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REAL ZEROS AND SIZE OF RANKIN-SELBERG
L-FUNCTIONS IN THE LEVEL ASPECT

G. RICOTTA

ABSTRACT. In this paper, some asymptotic formulas are proved for the
harmonic mollified second moment of a family of Rankin-Selberg L-
functions. One of the main new input is a substantial improvement of
the admissible length of the mollifier which is done by solving a shifted
convolution problem by a spectral method on average. A first conse-
quence is a new subconvexity bound for Rankin-Selberg L-functions in
the level aspect. Moreover, infinitely many Rankin-Selberg L-functions
having at most eight non-trivial real zeros are produced and some new
non-trivial estimates for the analytic rank of the family studied are ob-

tained.
CONTENTS
1. Introduction and statement of the resultq 1
P. A review of classical modular formg 8
:3. A review of Rankin-Selberg L-functiong 11
:4. Proof of Theorem A and estimates for the analytic rank| 12
5. The harmonic mollified second moment near the critical point 17

6.  Averaged shifted convolution problemsg 29
7. Proofs of Proposition D and Theorem B 35

[Appendix A. The harmonic mollified second moment away from

| the critical point| 42
[Appendix B. Bounding the contribution of old formg 45
[Appendix C. A review of Maass formg 48
LAppendix D. The computation of an Euler product| 50

|E eferenceq 52

1. INTRODUCTION AND STATEMENT OF THE RESULTS

This paper is motivated by the striking result of J.B. Conrey and K.
Soundararajan proven in [CoSd]:

Theorem (J.B. Conrey-K. Soundararajan (2002)). There ezists infinitely
many (at least 20% in a suitable sense) primitive quadratic Dirichlet char-
acters x whose Dirichlet L-function L(x,s) := ), x(n)n™% does not vanish
on the critical segment [0,1].
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2 G. RICOTTA

The family of L-functions considered in [CoSd] is G := Uxefom menyG(X)
with
={L(x-8a,-),21d,p*(d) =1,X <d <2X}

where x_gq(n ( ) is the Kronecker symbol. The proof, which is based
on the molhﬁcatlo method, exploits the following properties of the family
g:
e the functional equation of each L-function of this family has the
same sign;
e this sign equals +1 and consequently the order of vanishing at the
critical point % of each L-function is an even integer;
e the symmetry type of this family is symplectic - this entails that the
first zero is repelled from the real axis and justifies the method used
by the authors.

K. Soundararajan announced at the Journées Arithmétiques 2003 in Graz a
similar result for the families Hy := Ugeqom men+) Ha (K) with

H(K) = {L(f,.),feSi(1),K<k<2K, k=0 mod4},
H(K) = {L( f,. ,fesg( ), K <k<2K, k=2 mod4}

where S} (1) denotes the set of primitive cusp forms of level 1, weight k and
trivial nebentypus. It is then natural to try to generalize these results to
other families of L-functions. Throughout this article, g will be a fixed prim-
itive (arithmetically normalized namely with first Fourier coefficient equal
to one) cusp form of square-free level D, weight k, and trivial nebentypus
ep, and f will be a varying primitive cusp form of level ¢, weight k& and
trivial nebentypus ¢, denoted by f € Sz (¢). We prove a result cognate to

that of [CoSd for the family of Rankin-Selberg L-functions F := UyepF(q)
afD
where:

VgeP, Flg) :={L(fxg,.),feSh(}.
From now on, L(f x g,.) is the Rankin-Selberg L-function described in sec-
tion 4 of [KoMiVd| associated to the pair (f,g) and P denotes the set of
prime numbers. The family F has the same properties (at least conjec-
turally) as the family G. The challenge lies in the fact that the analytic
conductor Q(f x g) say of any L(f x g,.) in F(q) is large by comparison
with the size of |F(q)|; one has

log Q(f < g)
log | F(q)|

while for the families G and H, one has

log Q(x—sd) _ 1 log Q(f)
log |G(X)| "log |H+(K)|

In particular, the second moment in our case (whose evaluation is neces-
sary to apply the mollification method) is already critical (in the sense
of [MiZ]); this is not the case of the families G and ‘H., for which the fourth
moment is critical. Moreover, the L-functions of the family F are Euler prod-
ucts of degree four (rather than one or two) which significantly increases the
combinatorial analysis.

— 2 as q— 4o

— 1 as respectively X, K — +o0.
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For ¢ in P and k£ > 2 an even integer, we define the following harmonic
averaging operator

h
Vq € P, AZ[a] = Z ap = Z wq(fay

fest(a) fesi(q)

for sequences of complex numbers indexed by Sy (¢) and with the harmonic

weight wy(f) == 7(4W§;(ff<?f>q

space of cusp forms of level ¢, weight k and trivial nebentypus). We also
define the harmonic probability measure on S} (g) by

({.,.)q is the Petersson scalar product on the

HhE) = e S )

v feE

for any subset E of S¥(¢). With these notations, our analogue of the theorem
of J.B. Conrey and K. Soundararajan is:

Theorem A. Let g be a primitive cusp form of square-free level D, weight
kg > 22 and trivial nebentypus. As ¢ — -+oo among primes and f ranges
over the set of primitive cusp forms of level q, weight k > kg4 46 and trivial
nebentypus, there are infinitely many (at least 1.8% in a suitable sense) f
in Sy(q) such that L(f x g,.) has at most eight non-trivial real zeros. More
precisely, for q a prime coprime with D, and k > k4 + 6, we have:

,uZ ({f € S0(q), L(f x g,.) has at most 8 zeros in [0,1]}) > 0.018 + o4(1).

Remark 1.1. Under the Ramanujan-Petersson-Selberg conjecture (confer
H(0) next page), we would obtain 4% of L(f X g,.) having at most 6 non-
trivial real zeros. However, even this strong and deep hypothesis does not
seem to give the existence of infinitely many Rankin-Selberg L-functions
having no zeros in [0, 1] by the present method.

Remark 1.2. In the course of the proof of theorem A, we also prove that
the analytic rank of the family F is bounded on average. More precisely,
set

(1.1) r(f xg):= ordS:%L(f X g,8),

one has
1

AG1]

Ag[r(. X g)] <9.824 04(1)

and we can replace the constant 9.82 by 7.66 under Ramanujan-Petersson-
Selberg conjecture. Moreover, following the method of [H-BMj], one can
even show the exponential decay of the analytic rank of the family F namely
there exists some absolute constants B, C > 0 such that:

Ahl[l] AZ lexp (Br(.x g))] < C.
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The proof of theorem A relies on some asymptotic formulas for the har-
monic mollified second moment of the family F, which is defined by

1
where for f € S} (q) and s € C we have set

L(f xg,8):=L(f xg,s)M(f % g,5);

here, M(f x g,.) is some Dirichlet polynomial (the so-called mollifier) of the
following shape

2

(1.2) W (g; ) := A}

w@(ga 8)
M(f xg,s):= > — (0
1<e<IL,
where the length L > 1 has to be as large as possible. Here, the (Af(€)), .,
are Hecke eigenvalues of f and the (z4(g, s)); <y« are well chosen mollifying
coefficients depending on s, g on some parameter 0 < T < 1 and on some
polynomial P satisfying P(0) = P'(0) = P'(Y) = 0 and P(Y) = 1 (see
section [f). Our key technical result is an asymptotic formula for W"(g; )
when
€0
< |ul <
log ¢ log ¢

for some small absolute constant €5 > 0. Given uw and v two real numbers
and A > 0, we define:

exp (—u) (sinhu sinwv
A u v

V(u,v) =1+

T ar 2
X / exp (—2uA(1 — x)) ‘P'(m) + 5 P(z) dz.
0

(u+iv)A

Our main first result is an asymptotic formula for W"(g; ) in terms of
V(u,v); namely for

~ logL

- log(¢?)

which we call the relative (logarithmic) length of the mollifier, one has

(1.3) W"(g; ) = V(log (¢*)R(n), log (¢°)S(n)) + Errsec(q, L; )

e 1 1| L72RW0a=1) if R(u) >0,
kg @ logq | g W LRW)  otherwise
for > 0 an absolute constant and Errsec(q, L; ) some error term:
1
(1.4) Errsec(q, L; 1) = Og g (q—a>

for some o > 0 as soon as A is small enough in which case A is said to be
effective.

Remark 1.3. The asymptotic for the harmonic mollified second moment of
this family is the same as the asymptotic for the mollified second moment
of the family of Dirichlet L-functions considered by J.B. Conrey and K.
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Soundararajan. This is consistent with the Random Matrix Model, as these
two families are expected to have the same symmetry type.

Remark 1.4. In fact, we also prove that ([[.J) holds with some weaker

assumptions on y; namely when p satisfies 222 < |uf, —e7 < R(p) < {;%éqq)

and |S(p)] < chi—g’q) for some g9 > 0, ¢ > 0 and some non-negative functions
f1, fo with the following properties:

A filg) = +oo, fig) = o(logq), fa2(q) = O(logq).
In this case, ([.J) becomes:
(1.5) W"(g; ) = V(log (¢*)R (1), log (¢°)S(n)) + Errsec(q, L; )

con (L h@falg) JLTERWOTO R <0,
P\ logg g W L% otherwise.

Our task now is to produce effective positive A. The existence of such A
is a consequence of the work of E. Kowalski, P. Michel and J. Vanderkam

([KoMiVd]) and their result leads to:

Proposition C. Let g be a primitive cusp form of square-free level D and

trivial nebentypus. Assume that q is prime, coprime with D. If |u| < loéq

then for any natural integer L > 1,
(1.6) Brrsec(q, L ) = Oc k. g ((qL)E <L%q_1_12 + L%q_iw
for any € > 0. In particular, every A < % = 0.01666... is effective.

This is a consequence of an asymptotic formula for the harmonic twisted
second moment of this family given by

1 1
(L.7) M (p; 0) == Al [L ( X g5+ M) L ( X935 +ﬁ> A.(f)}
where p € C, g € P, £ > 1 and A (¢) is a Hecke eigenvalue. It is shown in

[KoMiVd] that (confer Theorem .1 in this paper):

Theorem (E. Kowalski-P. Michel-J. Vanderkam (2002)). Let g be a prim-
itive cusp form of square-free level D and trivial nebentypus and u be a
complex number. Assume that q is prime, coprime with D. If |R(u)| < béq
then for any natural integer 1 < /£ < q,

e h(, . _ : .
(1.8) (qD)* W M (s £) = MT(p) + Errtwist(q, £; 1)

where MT(u) stands for the main term and is described in section [§ and a
bound for the error term is given by

(1.9)  Errtwist(q, ;1) = Oc kg ((q€)€(1 + [S(w))B (Z%q’ﬁ +€%q*i))

for some absolute constant B > 0 and for any € > 0.

Nevertheless, this is not sufficient to obtain Theorem A!. Our second
main input is a large improvement of the effective value of A by the in-
troduction of the spectral theory of automorphic forms. To state our result,

Lwith A < 61—0 we would obtain a positive proportion of L(f X g,.) having at most 22
zeros on [0, 1].



6 G. RICOTTA

we introduce the following hypothesis which measures the approximation
towards the Ramanujan-Petersson-Selberg conjecture.

Hypothesis Hz(#). For any cuspidal automorphic form m on GL2(Q)\GL2(Aq)
with local Hecke parameters agrl)(p), al? (p) for p < oo and /M(Tl)(oo), ugg)(oo)

at infinity, the following bounds are available:
@) < B i=12
R(1(0))| < 6,5=12,
provided 7, T are unramified, respectively.
We say that 6 is admissible if H(0) is satisfied. At the moment, the

smallest admissible value of 0 is 0y = 614 thanks to the works of H. Kim, F.

Shahidi and P. Sarnak (confer [KiSH] and [[KiSd]).
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Proposition D. Let a be in ]0 1[. Let g be a primitive cusp form of square-
free level D, weight kg > 14 57— 2(1 ) and trivial nebentypus and p be a complex
number. Assume that q is prime, coprime with D and that k > ky+6. If 0
is admissible and |R(un)| < then for any natural integer £ > 1,

(1.10)

1
log q

Errtwist(q, ¢; 1) = Og kg <(q€)€(1 + |S(M)|) <£2+0 —(%-9) + £4+§faq—(a—%—6)))

and for any natural integer L > 1,
(1.11)

Errsec(q, L; 1) = O kg ((qL)€(1 + S (p)))? (L2+29q*(%*9) + L%W—Qaq*(a*g

for some absolute constant B > 0 and for any € > 0. Consequently, under

Hy(0), every A < Apaq(0) = (15+2296 is effective granted that k and kg are

large enough.

Remark 1.5. We note that:

25

Apaz(00) = @:0.03742...
1

Amam(o) - 2—0:005

The error term in ([I.§) comes from the resolution of a shifted convolution
problem by the authors, which builds on the §-symbol method of W. Duke,
J.B. Friedlander and H. Iwaniec ([DuFrIwf]). This error term is improved
using a technique of P. Sarnak (confer [Sd]) which makes systematic use of
spectral theory of automorphic forms (see section [f). However, this method
alone would only enable us to take A < 8% 4_32) and we have to supplement it
by additional refinements (in particular by considering the shifted convolu-
tion problem on average and detecting cancellations throughout large sieve
inequalities) which lead to an effective length of Finally, Proposition

4(7+29)
D is obtained thanks to an estimate of triple products on average over the

spectrum of B. Krotz and R.J. Stanton ([KrSt] and see also [Ko]).

Another consequence of our refinements is an improvement over the pre-
viously known subconvexity bounds for Rankin-Selberg L-functions in the
level aspect obtained by the amplification method:

Theorem B. Let g be a primitive cusp form of square-free level D, weight
kg > 20 and trivial nebentypus. Let us assume that q is a prime large enough
and that k > kg + 6. If 0 is admissible then for any natural integer j and
any f in S}(q), we have

. 1
(112) ‘L(]) <f X957 Zt)‘ Lo (1+ [t)P gz =@,

1-26
1(9140) *
Remark 1.6. In [KoMiV4d], a subconvex bound is obtained but with w(#)
replaced by g5 = 0.0125. Note that w(f) = = 0.020695... and that
w(0) = 3z = 0.027777...

for any € > 0 where t is real, the exponent B is absolute and w(f) :=

1208

)
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One may wonder what happens when one tries to remove the harmonic
weights in Theorem A. In [KoMi|, E. Kowalski and P. Michel provided a
general technique to deduce asymptotic formulas for the natural average
Agla) == fes?(q) Of from asymptotic formulas for the harmonic average

as long as the coefficients ay do not increase or oscillate too much as q goes
to infinity. In our case, one can deduced the same asymptotic formula as in
1
W(gip) = —=A4A

(L) for
A ‘E < Xg’%”)

but with the length of the mollifier strictly smaller than w(6). In other words,
it seems that getting rid of the harmonic weights has a cost in this situation.

2

Notations. From now on, p will denote a complex number and 7 = R(u),
t = S(p), 6 = iS(p). We also set pg = p and ps := . In several
places, given an Euler product L(s) = [[,cp Lp(s) , we write L(n)(s) :=
[I,n Lp(s) and LW (s) := [Ippn Lp(s) for any natural integer N. We set:
logy(z) := log (log z). 7(n) equals the number of divisors of n and p(n) is
the Mobius function at n. We will denote by € and B > 0 some absolute
positive constants whose definition may vary from line to line. The notations
flg) <4 g(q) or f(¢) = Oa(q) mean that |f(q)| is smaller than a constant
which only depends on A times g(q) at least for ¢ large enough. Similarly,
f(g) = o(1) means that lim, ., f(¢) = 0. Finally, if £ is a property, the
Kronecker symbol d¢ equals 1 if £ is satisfied and 0 else.

For all background and notations about classical modular forms and Rankin-
Selberg L-functions, we refer the reader to sections 3 and 4 of [KoMiVd] and
to Appendix C.

Acknowledgments. I sincerely thank my advisor, Professor Philippe Michel,
for all his comments and remarks which got the better of my doubts. I also
think of Professors Etienne Fouvry and Emmanuel Kowalski for their ad-
vices and encouragements. I wish to thank the Fields Institute of Toronto,
where part of this work was done, for the excellent working conditions. I
also acknowledge the referee for a careful reading of the manuscript.

2. A REVIEW OF CLASSICAL MODULAR FORMS

In this section, we recall general facts about modular forms. The main
reference is [Ilw2]. For N > 1, we consider I(N) the congruence subgroup of
level N and e the trivial Dirichlet character of modulus N. All elements of
GLF (R) act on the upper-half plane H by linear-fractional transformations

d
GL$(R) and 2 in H we set j(v,2) := cz + d. Let m be an even natural
integer. For v in GL (R) and h : H — C, we define:

(det()) %
Jly,2)m

and this defines an action of the group SLy(R) on it. For v = <CCL b> in

VzeH, hlJ(z):= h(7y.z).
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This formula clearly defines an action of SLo(R) on the space of complex
valued functions on H, which is said to be of weight m.

2.1. Cusp forms. A holomorphic function h : H — C which satisfies:

VVGFO(N)a h‘ZL:

and is holomorphic at the cusps of I'H(N) is a modular form of level N,
weight m and trivial nebentypus €. Such a modular form is a cusp form if
'l h(z) is bounded on the upper-half plane. We denote by S,,(/N) this set
of cusp forms which is equipped with the Petersson inner product:

——dxd
(ubahy = [ G
To(N)\H Y

One can obtain the Fourier expansion at infinity of each such cusp form h:

Vz € H, Z?/)h n)n"z enz)

n>1

where e(z) := exp (2i7z).

2.2. Hecke operators. For every natural integer £ > 1, the Hecke operator
of weight m, nebentypus ey and rank ¢ on S,,(NV) is defined by:

Ve H, (Ty(h) :\/_ZaN Zh(“zjb>.

ad=¢ 0<b<d

Thus, we remark that T, is independent of m and we can prove that it is
hermitian if ged(¢, N) = 1. Moreover, we can show that the algebra spanned
by the Hecke operators is a commutative one. More precisely, we have the
following composition property:

(2.1) V(l1,6y) € (N2, TpoTy= Y. en(d) s, -
d|(e1,2) ‘

A cusp form which is also an eigenfunction of the Ty for ged(¢, N) = 1 is
called a Hecke cusp form and an orthonormal basis of S,,(N) made of Hecke
cusp forms is called a Hecke eigenbasis.

Atkin-Lehner theory. The main reference of this part is [[AtLd]. Briefly
speaking, we obtain, with the previous notations, a splitting of S,,(N) in
50 (N) @t 8" (N) where:

(2.2) SO(N) = Vectc{ (dz),N" | N,d | N”d #1,g¢€ Sm(N’)}7
(2:3) Sp(N) = (Sp(N)) e

7 77

where stands for old and ”"n” for new. These two spaces are invariant
under the action of the Hecke operators T; for ged(l, N) = 1. A primitive
cusp form h is a Hecke cusp form which is new and satisfies:

Yp(l) =1
Such an element h is automatically an eigenfunction of the other Hecke

operators and also of the Atkin-Lehner operators which will be defined later
and satisfies ¥, (£) = A\, () for all integer ¢ where Ty(h) = Ay (£)h (An(€) is the
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Hecke eigenvalue of rank ¢). The set of primitive cusp forms will be denoted
by S5.(N). Let h be a cusp form with Hecke eigenvalues (An(0)) ¢, ny=1- The

composition property (R.]) of the Hecke operators entails that for all ¢; and
for ged (€2, N) = 1:

24)  dll) = > en(@in ({d_f)
d|(¢1,€2)

(25) i) = Y wdex@in (5 ) (%)
d|(£1,€2)

and this relation holds for all ¢4, ¢ if h is primitive. The adjointness relation
is:

(2.6) Veed(, N) =1, M) = An(l),  ¥n(f) = Yn(f)

and this remains true for all £ if A is a primitive cusp form.

2.3. Bounds for Hecke eigenvalues of cusp forms. Let h be a primitive
cusp form of level N, weight m and trivial nebentypus €. Remember that:

\WAS N*, Toh = )\h(f)h

For a prime p, let a;1(p) and oy, 2(p) be the complex roots of the following
quadratic equation:

X2 = M(p)X +en(p) = 0.

It follows from the work of Eichler-Shimura-Igusa and Deligne that the
Ramanujan-Petersson bound holds true:

(2.7) lan,1(p)]; lan2(p)| <1 and so V€ > 1,[An(€)| < 7(4).
Setting on(n) == 34, [An(d)|, it entails that:

(2.8) VX >0, ) on(n)® <op XM
n<X

for all € > 0.

2.4. Atkin-Lehner operators. The results of this part were established by
A. Atkin and J. Lehner. We assume that N = NN, with ged (N1, Na) = 1.
Let z,y, z, w four integers satisfying:

y = 1 mod (Ny),

x = 1 mod (Na),

Nizw — Nyz = Nj.
_ (zN1 oy _

If wy, = (zN wN1> then Wy, = ‘ZFNl
Sm(N) independent of z, y, z and w. If Ny = N then Wy, is the classical

is a linear endomorphism of

0 1

N O>' The following proposition

Fricke involution given by wy = <

holds:
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Proposition 2.1 (A. Atkin-W. Li (1970)). If Ny | N and ged <N1, %) =1
then:
Vh € S&(N), WNlh:"?h(Nl)h

where np(N1) = £1.

3. A REVIEW OF RANKIN-SELBERG L-FUNCTIONS

Throughout this section, g; belongs to Sgl (D7) and g2 belongs to SﬁQ (D2).

3.1. About Rankin-Selberg L-functions. The Rankin-Selberg L-function
of g1 and g9 is the following L-function defined a priori for %(s) > 1 by:
l l
L(g1 X g2,8) := C(DIDQ)(QS) Z w

>1

It admits an Eulerian product L(g1 X g2,.) = [[,ep Lp(91 X g2,.) where:

peEP

sy —1
Vpe P,Vs € C, Lp(g1 X go,s)= H (1 — o, i(p)og, i (p)p ) .
1<i,j<2

By Rankin-Selberg theory, L(g; X ¢2,.) admits a meromorphic continuation
to the complex plane with at most simple poles at s = 0,1 which occur
only if g1 = ¢o. This L-function satisfies a functional equation. When
ged (D1, Dy) = 1, it takes the following form. We set:

D1Ds\* ki — K ki + K
Vs € C, A(glxgg,s)::< ! 2) F(s—i—%)]ﬂ(s—%%—l)L(Ql><g2,3)-

472
The functional equation is then:
Vs € C, A(g1 X g2,8)=¢e(g1Xg2)A(g1xg2,1—5)
where the sign of the functional equation in our case is (g1 X g2) = 1.

3.2. About symmetric square L-functions. Closely related to L(g; %
g1, .) is the following Dirichlet series defined for R(s) > 1:

>‘91 (lz)

L(Sym?(g1), ) = (1P (25) Y0 20

1>1

The Eulerian product of L(Sym?(gy),.) is given by [Ler L,(Sym?(g1),.)
with:

VpePVseC, LySym*(g1),s)= [[ (1—agipag )"
1<i<j<2

Hence, we get L(gy % g1,s) = ((PV)(s)L(Sym?gy, s) for all complex number
s.
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4. PROOF OF THEOREM A AND ESTIMATES FOR THE ANALYTIC RANK

4.1. Principle of the proof. Let b > 0, ¢ > 0 and 09 > 1 some real num-
bers. B(g) will denote the rectangular box with vertices (l c_ 4. b >

2~ logq’ —logq
and <00,:|:logq>. Let N be a natural integer and S} (g, N) be the set of

primitive cusp forms f in S} (q) whose Rankin-Selberg L-function L(f X g, .)
admits

e a zero of order 2ny at %,

e and ny zeros (counted with multiplicities) in |1, 1]
such that 2n; +2ny > 2(N +1). Let us remark that S} (¢)\S} (¢, N) is pre-
cisely the set of modular forms f in Si (¢) whose Rankin-Selberg L-function

L(f x g,.) has at most 2N zeros in [0, 1]. We are producing some N such
that (as ¢ tends to infinity among the primes)

1l (SP(q,N)) < so(N) + 0g(1)

with so(N) < 1 a constant which depends only on N and conclude that
for at least 100(1 — so(IN)) percent of primitive cusp forms of weight k£ and
trivial nebentypus, L(f X g,.) has at most 2N non-trivial zeros on the real
axis (and in fact in a small box B(q)).

4.2. Selberg’s lemma.

Lemma 4.1. Let v be a holomorphic function which does not vanish on a
half plane R(z) > W. Let B be the rectangular bozx of vertices Wy + iH,
W1 £ iH where H > 0 and Wy < W < Wy. We have:

H
4H Z Cos <%) sinh <W> = / Cos <%> log [1)(Wo + it)|dt

B+iveB -
Y(B+iv)=0
Wy o
+ / sinh <M> log |Y(a + iH)Y(a —iH)|de
We oH
H o .
- §R</ Ccos <ww> (log¥) (W7 + z't)>dt.
- H 20H

A proof of this lemma is given in [CoSd] and relies on the fact that

/ k(s)(log f)(s)ds = 0
oB

with k(s) := cos (7 sgilg/o ). Let us mention the properties which will be useful
to us:
e k is purely imaginary on (s) = H and satisfies over there k(s) =
—k (E)’
e R(k)>0in B.

4.3. The successive steps. We follow the method of J.B. Conrey and
K. Soundararajan ([[CoSd]). Lemma [L.] applied to the box B(g) and the
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function L(f x g,.) entails that

(4.1)
4bsinh 4b gup [ (e o8 (8 5)) 3
sin ( ) (fxg)+ Z sin 5 Z
B—i_logq :
B#3
L(fxg,8)=0
where

b
t 1 c t
19(1) = ™) - ; dt
1= [ e <2b) o5 (fxg,2 loquerqu)‘,

(00—73)logq m(x + ¢) 1 T b
I4(2) = inh [ ———2 )1 ;
He) /_ sin < 5 > 0g <f><g7 logq—Hlogq)

[

b oo — 3)1 3
I}qc(?)) =R </_bcos (77( 0= 3) ;iq+c+2t> (log L(f % g,.)) <Uo+ilo;q> dt) .

One can show (confer [Ri]) that if f belongs to S¥(g, N) then the left-hand
side of ([£]) is larger than (N + 1) x 8bsinh (5¢). Thus,

2
dz,

3

1 1 1 )
h P < a Y
5 (51000 < 57 e () T |20

The concavity of the log function leads to

1 1 " b 1
4.2) u" (SP(q. N)) < JO 4 g 19(3
(42) wg (Sila ))_N+18bsinh(%)<1 BTGy q[-()]>
where

b . 2
oh LAR 1 an ||z 1 —c+it
A : /0 cos <2b> og (A’J[l] . X g, 5 + log g
m(

(r0-3) o
b . x4+ c) 1 A
JPt = /c sinh <T> log A’(}[l] A,

Similarly, we have from ([L.1)):

(4.3) A%MAZ (. x g)] < 2—

<J1q’h+J2’h AhHAh[ ()]).

We need the right-hand side of ([£2) and (f.d) to be small. Unfortu-

nately, the weight function sinh <7r($2—;:c)) which appears in JQ’h grows ex-

ponentially on the horizontal sides of the box. This problem is solved

by mollifying: one replaces L(f X g,.) by L(f X g,.) such that the ex-

<7r(a:+c)
2b

ponential growth of sinh

h +ib
log (V" (9: 5% ) )
Remark 4.1. Naively, one would like to be able to choose a kernel k hav-
ing the properties listed above in section [l.9 and such that the correspond-

) is balanced by the exponential decay of

ing weight function (in qu,h) does not grow exponentially on the horizontal
sides of B(q). Unfortunately, as K. Soundararajan remarked at the Journées
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Arithmétiques 2003 in Graz, such kernel does not exist. So, it appears that
the mollification step is a necessity.
4.4. Choosing the mollifier. Note that on the half plane R(s) > 1, L(f x
9:8) = Xnz1 @fxg(n)n”* where
apxg(n) = > gq(n1)ep(ni)Ap(n)rg(na)
n:n%ng

satisfies |afyxq(n)| < n® for any € > 0. We need the Dirichlet coeflicients of
the inverse of L(f x g,.):

Lemma 4.2. For R(s) > 1 one has

1 ,u flfgfg) (€1f3)6q(f3)€p(€2€3 €1€3X 2
- K(g,2s) (03¢
L(f x g,s) )2 K (g,8)¢° 126s)

where K(g,s) = HpG'P K,(g,s) is an absolutely convergent Euler product
on R(s) > 2 given by

VpEP, Ky(g:5) = 1+eq()Ag(0°)p™" + eqn(p)p~>".
Proof of lemma B.3. We give no details. Setting L(f x g,s)"' :=

Zézl upl™%, one shows that uy = 0 except if ¢ = Elfgfgfi with €1, lo, U3, {4
square-free numbers pairwise coprime:

= p(l1ls)eqn (Lala) A p(Lrls)Ag(1ls) Y eq(€5)en(Ly)Ap(L5)Ag(£57).
=0,

0=010303

Note that K (g, s) is an absolutely convergent Euler on R(s) > 2 as:

1
VpeP, Kplg,s):= 1+0< (S)>

Let 0 < T < 1 be areal number and P be a polynomial satisfying P(T) = 1
P(0) = P'(0) = P'(T) = 0. Let L > 1 be a natural integer. We set:

)

1 if1<e<rpt-7T
L
Fruy=1{ p <—lﬂiéf)> LT <0< L
0 else.

The mollifier we choose is

M(f x g,s) = K(g,2s) Z w2 (l10203) 1 (iéf;)( (5))81116(5263))\9(6163)

= €1£243
Ap(10303) Fi (6165¢5)

o xg(g,s)
- Z /s

>1

where

xg(g,s) :K 9,25 Z

0=010303

1P (1baly) u(C1ls)eq (C3)ep (£2ls) Ag (E143) FE (€)
(f) (ga 28)628
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so that M(f x g,.) is a Dirichlet polynomial of length at most L which
approximates L(f x g,.)"!. From the shape of the mollifier, we immediately
deduce

(4.4) L(fxg,8)=1+0. ( L(l—T)(He—éﬁ(s)))

on R(s) > 1+ ¢ for any € > 0. As a consequence, L(f X g,.) has no zeros

to the right of 1 + lfﬁ;qq (at least for ¢ large enough). Moreover, for ¢ large

enough, |L£(f x g,5) — 1] <1 on R(s) > 1+ ¢ and we choose the branch of
the logarithm given by

(_1)n+1
(og L£(f x g.,.)) () == Y =———(L(f x g.5) = 1)"
n>1

on R(s) > 1+e. We are going to give a useful integral expression of the coeffi-
cients x¢(g, s) of the mollifier following a technique introduced in [KoMiVaZ].
To each polynomial A(X) = >, -, apX* and to each real number M, we
associate the following transform:

_ k!
VSG(C, AM(S) :Zakm
k>0 &

We have the following result:

Lemma 4.3. Let m > 1 be a natural integer.

1 M\?®—~ . ds M log ()
—_— — ] A — =0 A 1
2imlog M 3 (m) 2 (s) 52 <M </ ) ( log M

where [ D 4 4s the first antiderivative of A without constant of integration.

Proof of lemma [.3. By linearity, it is enough to prove this lemma for
A(X) = X* with k € N*. Setting y = %, it consists in proving that

L B CO i )
2ir J3y ) 2T (1))
which is standard using suitable contour shifts (confer [KoMiVaZ]).
[
To the polynomial P, we associate R(X) := P((1-7)X +7T)—1 and we
have the integral expression of the coefficients of the mollifier:

Proposition 4.4. Let ¢ > 1 be a natural integer and s be a complex number.

1 —~ 1 —
— L(l*T)s Pl LTS _ / K 2
xf(g’ S) 2 logL /(3) L(S) 1_— TRLl—T (5) (g’ 5)
S 12 (1lals) pu(01€3)2q(03)e p (Lals) g (143) ds
25 fs 2"
i K (9,2s)l5°¢ s

Proof of proposition f.4. The main point is that we have:

1 LY=TN\° [~ 1 — ds
FT = _— - = P/ LTS = i =
L (¢) 2imlog L /(3) < / ) ( (5) 1— TRLI_T(S)> 52
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The previous integral expression of F g (¢) is a direct consequence of lemma

4.5. End of the proof. We repeat the same procedure as in section but
with the mollified Rankin-Selberg L-function instead of the Rankin-Selberg
L-function itself. Then, (.) and ([i.3) become

1 1 1
h ( QP < q,h q,h hirq
(45) 1 (510 ) < 5 gy (70 g A6
and
(46) ——AM[r( xg) <2— L <ﬂh+ﬂ+ ! Ahm(sn)
where

b .
h mt 1 h —c+it
’ = _ 1 .
g /0 COS<25> o8 <A’J[1]W <g’ log q >>dt’

(o0-1) s 1 b
ah b m(x +c¢) 1 n{ w4
J3T /c sin <72b og —Ang g; Togq dx.

We set b := 2b, ¢ := 2c¢ and we choose g¢ := 1+ lfog;qq and we assume that
A is effective. Theorem [A.]] leads to:

1
A1

(4.7) AMI9(3)] < (log (F80-T) X 2n0-1),

This is an error term under the following assumption on the height of the

box:
~ T

b> Aoy
Proposition D leads to:

, 1/5 it i 11
h— 2 ) —&,t))dt — ).
Jl 2 0 Cos 2 og (V( Gy )) + Og q5 + 10g q

Let 0 < B < 1 be some real number. We set:
log” (q) (c0—1%)logq
h . h h
72 =/ +/ = I+ Iy
—c log” (q)

Our choice of the height of the box (so that all integrals converge), Propo-
sition D , Remark [L.4 and ([.3) entail that

1
log" ™ (q)’

T logﬁ (q) )
b
5 _|_

1 +o0o T _ exp(
JEh < —/ sinh<—~>lo V(z—¢b)de+
2= 2 op ) 08 ( )

T3y < exp (- <4A(1 —T) - %)) log®(q)

q
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and we conclude that

h(SP(q, N)) < 1 /5 <”>1 o (V (=5, £))dt
1 q, < — - cos | —= | lo —c,
ek N +1gjginh (%) 0 2b

+ /OOO sinh (%) log <V (x —é, B))dx) +04(1)

and that
1 1 b it
oA xg et ( [ cos (—) log (V (—& 1))t
Ag] e 8b sinh (g—b) 0 2

+ /OOO sinh (%) log (V <x —c, 5>>dm> +04(1).

We choose under Hy (), P(x) = 3 (%)2 -2 (%)37 b= A A=
Apaz(0)— 10~1° and we minimize ? the right-hand side by a numerical choice
of the remaining parameters. Under Hy ()3, the choice T = 0.44, ¢é = 23
gives

wg (Sp(a.N)) < ;—3_11 + 04(1)
and
Ahl[l] Al [r(. % g)] < 9.82+ 04(1).

Finally, N must be 4.
|

5. THE HARMONIC MOLLIFIED SECOND MOMENT NEAR THE CRITICAL
POINT

5.1. The second harmonic twisted moment. E. Kowalski, P. Michel
and J. Vanderkam computed this moment under some sensible conditions
on D and k, q.

We recall here some notations used in [[KoMiVa]. For z,s some complex

numbers, we set

Gy, () :=

(47%)° <s<%+s—z>>5pg<s>
F(34z+ 850 r (5424 o) ¢(2) Py(2)

where £(s) = s(1 —s)n 2T (2) ¢(s) and Py(s) is an even polynomial whose
coefficients are real and depend only on k and k, chosen such that the func-

tion Pg(s)F( + s+ B k"') F< + s+ k+k9 - 1) is analytic on R(s) >
—A where A > 5. We observe that

(5.1) V(z,s) € C?, Gy :(—s) =e.(f x 9)Gg,—(s)

2The program (inte. mws) is available at http://www.dms.umontreal.ca/~ricotta.

3Under Hy (0), we get gf’l and 7.66 if we choose T = 0.45 and ¢ = 23.7.
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with

e.(f xg):=

Then, we set:

s 1 k—k 1 k+k
H, .(s) = (47‘(’2) r (5 + 5+ %) I (5 + s+ —; 4 — 1> Gy,=(8).

So, it follows that H, .(z) = 1.

We need to introduce some extra notations. For any (a, ) = (£p,+n)
and any natural integer ¢ > 1, we set
ela) | 1 N dv
My (0, :0) = 2 ves o [ v 0, 9 (@D S
! a1 2im Jig) "’ (u—a)(v—7)
with

Jo(u,v; (o, B); €) = Hy o (u)¢P) (1 4 2u) Hy 5(v)¢ P (1 + 20)
Ligx g, 1+u+v)

X Vg (45 u,v) (P21 +u+w))

where
(5.2) -t
k+vp(5)))\g(pk+vp(€)) )\g(pk‘))\g(pk)
o (0 u,v) Z 5u€v Z pF(+uto) Z - ph(tuto)

de=/ plde \ k>0 k>0

Finally, we set:

5f><g(ﬂ7ﬁ) 1,
Efxg(—m 1) = eu(f x9),
Efxglt, —R) = en(f x9),

5f><g(_ﬂ7 —n) = 5u(f><g)5ﬁ(fx9)-

One has:

Theorem 5.1 (E. Kowalski-P. Michel-J. Vanderkam (2002)). Let g be a
primitive cusp form of square-free level D and trivial nebentypus. Assume

that q is prime, coprime with D. If || < loéq then for any natural integer
1</l<q,
@D My(u:0) = > epxgla, BIMg((a, B); ) + Errtwist(q, £; 1)
(a,8)=(Fp,%0)
where

Errtwist(q, 4; 1) = Og kg ((qg)e (1+ |t|)B (g 4 gazq—b2))
for any e >0 with a1 = 2,by = 35 and ap = 1 by =

Remark 5.1. Actually, theorem .1 was only proved for k < 12 so that
Sk(q) has no old forms. We explain in appendix [B how to remove this
condition using a technique of H. Iwaniec, W. Luo and P. Sarnak ([lwLuSd]).



REAL ZEROS AND SIZE OF RANKIN-SELBERG L-FUNCTIONS IN THE LEVEL ASPECD

Coming back to the notation of the introduction, we have:
MT ()= Y epxgla, BIMg((e, B); 0).
(a,8)=(Fp,%1)

5.2. The harmonic mollified second moment near % By opening the
square and using multiplicative properties of Hecke eigenvalues, one gets

_ 1 g4(d) 1 1
W gip) = (aD)™*T Y o ) T (g, 5t ul) Tt (g’ 2t m)
O0>1 073 d>1

X (qD)*T M (15 €1.42)

where one has set 11 := p and ps := fi. Our next step is to evaluate W (g; )

1
logq

for p within a distance O <
(a7 ﬁ) = (j:l’L7 iﬁ):

(53) Wy(a,f)i=(@D) > Y —— 3 _culd)

W R dlthrithe
be>1 07 43 d>1

1 1
X Tap, <9, 3 + ,U1> T e, (9, 3 + M2> My ((c, 3); £142).

Theorem [p.1 leads to:

) of the origin (Proposition C). We set for

Proposition 5.2. Let g be a primitive cusp form of square-free level D and
trivial nebentypus. Assume that q is prime, coprime with D. If |1| < loéq
then for any natural integer 1 < L < \/q,

(54)  WMNgm = Y epxgla, B)Wy(a, B) + Errsec(q, Li p)
(cB)=(Ep,47)

where

1 1
Errsec(q, L; i) :==(qD)™%" Z zar, (9,5 + 1) Tae, (9, 5 + p2)

Errtwist(q, (102; 1)

T T
V<t 0202 Qe
di <L,
d62<L
satisfies
(5.5)
Errsec(q, Ly ) = Oc g g ((qL)a(l +[t)B (L2(a1+%)q—b1 + L2(a2+%)q_b2>>
1 b1 bo _ 1 .
for any € > 0. As a consequence, A < inf (4((114—%)’4((12-1—%)) = & s
effective.

Proof of proposition 5.3. We only have to check the order of magnitude
of the error term. We get:

1 1
|Errsec(q, L; u)| < Z dl}r% Z |~’Udél (gii%— Ml){ {Sﬂd@ (giif M2)|
d>1 0,01 03 3

X ((5152)(“61_171 + (5152)@(]_[72) .
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As |$dzi (9.3 +Mi)‘ <L L°f Zd&_:mlm%m?’ 1, (d6;)"" = O(1) and a; — 1 >0,
we remark that

1
|Errsec(q, L; 1)| <¢ (qL)SZ y Z (L2(a1—%)q—b1 + L2(a2—%)q—b2)
dz1 1<ty o<k

which leads to the result.

We study now the main term of the second harmonic mollified moment.

Proposition 5.3. Let g be a primitive cusp form of square-free level D and

trivial nebentypus. If |7| < loéq then there exists § > 0 such that
> g @BWe(a )= Y (e B)Viap () +O0eg(a ™)
(o,8)=(Ep, 1) (o,8)=(Ep,+F0)

where for any (o, ) = (£p, £0)

i . 1 Tdey (g?%_FMl) Ldey (ga%_F;UJQ)
Vias) (1) = Z vg(l; @, 9) Z Z e e e
>1 l1lo=0 d>1 1 2

and

elg)
Wl B) ==,

22 (gD) 2 e s o(a, B)L(g x 9,1+ a+ )

¢P)(1 4+ 2a)¢@P) (1 4 2p)
(P21 +a+p6)

Proof of proposition [5.3. According to (f.J) and the integral expres-
sion of the coefficients of the mollifier (confer proposition [l.4), one gets for

(@, ) = (Fn, £70):

_ e o1
ol B = togry? =" iy /<3> /<3> /<3>

X mg(u,v, 1,52)—5

dsq dsg dv
s} 53 (u—a)(v—p)

where we have set:

mg(uv v, 81, 82) = (qD)u+UH ( )Hg 5(U)hg(u7 v, 81, 82)

<000 (B 2™ - e o)) 2070 (Bt ™ - R )

1 . T L1-71T
(P (1 + 20)CP) (1 + 20)
C(D)(l + 51+ 201)CP)N (1 + 52+ 202)¢ P (2(1 4+ u + v))
y L(gx g,1+u+v)L(g % g,1+ 81+ 82+ 1 + p12)
L(g x g, 1+u+ss+p2)L(g X g,1 + v+ 52+ p2)
L(gx g,14s1+2u1)L(g x g,1 + s2 + 2p9)
L(gx g,1+u+si+p)L(gxg,1+v+si+pu)
Here, hg satisfies hy(u,v, s1,52) = hg(v, u, s1, s2) and defines an holomorphic
function given by an absolutely convergent Euler product if u, v, s1 and so
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all have real part greater than some small negative real number (—1076 say).
Thus, the pole at u = « is simple and so:

¢(Q) / / d51 d82 dv
W = .
g(aaﬁ) (logL 2171‘ mg o,V 51,32) % S% v —ﬂ
As a function of v, the integrand has three simple poles at v = 8, —a and 0.
We shift the v-contour to (—% + 8) hitting these three poles and we remark

that the remaining integral is bounded by ¢ for some § > 0. Thus, at an
admissible cost, we have

Z 6f><g(aaﬁ)wg(aaﬁ): Z 6f><g(aaﬁ)(rl(aaﬁ) +’I"2(Oé,ﬁ) +’I“3(Oé,ﬁ))
(o, 8)=(£p,%1) (o, B3)=(£p, 1)

where r1(a, 3) (respectively ro(a, 3), r3(a, 3)) is the contribution of the
residue at v = [ (respectively —a, 0) which comes from Wy(a, 5). We
remark that

6f><9(a’ﬁ)r2(a’ﬁ) = _ngg(_a’ —ﬂ)Tg(—Oz, _ﬂ),
Efxg(aaﬁ)r?)(aaﬁ) = _ngg(aa —ﬁ)?"g(a, _B)
according to (b.I]). Summing up, we get at an admissible cost
e(GmWgn) = Y epxgla, B)ria, B)
(o, 8)=(Fp,%1)

which is exactly the main term in proposition p.3.

|
We set for any integers m,n > 1 and for any («, 5) = (£u, £f):
vy(p®; o, B)
Voyim,n;a,3) = g )
o : pg) vy (p; v, B)vg (1% v, )
plim
plin
vy(p*; @, )
Wy(m,n;a, 3) = L
ol ) pg; vy(p; , 3)?
plim
plin
Lemma 5.4. Let p € C and (o, 3) = (£u, £m). We have
1
Vias) () = e, > T8 (U 0) S (@, B 11) Suww (@ B; i)
w>1 uv|w
where for z € {u1, p2}
2 2 2
HU)Vg (U ;Oé,ﬁ VgV ;Oé,ﬁ V. u,v;a,ﬁ
T(a,0) (U, v) = () )g(uv A r
vg(l; o, B)Vy (L, v; a0, BYWy (L, w; @, B) 1
uvw( » B; ) - Z ! 1tz Twe g,§+2 .

>1

Proof of lemma [5.4. One gets setting ¢; = ka and ¢; = kb with a Ab = 1:

vg(k*ab; v, B) Taka (9,5 + 11) Taro (9, 5 + p2)
Via,8) (14 Z Z L1 ol Z : : :

+u1tp2 gl+pn hl+pe dltr+pe
k>1 anb=1 d>1



22 G. RICOTTA

As v, is a multiplicative function, ka and kb are cube-free integers and
aNb=1, we have:

Vg(kQab; a,fB) = yg(kQ; a, B)vg(a; o, B)rg(b; o, B)Vy(a, ks o, B) Vg (b, k; v, ).

Hence,

14 2'C¥ C
V(a,ﬁ)(lu’) — Z g(k ) ’/B)M( )

(ked)Hmtu ke
k,c,d>1
vg(ac; o, B)Vy(ac, k; o, B) 1
X 2 ot Tdka | 9> 5 +
vq(be; o, B)Vy(be, ks o, B 1
X Z ol b)1+gu(2 )l“dkb <g, 5T M2> :
b>1

Once again, we get

Vg(ac§ a,fB) = Vg(“? «a, ﬁ)’jg (c; ﬁ)Wg(a, c; o, 3)

which leads to the right expression stated in the lemma.

|
We set for any («, 5) = (£u, +0)
1
V(iﬁ) (M) = Z W Z T(a,B) (u, U)Su,v,w(aa ﬁ; Ml)Su,v,w (04, ﬁ; /1'2)7
1<w<L1-7Y uv|w
1
V(Zﬁ) (M) = Z m Z T(a,B) (u7 U)Su,v,w (04, B; ,U'l)Su,v,w(Oéa B; MZ)
L1-T<w<L uv|w

and we refer to these by the summation of respectively the short range and
long range terms.

5.2.1. Contribution of the short range terms.
Treatment of S, v w(c, 3;2z) when 1 < w < LT, We set for any complex
number z and any natural integer £ > 1

¢z(£) _ Z M2(£1£2€3)M(€1€3)6D(6263))\g(glgs)

142z
0=010203 &
so that
1 —
>1

We also set for any integers u,v,w > 1 with uv | w, any real y > 0, any
complex number s and any polynomial R:

(5.6)
2 V, (4, v; Wy (4, u;
Tu,v,w($§a7ﬁ7 Z) - K(g71 +2Z)Z Vg( 7a’ﬁ) g( 7;1:3_”_6) g( = a7ﬁ)
>1
2(0149¢ 1284 1534
% Z H ( 172 3)?1(+12Z3)6D( 2 3))\9(6163)}'((105)(971 +2Z)717
3

wl=010303
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(5.7)
Tuwvw,y,r(; B, 2) = K(g,1+22) Z V(4 a,ﬁ)Vg(fﬂ;ﬁ;ﬁ)Wg(&w a, 3)

<<z
==w

2(01090 0103)ep (£of log (%
" Z e (042 3),u1(+1223) D (l2 3))\g(£1£3)K(w£)(ga 142:) 1R g (r) _
/ logy
wl=010203 3

Finally, we define for any prime number p and any complex number s

(P32, 0)¢:(p) vy(p?; o, B) ¢ (p?)

p1+s+z p2(1+s+z)

14
Ly(s,a, B,2) = Ky(g,1 4 22) + -2

and also

LII)(U,U,’U); S, aaﬁa Z) = Kp(g, 1+ 2Z) <1+

p1+s+z sz (’U))

We will need a nice zero-free region for L(g x g,1+ .) (confer [KoMiVd]):

V(D 0, B)Vy (p,vi 00 B)Wy (p, ws 0, B)9 <wp>>‘

Lemma 5.5. Given g as above, there ewists ¢ > 0 depending only on g
such that the function L(g x g,1+ .) has no zeros in the domain

—c
seC,R(s) > ———L 1.
s e0 2 |
Moreover, this function, its inverse and its derivatives up to any order « are
bounded in modulus in this domain by Cy s (1 + S(s))? for any & > 0.

This will be useful in the following lemma:

Lemma 5.6. Let z € {p1,n2}, (o, f) = (£p, £0), y > w and w | w. We
have:

(58) Tu,v,’w(s; «, /87 Z) = (bz(w)K(w) (g7 1+ 22)71}1,1(’&, v, W; S, &,y /87 Z)
y LW (Sym?(g),1 + 22)
Ligxg,l+s+tz+a)l(gxgl+s+z+p)

where hy is a holomorphic function when all the complex variables have real
part greater than some small negative real number given by an absolutely
convergent Euler product hy(u, v, w; s, a, 3,2) = [[ cp b1 p(u, v, w; s, a, 3, 2)
with

(5.9)

peEP

Ly(gxg,l+s+z+a)ly(gxg,l+s+z+p0)
Ly (Sym2(g), 1+ 22)
Lg(saaaﬁa Z) Zf pTw’
X Lzl)(u7vaw;87aa/37 Z) lf p H w,
Kp(g,1+22) if Pl w.

Vpe P, hip(u,v,w;s,a,p,z2) =
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As a consequence, if p is a bounded complexr number satisfying || <
and R a polynomial satisfying R(0) = R'(0) = 0 then

1
log q

(5.10)

Tu,v,w,y,R(aa /87 Z) - {7"6550 ¢Z(w)K(w) (g7 1 + 22)_1h1(u7 v, w; S, &, /87 Z)
" L@ (Sym?(g),1 + 22) Z log( )
sLigxg,1+s+z4+a)L(gxg,1+s+z+[) = slogy logy
w)

Lo, <\<1b0g§ y! <w> (r4int RRE) <—Ao log(%)))

for some Ag > 0.

Proof of lemma [.6. The equation (f.§) follows by comparing two Euler
products. According to lemma D.1 and its definition, the function h; is given
by an Euler product of the following shape (everything was made for and
the Ramanujan-Petersson bound for Hecke eigenvalues of g are available)

(5.11)

1
VpeP, hip(u,v,wis,a,f,2) =14 Oypuw <Z p2+§R(a¢s+bia+c¢ﬁ+d¢z)>
iel

for some finite index set I and some integers a;, b;, ¢; and d;. Thus, if all
the complex variables have some slightly negative real parts such that

Viel, R(as+ba+cf+diz)>—-1496

for some fixed § > 0 then this Euler product absolutely converges and defines
a holomorphic function. To get (f.10), we use the Taylor expansion of R:

RU(0) 1
Z (0)

T = -—
u’v7w’y7R(a’ /B’ Z) >2 (log y)] 2Z7T

/( , Ko, 1422 i 0,.2)

(@) m2 z s S
% () L'9(Sym*(g),1 + 22) )(g) d

Ligxg,l+s+z+a)l(gxg,l+s+2z+0 sit+l’

According to the assumptions on p, we can find F; > 0 such that R(z + a)

and R(z+ () > gg We move the integral to the line R(s) = 101;1(‘21)

without crossing any pole and then we cut the integral at the segment

[ Bl g, Bl ZT] at an admissible cost of O (]qﬁz( )| log (%)2T*2>

log (35) " log (5F)

where T := exp ( log (%)) We move the previous line segment to

Py
logT

—iT, —inf (R(z + @), R(z + B)) —

[— inf (R(z + a),R(z + B)) — log T

+1T ]
where F5 > 0 is chosen such that this line segment is included in a free-zero
area for L(g x g,1+.+ 2+ a)L(g X g,1 + .+ z + 3) given by lemma p.5.
We cross a multiple pole at s = 0 whose residue is precisely the main term
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in (5.10). The remaining integrals contribute as

T - —inf (R(z+a) R(z+5))— 12r
Og <!¢z(w)\ <1og (%)) <T +(4) w)) .

This leads directly to:

Proposition 5.7. Let z € {1, po}, (o, 8) = (£u, £0) and w,v > 1. If p is
a bounded complex number satisfying |7| < @ and 1 <w < L' then

(512) Su,v,w(a7 B, Z) - 5(2+a)(z+6)7£0¢z(w)[((w) (ga 1+ 22)_1
L9 (Sym?(g),1 + 22)
Llgx g1+ z+a)l{gxg.1+2z+0)

-7 ~(rHinf (R(e),R(5))) -7
+ Oy <’¢Z(;U)’ <—> exp | —Agpy/log ( ) .
log” ¢ w w

Proof of proposition p.7. Let Q(X) :=1—P(T+(1—7)X). We remark
that:

X hl(u7vaw;07aa/37 Z)

Su,v,w(aa B, Z) = Tu,v,w,L,P(aa B, Z) + Tu,v,w,Ll—T,Q(aa B, Z)
When applying lemma . twice, the reader may remark that the only con-
tribution comes from the values of P and Q and that the other main terms
coming from the values of the derivatives of P and @) cancel each other; this
concludes the proof.
|

<

Treatment of V, 5 (). We set:

(5.13) Ly(s,a,8) = I Z500,0,82)

ZE{M17M2}
+p_(1+8){ H QSz(p)Lll)(l,l,p;O,oz,ﬂ, z)
ze{p1,p2} Kp(g7 1+ 22)
_ ¢-(p)Ly(1,p,p; 0,0, 5, 2)
+Vg(p2§047ﬁ)p ! H L
ze{p1,p2} Kp(g, 1+ 2Z)
_ ¢-(p)Ly(p,1,p; 0,0, 5, 2)
e s I |
z€{p1,p2} Kp(g, 1+ 2Z)

+ II 0" p_2(1+8){1+vg(p2;oc,ﬁ)p_l

ZG{/JJ,,LLQ}
—vy(pr v, B)* 0 — vy(p; o, B) vy (p%; v, B)Vy (p, ps v, B)*p 2

+vy(p*; a,ﬁ)p_Q}-
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Lemma 5.8. Let p € C, (o, ) = (£u, i) and z € {u1, pa}-

(5.14) > w11+8 > Tas (1)

w>1 uv|w

X H <—h1(u,v,w;0,a7ﬁ7 2 =
ZE{)U‘IHUIQ} K(w) (ga 1 + 22’)

L(g x g,1 4 s)ha(s,, )

where ho is a holomorphic function when all the complex variables have some
real part greater than some small negative real number given by an absolutely

convergent Euler product ha(s,a, 3) := HpeP hap(s, a, B) with

(5.15)

vp € Pa h2,p(5’a>ﬂ) =

11 Lp(gx g, 1+2z+a)ly(g xg,1+2+P)
L (Sym?(9), 1 + 2z2)

X Lp(g x g,1+ 8)Ly(s,a, ).

Ze{l'“v“?}

As a consequence, if |T| < - then

log q
1
(5:16) > —mm D Tes ()
1<w<z uv|w

¢z (w) : =
< T (g rrmmenwess) =

Ze{ﬂlv/»‘?}
L(g x g, 14 py + pi2)ho(p1 + pa, 0, B) (1 —2727) + Oy (2777)..

Proof of lemma [.8. The first part (5.14) comes from a computation of
Fuler products. Once again, the shape of the Euler product which defines
h2 is

(5.17)

1
VpeP, hap(u,v,wis,a,f,2) =14 Oypuw <Z p2+§R(a¢s+bia+c¢ﬁ+d¢z)>
i€l

for some finite index set I and some integers a;, b;, ¢; and d;. Thus, for ex-
actly the same reasons as in the proof of lemma f.¢ (confer (5.11))), this Euler
product is absolutely convergent when all the complex variables have some
slightly negative real parts. To get (b.14), according to explicit Perron’s
formula, our sum equals

1 A+T

SdS fo2T
L(g x g,1 4+ s+ 27)ha(s + 27,00, )z ?—FO T

20 Jair
where A > —27 and T' > 0 will be chosen later. We shift the contour to
R(s) = —A hitting some poles at s = 0 and s = —27. The remaining

integrals contribute as O, (xA:;QT + x_A_27T>. We choose T = z4 in order
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to justify the error term in (p.16). The residues of the crossed poles are

‘SZ L X 9 —27
Lig 9.1+ 20)ho (27,0, 8) — P HIXIN 0 o gy

L(g x g,1 4 271)ha (27,0, ) (1 - :FQT) + Oy (:UfQT) .
|

In the following proposition, we estimate V(Sa 3) ().

Proposition 5.9. Let p € C and (o, 5) = (£up, £0). If |1 < loéq then

V(Sa,g) (1) = 8(a,8)=(um) h2(p1 + p2, p, ) L(g % g, 1+ 27) <1 - L_QT(l_T))
I L9 (Sym?(g),1 + 2z)

X —
Lgxg,1+p+2)Lgxg,1l+u+z)

Ze{ﬂlv/»‘?}

+Og< 1 <L7(17T)(7—+1nf(%(a),?R(B))) +L2(1r)(T+1nf(§R(a),m(5)))>>

log* (q)
1 —27(1-7"T

Proof of proposition p.9. Since (z + a)(z + ) # 0:
(L(g x g, 1+ 2+ a)L(g x g, 1+ 2+ )" <, (logq) 7,
the proposition follows from proposition .7 and lemma [.4.

Treatment of the short range terms. We sum up the estimate of the
short range terms in the following theorem:

Theorem 5.10. Let p € C. If 22 < || < héq for some absolute constant
gg > 0 then

(5.18) Y. @BV ) =1- L7700
(a,8)=(xp,xp)
1 1 [fr2r0a-7) if 7= >
* 0 <_5+— =27 7 —47(1-7T T ?R(M)_Q
q logg | ¢ “"L 7( ) otherwise

for some § > 0.
Proof of theorem f.10. As ¥(a, 8) < log® (q) ¢~27+*+8 (the worst case
being («, 3) = (u, 1)), proposition p.9 implies that:

Z \I](O[, B)V(Saug) (lu’) = \I](lu’7 ﬁ)hQ (//Jl + 2, i, ﬂ)L(ng’ 1+,U'1 +1u2)
(o, B3)=(£p, 1)

L@ (Sym?(g),1 + 22)
1 _ L—Q’T(l—T) b
X< ) 11 L(gx g, 1+ p+2)L(g x g, 1+ 1+ 2)

z€{p1,u2}

i 1 [rL2ra="m) if >0,
g log ¢ q_QTL_4T(1_T) otherwise.
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The main term of the previous equality equals:

v(q) Co(1 +27) ha (27, p, 1) (1 _ L-zm-r)) .
¢ Ly(Sym?g, 1+ 2u)Ly(Sym?g, 1+ 271) ¢(P)(2(1 + 27))

According to proposition PD.3, we have

h2(27—nuaﬂ) o 1
(5.19) i =140, <¥>

for some 6 > 0.

Remark 5.2. Equation (5.19) is the result of tedious but elementary com-
putations which are carried out in Appendix D. One may find it surprising
that this apparently rather complicated Euler product turns out to a have
very simple expression (which in fact is crucial for the method to work).
This however is a consequence of our choice of mollifier. It is very plausible
that a more conceptual explanation of this phenomenon can be gotten from
the random matrix model for the family F of Rankin-Selberg L-functions
and the vertical Sato-Tate laws satisfied by the Hecke eigenvalues of modu-
lar forms. For this, we refer to the recent work of J.B. Conrey, D. Farmer,
J. Keating, M. Rubinstein and N. Snaith ([CoFaKeRuSul]) who formulate
very precise conjectures for the moments of central value for many families
of L-functions (although not for our peculiar family, which certainly can be
investigated along the same lines) and the talk of C. Hughes at the New-
ton Institute on amplified and mollified moments of families of L-functions

([Ed).

5.2.2. Contribution of the long range terms.
Treatment of V(>a ) (1). Arguing along the same lines, we obtain

Proposition 5.11. Let € C and (o, 8) = (£p, £0). If |pu] < @ then:

(5.20) V(;, 5y(1) = hap1 + p2, o, B) (11 + p2)L(g % 9,1 + p1 + po)

x (ress—1L(g x g,s)) " H L9 (Sym?(g),1 + 22) Iop(L, Y, P;p)
ZE{M17M2}

Oy < i <L*2(T+inf (R(0).R(B))) 4 1~ (r+inf (R(a).R(D)) 4 127 4 L2T(1T)>>
log™ (q)

with

T
(5.21) In (L, Y, P;p) = 1OgL/ [-2r(1-)
0
2z4+a+p) 1
—FF P
log L (z) + log? (L)

<[ ] ((z +a)(z + B)P(z) + P"(a:)) dz.

z€{p1,p2}
Treatment of the long range terms. Firstly, we compute an expression
for the previous integrals I, g(L, T, P; ) which are obtained by some inte-
gration by parts knowing that P(0) = P'(0) = P'(T) = 0 and P(Y) = 1.
The results are given in the following lemma:
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Lemma 5.12. Let (o, 3) = (£u, £0).

_ App R
L,Y,P; [~2r(1-2)

P"(m) 2
2ulog L

P'(z) +

+ (a3 =y SUATL 2T,

We sum up the contribution of the long range terms in the following
theorem:

Theorem 5.13. Let p € C. If =

< pl < for some 9 > 0 then

log q — log q

(5.22)

Wh (Iu) _ q27' o q72T B q25 o q725 /T L—Zr(l—x)
> 27 log L 26 log L 0

Iy (1 L LT i = R () > 0,
logqg | ¢ YL otherwise

P'(z) |

2ulog L

P(x)+

for some & > 0.

Proof of theorem [B.13. As U(a, () < log?(q) ¢ 2" t2+7, proposition
implies that

Yoo V@BV = > U, B)g T (LY, P

(a,8)=(£n,tp) (a,8)=(£n,tp)
1 [L7270=7)  if >0,
Og (77 —4r 7 —4 :
logg | ¢ *"L=*"  otherwise
with
U(a, B) = (ress—1L(g x g,5)) " ¥ f(a, B)2r L(gx g, 1427)ha (27, a, B)

[T Z9Sym?(9),1+22)

ze{/J'luU'Q}
Moreover, \Tf(a,ﬁ) = 4a6(1oz+6) h;((g)’(()’;;) + 0Oy (log3 (¢)) and I g(L, Y, P;p) <
%(1(;;). According to proposition D.J, we have
hs(0,0,0) 1
5.23 ——=1+4+0,| —=
for some & > 0. Thus, the contribution of the long range terms is
Z q727’+a+,3 )
(2@ 2Pt P )

which is exactly the main term of (f.23) according to lemma f.13.

6. AVERAGED SHIFTED CONVOLUTION PROBLEMS

This section is the central part of this paper. We give here a way of
solving shifted convolution problems on average.
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6.1. Introduction and first result. Let ¥ : R} x R} — R be a smooth
compactly supported function

(6.1) Supp(¥) C [Z,2Z] x [g,QY]

for some real numbers Z,Y > 0 satisfying
(6.2)

2 * ) 2 o, B 8a+ﬁ\1}
P > 0,Y(«, B) € N°,V(z,y) € (R+) , 2%y 929047
Let a1,as > 1 with ajas < ¢ be some natural integers. One considers the

shifted convolution problem

VheZ*, Sp(¥,g;a1,az):= Z Ag(m)Ag(n)¥(arm, asn)

arm—asn=h

(Zay) <<oc,ﬁ POH_ﬁ-

and the shifted convolution problem on average

S (W, g;a1,a9) = Y Sh(¥,g;a1,09)

heZ*
h=0 mod r

for any natural integer » > 1. Note that the h-sum is of length sup (Z,Y).
Solving the shifted convolution problem (respectively the shifted convolution
problem on average) consists in finding a non-trivial bound for Sy (¥, g; ai, as)
(respectively X, (W, g;a1,a2)). The §-symbol method of W. Duke, J. Fried-
lander and H. Iwaniec (confer [DuFrIw] and [KoMiVd]) leads to:

Theorem 6.1. Let h € Z* and r € N*. Ifay Aag =1 and ¥V satisfies (B.1])
and (p.2) then

Sh(T, gia1,a2) <oy P1(Z+Y)i(YZ)ite
for any € > 0. Thus,
sup (Z,Y
S (W, g5 a1, a2) <o P1(Z + y)i(yz);ﬁsup(ri,)
for any € > 0.

6.2. The spectral method on average. For some background and nota-
tions about Maass forms we refer to appendix [J. All is based on the analytic
properties of the following Dirichlet series (confer [§d] and [Mill)

kg—1
N vaiasmn \ Y _
Dh(ga ai, az; S) Ca . ga ) h)\g(m))\g(n) (m (alm + CLQ’I’L) s
1m—a2n=

which is linked to our problem by Mellin’s inversion formula

1 ~

(6.3) Sh(g,a1,02) = 5 / Dig, a1, a2; )8 (h, 5) ds
17T (2)

where

(6.4)

kg—1

h+4Nas

s +h u—nh 2h 2h 2 d

\If(h,s):/ x11<“2 ,“2 )<4+ — - h) w L,
sup (|h|,h+Na2) U u + U
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Note that W(h,s) = 0 if |h| > sup(Z,Y). The spectral method consists
in getting a non-trivial individual estimate of Dy(g,a1,as2;s) whereas the
spectral method on average takes care of the extra average over h.

Lemma 6.2. If U satisfies (b.1]) and (b.9) then:
kg—1
~ sup (Z,Y)\ "2 5(s) £
U(h,s) <y, <7inf Z7) sup(Z Y)

for any natural integer n.

\8\’7

Proof of lemma [6.2. According to the support properties of ¥ and by 7,
integration by parts, we have

R +hO(inf (Z,Y)) ysHn-1
(hes) = | A0 (u)du
+htO(inf(zY)) S(8+1)-(s+n—1)
kg1
with y(u) = ¥ (“TM, —h) <4 + = — %) * . One shows with (F.J) that
ZY)\ T
() sup(Z, V) 2 1
7 ) <y (mf Z.Y) > nf(Z,Y)

which is enough for the proof.
|

One defines the following Maass cusp forms of level Dajas, weight 0 and
trivial nebentypus

| &
| &

g g

V(z) = (a1y) 2 g(a12)(azy) 2 g(az2)
and
Un(z,s) = Z (S(7.2))° e(=hR(7.2)).
v € (In(Daraz)) \lo(Daiaz)
A straightforward computation gives:

(2m)sthe—1
[(s+ kg —1)\/araz
Let §:= (u )]>1 a Hecke eigenbasis of Co(Dayasz) satisfying (Ag + Aj) u; =
0 with \; = 4 + T’JZ and made of eigenfunctions of the reflexion operator
namely: Vn € Z*,pj(—n) = €;p;(n) for some €; € {£1}. Parseval’s equality
leads to:

(Uh(., 8),7).

Dy(g,a1,a2;s) =

65 D (27T)s+kg—1
( . ) h(g,al,UQ,S)— (S+k3 —1)@

TR, (s=44in (5= 4=in) (o
Z 1 ,1 (u, V)
§>1 2m® |h| 2 2 2

1, 1
+i / VA pe(=h,t) ,1)F s—5+it r s—g5—it
4 o 2TST ,|h|s,§ 2 2

neCusp(Fo (Daiaz))
1\ =
gemn
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The hypothesis H2(#) described in the introduction is a very natural one as
it allows us to control the size of the discrete part of the right-hand side of
(b3). In fact, H. Iwaniec, W. Luo and P. Sarnak ([lwLuSd]) showed that if

0 is admissible then it is possible to choose 8 with:

. (|hlaraz(1 + |rjl)* T\ (76—
(6.6) VheZ*, pjh) < Now cosh< 5 )]h\ 2

for any j > 1 and for any ¢ > 0%, P. Sarnak ([Bd]) proved the following
highly non-trivial individual estimate for the triple products (uj, V):

6.7) Vi1 (u,V) <g Varaz (1+[r;)" " exp <_W2|Tj|>

The crucial fact is that the exponential growth in j of p;(h) is balanced
by the exponential decay in j of (uj,V). Using this, P. Sarnak proved that
Dy(g, a1, as; s) admits an holomorphic continuation to R(s) > 2 +6+¢ under
Ho(0) for any e > 0 ([Bd]). The continuous analogue being true, one obtains
thanks to Weyl’s law for the spectrum and an estimate for the number of
cusps of the congruence subgroup I'y(Dajaz) the following estimate for the
triple products on average over the spectrum

689 3 (T e+~ Y

Irj|<R k€Cusp(Ip(Daiaz))

R 2
1 _
X / (ER (., 5T it) ,V> exp (7]t])dt <, (a1aaR)® (a1ag)* R*oT>
-R
with x = 4. In fact, B. Krotz and R.J. Stanton ([KrSt]) obtained the same
estimate but with x = 0. Note that the optimality of this last estimate with
respect to the parameter R was already proved by A. Good ([[Gd]). Moreover

E. Kowalski ([KoJ]) computed the dependency in the level of g. We can now
state:

Theorem 6.3. Letr = ¢*7 € N* with o € N and FAqg = 1. If 0 is admissible
and ¥ satisfies (b.1]) and (p.9) then

LB 1
s.up (Z7 Y) 2 ) (Cilaf) 2 P2+€ sup (Z, Y)1+€+€
inf (Z,Y) gzrztt

1 1
X |sup |1 sup (Z,Y)2"° + Oulr sup | 1 —Sup(Z’Y)2+€
’ q%—f—a a1as q%+«9(a+1) 7q—a;rl+a a1y

for any € > 0.

(U, g5a1,a2) <c g q° (

Remark 6.1. The shifted convolution problem is said to be balanced when
Y and Z are of the same size and unbalanced else. In the balanced case,
theorem @ is better than theorem @ whereas it is not the case in the
unbalanced case. At least two reasons for that:

e in theorem P.I], Y and Z are almost symmetric parameters,

4p. Michel provided a useful averaged version over the spectrum of this upper-bound

in [Mi]].
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kg—1

Sl
e in theorem [.3, SIEE(ZZ Q) ’ is large in the unbalanced case

(especially when the weight of g is large).

Our next applications will require the use of both theorems depending on
the range of the parameters Y and Z.

6.2.1. Flavour of the proof of theorem [6.3. When solving the shifted con-
volution problem on average via the spectral method on average, the main
issue is to deal with smooth sums of Fourier coefficients of automorphic
forms of the following shape

Valh] pj(—gh) =
(6.9) > JS__ ‘If(qh, s)
h<0 ‘h’
with R(s) = % + 0 + . Up to harmless factors, such a sum equals
1 == 1 — | ey
% - L <uj,z +s— 5) ¢t DU(2, 5)dz
where u; is the underlying prlmltlve form of u; of level at most Dajas and
U is an integral transform of 0. Thus, bounding sums of Fourier coefficients

like (B.9) turns out to bounding L-functions like L (uj, ) on the critical line

in the level aspect. Of course, the maximal saving would come from Lindel6f
hypothesis but as we average over a family of Maass forms of level Dajas
large sieve inequalities will achieve Lindel6f hypothesis on average.

6.2.2. Proof of theorem [6.3. We set
S (U, gia1,a2) = 5950, gy ar, ag) + 3™ (¥, g; a1, ag)
where

(6.10) B45¢(W, g a1, a9) := 9stkg=2 kg3

2277\ /aias / Lig+e)

r sf—Jrer r s—5—ir;
2 /7|5 pi(rh) ~
X Z (uj, V Z ~ I \If(rh, s)ds

D(s+ kg —1) h£0 [rh|*2

is the contribution of the discrete spectrum and

j>1

(6.11) XU, gsay,az) = 9stkg—27ko—3

Sim? ‘/alag/ L o+e)

o <s—%+it> - <8—5—“>
o) 2 2 1 Vv
t=—o00 F(S + kg o 1) k€Cusp(lo(Daiaz)) ?
Rl (i D)
> V1l pw(rh. 1) f_ T(rh, s)dtds
hzo  (rlhl)?

is the contribution of the continuous spectrum. We will only give some
details for the estimate of £35¢(W¥, g: a1, as) but the same method is available
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for X" (U, g; a1, as) (confer [Ri]). As qis coprime with Dajas, (C.7) implies
that
(6.12)

R — . [h [.n

q

We study only the contribution coming from the first term of (6.17). By
Strirling’s formula and Cauchy-Schwarz inequality, the contribution of the
discrete spectrum is bounded by

1 a1 o
T gy (19O

<

NI

X Z |(uj, V) ‘2 cosh (775)

7 | <T+|S(s)]
2\ 3

|, 2 ﬁ > \/WWE_MJ‘((QQ)H((JO‘M,S) N

1
¢ az|p|)s— 2
Irj|<1+19(s)] 7 |l iz q*7|h|)

According to (6.§) but with the refinement of B. Krotz and R.J. Stanton
(x = 0), the first square-root contributes as

g (a1ag)'™™e (14 |S(s)]) 2 Thote
for any € > 0. The second square-root equals
2\ 3
DI s N L)
s <11 15(5)] cosh (775) BP0 n?2 pj
where one has set

" it in,
n = €5 a\ I ( s . ~
LA @A) i n=7h

The large sieve inequality for the Fourier coefficients of Maass forms of
weight 0 (confer (C.9)) entails that this second square-root is bounded by

1
sup (Z,Y)'*° )
<e ((1 +1S(s)))? + TP, llall2-

According to lemma [.3, this is bounded by
kg—1
(s (Z,Y)\ 7 T sup (2,7) 0 sup (7,Y) 4
<<975777 q s a1 sSup 1’ o
lnf(Z,Y) q2r2+0 q?2 \/m

oL+ [S(s))2 !
EE

x P

and we choose n = 5 +1+ (1 + ¢) = 2 +¢ to make convergent the s-integral
in X3¢0, g: a1, a9).
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Remark 6.2. We want to take x as small as possible in (.§) because
following large sieve inequality, there appears a power of P and P may
be large in our next applications. This power is precisely the number of
integration by parts we have to do and grows linearly with x. This feature
puts the stress on the fact that the spectral method is not really smooth in
the length of the spectrum aspect (namely in the R-aspect in (6.9)).

7. PROOFS OF PROPOSITION D AND THEOREM B

Following the results of section fl, we prove Proposition D in subsection
[ and Theorem B in subsection [[.3. These proofs are based on some
better bound for Errtwist(g,¢; 1) than the one given in ([.J). Remember
that the bound ([.g) was obtained in [KoMiVd] by implementing the &-
symbol method. If we use the spectral method on average described in the
previous section for certain ranges which depend on the weight functions
instead of the d-symbol method, we can get better bounds. Once again,
a key ingredient is a uniform estimate of P. Sarnak and some technical
issues involve verifying that weight functions can be handled appropriately

(subsection [7.)).

7.1. Description of Errtwist(q, /; ). In [KoMiVd], the authors are look-
ing for asymptotic formulas for the harmonic twisted second moments ./\/l’;(,u;

0).

By a standard approximate functional equation for Rankin-Selberg L-functions

(Theorem 5.3. page 98 of [IwKd]), they are reduced to estimate sums of the
form (equation (4.16) page 138 of [KoMiVal])

(7.1) Mg((a,8);0) = > M\/%WVW ((%) Yo (q%>

m,n>1

where (o, 3) = (£p, £1) and

_ 1 s
Ve € {0}, VY € Ry, VoY) = o 1o ()P (1 2s)y ™ —

satisfies
Vz € {dp, 271}, Vy €RLVA S0, Vyu(y) <a L+ [S(w))Py™

for some B > 0. Applying Petersson’s formula (remember that there are no
old forms in their case) and some dyadic partitions of unity to the m and
n sums which appears in the non-diagonal term leads to the following term

(formula (7.5) of [KoMiVd])

2
(7.2)  Errtwist(q, 4; 1) mill Z Z e(j/_ e ED Ag(0) TN
M,N>1ée=(
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with
1
TunN = Z c_QTM’N(C)’
ceN*
c=0 mod q
4\/aemn

Tun(c) = c Z Ag(m)Ag(n)S(m, aen; c)Far,n(m,n)Jp—1 <ﬁ>

m,n>1

Here, S(m,aen;c) is a Kloosterman sum, Ji_1 is a Bessel function of the

first kind and (page 151 of [KoMiVd))

Farn(z,y) == \/Lm_va (q%) V5 (q%) N ()0 ()

for some smooth function 7, compactly supported in [M/2,2M] satisfying
for any i > 0, x'n @ )( ) < 1 and such that

0 ifx<i
anm):{ Lo
e 1 ifz>1

with ZMSX 1 < log X. Thus, Fj,n is a compactly supported function
in M,QM] X [%,2]\/] which depends on p and satisfies (formula (7.6) of
[FolMiv3

):
(73) V(i,4) € (N)?, ya;ﬂ%@ y) < (L[t (MN) 2 (log ).

Truncating at an admissible cost the M and N sums to M, N <. (¢D)'*¢
for any € > 0 and applying Voronoi’s formula to the m-sum, ([.2) becomes

(7.4)
. 2w € w(a ED _
Errtwist(q, £; 1) = — al b T
rrtwist(q, £; 1) e Z Z Z Ag(b) M,N

M,N<(qD)t+e ée=t

+ Oy ((1 +]t)B (qLA N qsag_\/(?>>

with o4(£) := >4, [A¢(1)| and

_ TA}N(C)
Tun= 2. —=
ceN*
c=0 mod q
with
_ ng(DQ) — _
Ty (o) = === ZT(—hD%C)Th (c)
D, h£0
where
_ _(m
L0 = X Ay (Fn).

m—(aeD2)n=h

_ . +oo 4dm\/zu 4. /aeyu
G (2,y) = 27”kg/o Jk91< - >Jk1 <f> Fan (u,y)du.




REAL ZEROS AND SIZE OF RANKIN-SELBERG L-FUNCTIONS IN THE LEVEL ASPEGI

Here, Dy := DL/\C’ Dy stands for the inverse of Dy modulo ¢, 74(D3) for an
Atkin-Lehner eigenvalue (of modulus one), r for the Ramanujan sum and
Jy,—1 for a Bessel function of the first kind. In fact, Ty, y = Ty, (1) +

Ty n(2) where

Tj\_d,N(l) = Z C_QT]\_LN(C)-
ceN*
qlle

We will only deal with the first term as the same method works for the
second one with better results. So, ¢ = g’ with ¢ A ¢ = 1. Expanding the
Ramanujan sum leads to

15 T =222 5 @ () X Tl

Ge{l,q} dj¢! h£0

with

Il
Qe

Let F be the following function:

+oo Amy/zx A\ /YT
F(z,y) = 2ni* Dy / e, 1 < ”c”> T < ”cyx> Fay <sz, J > dz
0

a2

which is compactly supported with respect to y in [%, 2N aeDQ}. The

shifted convolution problem on average which has to be solved is
Y54(F, g;1,aeDy).

In order to get some estimates of the function F', one sets Y := Nae, Z; :=

%, P =1+ */Z% and Z = Z;P? > sup(Z;1,Y). We need some results

about the Bessel functions which can be found in [Wd]. We know that:

T J () 1 T k
7.6 VieN, (—/—) J' < .
(7.6) J <1+x> p (@) <k (1+x)% <1+x>

More precisely, Ji,(z) = exp (ix) Vi, (x) + exp (—ix)V(z) where

yy 1 x k
7.7 VjieN, v ) <; ( ) .
(7.7) J Vi (z) <jk (1+x)% 1+2z

We prove:
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Lemma 7.1. For any natural integers «, 3, any real numbers Ay, Ay, A3 >0
and any non-negative real numbers z and vy,

aa+ﬁF
: B oyP (2,9) <<kkg,aﬁA17A2,A3 (1+’t’) (log g

—1 \/Z kg—1
POH_ﬁ 1 1 - 1 1
Y 2 1 + 2 2
(1+v%) 7wl (1 7)

1

A A As”
1+2)7 1+ 3)7 1+ ——
(4" 0™ (14 )
Proof of lemma [7.1. We give only the proof for the case o = 3 = 0. If
z < 7 then we trivially have

)a+ﬁ+A1 +A2+A3

X

(7.8) F(z,y) <pp, 1+ )71/ 5 .
2

— \ Fol
\ Z1 1
- — —l.
L+ 7z <1Jm/i>2
If z > Z then | > 1 integrations by parts lead to

. \/?]Z (exp(' \/_x) exp( \/_x)_
F(z,y) = Amiks —f(”() 7 ())
’ (2 (42

where f(z) = 2Vj, 1 ( \/_CU) Jp_1 ( \/gx) Fy N (DQ:UQ y2> satisfies

Pl \/7 . 1 1
N ()

FO(@) gy (1+[8])" (log Q)

9

[z

Z1
X\ 7= 1 -1
(H\/zi (1+%)*"

As a consequence,

\/7 k=1
7 1
(7.9) F(z,y) <, 1+t 1/ = ( ly
1 — Y
+ 71 <1 + Z—1>

kg—1
|z
7z 1 pl (z>*2l‘

e

NI

X

VAL (eyE)

+

~
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We conclude by collecting (7.§) and (f.9) and by remarking that one can
repeat the same procedure with Ji_1 instead of Jy, 1 if Y is large.

|
Let p: R — R compactly supported in [1,2] satisfying > .y p (27%) = 1.
We set

Fy(zy) = p(27"2) F(z,y)

where Z := 2%. Fy is compactly supported in [Z,2Z] x [ ,QY] and we
remark that F(z,9) = > ,_s. Fz(2,y). Lemma [.1] gives

aa—l—ﬁFZ
(7.10) Zayﬁw(%y) Lhokga,8,A1, 42,45 (1 + 1t))” (log ) TA+Ar A4

7 VE E JE R
xPQWUW ZIY 1 le 1
2 2 £ 2
L+ / 7 (1+ /z%) 1+./% <1+ %)
1

A A As
1+4)7 (1+8)7 1+ —L =
for any natural integers «, § and for any real numbers Ay, Ay, Ag > 0.

7.2. Improvement of the bound of Errtwist(q,/; ) given in (L.9).
Let us recall that we want to estimate

27 € )e _
Errtwist'(q, 4; p) := & Z Z o Z pla D Ag(0)Tyy (1)

M,N<(qgD)t+e ée=t

where
(7.11)
_ _ ng(D2) dq
T =220 57 57 () Y Sl taena)
ge{1,q} (c,d)eN*? Z21
qllc ge:RQI*
de

and that Theorem [6.J implies:

Theorem 7.2. Let ¢ > 1 and d > 1 some natural integers satisfying q || c,
d| ¢, q€{l,q} and Z > 1. If 0 is admissible then:
k-1
/Y
A

=

M
Y3a(Fz, 9 1,aeDs) e g ayagn ¢ (L+ [H)7 ] = (ac)
1+ /5
~ kg—1
2 1 1
1+,/% 1+ ./Z : 1.2y (4 y A
: n) U2\ mar

kg—1
sup (Z,Y) E p2+eSUP (Z, Y)HG+€ sup [ 1 sup (Z, Y)%”La
inf (Z,Y) , Zﬁ*"g\/ae
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for any real numbers n >0 and Ay, Az, € > 0.

Now, we finish the proof of Proposition D. Proof of Proposition D. Let
0 < a < 1 be some real number. Setting Czu(z,y) == >, <7<, Xqd (Fz, g; 1, aeD3),
we split the Z-sum occurring in ([.1)) as follows

(712) E E@d (FZ,g;l,aeDQ) :Cg]\d(l,Zf{) —}—Cad(Zla,Z) +Cad(Z,+oo)
Z>1
z=2"
a€eN*

and we refer to the first (respectively second, third) term in the right-hand
side of (7.1J) as the short (respectively median, long) range terms. The
first point is that Fz is small when £, is large for 1 < Z < Z{ because
proposition .4 implies that

(7.13)  Fz(z,y) <pg, 1+ [t)7 ¢

v k—1 kg1
" M \ Z1 1 ( Z > 2
N Y 1\ z

vz, (1+y%)

for 1 < Z < Zf* and for any € > 0. As a consequence, the short range terms
do not restrict the length of the mollifier at least when k, is large. More
precisely, if kg > 14 2(1 ) then one gets thanks to theorem [.1] (that is to
say the J-method symbol):

(7.14) > 2 o ( >qu(1,Zf‘) Khyg (L+[t)7

qe{1,q} (c,d)e N*2
qllc
dj

q

for some § > 0. The long range terms ”weakly” restrict the length of the
mollifier. This is mainly caused by the factor (%)Al in theorem [7.9 with
A as large as needed. Applying this theorem (that is to say the spectral

method on average), one gets for § admissible and k > kg + % + g:
(7.15)

€%+g 2+
> Y Gu(f) Cul+0) Snge (1410 (__9+ _9>
Ge{La} (edjen+? © 20 g2

alle

d\ﬁ

for any € > 0. The main restriction comes from the median range terms.
Applying theorem [ (that is to say the spectral method on average), one
gets for ¢ admissible and k > kg + % + g

(716) > > dq <i>ch(Zf‘,Z)<<k,g,e(1+\t\)Bq€

ge{1,4} (c,d) EN*2

qlle
d|<
q




REAL ZEROS AND SIZE OF RANKIN-SELBERG L-FUNCTIONS IN THE LEVEL ASPECH

for any € > 0. Collecting these estimates, one gets for 6 admissible, £, >
5 21 0

1+mandk>k9+j+§

(7.17)

5 [(0iFs 20 pitieae
Errtwist’(q,f; p) = Oe,k,g ()= (1 + [S(w)]) g + g + o_1l_p
q2 qz q 2
and so
(7.18)

1 1 1
19 —0 a-1-9

520 [8+20 [ +6-2a
Errsec(q, Ly 1) = Og kg ((qL)e(l +S())? ( T :
q2 q? q

Thus, every A strictly less than

(1220 2a-1-20
A5+ 20)" 2(11 + 26 — 4q)

is effective provided k and k, are large enough. We choose o := % + % + %
to maximize the last quantity.
|

7.3. A new subconvexity bound. As a consequence of the improvement
of the bound of Errtwist(q,/; ), we prove the new subconvexity bound
of Rankin-Selberg L-functions given in Theorem B by applying the am-
plification method. Setting (as in [KoMiVd]) for L > 1 an integer and

7 = (2¢),<p<, a sequence of complex numbers satisfying 2, = 0 if ¢ | ¢

Lo(u L T) = Y weMy((1,70); ),
1<(<IL,

one has according to [KoMiVa] (page 151)

. o,(l
Ly L F) = Y aBrrtwist(q, 6 )4 0e | (L1056 3 Jg 220

1<¢<L 1<¢<L Ve
which leads to:

Proposition 7.3. Let a € |0,1[. Let g be a primitive cusp form of square-
free level D, weight kg > 1+ 2(1—300 and trivial nebentypus and p € C.
Assume that q is a prime coprime with D and that k > k; +6. If 0 is

admissible and |R(p)| < @ then for any 1 < L < g,

o, (f
LT I T) <ony <qL>€<1+|t|>B< S e gjz)
1<¢<L

L0 pits—e\

for any € > 0.
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Proof of Theorem B. As in [KoMiVg|, let Q(.) be the following quadratic
form:
2
L 1
0@)= % | X a0 [p(fxag+n)

FeSt(q) |1<L<L

2

for L < \/g. We define X := (Xy), o2 with:

Xy = Z Z Tt Taey -
1<01,62< 5
It is proved in [KoMiVd| that Q(7') <, Ly(u, 5 L?; )_(2) This leads to:

2

> wAr(0) 'L(fo,%+u>

1<¢<L

2

Keg (aL) (L +[t))7q <|I7II§

L4260 p5+0-2a
M e=aar==y 5l

for any € > 0. We choose the following classical lacunary GL(2)-amplifier:

—1  if £=p® with peP, p<VI,
zo={ Ap(p) if £=p with peP, p<+VIL,

0 else.

With such a choice,

(rate

Setting L = ¢** with 0 < = < %, we have:

(rend

2

1 3 9
<<s,k,g (qL)E(l_HtDB (%+q§+0L4+20+q§+0—aL§+6—2a> )

2

1
L kg ¢C(1+ it inf . <q1—$ 4 B OB+
O<m<Z

+ q%+0—o¢+(9+29—4a)x> )

1-26
2(9+40)
right-hand side which achieves the proof of Theorem B for j = 0 in a neigh-

bourhood of the critical line. The other cases (j # 0) follow from Cauchy’s
inequalities.

Finally, we choose = = and « := % + %0 + %02 to minimize the

APPENDIX A. THE HARMONIC MOLLIFIED SECOND MOMENT AWAY FROM
THE CRITICAL POINT

The aim of this part is to prove the following bound of W"(g; ) when p
is on the right of the origin:
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Theorem A.l. Let g be a primitive cusp form of square-free level D and
trivial nebentypus and f be a non-negative function satisfying:

lim f(q) = oo,

g—+o0
flg) = o(logq).

Assume that q is prime, coprime with D. If R®(u) > f;(gq; and A is effective
then for any 0 < a < 4A(1 —T), we have

(A1) W) = A4+ Oy (130"

for some absolute constant B > 0.

We only give a sketch of the proof of this theorem based on two lemmas
and a classical convexity argument. As usual, p is a complex number and
7 := R(u) and ¢t := F(u). On one hand, just on the right of the critical
point, we have:

Lemma A.2. If T = % > 0 where f is a non-negative function satisfying:

lim f(q) = +oc,

q—-+oo

fla) = o(logq)
and A is effective then

(A.2) W (g; 1) <4 (1+t)7.

Proof of lemma [A73. According to remark [.4, W (1) < g 1 if [t] < 1.
So, we may assume that [¢| > 1. According to proposition 5.3 and its proof,
we know that up to an admissible error term

1
Z ngQ(a’ﬁ)Wg(a?ﬁ): Z ql(a’ﬁ)W/(g) /(3) hg(aaﬁasla‘S?)

(0, 8)=(Fp,%70) (o,B)=(Fp,%7)
dsi ds
X ng(317M17047ﬁ)ng(327M27 aa/B)L(g X g, 1 + S1 + S9 + 2T)3—213—22
1 2

with for z € {u1, po},

@L(l—'f)s (Pi(S)LTs _ ﬁR/LlT(S)>
L(g x g,14 s+ 22)
(P +s+22)L(gxg,l+a+s+2)L(gxg,1+B+s+2)
We are going to evaluate each term occurring in the previous equality sep-
arately. One should remark that

U(a, B) < (1+ [t)) log” (q)(gD)27He+?

for some absolute constants A and B and also that:

Cartais 1 if (o, 8) = (w, ),
(4D) < {exp (=2f(q) else.

So, we are going to give details only for the worst case which is («a, 3) =

ng(s, z,a, 3) =

(1, ). We shift the sj-contour and the sg-contour to (—i—locglq) without
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crossing any poles (¢; > 0). Then, we shift the s; contour to (—locg?q) with

1 < (1 —=7")eg < 2(1 —7) hitting some poles at s; = 0 and s = s9 — 27.
The residual integral is bounded by log” (q) exp (—4A((1 — T)ez — ¢1)f(q))
for some A which is admissible. The contribution of the pole at s; = s9 — 27
is bounded by exp (—2A(2(1 — T) — ¢1)f(q)) x log® (q) for some A which is
admissible. The contribution of the pole at s; = 0 is given by

g(D)(l—i—Q,u)L(gxg,1+27')217rlogL (+cllo(g;> gl 1, U,

L(g x g,1 + s2 + 271)
“ (P14 52+ 20)L(g x 9.1 + 27 + 52)

ds
X L(lfT)sz <P£(82)LT32 _ ’I"RLl T( )) _22

53

We shift the ss-contour to <—10(g)> hitting only a pole at s = 0. The

residual integral is bounded by log? (¢) exp (—2Af(q)) for some A which is
still admissible and the contribution of the pole is given by:

U (p, 1) _w@) Sl +2m)
(DT T 2¢O (1 + 20)E(g x 9,1 +27) ¢ CO(2(1+27))
which is bounded.

hg(/% ﬁa 07 O)

On the other hand, very far away % in the domain of absolute convergence,
we have:

Lemma A.3. If 7 > % + € then
1 2
‘E(.xg,§+u>—1

This lemma is an easy consequence of [l.4 as we are in the domain of
absolute convergence of Rankin-Selberg L-functions.
Proof of theorem [A 1. Lemma A and -3 together with a Phragmen-
Lindelof type principle for subharmonic functions which can be found in

K] give
1
‘E(.xg,§+u>—1

where « is the affine function satisfying o (r9) = —4A(1—=T) (10 — (3 +¢))

and « <1{)(g()1) = 0. This leads to

1
(xos+r)

which concludes the proof by choosing € small enough and 7y large enough.
|

(A.3) Al

] <. q74A(17T)(7—7(%+5))

for any € > 0.

h
Aq

2
] < (14 [t))Bg™™

2 _4A(1—T)(70—(%+5))
—1| | < (1+t)h7q E

T

h
Aq
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APPENDIX B. BOUNDING THE CONTRIBUTION OF OLD FORMS

The main purpose of this appendix is to deal with the eventual existence
of old forms in Si(g) (when k > 12). In other words, we prove that ([L.§)
still holds even if there are some old forms in Si(g). Let N > 1. We define
for every integers m,n > 1 the operator Ay by:

(B.1)  An(m,n) = dmn + 2 3 MJ’“ (4W\£W> |

ik
ceN*
c=0 mod N

where S(m,n;c) is the Kloosterman sum for which we recall Weil’s bound

(confer [Wd]):
(B.2) |S(m,n;c)| < T(c)(m,n,c)%\/a

Then, Petersson trace formula expresses this operator as an average over an
orthogonal basis Bi(N) of Si(N):

(B.3) An(m,n) = Z wn (h) g (m) i (n)

heBi(N)

where wy,(N) [GoHoL4].
H. Iwaniec, W. Luo and P. Sarnak have restricted themselves in [[wLuSd||

to average over primitive forms:

Theorem B.1 (H. Iwaniec-W. Luo-P. Sarnak (2001)). Let N > 1 be a
square-free number.

M 2
B4) > wn(ma(n) Z ML Z AM mi?,
heSP(N) l|L

The authors showed in [KoMiVd] using Petersson trace formula (confer
section [.]] or page 138 of [KoMiVd]) that if there are no old forms in Sk(q)
and if 1 </ < g then

@D)POME 0 = Y epegla, HMg((a, B):0)

(a,8)=(Fp, 1)

and that for any (o, 8) = (£u, £0):

(B.5) Myl((a qu Z’“‘ lp(a)y )

ee=/{
)\g(m))\g(n) < m > <aén>
———V, .| —= |V, Ay(m, aen).
m;zl /mn 9, qD 9, B qD ( )

In our case, there are some old forms as the weight £ may be large but their
contribution is small.

Proposition B.2. Let g be a primitive cusp form of square-free level D and
trivial nebentypus. Assume that q is prime, coprime with D. If u € C and
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1<l < q then

IS

e £q(€) p(a)ep(a)
(B-G) Mg((a,ﬁ);ﬁ): )‘g(b)

ée=l
2 M\/m—i(m g.0 (%) Voo (%) Ag(m, aen)

m,n>1

e

<

+ Oc kg <(q€)5(1 + !%(M)I)B§>

for some B > 0 and for any € > 0.

As a consequence, if 1 < £ < g then ([.§) is still valid even if there are
some old forms. We will need the following easy lemma:

Lemma B.3. Let N > 1. For every integers m,n > 1, we have:

vmn
N .

(B.7) An(m,n) < (Nmn)®

Proof of proposition B.2 The multiplicative properties of Hecke eigen-
values of f and g lead to:

(B.8) My((av,§);6) = Z Z’“‘ len(@) y by

ée=/{ ab=¢é
= i, ()0, () 5 o

m,n>1 fesy(a)

We split the summation as follows:

(B.9) oot Y e Y =TI+ 11

qgtm gin g3|mn
a*n a*tm

The reader may check using mainly (F.1) and (B.) that IT] <. q‘f@. For
the first term in (B.9) (the same analysis works for the second one), one can

apply (B.4) which gives

21%

- Z Z qm \/(ﬂvg, (qD> Vy.5 <“eg> Ay (m?, aen) := Ta—TIb,

q\q
qQ’m



REAL ZEROS AND SIZE OF RANKIN-SELBERG L-FUNCTIONS IN THE LEVEL ASPECHI

Petersson trace formula (B.) leads to

dlg>= ~ heSP(1) m>1
qtm
Z n)Ap(aen) < ~n)
g7
= fl/ (g An) D
21,11
1 1
— = )Ibl x 102.
q q

hesg(1)

»-Qr

Let us study Ib2 (the same works for Ib1):

m2=% WVM <c;%z>

n>1
qin

1 Ag(n)Ap (aen) <aén>
+ ! Vos | —= | = 1b21 + Ib22.
v(q) g vn 22\ qD

qlln

We limit ourselves to give an estimate of Ib21. Mellin’s inversion formula
entails that

1 1 gD\* —
B.12 m21=— | L 2, - —
( ) b 207 Joo <ae,q '5 + z) <aé> Vy.5(2)dz

with L(ae, ¢% 2) := Y n>1 An(aen)\g(n)n== and
7*tn

. to00
VzeC, V,p(2):= / 27V, p(2)de < (1 +|t) P22
0

ae 2
As usual, L(ae, % 2) = R{ae; ) 28] where R(ae; 2) 1= 50y 225200

converges on $(z) > 0 and satisfies over there R(ae; z) < 7(ae) <. (ae)® for
any € > 0. Shifting the z-contour to R(z) = ¢ in (B.13), the convexity bound
for L(h x g,.) implies that Ib21 <. (gae)*(1+ |t|)? for any € > 0. The same

lines give I1h22 <. \(/que( )(1 + [t)P for any £ > 0. Finally, Ib <, (aeqq)E for
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any € > (0 and we have prove that:

(B.13) M, qu Z” S@), (v)

ée=l

2 M\/%WVW (%) Vs (%) Aq(m, aen)

m,n>1
-y Sy MR
ee=l ab=é
Ag(m)Ag(n) (m) (aén) N/
———V .| —= |V —Am,aen+0 0F(1 + |t AS N
m;l Vmn**\qD ) "7\ gD al )+0cg | (¢0)° (1 + [¢]) .
q2|n;n

The second term in (B.13) is bounded by <. 4 (q@)e% for any £ > 0 thanks
to lemma B.3.
|

APPENDIX C. A REVIEW OF MAASS FORMS

In this appendix, we only give the minimal knowledge about Maass forms
in order to follow the notations which are used in this paper. The reader
may see [DuFrIw?] for all the details. Let N > 1 be a natural integer. A
function f : H — C is said to be Iy(N)-automorphic of weight 0 and trivial
nebentypus if it satisfies f(v.z2) = f(z) for any v € IH(N). We denote
by Lo(N) the space of square-integrable Ij(N)-automorphic functions with
respect to the scalar product:

(f.9) = /F oIty

The Laplacian Ag := y? <aaTQm + %) acts on Lo(V) and splits it in eigenspaces.
There are two components: a discrete one spanned by the so-called Maass

cusp forms and a continuous one spanned by the Fisenstein series which
are given for any cusp k of IH(N) by

Ei(z,s) := Z (%(0217-2))8

YEWIo(N)), \o(N)

where o is a scaling matrix for the cusp x. The Eisenstein series is holo-
morphic on Re(s) > 1 admits meromorphic continuation to C with only
one pole on R(s) > 5 at s = 1 and are elgenfunctlons of the Laplacian:
(Ao + A(8)Ex (., 8)) = 0 with A(s) := s(1 — s) and s = 2 +ir (r € C). They

admit the following Fourier expansion

1 1
B (205 ir) = duton (5 +ir ) 442 S il K Calaly)e(ne)

nez*
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with for any n € Z*

(C.1)
s‘ ‘ir—% ng (w N) %Jrir 5
m™n Y w z : —1—2ir E
pf@(nar) = 1 R < ) Y (& (—n >
5 N
r (2 + ”a) w gcd(’y,%):l 6 mod (yw) Tw
ged(d,yw)=1

in the space ¥(r) < 0 for k = & with w | N, ged(u,w) = 1, 1 < u
ged (w —) Here, ¢, ( ) is some explicit complex number. Let & (N
be the closure for (.,.) in EO( ) of the C-vector space spanned by:

\_/I/\

Z (0 (%(0;17.2)) , ¥ compactly supported in R
Yo (N)), \Mo(N)

Ay has a continuous spectrum on &y(N) which is [i, ~+00 [ and its multiplicity
is the number of cusps of IH(N). Moreover, if f belongs to & (V) then

£(2) = (f o uo(2) + = +°° (105 (o +ir) ) e (2 wir) o

/@ECusp(Fo N)

where ug is the constant function of value (Vol(XO(N)))fé. Let Co(N) be
the (.,.)-orthogonal of & (N): it is the space generated by the Maass cusp
forms. The Fourier expansion of a Maass cusp form f at infinity is

1
=25 3 ppm)lnl* Kir, (2rlnly)e(nz)
nez*
where (Ag+Af) f = 0 and A\f = A(sy) = )\(% —l—irf). Let (uj)j>1 be
an orthonormal basis of Cy(N) made of Maass cusp forms. If f belongs to
Co(N) then
F(2) = (fuy) ui(2).
i>1
J.-M. Deshouillers and H. Iwaniec established in [Delw]| the following large
sieve inequalities for all the previous Fourier coefficients
2

1 1 2 Mte 2
(C.Q) Z Cosh% Z amm2pj(m) < | R +T ||a||2a

lrj|<R (mr5) 1<m<M

(3

2

Z amm%pﬁ(m,r) dr <.

1<m<M
M1+e
(724 25 ) lal

for R > 1, any € > 0 and any sequence of complex numbers ()<< -
The Hecke operators (T},), -, also act on Lo(N), commute with Ay and are
hermitian if ged(n, N) = 1. A Hecke-Maass cusp form is a Maass cusp form
which is also an eigenfunction of the T, for ged(n, N) = 1. A Hecke eigenba-
sts is an orthonormal basis of Co(N) made of Hecke-Maass cusp forms. For

2

CHIY / .

k€Cusp(Ip(N
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f a Hecke-Maass cups form of Hecke eigenvalues (A¢(n)) y—1» one has

for any ged(mn, N) = 1: pedn
(C.4) Apm)Ap(n) = Y en(d)A(mnd™?),
dlmAn
(€5) Ap(mn) = 3 p(d)en (A p(m/d)As(n/d).
dlmAn

The action of Hecke operators on the Fourier expansion of a Hecke-Maass
cusp form f is known:

(C.6) Vimpg(m)As(n) = 3" en(d)ps(mnd =)/ .

dlmAn

©1 Vi) = 3 uden(@ogonjay[Tan/a)

dlmAn

for any m,n > 1 with ged(n, N) = 1.

APPENDIX D. THE COMPUTATION OF AN EULER PRODUCT

The purpose of this appendix is to prove that the arithmetical constants
which appear in the asymptotic formulas of the harmonic mollified second
moment equal one. More precisely, we prove that equations (f.19) and (f.23)
hold.

Remember that, according to lemma [B.§, ho(u + T, 1, 71) is an absolutely
convergent Euler product when the real part of  is greater than a small neg-
ative real number (say 107%) namely ho(u+72, p, i) = [Lep hop(p+5, p, 1)
with (confer (b.19)):

(D.1)
TR L xg,14+z+u)L xXg,l+z+T7
Vp € P hop(ptt ) =[] ( o9 X9 - ﬂz) p(9 X g u))
se{p} Ly" (Sym*(g), 1 + 22)

Lp(g X g’ 1 + //J + ﬂ)Lp(,U, +ﬁuuaﬁ)

where Ly(u+7, p, z) is defined in (5.13). Firstly, we need to have an idea of
the shape of v,(p*;u,v) (see (B.2) for its definition) for any prime number
p, any natural integer 1 < k < 4 and any complex numbers v and v.

Lemma D.1. Let p be a prime number, 1 < k < 4 be some natural integer
and u, v be some complex numbers. If Q :==p~ ', U :=p ™ and V :=p~?
then it turns out that Vg(pk; u,v) is of the following shape:

vy u,v) = (1 +ep(p)QUV) ' Pyi(Q,U, V)

where Py 1(Q,U, V') is some explicit polynomial in three variables whose co-
efficients depend on ep(q) and on )\g(p)i (1<i<k).
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Proof of lemma [D.1. We set for any natural integers a, b > 0:
S a b u, 1) — Z)\ k+a k+b)QkUkvk
k>0

The relationships beetween Hecke eigenvalues of g enable us to express
Sg(a,b;u,v) in function of S;(0,0;u,v) by induction. More precisely, it
shows that:

Sg(a,b;u,v) = (1+ep(p)QUV) 'Ry op(Q,U, V)

for some explicit polynomial in three variables R, ,,(Q,U, V) whose coef-
ficients depend on ep(g) and on Ay(p)* (1 < i < a +b). In addition, one
remarks that:

Sy(0,0;u, v)vy (pt;u,v) (U +V)Sy(1,0;u,v),

Syl e (phu,v) = (U4 V?)S,(2,0;u,v) + UVS,(1, 1;u,v),
Sy(0,0;u,v)vy(p%u,v) = (U 4+ V3)S,(3,0;u,v) + (U*V +UV?)S,(2,1;u,v),
S4(0,0;u, v)vy (p*; u, v) (U + VS, (4,0;u,v) + (UV + UV?)S,(3, 15 u,v)

+UV28,(2,2; u,v).

Both previous remarks lead to the result.

0,0;u,v)ry

Remark D.1. The proof of lemma also gives the explicit procedure we
used for computing v, (p*;u,v) for any prime number p, any natural integer
1 <k <4 and any complex numbers u and v.

Having this in mind, we can compute the local factor hg,(p + i, p, 7t) at
each prime p which does not divide g¢:

Lemma D.2. Let pu be a complex number. We have:
h27p(:u‘ + ﬁa Hy ﬁ)
D _

6@+ p+ 1)

Proof of lemma D.2. Once again, we set Q := p~ !, U := p~* and
V := p~#. With these notations and knowing the local factors of Rankin-
Selberg L-functions and symmetric-square L-functions, one computes that

(D.2)
11 <Lp(g X g, 1+ 2+ 1) Ly(g ><g,1+z+ﬂ)> Lp(gx g 1+p+7) _
Ly (Sym?(g), 1 + 2z) &P+ p+ )
(1= Xg(p)*QUV)™*

Vp1aq, =1

z€{p,n}

if p| D and p 1 q and that

(D.3)

11 <Lp(g X g, 1+z+p)Ly(g ><g71+z+ﬁ)> Ly(gxg1+p+7)
L (Sym?(g), 1 + 22) G20+ p+7)

1+QUV
(1-QU?)(1-QV?)(1—-QUV)(1+2QUV — \;(p)?QUV + Q?U?V?)

ze{p,m}
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if p 1 (Dgq). According to lemma and its definition, Ly,(u + 7, i, 1) for
any prime number p is, a priori, a rational fraction in three variables Q, U
and V; namely it looks like

- PI(Q’ U> V)

P2(Q’ U> V)
for some polynomials P, and P» of total degrees less than 20 whose coef-
ficients depend on €4(p), ep(p) and on the Hecke eigenvalues of g at the
powers of p namely )\g(p)’l‘C for 1 < k < 4. To factor this fraction we have
used a computational algebra system; for instance the scripts of this com-

putation (vg.mws, ctemumubar.mws and cte.mws) are available at
http://www.dms.umontreal.ca/~ricotta. We obtain

(D.4) Ly(p+5,p,m) =1— )‘g(p)QQUV

if p| D and p{q and
(D.5)

Lp(lu‘ + ﬁa M, ﬁ)

(1-QU?(1 - QVH(1—-QUV)(1+2QUV — X\, (p)*QUV + Q*U?V?)
14+QUV

if pt Dq. Note that the computations above are purely formal (no numerical
approximation is made); in fact, once the above factorizations have been
obtained, it is possible (but lenghtly) to check them directly by hand. Then
we finish the proof of lemma D.2 by simplifying (D.3) with (D.4) and (D.3)

with (D.5).

Ly(p+75. 11, ) =

We can now state the main result:

Proposition D.3. Let u be a complex number with 7 := R(u) > —~ for
some v > 0 small enough. We have:

ho(p + 0, p, 1) (;)
R+ r@) P

for some 6 > 0.

Proof of proposition [D.3. The proof is an immediate consequence of
the previous lemma as the various Euler products are absolutely convergent
under the assumption made on u. The admissible error term comes from
the local factor of the Euler product at the primes which divide q.
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