.6 (confer (5.11)), this Euler
product is absolutely convergent when all the complex variables have some
slightly negative real parts. To get (5.16), according to explicit Perron’s
formula, our sum equals

1

2iπ

∫ A+iT

A−iT
L(g × g, 1 + s+ 2τ)h2(s+ 2τ, α, β)xs

ds

s
+O

(
xA−2τ

T

)

where A > −2τ and T > 0 will be chosen later. We shift the contour to
ℜ(s) = −A hitting some poles at s = 0 and s = −2τ . The remaining

integrals contribute as Og

(
xA−2τ

T
+ x−A−2τT

)
. We choose T = xA in order
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to justify the error term in (5.16). The residues of the crossed poles are

L(g × g, 1 + 2τ)h2(2τ, α, β) − ress=1L(g × g, s)

2τ
h2(0, α, β)x−2τ =

L(g × g, 1 + 2τ)h2(2τ, α, β)
(
1 − x−2τ

)
+Og

(
x−2τ

)
.

�

In the following proposition, we estimate V≤
(α,β)(µ).

Proposition 5.9. Let µ ∈ C and (α, β) = (±µ,±µ). If |µ| ≪ 1
log q then

V≤
(α,β)(µ) = δ(α,β)=(µ,µ) h2(µ1 + µ2, µ, µ)L(g × g, 1 + 2τ)

(
1 − L−2τ(1−Υ)

)

×


 ∏

z∈{µ1,µ2}

L(q)(Sym2(g), 1 + 2z)

L(g × g, 1 + µ+ z)L(g × g, 1 + µ+ z)




+Og

(
1

log4 (q)

(
L−(1−Υ)(τ+inf (ℜ(α),ℜ(β))) + L−2(1−Υ)(τ+inf (ℜ(α),ℜ(β)))

))

+ δ(α,β)=(µ,µ)Og

(
1

log4 (q)
L−2τ(1−Υ)

)
.

Proof of proposition 5.9. Since (z + α)(z + β) 6= 0:

(L(g × g, 1 + z + α)L(g × g, 1 + z + β))−1 ≪g (log q)−2 ,

the proposition follows from proposition 5.7 and lemma 5.4.

�

Treatment of the short range terms. We sum up the estimate of the
short range terms in the following theorem:

Theorem 5.10. Let µ ∈ C. If ε0
log q ≤ |µ| ≪ 1

log q for some absolute constant

ε0 > 0 then

(5.18)
∑

(α,β)=(±µ,±µ)

Ψ(α, β)V≤
(α,β)(µ) = 1 − L−2τ(1−Υ)

+Og

(
1

qδ
+

1

log q

{
L−2τ(1−Υ) if τ := ℜ(µ) ≥ 0,

q−2τL−4τ(1−Υ) otherwise

)

for some δ > 0.

Proof of theorem 5.10. As Ψ(α, β) ≪ log3 (q) q−2τ+α+β (the worst case
being (α, β) = (µ, µ)), proposition 5.9 implies that:

∑

(α,β)=(±µ,±µ)

Ψ(α, β)V≤
(α,β)

(µ) = Ψ(µ, µ)h2(µ1+µ2, µ, µ)L(g×g, 1+µ1+µ2)

×
(
1 − L−2τ(1−Υ)

)

 ∏

z∈{µ1,µ2}

L(q)(Sym2(g), 1 + 2z)

L(g × g, 1 + µ+ z)L(g × g, 1 + µ+ z)




+Og

(
1

log q

{
L−2τ(1−Υ) if τ ≥ 0,

q−2τL−4τ(1−Υ) otherwise.

)
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The main term of the previous equality equals:

ϕ(q)

q

ζq(1 + 2µ)

Lq(Sym2g, 1 + 2µ)Lq(Sym2g, 1 + 2µ)

h2(2τ, µ, µ)

ζ(D)(2(1 + 2τ))

(
1 − L−2τ(1−Υ)

)
.

According to proposition D.3, we have

(5.19)
h2(2τ, µ, µ)

ζ(D)(2(1 + 2τ))
= 1 +Og

(
1

qδ

)

for some δ > 0.

�

Remark 5.2. Equation (5.19) is the result of tedious but elementary com-
putations which are carried out in Appendix D. One may find it surprising
that this apparently rather complicated Euler product turns out to a have
very simple expression (which in fact is crucial for the method to work).
This however is a consequence of our choice of mollifier. It is very plausible
that a more conceptual explanation of this phenomenon can be gotten from
the random matrix model for the family F of Rankin-Selberg L-functions
and the vertical Sato-Tate laws satisfied by the Hecke eigenvalues of modu-
lar forms. For this, we refer to the recent work of J.B. Conrey, D. Farmer,
J. Keating, M. Rubinstein and N. Snaith ([CoFaKeRuSn]) who formulate
very precise conjectures for the moments of central value for many families
of L-functions (although not for our peculiar family, which certainly can be
investigated along the same lines) and the talk of C. Hughes at the New-
ton Institute on amplified and mollified moments of families of L-functions
([Hu]).

5.2.2. Contribution of the long range terms.
Treatment of V>(α,β)(µ). Arguing along the same lines, we obtain

Proposition 5.11. Let µ ∈ C and (α, β) = (±µ,±µ). If |µ| ≪ 1
log q then:

(5.20) V>(α,β)(µ) = h2(µ1 + µ2, α, β)(µ1 + µ2)L(g × g, 1 + µ1 + µ2)

× (ress=1L(g × g, s))−4


 ∏

z∈{µ1,µ2}
L(q)(Sym2(g), 1 + 2z)


 Iα,β(L,Υ, P ;µ)

+Og

(
1

log4 (q)

(
L−2(τ+inf (ℜ(α),ℜ(β))) + L−(τ+inf (ℜ(α),ℜ(β))) + L−2τ + L−2τ(1−Υ)

))

with

(5.21) Iα,β(L,Υ, P ;µ) := logL

∫ Υ

0
L−2τ(1−x)

×


 ∏

z∈{µ1,µ2}

(
(z + α)(z + β)P (x) +

(2z + α+ β)

logL
P ′(x) +

1

log2 (L)
P ′′(x)

)
dx.

Treatment of the long range terms. Firstly, we compute an expression
for the previous integrals Iα,β(L,Υ, P ;µ) which are obtained by some inte-
gration by parts knowing that P (0) = P ′(0) = P ′(Υ) = 0 and P (Υ) = 1.
The results are given in the following lemma:
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Lemma 5.12. Let (α, β) = (±µ,±µ).

Iα,β(L,Υ, P ;µ) =
4µµ

logL

∫ Υ

0
L−2τ(1−x)

∣∣∣∣P ′(x) +
P ′′(x)

2µ logL

∣∣∣∣
2

dx

+ δ(α,β)=(µ,µ)8µµτL
−2τ(1−Υ).

We sum up the contribution of the long range terms in the following
theorem:

Theorem 5.13. Let µ ∈ C. If ε0
log q ≤ |µ| ≪ 1

log q for some ε0 > 0 then

(5.22)

Wh
>(µ) =

(
q2τ − q−2τ

2τ logL
− q2δ − q−2δ

2δ logL

)∫ Υ

0
L−2τ(1−x)

∣∣∣∣P ′(x) +
P ′′(x)

2µ logL

∣∣∣∣
2

dx

+ L−2τ(1−Υ) +Og

(
1

qδ
+

1

log q

{
L−2τ(1−Υ) if τ := ℜ(µ) ≥ 0,

q−4τL−4τ otherwise

)

for some δ > 0.

Proof of theorem 5.13. As Ψ(α, β) ≪ log3 (q) q−2τ+α+β, proposition
5.11 implies that

∑

(α,β)=(±µ,±µ)

Ψ(α, β)V>(α,β)(µ) =
∑

(α,β)=(±µ,±µ)

Ψ̃(α, β)q−2τ+α+βIα,β(L,Υ, P ;µ)

+Og

(
1

log q

{
L−2τ(1−Υ) if τ ≥ 0,

q−4τL−4τ otherwise

)

with

Ψ̃(α, β) := (ress=1L(g × g, s))−4 q2τ−(α+β)f(α, β)2τL(g×g, 1+2τ)h2(2τ, α, β)

 ∏

z∈{µ1,µ2}
L(q)(Sym2(g), 1 + 2z)


 .

Moreover, Ψ̃(α, β) = 1
4αβ(α+β)

h2(0,0,0)

ζ(D)(2)
+Og

(
log3 (q)

)
and Iα,β(L,Υ, P ;µ) ≪

L−2τ(1−Υ)

log4 (q)
. According to proposition D.3, we have

(5.23)
h2(0, 0, 0)

ζ(D)(2)
= 1 +Og

(
1

qδ

)

for some δ > 0. Thus, the contribution of the long range terms is

∑

(α,β)=(±µ,±µ)

q−2τ+α+β

4αβ(α + β)
Iα,β(L,Υ, P ;µ)

which is exactly the main term of (5.22) according to lemma 5.12.

�

6. Averaged shifted convolution problems

This section is the central part of this paper. We give here a way of
solving shifted convolution problems on average.
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6.1. Introduction and first result. Let Ψ : R∗
+ × R∗

+ → R be a smooth
compactly supported function

(6.1) Supp(Ψ) ⊂ [Z, 2Z] ×
[
Y

2
, 2Y

]

for some real numbers Z, Y > 0 satisfying
(6.2)

∃P > 0,∀(α, β) ∈ N2,∀(z, y) ∈
(
R∗

+

)2
, zαyβ

∂α+βΨ

∂zα∂yβ
(z, y) ≪α,β P

α+β.

Let a1, a2 ≥ 1 with a1a2 < q be some natural integers. One considers the
shifted convolution problem

∀h ∈ Z∗, Sh(Ψ, g; a1, a2) :=
∑

a1m−a2n=h

λg(m)λg(n)Ψ(a1m,a2n)

and the shifted convolution problem on average

Σr(Ψ, g; a1, a2) :=
∑

h∈Z∗

h≡0 mod r

Sh(Ψ, g; a1, a2)

for any natural integer r ≥ 1. Note that the h-sum is of length sup (Z, Y ).
Solving the shifted convolution problem (respectively the shifted convolution
problem on average) consists in finding a non-trivial bound for Sh(Ψ, g; a1, a2)
(respectively Σr(Ψ, g; a1, a2)). The δ-symbol method of W. Duke, J. Fried-
lander and H. Iwaniec (confer [DuFrIw] and [KoMiVa]) leads to:

Theorem 6.1. Let h ∈ Z∗ and r ∈ N∗. If a1 ∧ a2 = 1 and Ψ satisfies (6.1)
and (6.2) then

Sh(Ψ, g; a1, a2) ≪ε,g P
5
4 (Z + Y )

1
4 (Y Z)

1
4
+ε

for any ε > 0. Thus,

Σr(Ψ, g; a1, a2) ≪ε,g P
5
4 (Z + Y )

1
4 (Y Z)

1
4
+ε sup (Z, Y )

r

for any ε > 0.

6.2. The spectral method on average. For some background and nota-
tions about Maass forms we refer to appendix C. All is based on the analytic
properties of the following Dirichlet series (confer [Sa] and [Mi1])

Dh(g, a1, a2; s) :=
∑

a1m−a2n=h

λg(m)λg(n)

( √
a1a2mn

a1m+ a2n

)kg−1

(a1m+ a2n)−s

which is linked to our problem by Mellin’s inversion formula

(6.3) Sh(g, a1, a2) =
1

2iπ

∫

(2)
Dh(g, a1, a2; s)Ψ̂(h, s) ds

where
(6.4)

Ψ̂(h, s) =

∫ h+4Na2

sup (|h|,h+Na2)
Ψ

(
u+ h

2
,
u− h

2

)(
4 +

2h

u− h
− 2h

u+ h

)kg−1

2

us
du

u
.
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Note that Ψ̂(h, s) = 0 if |h| ≫ sup (Z, Y ). The spectral method consists
in getting a non-trivial individual estimate of Dh(g, a1, a2; s) whereas the
spectral method on average takes care of the extra average over h.

Lemma 6.2. If Ψ satisfies (6.1) and (6.2) then:

Ψ̂(h, s) ≪η

(
sup (Z, Y )

inf (Z, Y )

) kg−1

2
+η−1

sup (Z, Y )ℜ(s) P
η

|s|η
for any natural integer η.

Proof of lemma 6.2. According to the support properties of Ψ and by η
integration by parts, we have

Ψ̂(h, s) =

∫ ±h+O(inf (Z,Y ))

±h+O(inf (Z,Y ))

us+η−1

s(s+ 1) · · · (s+ η − 1)
γ(η)(u)du

with γ(u) = Ψ
(
u+h

2 , u−h2

)(
4 + 2h

u−h − 2h
u+h

)kg−1

2
. One shows with (6.2) that

γ(η)(u) ≪η

(
sup (Z, Y )

inf (Z, Y )

) kg−1

2 1

inf (Z, Y )η
P η

which is enough for the proof.

�

One defines the following Maass cusp forms of level Da1a2, weight 0 and
trivial nebentypus

V (z) := (a1y)
kg
2 g(a1z)(a2y)

kg
2 g(a2z)

and
Uh(z, s) :=

∑

γ ∈ (Γ0(Da1a2))∞\Γ0(Da1a2)

(ℑ(γ.z))s e(−hℜ(γ.z)).

A straightforward computation gives:

Dh(g, a1, a2; s) =
(2π)s+kg−1

Γ(s+ kg − 1)
√
a1a2

(Uh(., s), V ).

Let β := (uj)j≥1 a Hecke eigenbasis of C0(Da1a2) satisfying (∆0 + λj) uj =

0 with λj := 1
4 + r2j and made of eigenfunctions of the reflexion operator

namely: ∀n ∈ Z∗, ρj(−n) = εjρj(n) for some εj ∈ {±1}. Parseval’s equality
leads to:

(6.5) Dh(g, a1, a2; s) =
(2π)s+kg−1

Γ(s+ kg − 1)
√
a1a2{∑

j≥1

√
|h| ρj(−h)

2πs−
1
2 |h|s− 1

2

Γ

(
s− 1

2 + irj

2

)
Γ

(
s− 1

2 − irj

2

)
(
uj , V

)

+
1

4π

∑

κ∈Cusp(Γ0(Da1a2))

∫ ∞

−∞

√
|h| ρκ(−h, t)

2πs−
1
2 |h|s− 1

2

Γ

(
s− 1

2 + it

2

)
Γ

(
s− 1

2 − it

2

)

(
Eκ

(
.,

1

2
+ it

)
, V

)
dt

}
.
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The hypothesis H2(θ) described in the introduction is a very natural one as
it allows us to control the size of the discrete part of the right-hand side of
(6.5). In fact, H. Iwaniec, W. Luo and P. Sarnak ([IwLuSa]) showed that if
θ is admissible then it is possible to choose β with:

(6.6) ∀h ∈ Z∗, ρj(h) ≪ε
(|h|a1a2(1 + |rj |))ε√

a1a2
cosh

(πrj
2

)
|h|θ− 1

2

for any j ≥ 1 and for any ε > 04. P. Sarnak ([Sa]) proved the following
highly non-trivial individual estimate for the triple products

(
uj , V

)
:

(6.7) ∀j ≥ 1,
(
uj , V

)
≪g

√
a1a2 (1 + |rj|)kg+1 exp

(−π|rj |
2

)

The crucial fact is that the exponential growth in j of ρj(h) is balanced

by the exponential decay in j of
(
uj, V

)
. Using this, P. Sarnak proved that

Dh(g, a1, a2; s) admits an holomorphic continuation to ℜ(s) > 1
2 +θ+ε under

H2(θ) for any ε > 0 ([Sa]). The continuous analogue being true, one obtains
thanks to Weyl’s law for the spectrum and an estimate for the number of
cusps of the congruence subgroup Γ0(Da1a2) the following estimate for the
triple products on average over the spectrum

(6.8)
∑

|rj |≤R

∣∣(uj , V
)∣∣2 exp (π|rj |) +

1

4π

∑

κ∈Cusp(Γ0(Da1a2))

×
∫ R

−R

∣∣∣∣
(
Eκ

(
.,

1

2
+ it

)
, V

)∣∣∣∣
2

exp (π|t|)dt≪g,ε (a1a2R)ε(a1a2)
2R2kg+x

with x = 4. In fact, B. Krötz and R.J. Stanton ([KrSt]) obtained the same
estimate but with x = 0. Note that the optimality of this last estimate with
respect to the parameter R was already proved by A. Good ([Go]). Moreover
E. Kowalski ([Ko2]) computed the dependency in the level of g. We can now
state:

Theorem 6.3. Let r = qαr̃ ∈ N∗ with α ∈ N and r̃∧q = 1. If θ is admissible
and Ψ satisfies (6.1) and (6.2) then

Σr(Ψ, g; a1, a2) ≪ε,g q
ε

(
sup (Z, Y )

inf (Z, Y )

) kg−1

2
+1+ε (a1a2)

1
2

q
α
2 r̃

1
2
+θ
P 2+ε sup (Z, Y )1+θ+ε

×
(

sup

(
1,

sup (Z, Y )
1
2
+ε

q
α
2
+ε√a1a2

)
+

δq|r

q
1
2
+θ(α+1)

sup

(
1,

sup (Z, Y )
1
2
+ε

q
α+1

2
+ε√a1a2

))

for any ε > 0.

Remark 6.1. The shifted convolution problem is said to be balanced when
Y and Z are of the same size and unbalanced else. In the balanced case,
theorem 6.3 is better than theorem 6.1 whereas it is not the case in the
unbalanced case. At least two reasons for that:

• in theorem 6.1, Y and Z are almost symmetric parameters,

4P. Michel provided a useful averaged version over the spectrum of this upper-bound
in [Mi1].
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• in theorem 6.3,
(

sup (Z,Y )
inf (Z,Y )

) kg−1

2
+1

is large in the unbalanced case

(especially when the weight of g is large).

Our next applications will require the use of both theorems depending on
the range of the parameters Y and Z.

6.2.1. Flavour of the proof of theorem 6.3. When solving the shifted con-
volution problem on average via the spectral method on average, the main
issue is to deal with smooth sums of Fourier coefficients of automorphic
forms of the following shape

(6.9)
∑

h<0

√
q|h| ρj(−qh)
(q|h|)s− 1

2

Ψ̂(qh, s)

with ℜ(s) = 1
2 + θ + ε. Up to harmless factors, such a sum equals

1

2iπ

∫

( 1
2
−θ)

L

(
ũj , z + s− 1

2

)
q−(s+z−1)Ψ̃(z, s)dz

where ũj is the underlying primitive form of uj of level at most Da1a2 and

Ψ̃ is an integral transform of Ψ̂. Thus, bounding sums of Fourier coefficients

like (6.9) turns out to bounding L-functions like L
(
ũj , .

)
on the critical line

in the level aspect. Of course, the maximal saving would come from Lindelöf
hypothesis but as we average over a family of Maass forms of level Da1a2

large sieve inequalities will achieve Lindelöf hypothesis on average.

6.2.2. Proof of theorem 6.3. We set

Σr(Ψ, g; a1, a2) := Σdisc
r (Ψ, g; a1, a2) + Σcont

r (Ψ, g; a1, a2)

where

(6.10) Σdisc
r (Ψ, g; a1, a2) :=

1

2iπ
√
a1a2

∫

( 1
2
+θ+ε)

2s+kg−2πkg− 1
2

×
∑

j≥1

Γ

(
s− 1

2
+irj

2

)
Γ

(
s− 1

2
−irj

2

)

Γ(s+ kg − 1)

(
uj , V

)∑

h 6=0

√
r|h| εj ρj(rh)
|rh|s− 1

2

Ψ̂(rh, s)ds

is the contribution of the discrete spectrum and

(6.11) Σcont
r (Ψ, g; a1, a2) :=

1

8iπ2√a1a2

∫

( 1
2
+θ+ε)

2s+kg−2πkg− 1
2

×
∫ +∞

t=−∞

Γ

(
s− 1

2
+it

2

)
Γ

(
s− 1

2
−it

2

)

Γ(s+ kg − 1)

∑

κ∈Cusp(Γ0(Da1a2))

(
Eκ

(
.,

1

2
+ it

)
, V

)

∑

h 6=0

√
r|h| ρκ(rh, t)
(r|h|)s− 1

2

Ψ̂(rh, s)dtds

is the contribution of the continuous spectrum. We will only give some
details for the estimate of Σdisc

r (Ψ, g; a1, a2) but the same method is available
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for Σcont
r (Ψ, g; a1, a2) (confer [Ri]). As q is coprime withDa1a2, (C.7) implies

that
(6.12)

∀h ∈ Z∗,
√
r|h|ρj(rh) =

√
r̃|h|ρj(r̃h)λj(qα) − δq|rδq|h

√
r̃
h

q
ρj

(
r̃
h

q

)
.

We study only the contribution coming from the first term of (6.12). By
Strirling’s formula and Cauchy-Schwarz inequality, the contribution of the
discrete spectrum is bounded by

≪ 1√
a1a2

∫

( 1
2
+θ+ε)

(1 + |ℑ(s)|)−kg

×


 ∑

|rj |≤1+|ℑ(s)|

∣∣(uj, V
)∣∣2 cosh (πrj)




1
2

×




∑

|rj |≤1+|ℑ(s)|

1

cosh (πrj)

∣∣∣∣∣∣∣

∑

|r̃h|≪ sup (Z,Y )
qα

√
r̃|h| ρj(r̃h)

εj λj(q
α)Ĥ(qαr̃h, s)

(qαr̃|h|)s− 1
2

∣∣∣∣∣∣∣

2


1
2

ds.

According to (6.8) but with the refinement of B. Krötz and R.J. Stanton
(x = 0), the first square-root contributes as

≪g,ε (a1a2)
1+ε (1 + |ℑ(s)|)

x

2
+kg+ε

for any ε > 0. The second square-root equals




∑

|rj |≤1+|ℑ(s)|

1

cosh (πrj)

∣∣∣∣∣∣∣

∑

|n|≪ sup (Z,Y )
qα

ann
1
2 ρj(n)

∣∣∣∣∣∣∣

2


1
2

where one has set

an :=

{
0 if r̃ ∤ n,

1

(qαr̃|h|)s− 1
2
εj λj(q

α)Ĥ(qαr̃h, s) if n = r̃h.

The large sieve inequality for the Fourier coefficients of Maass forms of
weight 0 (confer (C.2)) entails that this second square-root is bounded by

≪ε

(
(1 + |ℑ(s)|)2 +

sup (Z, Y )1+ε

qα+εa1a2

) 1
2

||a||2.

According to lemma 6.2, this is bounded by

≪g,ε,η q
ε

(
sup (Z, Y )

inf (Z, Y )

) kg−1

2
+η−1 sup (Z, Y )1+θ+ε

q
α
2 r̃

1
2
+θ

sup

(
1,

sup (Z, Y )
1
2
+ε

q
α
2
+ε√a1a2

)

× P η
(1 + |ℑ(s)|)

x

2
+1

|s|η
and we choose η = x

2 +1+(1 + ε) = 2+ ε to make convergent the s-integral

in Σdisc
r (Ψ, g; a1, a2).
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Remark 6.2. We want to take x as small as possible in (6.8) because
following large sieve inequality, there appears a power of P and P may
be large in our next applications. This power is precisely the number of
integration by parts we have to do and grows linearly with x. This feature
puts the stress on the fact that the spectral method is not really smooth in
the length of the spectrum aspect (namely in the R-aspect in (6.8)).

7. Proofs of Proposition D and Theorem B

Following the results of section 6, we prove Proposition D in subsection
7.2 and Theorem B in subsection 7.3. These proofs are based on some
better bound for Errtwist(q, ℓ;µ) than the one given in (1.9). Remember
that the bound (1.9) was obtained in [KoMiVa] by implementing the δ-
symbol method. If we use the spectral method on average described in the
previous section for certain ranges which depend on the weight functions
instead of the δ-symbol method, we can get better bounds. Once again,
a key ingredient is a uniform estimate of P. Sarnak and some technical
issues involve verifying that weight functions can be handled appropriately
(subsection 7.1).

7.1. Description of Errtwist(q, ℓ;µ). In [KoMiVa], the authors are look-
ing for asymptotic formulas for the harmonic twisted second moments Mh

g (µ; ℓ).
By a standard approximate functional equation for Rankin-Selberg L-functions
(Theorem 5.3. page 98 of [IwKo]), they are reduced to estimate sums of the
form (equation (4.16) page 138 of [KoMiVa])

(7.1) M̃g((α, β); ℓ) :=
∑

m,n≥1

λg(m)λg(n)√
mn

Vg,α

(
m

qD

)
Vg,β

(
n

qD

)

h∑

f∈Sp
k
(q)

ψf (m)ψf (n)λf (ℓ).

where (α, β) = (±µ,±µ) and

∀z ∈ {±µ,±µ} ,∀y ∈ R+, Vg,z(y) :=
1

2iπ

∫

(3)
Hg,z(s)ζ

(qD)(1+2s)y−s
ds

s− z

satisfies

∀z ∈ {±µ,±µ} ,∀y ∈ R+,∀A > 0, Vg,z(y) ≪A (1 + |ℑ(µ)|)B y−A

for some B > 0. Applying Petersson’s formula (remember that there are no
old forms in their case) and some dyadic partitions of unity to the m and
n sums which appears in the non-diagonal term leads to the following term
(formula (7.5) of [KoMiVa])

(7.2) Errtwist(q, ℓ;µ) =
2π

ik

∑

M,N≥1

∑

ẽe=ℓ

εq(ẽ)√
ẽ

∑

ab=ẽ

µ(a)εD(a)√
a

λg(b)TM,N
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with

TM,N =
∑

c∈N∗

c≡0 mod q

1

c2
TM,N (c),

TM,N (c) = c
∑

m,n≥1

λg(m)λg(n)S(m,aen; c)FM,N (m,n)Jk−1

(
4π

√
aemn

c

)
.

Here, S(m,aen; c) is a Kloosterman sum, Jk−1 is a Bessel function of the
first kind and (page 151 of [KoMiVa])

FM,N (x, y) :=
1√
xy
Vg,α

(
x

qD

)
Vg,β

(
y

qD

)
ηM (x)ηN (y)

for some smooth function ηM compactly supported in [M/2, 2M ] satisfying

for any i ≥ 0, xiη
(i)
M (x) ≪ 1 and such that

∑

M≥1

ηM (x) =

{
0 if x ≤ 1

2 ,

1 if x ≥ 1

with
∑

M≤X 1 ≪ logX. Thus, FM,N is a compactly supported function

in
[
M
2 , 2M

]
×
[
N
2 , 2N

]
which depends on µ and satisfies (formula (7.6) of

[KoMiVa]):

(7.3) ∀(i, j) ∈ (N∗)2, xiyj
∂i+jFM,N

∂xi∂yj
(x, y) ≪ (1+ |t|)B(MN)−

1
2 (log q)i+j .

Truncating at an admissible cost the M and N sums to M,N ≪ε (qD)1+ε

for any ε > 0 and applying Voronoi’s formula to the m-sum, (7.2) becomes

(7.4)

Errtwist(q, ℓ;µ) =
2π

ik

∑

M,N≪ε(qD)1+ε

∑

ẽe=ℓ

εq(ẽ)√
ẽ

∑

ab=ẽ

µ(a)εD(a)√
a

λg(b)T
−
M,N

+Og,ε,A

(
(1 + |t|)B

(
1

qA
+ qε

σg(ℓ)√
ℓ

))

with σg(ℓ) :=
∑

d|ℓ |λg(l)| and

T−
M,N =

∑

c∈N∗

c≡0 mod q

T−
M,N (c)

c2

with

T−
M,N (c) =

ηg(D2)√
D2

∑

h 6=0

r(−hD2; c)T
−
h (c)

where

T−
h (c) =

∑

m−(aeD2)n=h

λg(m)λg(n)G−
(
m

D2
, n

)
,

G−(z, y) = 2πikg

∫ +∞

0
Jkg−1

(
4π

√
zu

c

)
Jk−1

(
4π

√
aeyu

c

)
FM,N (u, y)du.
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Here, D2 := D
D∧c , D2 stands for the inverse of D2 modulo c, ηg(D2) for an

Atkin-Lehner eigenvalue (of modulus one), r for the Ramanujan sum and
Jkg−1 for a Bessel function of the first kind. In fact, T−

M,N = T−
M,N (1) +

T−
M,N (2) where

T−
M,N (1) =

∑

c∈N∗

q||c

c−2T−
M,N(c).

We will only deal with the first term as the same method works for the
second one with better results. So, c = qc′ with c′ ∧ q = 1. Expanding the
Ramanujan sum leads to

(7.5) T−
M,N (c) =

ηg(D2)√
D2

∑

q̂∈{1,q}
ε(q̂)q̂

∑

d|c′
dµ

(
c′

d

)∑

h 6=0

T−
q̂dh

(c)

with

ε(q̂) =

{
−1 if q̂ = 1,

+1 if q̂ = q.

Let F be the following function:

F (z, y) = 2πikgD2

∫ +∞

0
Jkg−1

(
4π

√
zx

c

)
Jk−1

(
4π

√
yx

c

)
FM,N

(
D2x,

y

a2

)
dx

which is compactly supported with respect to y in
[
NaeD2

2 , 2NaeD2

]
. The

shifted convolution problem on average which has to be solved is

Σq̂d(F, g; 1, aeD2).

In order to get some estimates of the function F , one sets Y := Nae, Z1 :=
c2

M
, P := 1 +

√
Y
Z1

and Z := Z1P
2 ≥ sup (Z1, Y ). We need some results

about the Bessel functions which can be found in [Wa]. We know that:

(7.6) ∀j ∈ N,

(
x

1 + x

)j
J

(j)
k (x) ≪j,k

1

(1 + x)
1
2

(
x

1 + x

)k
.

More precisely, Jk(x) = exp (ix)Vk(x) + exp (−ix)Vk(x) where

(7.7) ∀j ∈ N, xjV
(j)
k (x) ≪j,k

1

(1 + x)
1
2

(
x

1 + x

)k
.

We prove:
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Lemma 7.1. For any natural integers α, β, any real numbers A1, A2, A3 > 0
and any non-negative real numbers z and y,

zαyβ
∂α+βF

∂zα∂yβ
(z, y) ≪k,kg,α,β,A1,A2,A3 (1 + |t|)B (log q)α+β+A1+A2+A3

×Pα+β

√
M

N




√
Y
Z1

1 +
√

Y
Z1



k−1

1
(
1 +

√
Y
Z1

) 1
2




√
z
Z1

1 +
√

z
Z1



kg−1

1
(
1 +

√
z
Z1

) 1
2

× 1

(
1 + z

Z

)A1
(
1 + y

Y

)A2

(
1 + Y

(
√
Z1+

√
z)

2

)A3
.

Proof of lemma 7.1. We give only the proof for the case α = β = 0. If
z < Z then we trivially have

(7.8) F (z, y) ≪k,kg
(1 + |t|)B

√
M

N




√
Y
Z1

1 +
√

Y
Z1



k−1

1
(
1 +

√
Y
Z1

) 1
2

×




√
z
Z1

1 +
√

z
Z1



kg−1

1
(
1 +

√
z
Z1

) 1
2

.

If z ≥ Z then l ≥ 1 integrations by parts lead to

F (z, y) = 4πikg

∫ √
2M
D2

√
M

2D2

(
exp

(
i4π
c

√
zx
)

(
i4π
c

√
z
)l f (l)(x) +

exp
(
−i4π

c

√
zx
)

(
−i4π

c

√
z
)l f

(l)
(x)

)
dx

where f(x) = xVkg−1

(
4π
c

√
zx
)
Jk−1

(
4π
c

√
yx
)
FM,N

(
D2x

2, y
a2

)
satisfies

f (l)(x) ≪k,kg,l (1 + |t|)B (log q)l
P l√
MN




√
Y
Z1

1 +
√

Y
Z1



k−1

1
(
1 +

√
Y
Z1

) 1
2

×




√
z
Z1

1 +
√

z
Z1



kg−1

1
(
1 +

√
z
Z1

) 1
2

1

xl−1
.

As a consequence,

(7.9) F (z, y) ≪k,kg
(1 + |t|)B

√
M

N




√
Y
Z1

1 +
√

Y
Z1



k−1

1
(
1 +

√
Y
Z1

) 1
2

×




√
z
Z1

1 +
√

z
Z1



kg−1

1
(
1 +

√
z
Z1

) 1
2

P l
( z
Z

)−2l
.
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We conclude by collecting (7.8) and (7.9) and by remarking that one can
repeat the same procedure with Jk−1 instead of Jkg−1 if Y is large.

�

Let ρ : R → R compactly supported in [1, 2] satisfying
∑

a∈N ρ (2−ax) = 1.
We set

FZ(z, y) := ρ
(
2−az

)
F (z, y)

where Z := 2a. FZ is compactly supported in [Z, 2Z] ×
[
Y
2 , 2Y

]
and we

remark that F (z, y) =
∑

Z=2a FZ(z, y). Lemma 7.1 gives

(7.10) zαyβ
∂α+βFZ
∂zα∂yβ

(z, y) ≪k,kg,α,β,A1,A2,A3 (1 + |t|)B (log q)α+β+A1+A2+A3

×Pα+β

√
M

N




√
Y
Z1

1 +
√

Y
Z1



k−1

1
(
1 +

√
Y
Z1

) 1
2




√
Z
Z1

1 +
√

Z
Z1



kg−1

1
(
1 +

√
Z
Z1

) 1
2

× 1

(
1 + Z

Z

)A1
(
1 + y

Y

)A2

(
1 + Y

(
√
Z1+

√
Z)

2

)A3

for any natural integers α, β and for any real numbers A1, A2, A3 > 0.

7.2. Improvement of the bound of Errtwist(q, ℓ;µ) given in (1.9).
Let us recall that we want to estimate

Errtwist′(q, ℓ;µ) :=
2π

ik

∑

M,N≪ε(qD)1+ε

∑

ẽe=ℓ

εq(ẽ)√
ẽ

∑

ab=ẽ

µ(a)εD(a)√
a

λg(b)T
−
M,N (1)

where
(7.11)

T−
M,N(1) =

ηg(D2)√
D2

∑

q̂∈{1,q}

∑

(c,d)∈N∗2

q||c
d| c

q

dq̂

c2
µ

(
c

dq

) ∑

Z≥1
Z=2a

a∈N∗

Σq̂d (FZ , g; 1, aeD2)

and that Theorem 6.3 implies:

Theorem 7.2. Let c ≥ 1 and d ≥ 1 some natural integers satisfying q || c,
d | c

q
, q̂ ∈ {1, q} and Z ≥ 1. If θ is admissible then:

Σq̂d(FZ , g; 1, aeD2) ≪ε,g,A1,A3,η q
ε (1 + |t|)B

√
M

N
(ae)

1
2




√
Y
Z1

1 +
√

Y
Z1



k−1

1
(
1 +

√
Y
Z1

) 1
2




√
Z
Z1

1 +
√

Z
Z1



kg−1

1
(
1 +

√
Z
Z1

) 1
2

1

(
1 + Z

Z

)A1

(
1 + Y

(
√
Z1+

√
Z)

2

)A3

(
sup (Z, Y )

inf (Z, Y )

) kg−1

2
+1+ε

P 2+ε sup (Z, Y )1+θ+ε

q̂
1
2d

1
2
+θ

sup

(
1,

sup (Z, Y )
1
2
+ε

q̂
1
2
+ε√ae

)
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for any real numbers η ≥ 0 and A1, A3, ε > 0.

Now, we finish the proof of Proposition D. Proof of Proposition D. Let
0 < α < 1 be some real number. Setting Cq̂d(x, y) :=

∑
x≤Z≤y Σq̂d (FZ , g; 1, aeD2),

we split the Z-sum occurring in (7.11) as follows

(7.12)
∑

Z≥1
Z=2a

a∈N∗

Σq̂d (FZ , g; 1, aeD2) = Cq̂d(1, Zα1 ) + Cq̂d(Zα1 ,Z) + Cq̂d(Z,+∞)

and we refer to the first (respectively second, third) term in the right-hand
side of (7.12) as the short (respectively median, long) range terms. The
first point is that FZ is small when kg is large for 1 ≤ Z ≤ Zα1 because
proposition 6.4 implies that

(7.13) FZ(z, y) ≪k,kg
(1 + |t|)B qε

×
√
M

N




√
Y
Z1

1 +
√

Y
Z1



k−1

1
(
1 +

√
Y
Z1

) 1
2

(
Z

Z1

) kg−1

2

for 1 ≤ Z ≤ Zα1 and for any ε > 0. As a consequence, the short range terms
do not restrict the length of the mollifier at least when kg is large. More
precisely, if kg > 1 + 5

2(1−α) then one gets thanks to theorem 6.1 (that is to

say the δ-method symbol):

(7.14)
∑

q̂∈{1,q}

∑

(c,d)∈N∗2

q||c
d| c

q

dq̂

c2
µ

(
c

dq

)
Cq̂d(1, Zα1 ) ≪k,g (1 + |t|)B 1

qδ

for some δ > 0. The long range terms ”weakly” restrict the length of the

mollifier. This is mainly caused by the factor
(
Z

Z

)A1
in theorem 7.2 with

A1 as large as needed. Applying this theorem (that is to say the spectral
method on average), one gets for θ admissible and k > kg + 21

4 + θ
2 :

(7.15)
∑

q̂∈{1,q}

∑

(c,d)∈N∗2

q||c
d| c

q

dq̂

c2
µ

(
c

dq

)
Cq̂d(Z,+∞) ≪k,g,ε (1 + |t|)Bqε

(
ℓ

5
4
+ θ

2

q
1
2
−θ +

ℓ2+θ

q
1
2
−θ

)

for any ε > 0. The main restriction comes from the median range terms.
Applying theorem 7.2 (that is to say the spectral method on average), one
gets for θ admissible and k > kg + 21

4 + θ
2

(7.16)
∑

q̂∈{1,q}

∑

(c,d)∈N∗2

q||c
d| c

q

dq̂

c2
µ

(
c

dq

)
Cq̂d(Zα1 ,Z) ≪k,g,ε (1 + |t|)Bqε

×
(
ℓ

5
4
+ θ

2

q
1
2
−θ +

ℓ2+θ

q
1
2
−θ +

ℓ
9
4
+ θ

2
−α

qα−
1
2
−θ

)
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for any ε > 0. Collecting these estimates, one gets for θ admissible, kg >

1 + 5
2(1−α) and k > kg + 21

4 + θ
2

(7.17)

Errtwist′(q, ℓ;µ) = Oε,k,g

(
(qℓ)ε(1 + |ℑ(µ)|)B

(
ℓ

5
4
+ θ

2

q
1
2
−θ

+
ℓ2+θ

q
1
2
−θ

+
ℓ

9
4
+ θ

2
−α

qα−
1
2
−θ

))

and so
(7.18)

Errsec(q, L;µ) = Oε,k,g

(
(qL)ε(1 + |ℑ(µ)|)B

(
L5+2θ

q
1
2
−θ +

L8+2θ

q
1
2
−θ +

L
11
2

+θ−2α

qα−
1
2
−θ

))
.

Thus, every ∆ strictly less than

inf

(
1 − 2θ

4(5 + 2θ)
,

2α− 1 − 2θ

2(11 + 2θ − 4α)

)

is effective provided k and kg are large enough. We choose α := 7
8 + θ

6 + θ2

6
to maximize the last quantity.

�

7.3. A new subconvexity bound. As a consequence of the improvement
of the bound of Errtwist(q, ℓ;µ), we prove the new subconvexity bound
of Rankin-Selberg L-functions given in Theorem B by applying the am-
plification method. Setting (as in [KoMiVa]) for L ≥ 1 an integer and
−→x = (xℓ)1≤ℓ≤L a sequence of complex numbers satisfying xℓ = 0 if q | ℓ

Lg(µ, µ;L;−→x ) :=
∑

1≤ℓ≤L
xℓM̃g((µ, µ); ℓ),

one has according to [KoMiVa] (page 151)

Lg(µ, µ;L;−→x ) =
∑

1≤ℓ≤L
xℓErrtwist(q, ℓ;µ)+Oε,g


(1 + |t|)Bqε

∑

1≤ℓ≤L
|xℓ|

σg(ℓ)√
ℓ




which leads to:

Proposition 7.3. Let α ∈ ]0, 1[. Let g be a primitive cusp form of square-
free level D, weight kg > 1 + 5

2(1−α) and trivial nebentypus and µ ∈ C.

Assume that q is a prime coprime with D and that k ≥ kg + 6. If θ is
admissible and |ℜ(µ)| ≪ 1

log q then for any 1 ≤ L < q,

Lg(µ, µ;L;
−→
x ) ≪ε,k,g (qL)ε (1 + |t|)B

( ∑

1≤ℓ≤L
|xℓ|

σg(ℓ)√
ℓ

+

(
L2+θ

q
1
2
−θ +

L
9
4
+ θ

2
−α

qα−
1
2
−θ

)
||−→x ||1

)

for any ε > 0.
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Proof of Theorem B. As in [KoMiVa], let Q(.) be the following quadratic
form:

Q(−→x ) :=

h∑

f∈Sp
k
(q)

∣∣∣∣∣∣
∑

1≤ℓ≤L
xℓλf (ℓ)

∣∣∣∣∣∣

2 ∣∣∣∣L
(
f × g,

1

2
+ µ

)∣∣∣∣
2

for L <
√
q. We define

−→
X := (Xℓ)1≤ℓ≤L2 with:

Xℓ :=
∑

d≥1

∑

ℓ1ℓ2=ℓ
1≤ℓ1,ℓ2≤L

d

xdℓ1xdℓ2 .

It is proved in [KoMiVa] that Q(−→x ) ≪g Lg(µ, µ;L2;
−→
X ). This leads to:

∣∣∣∣∣∣
∑

1≤ℓ≤L
xℓλf (ℓ)

∣∣∣∣∣∣

2 ∣∣∣∣L
(
f × g,

1

2
+ µ

)∣∣∣∣
2

≪ε,k,g (qL)ε(1 + |t|)Bq
(
||−→x ||22

+

(
L4+2θ

q
1
2
−θ

+
L

9
2
+θ−2α

qα−
1
2
−θ

)
||−→x ||1

)

for any ε > 0. We choose the following classical lacunary GL(2)-amplifier:

xℓ :=





−1 if ℓ = p2 with p ∈ P, p ≤
√
L,

λf (p) if ℓ = p with p ∈ P, p ≤
√
L,

0 else.

With such a choice,
∣∣∣∣L
(
f × g,

1

2
+ µ

)∣∣∣∣
2

≪ε,k,g (qL)ε(1+|t|)B
(

q√
L

+q
1
2
+θL4+2θ+q

3
2
+θ−αL

9
2
+θ−2α

)
.

Setting L = q2x with 0 < x < 1
4 , we have:

∣∣∣∣L
(
f × g,

1

2
+ µ

)∣∣∣∣
2

≪ε,k,g q
ε(1 + |t|)B inf

0<x< 1
4

(
q1−x + q

1
2
+θ+(8+4θ)x

+ q
3
2
+θ−α+(9+2θ−4α)x

)
.

Finally, we choose x = 1−2θ
2(9+4θ) and α := 19

22 + 2
11θ + 2

11θ
2 to minimize the

right-hand side which achieves the proof of Theorem B for j = 0 in a neigh-
bourhood of the critical line. The other cases (j 6= 0) follow from Cauchy’s
inequalities.

�

Appendix A. The harmonic mollified second moment away from

the critical point

The aim of this part is to prove the following bound of Wh(g;µ) when µ
is on the right of the origin:
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Theorem A.1. Let g be a primitive cusp form of square-free level D and
trivial nebentypus and f be a non-negative function satisfying:

lim
q→+∞

f(q) = +∞,

f(q) = o(log q).

Assume that q is prime, coprime with D. If ℜ(µ) ≥ f(q)
log q and ∆ is effective

then for any 0 < a < 4∆(1 − Υ), we have

(A.1) Wh(g;µ) = Ahq [1] +Ok,g

(
(1 + |ℑ(µ)|)Bq−aℜ(µ)

)

for some absolute constant B > 0.

We only give a sketch of the proof of this theorem based on two lemmas
and a classical convexity argument. As usual, µ is a complex number and
τ := ℜ(µ) and t := ℑ(µ). On one hand, just on the right of the critical
point, we have:

Lemma A.2. If τ = f(q)
log q > 0 where f is a non-negative function satisfying:

lim
q→+∞

f(q) = +∞,

f(q) = o(log q)

and ∆ is effective then

(A.2) Wh(g;µ) ≪g (1 + |t|)B .
Proof of lemma A.2. According to remark 1.4, Wh

g (µ) ≪k,g 1 if |t| ≪ 1.
So, we may assume that |t| ≫ 1. According to proposition 5.3 and its proof,
we know that up to an admissible error term

∑

(α,β)=(±µ,±µ)

εf×g(α, β)Wg(α, β)=
∑

(α,β)=(±µ,±µ)

Ψ(α, β)
1

(2iπ)2

∫

(3)

∫

(3)
hg(α, β, s1, s2)

× ng(s1, µ1, α, β)ng(s2, µ2, α, β)L(g × g, 1 + s1 + s2 + 2τ)
ds1
s21

ds2
s22

with for z ∈ {µ1, µ2},

ng(s, z, α, β) :=
1

logL
L(1−Υ)s

(
P̂ ′
L(s)LΥs − 1

1 − Υ
R̂′
L1−Υ(s)

)

L(g × g, 1 + s+ 2z)

ζ(D)(1 + s+ 2z)L(g × g, 1 + α+ s+ z)L(g × g, 1 + β + s+ z)
.

We are going to evaluate each term occurring in the previous equality sep-
arately. One should remark that

Ψ(α, β) ≪ (1 + |t|)B logA (q)(qD)−2τ+α+β

for some absolute constants A and B and also that:

(qD)−2τ+α+β ≪
{

1 if (α, β) = (µ, µ),

exp (−2f(q)) else.

So, we are going to give details only for the worst case which is (α, β) =

(µ, µ). We shift the s1-contour and the s2-contour to
(
+ c1

log q

)
without



44 G. RICOTTA

crossing any poles (c1 > 0). Then, we shift the s1 contour to
(
− c2

log q

)
with

c1 < (1 − Υ)c2 < 2(1 − Υ) hitting some poles at s1 = 0 and s1 = s2 − 2τ .
The residual integral is bounded by logA (q) exp (−4∆((1 − Υ)c2 − c1)f(q))
for some A which is admissible. The contribution of the pole at s1 = s2−2τ
is bounded by exp (−2∆(2(1 − Υ) − c1)f(q)) × logA (q) for some A which is
admissible. The contribution of the pole at s1 = 0 is given by

Ψ(µ, µ)

ζ(D)(1 + 2µ)L(g × g, 1 + 2τ)

1

2iπ logL

∫
(
+c1

f(q)
log q

) hg(µ, µ, 0, s2)

× L(g × g, 1 + s2 + 2µ)

ζ(D)(1 + s2 + 2µ)L(g × g, 1 + 2µ+ s2)

× L(1−Υ)s2

(
P̂ ′
L(s2)L

Υs2 − 1

1 − Υ
R̂′
L1−Υ(s2)

)
ds2
s22
.

We shift the s2-contour to
(
− f(q)

log q

)
hitting only a pole at s2 = 0. The

residual integral is bounded by logA (q) exp (−2∆f(q)) for some A which is
still admissible and the contribution of the pole is given by:

Ψ(µ, µ)

ζ(D)(1 + 2µ)ζ(D)(1 + 2µ)L(g × g, 1 + 2τ)
=
ϕ(q)

q

ζ(q)(1 + 2µ)

ζ(D)(2(1 + 2τ))
hg(µ, µ, 0, 0)

which is bounded.

�

On the other hand, very far away 1
2 in the domain of absolute convergence,

we have:

Lemma A.3. If τ > 1
2 + ε then

(A.3) Ahq

[∣∣∣∣L
(
.× g,

1

2
+ µ

)
− 1

∣∣∣∣
2
]
≪ε q

−4∆(1−Υ)(τ−( 1
2
+ε))

for any ε > 0.

This lemma is an easy consequence of 4.4 as we are in the domain of
absolute convergence of Rankin-Selberg L-functions.
Proof of theorem A.1. Lemma A.2 and A.3 together with a Phragmen-
Lindelöf type principle for subharmonic functions which can be found in
[Ko] give

Ahq

[∣∣∣∣L
(
.× g,

1

2
+ µ

)
− 1

∣∣∣∣
2
]
≪ε (1 + |t|)Bqα(τ)

where α is the affine function satisfying α (τ0) = −4∆(1−Υ)
(
τ0 −

(
1
2 + ε

))

and α
(
f(q)
log q

)
= 0. This leads to

Ahq

[∣∣∣∣L
(
.× g,

1

2
+ µ

)
− 1

∣∣∣∣
2
]
≪ε (1 + |t|)Bq−

4∆(1−Υ)(τ0−( 1
2+ε))

τ0
τ

which concludes the proof by choosing ε small enough and τ0 large enough.

�
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Appendix B. Bounding the contribution of old forms

The main purpose of this appendix is to deal with the eventual existence
of old forms in Sk(q) (when k ≥ 12). In other words, we prove that (1.8)
still holds even if there are some old forms in Sk(q). Let N ≥ 1. We define
for every integers m,n ≥ 1 the operator ∆N by:

(B.1) ∆N (m,n) := δm=n +
2π

ik

∑

c∈N∗

c≡0 mod N

S(m,n; c)

c
Jk−1

(
4π

√
mn

c

)
.

where S(m,n; c) is the Kloosterman sum for which we recall Weil’s bound
(confer [We]):

(B.2) |S(m,n; c)| ≤ τ(c)(m,n, c)
1
2
√
c.

Then, Petersson trace formula expresses this operator as an average over an
orthogonal basis Bk(N) of Sk(N):

(B.3) ∆N (m,n) =
∑

h∈Bk(N)

ωN (h)ψh(m)ψh(n)

where ωh(N) ≪k
logN
N

uniformly with respect to h according to [GoHoLi].
H. Iwaniec, W. Luo and P. Sarnak have restricted themselves in [IwLuSa]
to average over primitive forms:

Theorem B.1 (H. Iwaniec-W. Luo-P. Sarnak (2001)). Let N ≥ 1 be a
square-free number.

(B.4)
∑

h∈Sp
k
(N)

ωN (h)λh(n)λh(n) =
1

N

∑

LM=N

µ(L)M

ν(n ∧ L)

∑

l|L∞

1

l
∆M (ml2, n).

The authors showed in [KoMiVa] using Petersson trace formula (confer
section 7.1 or page 138 of [KoMiVa]) that if there are no old forms in Sk(q)
and if 1 ≤ ℓ < q then

(qD)2ℜ(µ)Mh
g (µ; ℓ) =

∑

(α,β)=(±µ,±µ)

εf×g(α, β)M̃g((α, β); ℓ)

and that for any (α, β) = (±µ,±µ):

(B.5) M̃g((α, β); ℓ) =
∑

ẽe=ℓ

εq(ẽ)√
ẽ

∑

ab=ẽ

µ(a)εD(a)√
a

λg(b)

∑

m,n≥1

λg(m)λg(n)√
mn

Vg,α

(
m

qD

)
Vg,β

(
aẽn

qD

)
∆q(m,aen).

In our case, there are some old forms as the weight k may be large but their
contribution is small.

Proposition B.2. Let g be a primitive cusp form of square-free level D and
trivial nebentypus. Assume that q is prime, coprime with D. If µ ∈ C and
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1 ≤ ℓ < q then

(B.6) M̃g((α, β); ℓ) =
∑

ẽe=l

εq(ẽ)√
ẽ

∑

ab=ẽ

µ(a)εD(a)√
a

λg(b)

∑

m,n≥1

λg(m)λg(n)√
mn

Vg,α

(
m

qD

)
Vg,β

(
aẽn

qD

)
∆q(m,aen)

+Oε,k,g

(
(qℓ)ε(1 + |ℑ(µ)|)B

√
ℓ

q

)

for some B > 0 and for any ε > 0.

As a consequence, if 1 ≤ ℓ < q then (1.8) is still valid even if there are
some old forms. We will need the following easy lemma:

Lemma B.3. Let N ≥ 1. For every integers m,n ≥ 1, we have:

(B.7) ∆N (m,n) ≪ε (Nmn)ε
√
mn

N
.

Proof of proposition B.2. The multiplicative properties of Hecke eigen-
values of f and g lead to:

(B.8) M̃g((α, β); ℓ) =
∑

ẽe=ℓ

εq(ẽ)√
ẽ

∑

ab=ẽ

µ(a)εD(a)√
a

λg(b)

∑

m,n≥1

λg(m)λg(n)√
mn

Vg,α

(
m

qD

)
Vg,β

(
aẽn

qD

) h∑

f∈Sp
k
(q)

λf (m)λf (aen).

We split the summation as follows:

(B.9)
∑

q∤m
q2∤n

· · · +
∑

q∤n
q2∤m

· · · +
∑

q2|mn
· · · := I + II + III.

The reader may check using mainly (7.1) and (B.3) that III ≪ε q
ε
√
ae
q

. For

the first term in (B.9) (the same analysis works for the second one), one can
apply (B.4) which gives

(B.10) I =
∑

q∤m
q2∤n

λg(m)λg(n)

ν(q ∧ n)
√
mn

Vg,α

(
m

qD

)
Vg,β

(
aẽn

qD

)
∆q(m,aen)

−1

q

∑

q̃|q∞

1

q̃

∑

q∤m
q2∤n

λg(m)λg(n)

ν(q ∧ n)
√
mn

Vg,α

(
m

qD

)
Vg,β

(
aẽn

qD

)
∆1(mq̃

2, aen) := Ia−Ib.
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Petersson trace formula (B.3) leads to

(B.11) Ib =
1

q

∑

q̃|q∞

1

q̃

∑

h∈Sp
k
(1)

ω1(h)



∑

m≥1
q∤m

λg(m)λh(q̃
2m)√

m
Vg,α

(
m

qD

)



×



∑

n≥1
q2∤n

λg(n)λh(aen)√
nν(q ∧ n)

Vg,β

(
aẽn

qD

)



:=
1

q

∑

q̃|q∞

1

q̃

∑

h∈Sp
k
(1)

ω1(h)Ib1 × Ib2.

Let us study Ib2 (the same works for Ib1):

Ib2 =
∑

n≥1
q∤n

λg(n)λh(aen)√
n

Vg,β

(
aẽn

qD

)

+
1

ν(q)

∑

n≥1
q||n

λg(n)λh(aen)√
n

Vg,β

(
aẽn

qD

)
:= Ib21 + Ib22.

We limit ourselves to give an estimate of Ib21. Mellin’s inversion formula
entails that

(B.12) Ib21 =
1

2iπ

∫

(2)
L

(
ae, q2;

1

2
+ z

)(
qD

aẽ

)z
Ṽg,β(z)dz

with L(ae, q2; z) :=
∑

n≥1
q2∤n

λh(aen)λg(n)n−z and

∀z ∈ C, Ṽg,β(z) :=

∫ +∞

0
xz−1Vg,β(z)dz ≪ (1 + |t|)B |z|−2.

As usual, L(ae, q2; z) = R(ae; z)L
(aeq2)(h×g,z)
ζ(aeq2)(2z)

whereR(ae; z) :=
∑

n|(ae)∞
λh(aen)λg(n)

nz

converges on ℜ(z) > 0 and satisfies over there R(ae; z) ≪ τ(ae) ≪ε (ae)ε for
any ε > 0. Shifting the z-contour to ℜ(z) = ε in (B.12), the convexity bound
for L(h× g, .) implies that Ib21 ≪ε (qae)ε(1+ |t|)B for any ε > 0. The same

lines give Ib22 ≪ε
(qae)ε

√
qν(q)(1 + |t|)B for any ε > 0. Finally, Ib≪ε,g

(aeq)ε

q
for
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any ε > 0 and we have prove that:

(B.13) M̃g(α, β; l) =
∑

ẽe=l

εq(ẽ)√
ẽ

∑

ab=ẽ

µ(a)εD(a)√
a

λg(b)

∑

m,n≥1

λg(m)λg(n)√
mn

Vg,α

(
m

qD

)
Vg,β

(
aẽn

qD

)
∆q(m,aen)

−
∑

ẽe=l

εq(ẽ)√
ẽ

∑

ab=ẽ

µ(a)εD(a)√
a

λg(b)

∑

m,n≥1
q2|mn

λg(m)λg(n)√
mn

Vg,α

(
m

qD

)
Vg,β

(
aẽn

qD

)
∆q(m,aen)+Oε,g

(
(qℓ)ε(1 + |t|)B

√
ℓ

q

)
.

The second term in (B.13) is bounded by ≪ε,g (qℓ)ε
√
ℓ
q

for any ε > 0 thanks

to lemma B.3.

�

Appendix C. A review of Maass forms

In this appendix, we only give the minimal knowledge about Maass forms
in order to follow the notations which are used in this paper. The reader
may see [DuFrIw2] for all the details. Let N ≥ 1 be a natural integer. A
function f : H → C is said to be Γ0(N)-automorphic of weight 0 and trivial
nebentypus if it satisfies f(γ.z) = f(z) for any γ ∈ Γ0(N). We denote
by L0(N) the space of square-integrable Γ0(N)-automorphic functions with
respect to the scalar product:

(f, g) :=

∫

Γ0(N)\H
f(z)g(z)y−2dxdy.

The Laplacian ∆0 := y2
(
∂2

∂2x
+ ∂2

∂2y

)
acts on L0(N) and splits it in eigenspaces.

There are two components: a discrete one spanned by the so-called Maass
cusp forms and a continuous one spanned by the Eisenstein series which
are given for any cusp κ of Γ0(N) by

Eκ(z, s) :=
∑

γ∈(Γ0(N))κ\Γ0(N)

(
ℑ(σ−1

κ γ.z)
)s

where σκ is a scaling matrix for the cusp κ. The Eisenstein series is holo-
morphic on Re(s) > 1, admits meromorphic continuation to C with only
one pole on ℜ(s) ≥ 1

2 at s = 1 and are eigenfunctions of the Laplacian:

(∆0 + λ(s)Eκ(., s)) = 0 with λ(s) := s(1 − s) and s = 1
2 + ir (r ∈ C). They

admit the following Fourier expansion

Eκ

(
z,

1

2
+ ir

)
= δκ=∞+φκ

(
1

2
+ ir

)
y

1
2
−ir+2

√
y
∑

n∈Z∗

ρκ(n, r)|n|
1
2Kir(2π|n|y)e(nx)
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with for any n ∈ Z∗

(C.1)

ρκ(n, r) =
πs|n|ir− 1

2

Γ
(

1
2 + ir

)
(

gcd
(
w, N

w

)

wN

) 1
2
+ir ∑

gcd(γ,Nw )=1

γ−1−2ir
∑

δ mod (γw)
gcd(δ,γw)=1

δγ≡u mod (w∧N
w )

e

(
−n δ

γw

)

in the space ℑ(r) < 0 for κ = u
w

with w | N , gcd(u,w) = 1, 1 ≤ u ≤
gcd

(
w, N

w

)
. Here, φκ

(
1
2 + ir

)
is some explicit complex number. Let E0(N)

be the closure for (., .) in L0(N) of the C-vector space spanned by:




∑

γ∈(Γ0(N))κ\Γ0(N)

ψ
(
ℑ(σ−1

κ γ.z)
)
, ψ compactly supported in R+



 .

∆0 has a continuous spectrum on E0(N) which is
[

1
4 ,+∞

[
and its multiplicity

is the number of cusps of Γ0(N). Moreover, if f belongs to E0(N) then

f(z) = (f, u0)u0(z)+
∑

κ∈Cusp(Γ0(N))

1

4π

∫ +∞

−∞

(
f(.), Eκ

(
.,

1

2
+ ir

))
Eκ

(
z,

1

2
+ ir

)
dr

where u0 is the constant function of value (Vol(X0(N)))−
1
2 . Let C0(N) be

the (., .)-orthogonal of E0(N): it is the space generated by the Maass cusp
forms. The Fourier expansion of a Maass cusp form f at infinity is

f(z) = 2
√
y
∑

n∈Z∗

ρf (n)|n| 12Kirf (2π|n|y)e(nx)

where (∆0 + λf ) f = 0 and λf := λ(sf ) := λ
(

1
2 + irf

)
. Let (uj)j≥1 be

an orthonormal basis of C0(N) made of Maass cusp forms. If f belongs to
C0(N) then

f(z) =
∑

j≥1

(f, uj)uj(z).

J.-M. Deshouillers and H. Iwaniec established in [DeIw] the following large
sieve inequalities for all the previous Fourier coefficients

(C.2)
∑

|rj |≤R

1

cosh (πrj)

∣∣∣∣∣∣
∑

1≤m≤M
amm

1
2 ρj(m)

∣∣∣∣∣∣

2

≪ε

(
R2 +

M1+ε

N

)
||a||22,

(C.3)
∑

κ∈Cusp(Γ0(N))

∫ +R

−R

∣∣∣∣Γ
(

1

2
+ ir

)∣∣∣∣
2
∣∣∣∣∣∣
∑

1≤m≤M
amm

1
2 ρκ(m, r)

∣∣∣∣∣∣

2

dr ≪ε

(
R2 +

M1+ε

N

)
||a||22

for R ≥ 1, any ε > 0 and any sequence of complex numbers (am)1≤m≤M .

The Hecke operators (Tn)n≥1 also act on L0(N), commute with ∆0 and are

hermitian if gcd(n,N) = 1. A Hecke-Maass cusp form is a Maass cusp form
which is also an eigenfunction of the Tn for gcd(n,N) = 1. A Hecke eigenba-
sis is an orthonormal basis of C0(N) made of Hecke-Maass cusp forms. For
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f a Hecke-Maass cups form of Hecke eigenvalues (λf (n))gcd(n,N)=1, one has

for any gcd(mn,N) = 1:

(C.4) λf (m)λf (n) =
∑

d|m∧n
εN (d)λ(mnd−2),

(C.5) λf (mn) =
∑

d|m∧n
µ(d)εN (d)λf (m/d)λf (n/d).

The action of Hecke operators on the Fourier expansion of a Hecke-Maass
cusp form f is known:

(C.6)
√
mρf (m)λf (n) =

∑

d|m∧n
εN (d)ρf (mnd

−2)

√
mn

d2
,

(C.7)
√
mnρf (mn) =

∑

d|m∧n
µ(d)εN (d)ρf (m/d)

√
m

d
λf (n/d)

for any m,n ≥ 1 with gcd(n,N) = 1.

Appendix D. The computation of an Euler product

The purpose of this appendix is to prove that the arithmetical constants
which appear in the asymptotic formulas of the harmonic mollified second
moment equal one. More precisely, we prove that equations (5.19) and (5.23)
hold.

Remember that, according to lemma 5.8, h2(µ + µ, µ, µ) is an absolutely
convergent Euler product when the real part of µ is greater than a small neg-
ative real number (say 10−6) namely h2(µ+µ, µ, µ) =

∏
p∈P h2,p(µ+µ, µ, µ)

with (confer (5.15)):

(D.1)

∀p ∈ P, h2,p(µ+µ, µ, µ) =
∏

z∈{µ,µ}

(
Lp(g × g, 1 + z + µ)Lp(g × g, 1 + z + µ)

L
(q)
p (Sym2(g), 1 + 2z)

)

Lp(g × g, 1 + µ+ µ)Lp(µ+ µ, µ, µ)

where Lp(µ+µ, µ, µ) is defined in (5.13). Firstly, we need to have an idea of
the shape of νg(p

k;u, v) (see (5.2) for its definition) for any prime number
p, any natural integer 1 ≤ k ≤ 4 and any complex numbers u and v.

Lemma D.1. Let p be a prime number, 1 ≤ k ≤ 4 be some natural integer
and u, v be some complex numbers. If Q := p−1, U := p−u and V := p−v

then it turns out that νg(p
k;u, v) is of the following shape:

νg(p
k;u, v) = (1 + εD(p)QUV )−1Pg,k(Q,U, V )

where Pg,k(Q,U, V ) is some explicit polynomial in three variables whose co-
efficients depend on εD(q) and on λg(p)

i (1 ≤ i ≤ k).
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Proof of lemma D.1. We set for any natural integers a, b ≥ 0:

Sg(a, b;u, v) :=
∑

k≥0

λg(p
k+a)λg(p

k+b)QkUkV k.

The relationships beetween Hecke eigenvalues of g enable us to express
Sg(a, b;u, v) in function of Sg(0, 0;u, v) by induction. More precisely, it
shows that:

Sg(a, b;u, v) = (1 + εD(p)QUV )−1Rg,a,b(Q,U, V )

for some explicit polynomial in three variables Rg,a,b(Q,U, V ) whose coef-
ficients depend on εD(q) and on λg(p)

i (1 ≤ i ≤ a + b). In addition, one
remarks that:

Sg(0, 0;u, v)νg(p
1;u, v) = (U + V )Sg(1, 0;u, v),

Sg(0, 0;u, v)νg(p
2;u, v) = (U2 + V 2)Sg(2, 0;u, v) + UV Sg(1, 1;u, v),

Sg(0, 0;u, v)νg(p
3;u, v) = (U3 + V 3)Sg(3, 0;u, v) + (U2V + UV 2)Sg(2, 1;u, v),

Sg(0, 0;u, v)νg(p
4;u, v) = (U4 + V 4)Sg(4, 0;u, v) + (U3V + UV 3)Sg(3, 1;u, v)

+U2V 2Sg(2, 2;u, v).

Both previous remarks lead to the result.

�

Remark D.1. The proof of lemma D.1 also gives the explicit procedure we
used for computing νg(p

k;u, v) for any prime number p, any natural integer
1 ≤ k ≤ 4 and any complex numbers u and v.

Having this in mind, we can compute the local factor h2,p(µ + µ, µ, µ) at
each prime p which does not divide q:

Lemma D.2. Let µ be a complex number. We have:

∀p ∤ q,
h2,p(µ+ µ, µ, µ)

ζ
(D)
p (2(1 + µ+ µ))

= 1.

Proof of lemma D.2. Once again, we set Q := p−1, U := p−µ and
V := p−µ. With these notations and knowing the local factors of Rankin-
Selberg L-functions and symmetric-square L-functions, one computes that

(D.2)

∏

z∈{µ,µ}

(
Lp(g × g, 1 + z + µ)Lp(g × g, 1 + z + µ)

L
(q)
p (Sym2(g), 1 + 2z)

)
Lp(g × g, 1 + µ+ µ)

ζ
(D)
p (2(1 + µ+ µ))

=

(1 − λg(p)
2QUV )−1

if p | D and p ∤ q and that

(D.3)

∏

z∈{µ,µ}

(
Lp(g × g, 1 + z + µ)Lp(g × g, 1 + z + µ)

L
(q)
p (Sym2(g), 1 + 2z)

)
Lp(g × g, 1 + µ+ µ)

ζ
(D)
p (2(1 + µ+ µ))

=

1 +QUV

(1 −QU2)(1 −QV 2)(1 −QUV )(1 + 2QUV − λg(p)2QUV +Q2U2V 2)
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if p ∤ (Dq). According to lemma D.1 and its definition, Lp(µ + µ, µ, µ) for
any prime number p is, a priori, a rational fraction in three variables Q, U
and V ; namely it looks like

Lp(µ+ µ, µ, µ) =
P1(Q,U, V )

P2(Q,U, V )

for some polynomials P1 and P2 of total degrees less than 20 whose coef-
ficients depend on εq(p), εD(p) and on the Hecke eigenvalues of g at the

powers of p namely λg(p)
k for 1 ≤ k ≤ 4. To factor this fraction we have

used a computational algebra system; for instance the scripts of this com-
putation (vg.mws, ctemumubar.mws and cte.mws) are available at
http://www.dms.umontreal.ca/∼ricotta. We obtain

(D.4) Lp(µ+ µ, µ, µ) = 1 − λg(p)
2QUV

if p | D and p ∤ q and
(D.5)

Lp(µ+µ, µ, µ) =
(1 −QU2)(1 −QV 2)(1 −QUV )(1 + 2QUV − λg(p)

2QUV +Q2U2V 2)

1 +QUV

if p ∤ Dq. Note that the computations above are purely formal (no numerical
approximation is made); in fact, once the above factorizations have been
obtained, it is possible (but lenghtly) to check them directly by hand. Then
we finish the proof of lemma D.2 by simplifying (D.2) with (D.4) and (D.3)
with (D.5).

�

We can now state the main result:

Proposition D.3. Let µ be a complex number with τ := ℜ(µ) ≥ −γ for
some γ > 0 small enough. We have:

h2(µ+ µ, µ, µ)

ζ(D)(2(1 + µ+ µ))
= 1 +Og

(
1

qδ

)

for some δ > 0.

Proof of proposition D.3. The proof is an immediate consequence of
the previous lemma as the various Euler products are absolutely convergent
under the assumption made on µ. The admissible error term comes from
the local factor of the Euler product at the primes which divide q.

�
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