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Strong Normalization of ��~�-
al
uluswith Expli
it SubstitutionsEmmanuel PolonovskiPPS, CNRS - Universit�e Paris 7Emmanuel.Polonovski�pps.jussieu.frAbstra
t. The ��~�-
al
ulus, de�ned by Curien and Herbelin [7℄, is avariant of the ��-
al
ulus that exhibits symmetries su
h as term/
ontextand 
all-by-name/
all-by-value. Sin
e it is a symmetri
, and hen
e anon-deterministi
 
al
ulus, usual proof te
hniques of normalization needssome adjustments to be made to work in this setting. Here we prove thestrong normalization (SN) of simply typed ��~�-
al
ulus with expli
itsubstitutions. For that purpose, we �rst prove SN of simply typed ��~�-
al
ulus (by a variant of the redu
ibility te
hnique from Barbanera andBerardi [2℄), then we formalize a proof te
hnique of SN via PSN (preser-vation of strong normalization), and we prove PSN by the perpetualityte
hnique, as formalized by Bonelli [5℄.1 Introdu
tion1.1 ��~�-
al
ulus and Expli
it SubstitutionsThe ��~�-
al
ulus, de�ned by Curien and Herbelin [7℄, is a symmetri
 variantof Parigot's ��-
al
ulus [11℄ that provides a term notation for 
lassi
al sequent
al
ulus. It exhibits symmetries su
h as terms/
ontexts and 
all-by-name/
all-by-value. Its two main redu
tion rules form a symmetri
 
riti
al pair, whi
hmakes the 
al
ulus non-deterministi
 (non-
on
uent) and raises diÆ
ulties innormalization proofs : a naive de�nition of redu
ibility 
andidates would fall ina symmetri
 loop of mutual indu
tion.On the other hand, 
al
uli with expli
it substitutions were introdu
ed [1℄as a bridge between �-
al
ulus [6℄ and 
on
rete implementations of fun
tion-nal programming languages. Those 
al
uli intend to re�ne the evaluation pro-
ess by proposing redu
tion rules to deal with the substitution me
hanism { ameta-operation in the traditionnal �-
al
ulus. In the study of those 
al
uli, animportant task was to establish good properties su
h as:� Simulation of � redu
tion, whi
h says that a term that 
an be redu
ed toanother in the traditionnal �-
al
ulus 
an also be redu
ed to the same onein the 
al
ulus with expli
it substitutions.� Con
uen
e, whi
h says that whatever redu
tion strategy you 
hoose, you
an always �nd a 
ommon redu
t.



� Preservation of strong normalization (PSN), whi
h says that if a term is�-strongly normalizing (i.e. 
annot be in�nitely redu
ed), it is also stronglynormalizing with respe
t to the 
al
ulus with expli
it substitutions.� Strong normalization (SN), whi
h says that, with respe
t to a typing sys-tem, every typed term is strongly normalizing in the 
al
ulus with expli
itsubstitutions.It was remarked, at on
e, that expli
it substitutions raises more diÆ
ultiesin normalization proofs, due to the fa
t that redu
tions 
an now take pla
ein an argument substituted in a term to a variable whi
h is not free in thatterm. Su
h redu
tions produ
e no tra
e in the original 
al
ulus, be
ause thesubstitution is bounded to disappear. Therefore we 
annot easily infer SN forexpli
it substitutions from strong normalization of the original 
al
ulus.1.2 The ��~�-
al
ulus with Expli
it Substitutions: ��~�xHere we work on ��~�x, an expli
it substitutions version \�a la" �x [4℄ of the��~�-
al
ulus. Its syntax was introdu
ed in [9℄ and, in the same paper, therewas an attempt to prove strong normalization of the deterministi
 
all-by-namefragment dire
tly by the redu
ibility te
hnique. Unfortunately, the te
hnique didnot work so ni
ely, and the proof of a key lemma (Weakening lemma) turned outto be bugged... We keep this te
hnique for the pure 
al
ulus (i.e. without expli
itsubstitutions), and, in order to lift it to the symmetri
 
al
ulus, we adjust it likeBarbanera and Berardi did for their symmetri
 �-
al
ulus [2℄. We will see thatredu
ibility sets 
onstru
ted by �xed point ensure that their de�nition will notfall in the symmetri
 in�nite loop of terms de�ned by 
ontexts and vi
e versa.To prove SN, we formalize a te
hnique initially suggested by Herbelin, whi
h
onsists in expanding substitutions into pure ��~�-redexes and to inherit SN ofthe whole 
al
ulus by SN of the pure 
al
ulus and by PSN.Finally, to prove PSN, we use the perpetuality te
hnique, as formalized byBonelli [5℄. The main point of this te
hnique is to exhibit a strategy wi
h pre-serves in�nite redu
tions. This together with some material to tra
e the substi-tutions ba
kwards, allows us to establish PSN by 
ontradi
tion.In the sequel, we will note SNR for the set of strongly normalizing terms inthe 
al
ulus R. We will use FV (t) to denote the set of free variables of t, de�nedin the usual way.1.3 OrganizationWe �rst present the (simply typed) ��~�-
al
ulus and we prove SN by the re-du
ibility te
hnique (se
tion 2). In se
tion 3, we use the perpetuality te
hniqueto establish PSN. Se
tion 4 formalizes the proof te
hnique of SN via PSN, andgives the material to use it for ��~�x. Finally, we give the proof of SN of ��~�xin se
tion 4.3.



2 The ��~�-
al
ulus and its Strong NormalizationWe �rst re
all the de�nition of the ��~�-
al
ulus, then we de�ne redu
ibility setsand �nally we establish strong normalization of the pure 
al
ulus.2.1 De�nitionThere are three synta
ti
 
ategories: terms, 
ontexts and 
ommands, respe
tivelynoted v, e and 
. We take two variable sets: V ar is the set of term variables,noted x, y, z et
. ; V ar? is the set of 
ontext variables, noted �, �, et
. We willnote t an obje
t, i.e. one of v, e or 
. The syntax of the ��~�-
al
ulus is:
 ::= hvjeiv ::= x j �x:v j e � v j ��:
e ::= � j ��:e j v � e j e�x:
Redu
tion rules are given below. The rules (�) and (e�) form a 
riti
al pair:(�) h�x:vjv0 � ei ! hv0je�x:hvjeii(e�) he0 � vj��:ei ! h��:hvjeije0i(�) h��:
jei ! 
[e=�℄(e�) hvje�x:
i ! 
[v=x℄(sv) ��:hvj�i ! v if � 62 FV (v)(se) e�x:hxjei ! e if x 62 FV (e)Types are usual simple types plus the minus type A � B whi
h is the sym-metri
 
ounterpart of the arrow type A ! B, its meaning is A and not B. Wework here in 
lassi
al sequent 
al
ulus, with a notation to exhibit a formula in asequent: � ` Aj� is the same sequent as � ` A;� but the formula A is exhibitedas a
tive formula. For further details about this framework and the isomorphismwith obje
ts of the ��~�-
al
ulus, see [7℄.Three sequent forms are used to type the synta
ti
 
ategories: the 
ommandsare typed by (� ` �), the terms by � ` Aj� and the 
ontexts by � jA ` �.Here are the typing rules:
 : (�; x : A ` �)� je�x:
 : A ` � � ` v : Aj� � je : A ` �hvjei : (� ` �) 
 : (� ` � : A;�)� ` ��:
 : Aj�� j� : A ` �;� : A �; x : A ` �jx : A� je : B ` � : A;�� j��:e : A�B ` � �; x : A ` v : Bj�� ` �x:v : A! Bj�� ` v : Aj� � je : B ` �� jv � e : A! B ` � � ` v : Bj� � je : A ` �� ` e � v : A�Bj�



2.2 Redu
ibility SetsWe simultaneously de�ne, by indu
tion of the type stru
ture:{ the operators:Lambda(X1; X2) =Def f�x:v j 8v0 2 X1; e 2 X2 hv[v0=x℄jei 2 [[`℄℄gCons(X1; X2) =Def fv � e j v 2 X1 and e 2 X2gL̂ambda(X1; X2) =Def f��:e j 8e0 2 X1; v 2 X2 hvje[e0=�℄i 2 [[`℄℄g℄Cons(X1; X2) =Def fe � v j e 2 X1 and v 2 X2gMu(X) =Def f��:
 j 8e 2 X 
[e=�℄ 2 [[`℄℄gfMu(X) =Def fe�x:
 j 8v 2 X 
[v=x℄ 2 [[`℄℄gRemark 1. Mu and fMu are de
reasing operators: the greater X is, the lesserone 
an �nd ��:
's (resp. e�x:
's) that normalize against all e in X .Then� if A is atomi
 Neg[[`A℄℄(Y ) = V ar [Mu(Y )Neg[[A`℄℄(X) = V ar? [ fMu(X)� if A = A1 ! A2Neg[[`A℄℄(Y ) = V ar [Mu(Y ) [ Lambda([[` A1℄℄; [[A2 `℄℄)Neg[[A`℄℄(X) = V ar? [ fMu(X) [ Cons([[` A1℄℄; [[A2 `℄℄)� if A = A1 �A2Neg[[`A℄℄(Y ) = V ar [Mu(Y ) [℄Cons([[A1 `℄℄; [[` A2℄℄)Neg[[A`℄℄(X) = V ar? [ fMu(X) [ L̂ambda([[A1 `℄℄; [[` A2℄℄)Sin
eMu and fMu are de
reasing operators,Neg is also a de
reasing operator.So Neg[[`A℄℄ Æ Neg[[A`℄℄ is an in
reasing operator, and by Tarski's theorem ithas a �xed point X0 ;{ the redu
ibility sets: [[`℄℄ = SN ��~�and [[` A℄℄ = X0 and [[A `℄℄ = Neg[[A`℄℄(X0):



Proposition 1 (Good de�nition). The redu
ibility sets de�ned above satis�es(i) V ar � [[` A℄℄(ii) V ar? � [[A `℄℄(iii) v 2 [[` A℄℄ () either v = xor v = e � v0 with A = A1 �A2;e 2 [[A1 `℄℄ and v0 2 [[` A2℄℄or v = ��:
 and8e 2 [[A `℄℄ 
[e=�℄ 2 [[`℄℄or v = �x:v0 with A = A1 ! A2 and8v00 2 [[` A1℄℄; e 2 [[A2 `℄℄ hv0[v00=x℄jei 2 [[`℄℄(iv) e 2 [[A `℄℄ () either e = �or e = v � e0 with A = A1 ! A2;v 2 [[` A1℄℄ and e0 2 [[A2 `℄℄or e = e�x:
 and8v 2 [[` A℄℄ 
[v=x℄ 2 [[`℄℄or e = ��:e0 with A = A1 �A2 and8e00 2 [[A1 `℄℄; v 2 [[` A2℄℄ hvje0[e00=�℄i 2 [[`℄℄Proof. From the de�nition of the redu
ibility sets, we have [[`℄℄ = SN ��~� andthe points (i) and (ii). We prove the points (iii) and (iv). Due to the symmetry,it suÆ
es to prove (iii).v 2 [[` A℄℄ () v 2 Neg[[`A℄℄ ÆNeg[[A`℄℄([[` A℄℄):We then 
onsider the di�erent shapes of A and we inline the 
orrespondingde�nition of Neg[[`A℄℄ ÆNeg[[A`℄℄([[` A℄℄).2.3 Strong NormalizationHere are the two traditionnal lemmas of strong normalization of the redu
ibilitysets (RS) and 
losure by redu
tion.Lemma 1 (SN of RS). Let A be a type. Then [[` A℄℄ � SN ��~� (1), [[A `℄℄ �SN ��~� (2) and [[`℄℄ � SN ��~� (3).Proof. By indu
tion on the stru
ture of A.1. We 
onsider the di�erent forms of v 2 [[` A℄℄:{ v = x: then v 2 SN ��~�.{ v = e � v0: then A = A1 � A2 and we 
on
lude by using the indu
tionhypothesis twi
e.{ v = ��:
: by the point (ii) of proposition 1, � 2 [[A `℄℄, then, by the point(iii) of proposition 1, 
[�=�℄ 2 [[`℄℄, that gives us 
 2 [[`℄℄(= SN ��~�). Wethen have ��:
 2 SN ��~�.



{ v = �x:v0, then A = A1 ! A2: to get v 2 SN ��~�, we need v0 2 SN ��~�.By redu
ibility of �x:v0, we have 8v00 2 [[` A1℄℄; e 2 [[A2 `℄℄ hv0[v00=x℄jei 2[[`℄℄(= SN ��~�). By the points (i) and (ii) of proposition 1, we 
an takex for v00 and � for e, and that gives us hv0[x=x℄j�i 2 SN ��~�. We dedu
ev0 2 SN ��~� and 
on
lude.2. The proof for e is similar to the proof for v by symmetry.3. By de�nition [[`℄℄ = SN ��~�.Lemma 2 (Closure by redu
tion).1. v 2 [[` A℄℄; v ! v0 =) v0 2 [[` A℄℄.2. e 2 [[A `℄℄; e! e0 =) e0 2 [[A `℄℄.3. 
 2 [[`℄℄; 
! 
0 =) 
0 2 [[`℄℄.Proof. By indu
tion on A, 
onsidering the di�erent shapes of v, e, and 
.1.1. v = x: then no more redu
tion 
an o

ur.1.2. v = e1 � v1: we must 
onsider two possible redu
tions e1 � v1 ! e2 � v1 ore1 � v1 ! e1 � v2. In either 
ase, we 
on
lude by indu
tion hypothesis.1.3. v = ��:
: we 
onsider the following two 
ases.� The redu
tion is ��:
 ! ��:
0. By de�nition of ��:
 2 [[` A℄℄ we have8e 2 [[A `℄℄ 
[e=�℄ 2 SN ��~�. Then we get 
0[e=�℄ 2 SN ��~� (always forany e 2 [[A `℄℄) and we 
on
lude with the point (iii) of proposition 1.� The redu
tion is ��:hvj�i ! v with � 62 FV (v). We know by hypoth-esis that ��:hvj�i 2 [[` A℄℄, then, by the point (iii) of proposition 1,8e 2 [[A `℄℄ hvj�i[e=�℄ 2 SN ��~�, i.e. hvjei 2 SN ��~�. If v is a vari-able, then we 
on
lude immediately. if v = ��:
, h��:
jei 2 SN ��~�implies that 
[e=�℄ 2 SN ��~�, whi
h gives us ��:
 2 [[` A℄℄ by thepoint (iii) of proposition 1. If v = �x:v0, h�x:v0jei 2 SN ��~� gives us,for e = v1 � e1, hv1je�x:hv0je1ii 2 SN ��~� then hv0je1i[v1=x℄ 2 SN ��~�and hv0[v1=x℄je1[v1=x℄i 2 SN ��~� and �nally, sin
e x is not free in e1,hv0[v1=x℄je1i 2 SN ��~�, whi
h is enough, by the points (iv) and (iii) ofproposition 1, to 
on
lude.1.4. v = �x:v0 : A = A1 ! A2 and the redu
tion is �x:v0 ! �x:v00. By the point(iii) of proposition 1, we know that 8v000 2 [[` A1℄℄; e 2 [[A2 `℄℄ hv0[v000=x℄jei 2[[`℄℄ = SN ��~�, so 8v000 2 [[` A1℄℄; e 2 [[A2 `℄℄ hv00[v000=x℄jei 2 [[`℄℄ = SN ��~�,and we are done.2.x. Same as 1.x. by symmetry (where x ranges from 1 to 4).3. 
 2 [[`℄℄ : then 
 2 SN ��~� and 
! 
0 implies that 
0 2 SN ��~� = [[`℄℄.Here are now some lemmas to \indu
tively build" the membership of a RS.Lemma 3. v 2 [[` A℄℄; e 2 [[A `℄℄ =) hvjei 2 [[`℄℄:Proof. To show that hvjei 2 [[`℄℄ is, by de�nition, to show that hvjei 2 SN ��~�.We take all possible pairs for v and e and we reason by indu
tion on the strongnormalisation of v and e (whi
h we get by lemma 1) and on the length of v ande. We 
onsider all the possible redu
tions of hvjei. If the redu
tion o

urs in vor e, we 
on
lude by indu
tion hypothesis and lemma 2. Else,



� if v = ��:
, the redu
tion is h��:
jei ! 
[e=�℄ and we 
on
lude by de�nitionof ��:
 2 [[` A℄℄,� if e = e�x:
, we 
on
lude symmetri
ally to the last point,� if v = �x:v0 and e = v00 � e0 (with A = A1 ! A2), the redu
tion is h�x:vjv00 �e0i ! hv00je�x:hv0je0ii. We 
onsider the possible redu
tions of hv00je�x:hv0je0ii.By redu
ibility of v and e, we have v00 2 SN ��~� and hv0[v00=x℄je0i 2 SN ��~�.Consequently, sin
e the redu
tions 
annot o

ur in�nitely in those terms, wewill get to redu
e one of the following (where v00 !� v1, hv0je0i !� hv2je2i):{ hv1je�x:hxje2ii ! hv1je2i : by indu
tion hypothesis, we have hv00je0i 2SN ��~� and hv1je2i is one of its redu
ts.{ hv1je�x:hv2je2ii ! hv2[v1=x℄je2[v1=x℄i : this term is also a redu
t ofhv0[v00=x℄je0[v00=x℄i whi
h is in SN ��~� by redu
ibility of v, due to thefa
t that sin
e x is not free in e0, hen
e in e2, e2[v1=x℄ = e2.{ h��:
1je�x:hv2je2ii ! 
1[e�x:hv2je2i=�℄ with v1 = ��:
1. By redu
ibilityof e and by the lemma 2 we have ��:
1 2 [[` A1℄℄, that gives us, byde�nition, that 
1[e�x:hv2je2i=�℄ belongs to [[`℄℄ if e�x:hv2je2i belongs to[[A1 `℄℄. And this last 
ondition is satis�ed, by de�nition, if and only if8v3 2 [[` A1℄℄ we have hv2[v3=x℄je2[v3=x℄i 2 [[`℄℄, whi
h is a 
onsequen
eof the redu
ibility of v (with e2[v3=x℄ = e2, by the same argument asabove).� If e = ��:e0 and v = e00 � v0, we 
on
lude symmetri
ally to the last point.� In all other 
ases, no redu
tion 
an o

ur.Lemma 4. If v[v0=x℄ 2 [[` B℄℄ for all v0 2 [[` A℄℄ then �x:v 2 [[` A! B℄℄. Ife[e0=�℄ 2 [[B `℄℄ for all e0 22 [[A `℄℄ then ��:e 2 [[` A�B℄℄.Proof. By symmetry, we need only to prove one of the impli
ations, let us takethe �rst one. To prove that �x:v 2 [[` A! B℄℄, we need, by the point (iii) ofproposition 1, to prove that for all v0 2 [[` A℄℄; e 2 [[B `℄℄, hv[v0=x℄jei 2 [[`℄℄. Byhypothesis, we have v[v0=x℄ 2 [[` B℄℄. We 
on
lude with the lemma 3.Here is the adequa
y lemma.Lemma 5 (Adequa
y). Let A be a type and t an obje
t su
h that FV (t) �X1 [X2 (X1 � V ar and X2 � V ar?) and the variables xi 2 X1 are of type Biand the variables �j 2 X2 are of type Cj . For all set of obje
ts vi; ej su
h that8i vi 2 [[` Ai℄℄ and 8j ej 2 [[Bj `℄℄ we have, a

ordingly to the shape of t,1. if X1 : B ` v : AjX2 : C then v[v1=x1; :::; vn=xn; e1=�1; :::; em=�m℄ 2 [[` A℄℄2. if X1 : Bje : A ` X2 : C then e[v1=x1; :::; vn=xn; e1=�1; :::; em=�m℄ 2 [[A `℄℄3. if 
 : (X1 : B ` X2 : C) then 
[v1=x1; :::; vn=xn; e1=�1; :::; em=�m℄ 2 [[`℄℄Remark 2. We note X1 : B the enumeration fxi : Biji 2 [1; n℄g (the same forX2 : C).Proof. We note [==℄ the substitution [v1=x1; :::; vn=xn; e1=�1; :::; em=�m℄. We rea-son by indu
tion on the stru
ture of t



{ v = x : then, by hypothesis, 9i; A = Bi. So v[==℄ = vi 2 [[` Bi℄℄ = [[` A℄℄.{ v = e � v0 : by indu
tion hypothesis on e and v0, and by the point (iii) ofproposition 1, we 
on
lude immediately.{ v = �x:v0 : we then haveA = A0 ! A00. Sin
e we 
an rename bound variables,we 
an suppose that x 62 fx1; :::; xng, whi
h gives us (�x:v0)[==℄ = �x:(v0[==℄).By indu
tion hypothesis, for all v00 2 [[` A0℄℄ we have v0[v00=x; ==℄ 2 [[` A00℄℄and by the lemma 4, we are done.{ v = ��:
 : sin
e we 
an rename bound variables, we 
an suppose that� 62 f�1; :::; �mg. Now, by the point (iii) of proposition 1, to prove that(��:
)[==℄ = ��:(
[==℄) 2 [[` A℄℄ we need only to prove that, for all e 2 [[A `℄℄,
[e=�; ==℄ 2 [[`℄℄ whi
h is done by indu
tion hypothesis.{ e : the 
ases for e are similar to those for v by symmetry.{ 
 = hvjei. By indu
tion hypothesis on v and e, and by the lemma 3, we
on
lude immediately.We 
an now establish the main theorem of this se
tion.Theorem 1. Every typed ��~� obje
t is strongly normalizing.Proof. Let t be an obje
t of the ��~�-
al
ul typed by � and �, i.e. su
h thatthe 
on
lusion of its typing judgement is either � ` t : Aj�, or � jt : A ` �,or t : (� ` �). Suppose that its free variables are f�1; :::; �m; x1; :::; xng, ea
hone typed xi : Ai and �i : Bi. By the points (i) and (ii) of proposition 1,we get that for all i, xi 2 [[` Ai℄℄ and �i 2 [[Bi `℄℄. Then, by the lemma 5,t[x1=x1; :::; xn=xn; �1=�1; :::; �m=�m℄ = t is in a redu
ibility set. By the lemma 1,we get t 2 SN ��~�.3 PSN of ��~�-
al
ulus with Expli
it SubstitutionsWe �rst de�ne the ��~�-
al
ulus with expli
it substitutions. Then we show someuseful results on the substitution 
al
ulus. And �nally, we establish the propertyof preservation of strong normalization.3.1 De�nitionTo the three synta
ti
 
ategories presented in the last se
tion, we add a fourth,regarding expli
it substitutions, noted � . In the sequel, � will stand for either aterm or a 
ontext variable. The syntax of the ��~�x-
al
ulus is:
 ::= hvjei j 
�v ::= x j �x:v j e � v j ��:
 j v�e ::= � j ��:e j v � e j e�x:
 j e�� ::= [x v℄ j [� e℄The sour
e Dom(�) of � is x if � = [x v℄ and � if � = [� e℄. The bodyS(�) of � is v in the �rst 
ase and e in the se
ond. We will say that a substitutionbelongs to SN ��~�x if its substituend itself belongs to SN ��~�x.



We extend the typing system by adding a new form of sequent (� ` �) )(� 0 ` �0). Here are the typing rules for expli
it substitutions:� ` v : Aj�[x v℄ : (�; x : A ` �)) (� ` �) � je : A ` �[� e℄ : (� ` �;� : A)) (� ` �)� je : A ` � � : (� ` �)) (� 0 ` �0)� 0je� : A ` �0 � ` v : Aj� � : (� ` �)) (� 0 ` �0)� 0 ` v� : Aj�0
 : (� ` �) � : (� ` �)) (� 0 ` �0)
� : (� 0 ` �0)The redu
tion rules are the following:(�) h�x:vjv0 � ei ! hv0je�x:hvjeii(e�) he0 � vj��:ei ! h��:hvjeije0i(mu) h��:
jei ! 
[� e℄(gmu) hvje�x:
i ! 
[x v℄(sv) ��:hvj�i ! v if � 62 FV (v)(se) e�x:hxjei ! e if x 62 FV (e)(
�) hvjei� ! hv� je�i(x�1) x� ! S(�) if x 2 Dom(�)(x�2) x� ! x if x 62 Dom(�)(��1) �� ! S(�) if � 2 Dom(�)(��2) �� ! � if � 62 Dom(�)(��) (v � e)� ! (v�) � (e�)(e��) (e � v)� ! (e�) � (v�)(��) (�x:v)� ! �x:(v�)(e��) (��:e)� ! ��:(e�)(��) (��:
)� ! ��:(
�)(e��) (e�x:
)� ! e�x:(
�)We reason modulo �-
onversion on the bound variable in the rules (��), (e��),(��) and (e��).3.2 Substitution Cal
ulusWe will note:� x the set of rules 
on
erning the propagation of substitutions, namely 
� ,x�1, x�2, ��1, ��2, �� , e�� , �� , e�� , �� and e�� ,� :x the set of rules not in x, namely those 
on
erning redu
tions of the original
al
ulus: �, e�, mu,gmu, sv and se.We present here some usual results on substitution 
al
uli [5℄.



Lemma 6 (Strong normalization of x). x is strongly normalizing and itsnormal forms are pure obje
ts (i.e. without substitutions).Proof. We de�ne the following measure h:h(�) = 1 h(hvjei) = h(v) + h(e) + 1h(v � e) = h(v) + h(e) + 1 h(e � v) = h(v) + h(e) + 1h(�x:v) = h(v) + 1 h(��:e) = h(e) + 1h(��:
) = h(
) + 1 h(e�x:
) = h(
) + 1h(t[�  t0℄) = h(t) � (h(t0) + 1)We easily 
he
k that ea
h x-redu
tion stri
tly de
reases h. We prove by 
ontra-di
tion that the normal forms are pure obje
ts: if there is a substitution, we lookto the obje
t to whi
h it is applied and we �nd a redu
tion to perform.We will note x(t) the x-normal form of an obje
t t.Lemma 7 (Con
uen
e of x). x is 
on
uent.Proof. All 
riti
al pairs have disjoint redexes, whi
h gives us lo
al 
on
uen
e.By Newman lemma and lemma 6 we get 
on
uen
e.Lemma 8 (Substitution). x(t[�  t0℄) = x(t)f�  x(t0)g.Proof. We prove, by indu
tion on the height of t and of the ti, thatx(t[�1  t1℄:::[�n  tn℄) = x(t)f�1  x(t1)g:::f�n  x(tn)g:Lemma 9 (Simulation of the ��~�-
al
ulus). For all t and u pure obje
ts,if t!��~� u then t!���~�x u.Proof. By indu
tion on the stru
ture of t. The only interesting 
ases are thosein whi
h the redu
tion o

urs at the root.{ h��:
jei !� 
f�  eg: we haveh��:
jei !mu 
[�  e℄!x x(
[�  e℄) lemma 8= x(
)f�  x(e)g:Sin
e h��:
jei is a pure obje
t, x(
) = 
, x(e) = e and we are done.{ hvje�x:
i !� 
f�  vg: this 
ase is similar to the previous by symmetry.{ The other rules are simulated in one step by their homonymes in ��~�x.We say that a redu
tion is void if it o

urs in the body of a substitutiont[�  t0℄ su
h that � 62 x(t). We note it v!.Lemma 10 (Proje
tion).1. If t!��~�x u then x(t)!���~� x(u).2. If t!:x u is not a void redu
tion, then x(t)!+��~� x(u).Proof. We 
onsider three 
ases:{ the redu
tion is t!x u. Then x(t) = x(u).{ the redu
tion is t v!:x u. Then x(t) = x(u).{ the redu
tion is t!:x u and is not void. The redex appears in x(t) and we
an redu
e it, then obtain x(u).



3.3 Around PerpetualityWe use the perpetuality te
hnique, formalised by Bonelli [5℄. In fa
t, we useonly the �rst part of the te
hnique, whi
h is enough to prove preservation ofstrong normalisation. We give some lemmas to extra
t a void substitution withan in�nite derivation inside, and to tra
e this substitution ba
kwards.Lemma 11. Let t0 !��~�x t1 !��~�x t2 !��~�x ::: be an in�nite redu
tion. Ifx(t0) 2 SN ��~�, then there exists an integer k su
h that for all i > k, we haveti v!��~� ti+1.Proof. Sin
e x is strongly normalizing, the redu
tion must be t0 !�x t1 !:xt2 !�x t3 !:x t4::: By lemma 10, we have x(t0) !���~� x(t1) !���~� x(t2) !���~�x(t3) !���~� x(t4)::: Furthermore, for all even i, if ti+1 !:x ti+2 is not a voidredu
tion, then x(ti) !+��~� x(ti+2). From x(t0) 2 SN ��~� we dedu
e that thereexists k su
h that for all even i greater than k we have ti+1 v!:x ti+2. We mustnow prove that from a 
ertain point, both :x and x redu
tions are void. Forthat, we de�ne the following measure:h(�) = 1 h(hvjei) = h(v) + h(e) + 1h(��:
) = h(
) + 1 h(e�x:
) = h(
) + 1h(t[�  t0℄) = �h(t) � (h(t0) + 1) if � 2 FV (x(t))h(t) � 2 elseThe last 
lause guarantees that a void redu
tion leaves the measure un
hanged.We easily satis�es that all other redu
tions stri
tly de
raese this measure, andwe 
on
lude.The next notion is useful to isolate a void substitution.De�nition 1 (Skeleton). The skeleton of an obje
t, noted SK(t), is indu
-tively de�ned as follows:SK(�) = � SK(hvjei) = hSK(v)jSK(e)iSK(��:
) = ��:SK(
) SK(e�x:
) = e�x:SK(
)SK(t[�  u℄) = SK(t)[�  �℄We remark that if t v! u, then SK(t) = SK(u).The following lemma says that if there is an in�nite derivation, then thereexists a substitution in whi
h there is an in�nite derivation.Lemma 12. Let an in�nite derivation be t0 !��~�x t1 !��~�x t2 !��~�x ::: Ifx(t0) 2 SN ��~�, then there exists an integer k, an obje
t t, a variable �, a 
ontextC and an obje
t sequen
e ui su
h thatt0 !���~�x tk = C[t[�  uk℄℄v!��~�x C[t[�  uk+1℄℄v!��~�x C[t[�  uk+2℄℄ : : :with uk !��~�x uk+1 !��~�x uk+2 !��~�x uk+3:::



Proof. By lemma 11, there exists k su
h that for all i > k, ti v!��~�x ti+1. Then,we have SK(tk) = SK(ti) for all i � k. The derivation tree of tk being in�nite,by the pigeon hole prin
iple, an in�nite derivation must take pla
e in the samesubstitution of SK(tk), and we are done.Lemma 13 (Substitution tra
ing - 1 step). Let t and u be two obje
ts su
hthat t!��~�x u and u = C[u1[�  u2℄℄. Then1. either t = C 0[u01[�  u2℄℄,2. or t = C 0[u01[�  u02℄℄ with u2 ! u02,3. or u1 is a 
ommand andif � = � then t = C[h��:u1ju2i℄ else t = C[hu2je�x:u1i℄.Proof. We reason by indu
tion on t and we 
onsider the following two 
ases:� The redu
tion takes pla
e at the root. First note that if u1[�  u2℄ appearsin a sub-term of u, whi
h is also a sub-term of t, then for a 
ontext C 0 andu01 = u1 the �rst item holds. This applies also when the rule used to redu
eat the root is one of x� or �� . Else if the rule is mu orgmu, then the thirditem holds, else if it is another rule, then the �rst item holds, in both 
ases,we use the empty 
ontext.� The redu
tion is internal.{ t = �. The result holds trivially.{ t = hvjei with either v !��~�x v0 or e !��~�x e0. We 
onsider the �rst
ase, sin
e the se
ond one is similar. We have u = hv0jei and:? if the sub-term u1[�  u2℄ o

urs in v0, then we use indu
tion hy-pothesis.? else the sub-term u1[�  u2℄ o

urs in e ; then the �rst item holds.{ t = v � e or t = e � v with either v !��~�x v0 or e !��~�x e0. We 
on
ludesimilarly to the previous point.{ t = ��:
 or e�x:
 or �x:v or ��:e. We use indu
tion hypothesis.{ t = t1[�  t2℄. There are two 
ases:? t1 !��~�x t01 and u = t01[�  t2℄. Then if u1[�  u2℄ o

urs in t01we use indu
tion hypothesis. If it o

urs in t2 the �rst item holdstrivially. Finally, if u = u1[�  u2℄ then we take the empty 
ontextfor C 0, u01 = t1 and the �rst item holds.? t2 !��~�x t02 and u = t1[�  t02℄. Then if u1[�  u2℄ o

urs in t1 the�rst item holds trivially. If it o

urs in t02 we use indu
tion hypothesis.Finally, if u = u1[�  u2℄ then we take the empty 
ontext for C 0,u01 = t1 and u02 = t2 and the se
ond item holds.This result is naturally extended to many-steps redu
tions.Lemma 14 (Substitution tra
ing). Let t1; :::; tn be obje
ts su
h that, for alli, ti !��~�x ti+1 and tn = C[u1[�  u2℄℄. Then1. either � = � and there is i su
h that ti = C 0[h��:u01ju02i℄ with u2 !���~�x u02,2. or � = x and there is i su
h that ti = C 0[hu02je�x:u01i℄ with u2 !���~�x u02,



3. or t1 = C 0[u01[�  u02℄℄ with u2 !���~�x u02.Proof. By indu
tion on the number of redu
tion steps, using lemma 13.We formalise the notion of derivation ordering.De�nition 2. Let � and  be two in�nite derivations starting form an obje
tt1. Then � is 
alled smaller than  if they redu
e the same redexes for the �rstn� 1 steps, and the nth redex redu
ed by � is a stri
t subterm of the nth redexredu
ed by  .Here is the main theorem of this se
tion.Theorem 2 (PSN). t 2 SN ��~� ) t 2 SN ��~�x.Proof. By 
ontradi
tion. Suppose that there exists a pure term t whi
h 
an bein�nitely redu
ed in the ��~�x-
al
ulus. We take a minimal derivation of thisterm. By lemma 12, at a 
ertain point, we 
an exhibit a in�nite derivation ina void substitution. By lemma 14, we 
an go ba
kwards until we rea
h theredu
tion whi
h 
reates this substitution while keeping the in�nite redu
tion init. This 
reation point (
hosen by the minimal derivation) is a proper pre�x ofthe redu
tion point of the in�nite derivation inside the future body of the voidsubstitution. This 
ontradi
ts the minimality of the derivation.4 PSN Implies SN4.1 Proof Te
hniqueThe te
hnique we present here is very general and 
an be applied to many 
al
uliwith expli
it substitutions. The idea of this te
hnique is the following : let t bea typed term with expli
it substitutions, with its typing judgement, we build atyped term t0 of the pure 
al
ulus by expanding the substitutions of t in redexes.We 
all this expansion Ateb. We require the following two properties, whi
h areenough to establish theorem 3.Property 1 (Preservation of typability). If t is typable in the 
al
ulus with ex-pli
it substitution, then Ateb(t) is typable in the pure 
al
ulus.Property 2 (Initialization). Ateb(t) redu
es to t in 0 or more steps in the 
al
uluswith expli
it substitutions.We 
an now establish the theorem.Theorem 3. For all typing system su
h that all typable terms are strongly nor-malizing, if there exists a fun
tion Ateb from expli
it substitution terms to pureterms satisfying properties 1 and 2 then PSN implies SN.Proof. For all typed term t of the 
al
ulus with expli
it substitution, Ateb(t)is a pure typed term (by property 1). By hypothesis of strong normalization ofthe pure typed 
al
ulus, we have Ateb(t) 2 SN (in the present 
ase SN ��~�).By hypothesis of PSN we obtain that Ateb(t) is in SN (in the present 
aseSN ��~�x). By property 2, we get Ateb(t) !� t, whi
h gives us dire
tly t 2 SN(in the present 
ase SN ��~�x).



4.2 Appli
ation to ��~�Here is the de�nition of Ateb. It is obvious that for all t, Ateb(t) 
ontains nosubstitutions. We then 
he
k that this fun
tion satis�es the two properties wemention above.De�nition 3.Ateb(x) = x Ateb(�) = �Ateb(�x:v) = �x:Ateb(v) Ateb(��:e) = ��:Ateb(e)Ateb(��:
) = ��:Ateb(
) Ateb(e�x:
) = e�x:Ateb(
)Ateb(e � v) = Ateb(e) �Ateb(v) Ateb(v � e) = Ateb(v) �Ateb(e)Ateb(hvjei) = hAteb(v)jAteb(e)iAteb(
[x v℄) = hAteb(v)je�x:Ateb(
)iAteb(
[� e℄) = h��:Ateb(
)jAteb(e)iAteb(v[x v0℄) = ��:h�x:Ateb(v)jAteb(v0) � �i With � fresh variableAteb(v[� e℄) = ��:h��:hAteb(v)j�ijAteb(e)i With � fresh variableAteb(e[x v℄) = e�y:hAteb(v)je�x:hyjAteb(e)ii With y fresh variableAteb(e[� e0℄) = e�x:hAteb(e0) � xj��:Ateb(e)i With x fresh variableProof. (of property 1) Easy by indu
tion on the proof of the typing judgementof t.Proof. (of property 2) We pro
eed by indu
tion on t. Only the 
ases for substi-tutions are not easy. By the symmetry of the system, we 
onsider only one halfof it.{ We have Ateb(
[x v℄) = hAteb(v)je�x:Ateb(
)i andhAteb(v)je�x:Ateb(
)i !� Ateb(
)[x Ateb(v)℄:{ We have Ateb(v[x v0℄) = ��:h�x:Ateb(v)jAteb(v0) � �i and��:h�x:Ateb(v)jAteb(v0) � �i!� ��:hAteb(v0)je�x:hAteb(v)j�ii !e� ��:(hAteb(v)j�i[x  Ateb(v0)℄)!
� ��:hAteb(v)[x Ateb(v0)℄j�[x Ateb(v0)℄i!��2 ��:hAteb(v)[x Ateb(v0)℄j�i !sv Ateb(v)[x  Ateb(v0)℄:{ We have Ateb(v[� e℄) = ��:h��:hAteb(v)j�ijAteb(e)i and��:h��:hAteb(v)j�ijAteb(e)i !� ��:(hAteb(v)j�i[�  Ateb(e)℄)!
� ��:hAteb(v)[� Ateb(e)℄j�[� Ateb(e)℄i!��2 ��:hAteb(v)[� Ateb(e)℄j�i !sv Ateb(v)[�  Ateb(e)℄:In ea
h 
ase, we 
on
lude by indu
tion hypothesis.We 
an use Theorem 3.



4.3 Strong Normalization of ��~�x-
al
ulusWe 
olle
t together our results to prove the main theorem of this work.Theorem 4. The typed ��~�x-
al
ulus is strongly normalizing.Proof. By Theorem 1 (SN for pure 
al
ulus), Theorem 2 (PSN) and Theorem 3(PSN implies SN).5 A
hievements and Perspe
tivesUsing various proof te
hniques, we have established that the ��~�x-
al
ulus isstrongly normalizing. For that purpose, we have formalized a proof te
hnique ofSN via PSN. Let us mention that we have su

essfully applied this te
hnique,with some adjustments, to prove SN of the ��-
al
ulus (introdu
ed in [3℄) forthe �rst time, as far as we know. We also used it to establish that PSN impliesSN for the ��-
al
ulus [1℄, for whi
h PSN is known to fail [10℄, showing that, forthis 
al
ulus, the only problem of SN is in PSN.It remains an open problem to build a dire
t proof, by the redu
ibility te
h-nique, of SN for a symmetri
 non-deterministi
 
al
ulus with expli
it substitu-tions. Another dire
tion of work 
ould be to repla
e substitutions \�a la" �x bysubstitutions \�a la" �ws [8℄, whi
h yields, through the addition of expli
it weak-enings, a more powerful substitution system. It may even help us to �nd a dire
tproof of SN. At last, we plan to work on a se
ond order version of ��~�x.Referen
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