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Strong Normalization of ��~�-aluluswith Expliit SubstitutionsEmmanuel PolonovskiPPS, CNRS - Universit�e Paris 7Emmanuel.Polonovski�pps.jussieu.frAbstrat. The ��~�-alulus, de�ned by Curien and Herbelin [7℄, is avariant of the ��-alulus that exhibits symmetries suh as term/ontextand all-by-name/all-by-value. Sine it is a symmetri, and hene anon-deterministi alulus, usual proof tehniques of normalization needssome adjustments to be made to work in this setting. Here we prove thestrong normalization (SN) of simply typed ��~�-alulus with expliitsubstitutions. For that purpose, we �rst prove SN of simply typed ��~�-alulus (by a variant of the reduibility tehnique from Barbanera andBerardi [2℄), then we formalize a proof tehnique of SN via PSN (preser-vation of strong normalization), and we prove PSN by the perpetualitytehnique, as formalized by Bonelli [5℄.1 Introdution1.1 ��~�-alulus and Expliit SubstitutionsThe ��~�-alulus, de�ned by Curien and Herbelin [7℄, is a symmetri variantof Parigot's ��-alulus [11℄ that provides a term notation for lassial sequentalulus. It exhibits symmetries suh as terms/ontexts and all-by-name/all-by-value. Its two main redution rules form a symmetri ritial pair, whihmakes the alulus non-deterministi (non-onuent) and raises diÆulties innormalization proofs : a naive de�nition of reduibility andidates would fall ina symmetri loop of mutual indution.On the other hand, aluli with expliit substitutions were introdued [1℄as a bridge between �-alulus [6℄ and onrete implementations of funtion-nal programming languages. Those aluli intend to re�ne the evaluation pro-ess by proposing redution rules to deal with the substitution mehanism { ameta-operation in the traditionnal �-alulus. In the study of those aluli, animportant task was to establish good properties suh as:� Simulation of � redution, whih says that a term that an be redued toanother in the traditionnal �-alulus an also be redued to the same onein the alulus with expliit substitutions.� Conuene, whih says that whatever redution strategy you hoose, youan always �nd a ommon redut.



� Preservation of strong normalization (PSN), whih says that if a term is�-strongly normalizing (i.e. annot be in�nitely redued), it is also stronglynormalizing with respet to the alulus with expliit substitutions.� Strong normalization (SN), whih says that, with respet to a typing sys-tem, every typed term is strongly normalizing in the alulus with expliitsubstitutions.It was remarked, at one, that expliit substitutions raises more diÆultiesin normalization proofs, due to the fat that redutions an now take plaein an argument substituted in a term to a variable whih is not free in thatterm. Suh redutions produe no trae in the original alulus, beause thesubstitution is bounded to disappear. Therefore we annot easily infer SN forexpliit substitutions from strong normalization of the original alulus.1.2 The ��~�-alulus with Expliit Substitutions: ��~�xHere we work on ��~�x, an expliit substitutions version \�a la" �x [4℄ of the��~�-alulus. Its syntax was introdued in [9℄ and, in the same paper, therewas an attempt to prove strong normalization of the deterministi all-by-namefragment diretly by the reduibility tehnique. Unfortunately, the tehnique didnot work so niely, and the proof of a key lemma (Weakening lemma) turned outto be bugged... We keep this tehnique for the pure alulus (i.e. without expliitsubstitutions), and, in order to lift it to the symmetri alulus, we adjust it likeBarbanera and Berardi did for their symmetri �-alulus [2℄. We will see thatreduibility sets onstruted by �xed point ensure that their de�nition will notfall in the symmetri in�nite loop of terms de�ned by ontexts and vie versa.To prove SN, we formalize a tehnique initially suggested by Herbelin, whihonsists in expanding substitutions into pure ��~�-redexes and to inherit SN ofthe whole alulus by SN of the pure alulus and by PSN.Finally, to prove PSN, we use the perpetuality tehnique, as formalized byBonelli [5℄. The main point of this tehnique is to exhibit a strategy wih pre-serves in�nite redutions. This together with some material to trae the substi-tutions bakwards, allows us to establish PSN by ontradition.In the sequel, we will note SNR for the set of strongly normalizing terms inthe alulus R. We will use FV (t) to denote the set of free variables of t, de�nedin the usual way.1.3 OrganizationWe �rst present the (simply typed) ��~�-alulus and we prove SN by the re-duibility tehnique (setion 2). In setion 3, we use the perpetuality tehniqueto establish PSN. Setion 4 formalizes the proof tehnique of SN via PSN, andgives the material to use it for ��~�x. Finally, we give the proof of SN of ��~�xin setion 4.3.



2 The ��~�-alulus and its Strong NormalizationWe �rst reall the de�nition of the ��~�-alulus, then we de�ne reduibility setsand �nally we establish strong normalization of the pure alulus.2.1 De�nitionThere are three syntati ategories: terms, ontexts and ommands, respetivelynoted v, e and . We take two variable sets: V ar is the set of term variables,noted x, y, z et. ; V ar? is the set of ontext variables, noted �, �, et. We willnote t an objet, i.e. one of v, e or . The syntax of the ��~�-alulus is: ::= hvjeiv ::= x j �x:v j e � v j ��:e ::= � j ��:e j v � e j e�x:Redution rules are given below. The rules (�) and (e�) form a ritial pair:(�) h�x:vjv0 � ei ! hv0je�x:hvjeii(e�) he0 � vj��:ei ! h��:hvjeije0i(�) h��:jei ! [e=�℄(e�) hvje�x:i ! [v=x℄(sv) ��:hvj�i ! v if � 62 FV (v)(se) e�x:hxjei ! e if x 62 FV (e)Types are usual simple types plus the minus type A � B whih is the sym-metri ounterpart of the arrow type A ! B, its meaning is A and not B. Wework here in lassial sequent alulus, with a notation to exhibit a formula in asequent: � ` Aj� is the same sequent as � ` A;� but the formula A is exhibitedas ative formula. For further details about this framework and the isomorphismwith objets of the ��~�-alulus, see [7℄.Three sequent forms are used to type the syntati ategories: the ommandsare typed by (� ` �), the terms by � ` Aj� and the ontexts by � jA ` �.Here are the typing rules: : (�; x : A ` �)� je�x: : A ` � � ` v : Aj� � je : A ` �hvjei : (� ` �)  : (� ` � : A;�)� ` ��: : Aj�� j� : A ` �;� : A �; x : A ` �jx : A� je : B ` � : A;�� j��:e : A�B ` � �; x : A ` v : Bj�� ` �x:v : A! Bj�� ` v : Aj� � je : B ` �� jv � e : A! B ` � � ` v : Bj� � je : A ` �� ` e � v : A�Bj�



2.2 Reduibility SetsWe simultaneously de�ne, by indution of the type struture:{ the operators:Lambda(X1; X2) =Def f�x:v j 8v0 2 X1; e 2 X2 hv[v0=x℄jei 2 [[`℄℄gCons(X1; X2) =Def fv � e j v 2 X1 and e 2 X2gL̂ambda(X1; X2) =Def f��:e j 8e0 2 X1; v 2 X2 hvje[e0=�℄i 2 [[`℄℄g℄Cons(X1; X2) =Def fe � v j e 2 X1 and v 2 X2gMu(X) =Def f��: j 8e 2 X [e=�℄ 2 [[`℄℄gfMu(X) =Def fe�x: j 8v 2 X [v=x℄ 2 [[`℄℄gRemark 1. Mu and fMu are dereasing operators: the greater X is, the lesserone an �nd ��:'s (resp. e�x:'s) that normalize against all e in X .Then� if A is atomi Neg[[`A℄℄(Y ) = V ar [Mu(Y )Neg[[A`℄℄(X) = V ar? [ fMu(X)� if A = A1 ! A2Neg[[`A℄℄(Y ) = V ar [Mu(Y ) [ Lambda([[` A1℄℄; [[A2 `℄℄)Neg[[A`℄℄(X) = V ar? [ fMu(X) [ Cons([[` A1℄℄; [[A2 `℄℄)� if A = A1 �A2Neg[[`A℄℄(Y ) = V ar [Mu(Y ) [℄Cons([[A1 `℄℄; [[` A2℄℄)Neg[[A`℄℄(X) = V ar? [ fMu(X) [ L̂ambda([[A1 `℄℄; [[` A2℄℄)SineMu and fMu are dereasing operators,Neg is also a dereasing operator.So Neg[[`A℄℄ Æ Neg[[A`℄℄ is an inreasing operator, and by Tarski's theorem ithas a �xed point X0 ;{ the reduibility sets: [[`℄℄ = SN ��~�and [[` A℄℄ = X0 and [[A `℄℄ = Neg[[A`℄℄(X0):



Proposition 1 (Good de�nition). The reduibility sets de�ned above satis�es(i) V ar � [[` A℄℄(ii) V ar? � [[A `℄℄(iii) v 2 [[` A℄℄ () either v = xor v = e � v0 with A = A1 �A2;e 2 [[A1 `℄℄ and v0 2 [[` A2℄℄or v = ��: and8e 2 [[A `℄℄ [e=�℄ 2 [[`℄℄or v = �x:v0 with A = A1 ! A2 and8v00 2 [[` A1℄℄; e 2 [[A2 `℄℄ hv0[v00=x℄jei 2 [[`℄℄(iv) e 2 [[A `℄℄ () either e = �or e = v � e0 with A = A1 ! A2;v 2 [[` A1℄℄ and e0 2 [[A2 `℄℄or e = e�x: and8v 2 [[` A℄℄ [v=x℄ 2 [[`℄℄or e = ��:e0 with A = A1 �A2 and8e00 2 [[A1 `℄℄; v 2 [[` A2℄℄ hvje0[e00=�℄i 2 [[`℄℄Proof. From the de�nition of the reduibility sets, we have [[`℄℄ = SN ��~� andthe points (i) and (ii). We prove the points (iii) and (iv). Due to the symmetry,it suÆes to prove (iii).v 2 [[` A℄℄ () v 2 Neg[[`A℄℄ ÆNeg[[A`℄℄([[` A℄℄):We then onsider the di�erent shapes of A and we inline the orrespondingde�nition of Neg[[`A℄℄ ÆNeg[[A`℄℄([[` A℄℄).2.3 Strong NormalizationHere are the two traditionnal lemmas of strong normalization of the reduibilitysets (RS) and losure by redution.Lemma 1 (SN of RS). Let A be a type. Then [[` A℄℄ � SN ��~� (1), [[A `℄℄ �SN ��~� (2) and [[`℄℄ � SN ��~� (3).Proof. By indution on the struture of A.1. We onsider the di�erent forms of v 2 [[` A℄℄:{ v = x: then v 2 SN ��~�.{ v = e � v0: then A = A1 � A2 and we onlude by using the indutionhypothesis twie.{ v = ��:: by the point (ii) of proposition 1, � 2 [[A `℄℄, then, by the point(iii) of proposition 1, [�=�℄ 2 [[`℄℄, that gives us  2 [[`℄℄(= SN ��~�). Wethen have ��: 2 SN ��~�.



{ v = �x:v0, then A = A1 ! A2: to get v 2 SN ��~�, we need v0 2 SN ��~�.By reduibility of �x:v0, we have 8v00 2 [[` A1℄℄; e 2 [[A2 `℄℄ hv0[v00=x℄jei 2[[`℄℄(= SN ��~�). By the points (i) and (ii) of proposition 1, we an takex for v00 and � for e, and that gives us hv0[x=x℄j�i 2 SN ��~�. We deduev0 2 SN ��~� and onlude.2. The proof for e is similar to the proof for v by symmetry.3. By de�nition [[`℄℄ = SN ��~�.Lemma 2 (Closure by redution).1. v 2 [[` A℄℄; v ! v0 =) v0 2 [[` A℄℄.2. e 2 [[A `℄℄; e! e0 =) e0 2 [[A `℄℄.3.  2 [[`℄℄; ! 0 =) 0 2 [[`℄℄.Proof. By indution on A, onsidering the di�erent shapes of v, e, and .1.1. v = x: then no more redution an our.1.2. v = e1 � v1: we must onsider two possible redutions e1 � v1 ! e2 � v1 ore1 � v1 ! e1 � v2. In either ase, we onlude by indution hypothesis.1.3. v = ��:: we onsider the following two ases.� The redution is ��: ! ��:0. By de�nition of ��: 2 [[` A℄℄ we have8e 2 [[A `℄℄ [e=�℄ 2 SN ��~�. Then we get 0[e=�℄ 2 SN ��~� (always forany e 2 [[A `℄℄) and we onlude with the point (iii) of proposition 1.� The redution is ��:hvj�i ! v with � 62 FV (v). We know by hypoth-esis that ��:hvj�i 2 [[` A℄℄, then, by the point (iii) of proposition 1,8e 2 [[A `℄℄ hvj�i[e=�℄ 2 SN ��~�, i.e. hvjei 2 SN ��~�. If v is a vari-able, then we onlude immediately. if v = ��:, h��:jei 2 SN ��~�implies that [e=�℄ 2 SN ��~�, whih gives us ��: 2 [[` A℄℄ by thepoint (iii) of proposition 1. If v = �x:v0, h�x:v0jei 2 SN ��~� gives us,for e = v1 � e1, hv1je�x:hv0je1ii 2 SN ��~� then hv0je1i[v1=x℄ 2 SN ��~�and hv0[v1=x℄je1[v1=x℄i 2 SN ��~� and �nally, sine x is not free in e1,hv0[v1=x℄je1i 2 SN ��~�, whih is enough, by the points (iv) and (iii) ofproposition 1, to onlude.1.4. v = �x:v0 : A = A1 ! A2 and the redution is �x:v0 ! �x:v00. By the point(iii) of proposition 1, we know that 8v000 2 [[` A1℄℄; e 2 [[A2 `℄℄ hv0[v000=x℄jei 2[[`℄℄ = SN ��~�, so 8v000 2 [[` A1℄℄; e 2 [[A2 `℄℄ hv00[v000=x℄jei 2 [[`℄℄ = SN ��~�,and we are done.2.x. Same as 1.x. by symmetry (where x ranges from 1 to 4).3.  2 [[`℄℄ : then  2 SN ��~� and ! 0 implies that 0 2 SN ��~� = [[`℄℄.Here are now some lemmas to \indutively build" the membership of a RS.Lemma 3. v 2 [[` A℄℄; e 2 [[A `℄℄ =) hvjei 2 [[`℄℄:Proof. To show that hvjei 2 [[`℄℄ is, by de�nition, to show that hvjei 2 SN ��~�.We take all possible pairs for v and e and we reason by indution on the strongnormalisation of v and e (whih we get by lemma 1) and on the length of v ande. We onsider all the possible redutions of hvjei. If the redution ours in vor e, we onlude by indution hypothesis and lemma 2. Else,



� if v = ��:, the redution is h��:jei ! [e=�℄ and we onlude by de�nitionof ��: 2 [[` A℄℄,� if e = e�x:, we onlude symmetrially to the last point,� if v = �x:v0 and e = v00 � e0 (with A = A1 ! A2), the redution is h�x:vjv00 �e0i ! hv00je�x:hv0je0ii. We onsider the possible redutions of hv00je�x:hv0je0ii.By reduibility of v and e, we have v00 2 SN ��~� and hv0[v00=x℄je0i 2 SN ��~�.Consequently, sine the redutions annot our in�nitely in those terms, wewill get to redue one of the following (where v00 !� v1, hv0je0i !� hv2je2i):{ hv1je�x:hxje2ii ! hv1je2i : by indution hypothesis, we have hv00je0i 2SN ��~� and hv1je2i is one of its reduts.{ hv1je�x:hv2je2ii ! hv2[v1=x℄je2[v1=x℄i : this term is also a redut ofhv0[v00=x℄je0[v00=x℄i whih is in SN ��~� by reduibility of v, due to thefat that sine x is not free in e0, hene in e2, e2[v1=x℄ = e2.{ h��:1je�x:hv2je2ii ! 1[e�x:hv2je2i=�℄ with v1 = ��:1. By reduibilityof e and by the lemma 2 we have ��:1 2 [[` A1℄℄, that gives us, byde�nition, that 1[e�x:hv2je2i=�℄ belongs to [[`℄℄ if e�x:hv2je2i belongs to[[A1 `℄℄. And this last ondition is satis�ed, by de�nition, if and only if8v3 2 [[` A1℄℄ we have hv2[v3=x℄je2[v3=x℄i 2 [[`℄℄, whih is a onsequeneof the reduibility of v (with e2[v3=x℄ = e2, by the same argument asabove).� If e = ��:e0 and v = e00 � v0, we onlude symmetrially to the last point.� In all other ases, no redution an our.Lemma 4. If v[v0=x℄ 2 [[` B℄℄ for all v0 2 [[` A℄℄ then �x:v 2 [[` A! B℄℄. Ife[e0=�℄ 2 [[B `℄℄ for all e0 22 [[A `℄℄ then ��:e 2 [[` A�B℄℄.Proof. By symmetry, we need only to prove one of the impliations, let us takethe �rst one. To prove that �x:v 2 [[` A! B℄℄, we need, by the point (iii) ofproposition 1, to prove that for all v0 2 [[` A℄℄; e 2 [[B `℄℄, hv[v0=x℄jei 2 [[`℄℄. Byhypothesis, we have v[v0=x℄ 2 [[` B℄℄. We onlude with the lemma 3.Here is the adequay lemma.Lemma 5 (Adequay). Let A be a type and t an objet suh that FV (t) �X1 [X2 (X1 � V ar and X2 � V ar?) and the variables xi 2 X1 are of type Biand the variables �j 2 X2 are of type Cj . For all set of objets vi; ej suh that8i vi 2 [[` Ai℄℄ and 8j ej 2 [[Bj `℄℄ we have, aordingly to the shape of t,1. if X1 : B ` v : AjX2 : C then v[v1=x1; :::; vn=xn; e1=�1; :::; em=�m℄ 2 [[` A℄℄2. if X1 : Bje : A ` X2 : C then e[v1=x1; :::; vn=xn; e1=�1; :::; em=�m℄ 2 [[A `℄℄3. if  : (X1 : B ` X2 : C) then [v1=x1; :::; vn=xn; e1=�1; :::; em=�m℄ 2 [[`℄℄Remark 2. We note X1 : B the enumeration fxi : Biji 2 [1; n℄g (the same forX2 : C).Proof. We note [==℄ the substitution [v1=x1; :::; vn=xn; e1=�1; :::; em=�m℄. We rea-son by indution on the struture of t



{ v = x : then, by hypothesis, 9i; A = Bi. So v[==℄ = vi 2 [[` Bi℄℄ = [[` A℄℄.{ v = e � v0 : by indution hypothesis on e and v0, and by the point (iii) ofproposition 1, we onlude immediately.{ v = �x:v0 : we then haveA = A0 ! A00. Sine we an rename bound variables,we an suppose that x 62 fx1; :::; xng, whih gives us (�x:v0)[==℄ = �x:(v0[==℄).By indution hypothesis, for all v00 2 [[` A0℄℄ we have v0[v00=x; ==℄ 2 [[` A00℄℄and by the lemma 4, we are done.{ v = ��: : sine we an rename bound variables, we an suppose that� 62 f�1; :::; �mg. Now, by the point (iii) of proposition 1, to prove that(��:)[==℄ = ��:([==℄) 2 [[` A℄℄ we need only to prove that, for all e 2 [[A `℄℄,[e=�; ==℄ 2 [[`℄℄ whih is done by indution hypothesis.{ e : the ases for e are similar to those for v by symmetry.{  = hvjei. By indution hypothesis on v and e, and by the lemma 3, weonlude immediately.We an now establish the main theorem of this setion.Theorem 1. Every typed ��~� objet is strongly normalizing.Proof. Let t be an objet of the ��~�-alul typed by � and �, i.e. suh thatthe onlusion of its typing judgement is either � ` t : Aj�, or � jt : A ` �,or t : (� ` �). Suppose that its free variables are f�1; :::; �m; x1; :::; xng, eahone typed xi : Ai and �i : Bi. By the points (i) and (ii) of proposition 1,we get that for all i, xi 2 [[` Ai℄℄ and �i 2 [[Bi `℄℄. Then, by the lemma 5,t[x1=x1; :::; xn=xn; �1=�1; :::; �m=�m℄ = t is in a reduibility set. By the lemma 1,we get t 2 SN ��~�.3 PSN of ��~�-alulus with Expliit SubstitutionsWe �rst de�ne the ��~�-alulus with expliit substitutions. Then we show someuseful results on the substitution alulus. And �nally, we establish the propertyof preservation of strong normalization.3.1 De�nitionTo the three syntati ategories presented in the last setion, we add a fourth,regarding expliit substitutions, noted � . In the sequel, � will stand for either aterm or a ontext variable. The syntax of the ��~�x-alulus is: ::= hvjei j �v ::= x j �x:v j e � v j ��: j v�e ::= � j ��:e j v � e j e�x: j e�� ::= [x v℄ j [� e℄The soure Dom(�) of � is x if � = [x v℄ and � if � = [� e℄. The bodyS(�) of � is v in the �rst ase and e in the seond. We will say that a substitutionbelongs to SN ��~�x if its substituend itself belongs to SN ��~�x.



We extend the typing system by adding a new form of sequent (� ` �) )(� 0 ` �0). Here are the typing rules for expliit substitutions:� ` v : Aj�[x v℄ : (�; x : A ` �)) (� ` �) � je : A ` �[� e℄ : (� ` �;� : A)) (� ` �)� je : A ` � � : (� ` �)) (� 0 ` �0)� 0je� : A ` �0 � ` v : Aj� � : (� ` �)) (� 0 ` �0)� 0 ` v� : Aj�0 : (� ` �) � : (� ` �)) (� 0 ` �0)� : (� 0 ` �0)The redution rules are the following:(�) h�x:vjv0 � ei ! hv0je�x:hvjeii(e�) he0 � vj��:ei ! h��:hvjeije0i(mu) h��:jei ! [� e℄(gmu) hvje�x:i ! [x v℄(sv) ��:hvj�i ! v if � 62 FV (v)(se) e�x:hxjei ! e if x 62 FV (e)(�) hvjei� ! hv� je�i(x�1) x� ! S(�) if x 2 Dom(�)(x�2) x� ! x if x 62 Dom(�)(��1) �� ! S(�) if � 2 Dom(�)(��2) �� ! � if � 62 Dom(�)(��) (v � e)� ! (v�) � (e�)(e��) (e � v)� ! (e�) � (v�)(��) (�x:v)� ! �x:(v�)(e��) (��:e)� ! ��:(e�)(��) (��:)� ! ��:(�)(e��) (e�x:)� ! e�x:(�)We reason modulo �-onversion on the bound variable in the rules (��), (e��),(��) and (e��).3.2 Substitution CalulusWe will note:� x the set of rules onerning the propagation of substitutions, namely � ,x�1, x�2, ��1, ��2, �� , e�� , �� , e�� , �� and e�� ,� :x the set of rules not in x, namely those onerning redutions of the originalalulus: �, e�, mu,gmu, sv and se.We present here some usual results on substitution aluli [5℄.



Lemma 6 (Strong normalization of x). x is strongly normalizing and itsnormal forms are pure objets (i.e. without substitutions).Proof. We de�ne the following measure h:h(�) = 1 h(hvjei) = h(v) + h(e) + 1h(v � e) = h(v) + h(e) + 1 h(e � v) = h(v) + h(e) + 1h(�x:v) = h(v) + 1 h(��:e) = h(e) + 1h(��:) = h() + 1 h(e�x:) = h() + 1h(t[�  t0℄) = h(t) � (h(t0) + 1)We easily hek that eah x-redution stritly dereases h. We prove by ontra-dition that the normal forms are pure objets: if there is a substitution, we lookto the objet to whih it is applied and we �nd a redution to perform.We will note x(t) the x-normal form of an objet t.Lemma 7 (Conuene of x). x is onuent.Proof. All ritial pairs have disjoint redexes, whih gives us loal onuene.By Newman lemma and lemma 6 we get onuene.Lemma 8 (Substitution). x(t[�  t0℄) = x(t)f�  x(t0)g.Proof. We prove, by indution on the height of t and of the ti, thatx(t[�1  t1℄:::[�n  tn℄) = x(t)f�1  x(t1)g:::f�n  x(tn)g:Lemma 9 (Simulation of the ��~�-alulus). For all t and u pure objets,if t!��~� u then t!���~�x u.Proof. By indution on the struture of t. The only interesting ases are thosein whih the redution ours at the root.{ h��:jei !� f�  eg: we haveh��:jei !mu [�  e℄!x x([�  e℄) lemma 8= x()f�  x(e)g:Sine h��:jei is a pure objet, x() = , x(e) = e and we are done.{ hvje�x:i !� f�  vg: this ase is similar to the previous by symmetry.{ The other rules are simulated in one step by their homonymes in ��~�x.We say that a redution is void if it ours in the body of a substitutiont[�  t0℄ suh that � 62 x(t). We note it v!.Lemma 10 (Projetion).1. If t!��~�x u then x(t)!���~� x(u).2. If t!:x u is not a void redution, then x(t)!+��~� x(u).Proof. We onsider three ases:{ the redution is t!x u. Then x(t) = x(u).{ the redution is t v!:x u. Then x(t) = x(u).{ the redution is t!:x u and is not void. The redex appears in x(t) and wean redue it, then obtain x(u).



3.3 Around PerpetualityWe use the perpetuality tehnique, formalised by Bonelli [5℄. In fat, we useonly the �rst part of the tehnique, whih is enough to prove preservation ofstrong normalisation. We give some lemmas to extrat a void substitution withan in�nite derivation inside, and to trae this substitution bakwards.Lemma 11. Let t0 !��~�x t1 !��~�x t2 !��~�x ::: be an in�nite redution. Ifx(t0) 2 SN ��~�, then there exists an integer k suh that for all i > k, we haveti v!��~� ti+1.Proof. Sine x is strongly normalizing, the redution must be t0 !�x t1 !:xt2 !�x t3 !:x t4::: By lemma 10, we have x(t0) !���~� x(t1) !���~� x(t2) !���~�x(t3) !���~� x(t4)::: Furthermore, for all even i, if ti+1 !:x ti+2 is not a voidredution, then x(ti) !+��~� x(ti+2). From x(t0) 2 SN ��~� we dedue that thereexists k suh that for all even i greater than k we have ti+1 v!:x ti+2. We mustnow prove that from a ertain point, both :x and x redutions are void. Forthat, we de�ne the following measure:h(�) = 1 h(hvjei) = h(v) + h(e) + 1h(��:) = h() + 1 h(e�x:) = h() + 1h(t[�  t0℄) = �h(t) � (h(t0) + 1) if � 2 FV (x(t))h(t) � 2 elseThe last lause guarantees that a void redution leaves the measure unhanged.We easily satis�es that all other redutions stritly deraese this measure, andwe onlude.The next notion is useful to isolate a void substitution.De�nition 1 (Skeleton). The skeleton of an objet, noted SK(t), is indu-tively de�ned as follows:SK(�) = � SK(hvjei) = hSK(v)jSK(e)iSK(��:) = ��:SK() SK(e�x:) = e�x:SK()SK(t[�  u℄) = SK(t)[�  �℄We remark that if t v! u, then SK(t) = SK(u).The following lemma says that if there is an in�nite derivation, then thereexists a substitution in whih there is an in�nite derivation.Lemma 12. Let an in�nite derivation be t0 !��~�x t1 !��~�x t2 !��~�x ::: Ifx(t0) 2 SN ��~�, then there exists an integer k, an objet t, a variable �, a ontextC and an objet sequene ui suh thatt0 !���~�x tk = C[t[�  uk℄℄v!��~�x C[t[�  uk+1℄℄v!��~�x C[t[�  uk+2℄℄ : : :with uk !��~�x uk+1 !��~�x uk+2 !��~�x uk+3:::



Proof. By lemma 11, there exists k suh that for all i > k, ti v!��~�x ti+1. Then,we have SK(tk) = SK(ti) for all i � k. The derivation tree of tk being in�nite,by the pigeon hole priniple, an in�nite derivation must take plae in the samesubstitution of SK(tk), and we are done.Lemma 13 (Substitution traing - 1 step). Let t and u be two objets suhthat t!��~�x u and u = C[u1[�  u2℄℄. Then1. either t = C 0[u01[�  u2℄℄,2. or t = C 0[u01[�  u02℄℄ with u2 ! u02,3. or u1 is a ommand andif � = � then t = C[h��:u1ju2i℄ else t = C[hu2je�x:u1i℄.Proof. We reason by indution on t and we onsider the following two ases:� The redution takes plae at the root. First note that if u1[�  u2℄ appearsin a sub-term of u, whih is also a sub-term of t, then for a ontext C 0 andu01 = u1 the �rst item holds. This applies also when the rule used to redueat the root is one of x� or �� . Else if the rule is mu orgmu, then the thirditem holds, else if it is another rule, then the �rst item holds, in both ases,we use the empty ontext.� The redution is internal.{ t = �. The result holds trivially.{ t = hvjei with either v !��~�x v0 or e !��~�x e0. We onsider the �rstase, sine the seond one is similar. We have u = hv0jei and:? if the sub-term u1[�  u2℄ ours in v0, then we use indution hy-pothesis.? else the sub-term u1[�  u2℄ ours in e ; then the �rst item holds.{ t = v � e or t = e � v with either v !��~�x v0 or e !��~�x e0. We onludesimilarly to the previous point.{ t = ��: or e�x: or �x:v or ��:e. We use indution hypothesis.{ t = t1[�  t2℄. There are two ases:? t1 !��~�x t01 and u = t01[�  t2℄. Then if u1[�  u2℄ ours in t01we use indution hypothesis. If it ours in t2 the �rst item holdstrivially. Finally, if u = u1[�  u2℄ then we take the empty ontextfor C 0, u01 = t1 and the �rst item holds.? t2 !��~�x t02 and u = t1[�  t02℄. Then if u1[�  u2℄ ours in t1 the�rst item holds trivially. If it ours in t02 we use indution hypothesis.Finally, if u = u1[�  u2℄ then we take the empty ontext for C 0,u01 = t1 and u02 = t2 and the seond item holds.This result is naturally extended to many-steps redutions.Lemma 14 (Substitution traing). Let t1; :::; tn be objets suh that, for alli, ti !��~�x ti+1 and tn = C[u1[�  u2℄℄. Then1. either � = � and there is i suh that ti = C 0[h��:u01ju02i℄ with u2 !���~�x u02,2. or � = x and there is i suh that ti = C 0[hu02je�x:u01i℄ with u2 !���~�x u02,



3. or t1 = C 0[u01[�  u02℄℄ with u2 !���~�x u02.Proof. By indution on the number of redution steps, using lemma 13.We formalise the notion of derivation ordering.De�nition 2. Let � and  be two in�nite derivations starting form an objett1. Then � is alled smaller than  if they redue the same redexes for the �rstn� 1 steps, and the nth redex redued by � is a strit subterm of the nth redexredued by  .Here is the main theorem of this setion.Theorem 2 (PSN). t 2 SN ��~� ) t 2 SN ��~�x.Proof. By ontradition. Suppose that there exists a pure term t whih an bein�nitely redued in the ��~�x-alulus. We take a minimal derivation of thisterm. By lemma 12, at a ertain point, we an exhibit a in�nite derivation ina void substitution. By lemma 14, we an go bakwards until we reah theredution whih reates this substitution while keeping the in�nite redution init. This reation point (hosen by the minimal derivation) is a proper pre�x ofthe redution point of the in�nite derivation inside the future body of the voidsubstitution. This ontradits the minimality of the derivation.4 PSN Implies SN4.1 Proof TehniqueThe tehnique we present here is very general and an be applied to many aluliwith expliit substitutions. The idea of this tehnique is the following : let t bea typed term with expliit substitutions, with its typing judgement, we build atyped term t0 of the pure alulus by expanding the substitutions of t in redexes.We all this expansion Ateb. We require the following two properties, whih areenough to establish theorem 3.Property 1 (Preservation of typability). If t is typable in the alulus with ex-pliit substitution, then Ateb(t) is typable in the pure alulus.Property 2 (Initialization). Ateb(t) redues to t in 0 or more steps in the aluluswith expliit substitutions.We an now establish the theorem.Theorem 3. For all typing system suh that all typable terms are strongly nor-malizing, if there exists a funtion Ateb from expliit substitution terms to pureterms satisfying properties 1 and 2 then PSN implies SN.Proof. For all typed term t of the alulus with expliit substitution, Ateb(t)is a pure typed term (by property 1). By hypothesis of strong normalization ofthe pure typed alulus, we have Ateb(t) 2 SN (in the present ase SN ��~�).By hypothesis of PSN we obtain that Ateb(t) is in SN (in the present aseSN ��~�x). By property 2, we get Ateb(t) !� t, whih gives us diretly t 2 SN(in the present ase SN ��~�x).



4.2 Appliation to ��~�Here is the de�nition of Ateb. It is obvious that for all t, Ateb(t) ontains nosubstitutions. We then hek that this funtion satis�es the two properties wemention above.De�nition 3.Ateb(x) = x Ateb(�) = �Ateb(�x:v) = �x:Ateb(v) Ateb(��:e) = ��:Ateb(e)Ateb(��:) = ��:Ateb() Ateb(e�x:) = e�x:Ateb()Ateb(e � v) = Ateb(e) �Ateb(v) Ateb(v � e) = Ateb(v) �Ateb(e)Ateb(hvjei) = hAteb(v)jAteb(e)iAteb([x v℄) = hAteb(v)je�x:Ateb()iAteb([� e℄) = h��:Ateb()jAteb(e)iAteb(v[x v0℄) = ��:h�x:Ateb(v)jAteb(v0) � �i With � fresh variableAteb(v[� e℄) = ��:h��:hAteb(v)j�ijAteb(e)i With � fresh variableAteb(e[x v℄) = e�y:hAteb(v)je�x:hyjAteb(e)ii With y fresh variableAteb(e[� e0℄) = e�x:hAteb(e0) � xj��:Ateb(e)i With x fresh variableProof. (of property 1) Easy by indution on the proof of the typing judgementof t.Proof. (of property 2) We proeed by indution on t. Only the ases for substi-tutions are not easy. By the symmetry of the system, we onsider only one halfof it.{ We have Ateb([x v℄) = hAteb(v)je�x:Ateb()i andhAteb(v)je�x:Ateb()i !� Ateb()[x Ateb(v)℄:{ We have Ateb(v[x v0℄) = ��:h�x:Ateb(v)jAteb(v0) � �i and��:h�x:Ateb(v)jAteb(v0) � �i!� ��:hAteb(v0)je�x:hAteb(v)j�ii !e� ��:(hAteb(v)j�i[x  Ateb(v0)℄)!� ��:hAteb(v)[x Ateb(v0)℄j�[x Ateb(v0)℄i!��2 ��:hAteb(v)[x Ateb(v0)℄j�i !sv Ateb(v)[x  Ateb(v0)℄:{ We have Ateb(v[� e℄) = ��:h��:hAteb(v)j�ijAteb(e)i and��:h��:hAteb(v)j�ijAteb(e)i !� ��:(hAteb(v)j�i[�  Ateb(e)℄)!� ��:hAteb(v)[� Ateb(e)℄j�[� Ateb(e)℄i!��2 ��:hAteb(v)[� Ateb(e)℄j�i !sv Ateb(v)[�  Ateb(e)℄:In eah ase, we onlude by indution hypothesis.We an use Theorem 3.



4.3 Strong Normalization of ��~�x-alulusWe ollet together our results to prove the main theorem of this work.Theorem 4. The typed ��~�x-alulus is strongly normalizing.Proof. By Theorem 1 (SN for pure alulus), Theorem 2 (PSN) and Theorem 3(PSN implies SN).5 Ahievements and PerspetivesUsing various proof tehniques, we have established that the ��~�x-alulus isstrongly normalizing. For that purpose, we have formalized a proof tehnique ofSN via PSN. Let us mention that we have suessfully applied this tehnique,with some adjustments, to prove SN of the ��-alulus (introdued in [3℄) forthe �rst time, as far as we know. We also used it to establish that PSN impliesSN for the ��-alulus [1℄, for whih PSN is known to fail [10℄, showing that, forthis alulus, the only problem of SN is in PSN.It remains an open problem to build a diret proof, by the reduibility teh-nique, of SN for a symmetri non-deterministi alulus with expliit substitu-tions. Another diretion of work ould be to replae substitutions \�a la" �x bysubstitutions \�a la" �ws [8℄, whih yields, through the addition of expliit weak-enings, a more powerful substitution system. It may even help us to �nd a diretproof of SN. At last, we plan to work on a seond order version of ��~�x.Referenes1. Abadi, M., Cardelli, L., Curien, P.-L., L�evy, J.-J.: Expliit Substitutions. Journalof Funtional Programming (1991).2. Barbanera, F., Berardi, S.: A symmetri lambda-alulus for lassial programextration. Proeedings of TACS'94 (1994), Springer-Verlag LNCS 789, 495{515.3. Benaissa, Z.-E.-A., Briaud, D., Lesanne, P., Rouyer-Degli, J.: ��, a alulus ofexpliit substitutions whih preserves strong normalisation. Journal of FuntionalProgramming (1996).4. Bloo, R., Geuvers, H.: Expliit Substitution: on the Edge of Strong Normalisation.Theoretial Computer Siene (1999), 211, 375{395.5. Bonelli, E.: Substitutions expliites et r�e�eriture de termes. PhD thesis, Universit�eParis XI Orsay (2001).6. Churh, A.: The Caluli of Lambda Conversion. Prineton Univ. Press (1941).7. Curien, P.-L., Herbelin, H.: The duality of omputation. Proeedings of ICFP'00(2000), ACM Press, 233{243.8. Guillaume, B.: Un alul de substitution ave �etiquettes. PhD thesis, Universit�ede Savoie (1999).9. Herbelin, H.: Expliit substitutions and reduibility. Journal of Logi and Compu-tation (2001), 11, 429{449.10. Mellies, P.-A.: Typed �-aluli with expliit substitutions may not terminate. Pro-eedings of TLCA'95 (1995), Springer LNCS, 902, 328{334.11. Parigot, M.: ��-alulus: An algorithmi interpretation of lassial natural dedu-tion. Proeedings of LICS'93 (1993), Computer Soiety Press, 39{46.


