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Summary In this paper, we shall propose a numerical scheme con-
sisting of two steps: the first based relaxation method and the second
on the so called well balanced scheme. The derivation of the scheme re-
lies on the resolution of the stationnary Riemann problem with source
terms. The obtained scheme is compatible with the diffusive regime
of hydrodynamics radiative transfert models. Some numerical results
are shown.

1 Introduction

In this article , we are concerned with a model arising from radiative
transfert modelling. It is well known that in very rarefied regions, the
physically relevant model is a free transport one whereas in the dense
regions, the radiative transfert becomes a diffusion equation. The aim
of this work is to design a scheme for the two-moment systems that
can be obtain, for example using maximum entropy technics. We refer
to [24] for a recent presentation of the various closures.

Send offprint requests to: S. Cordier
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The requierement for the scheme are to be used with a non uniform
grid in space, to deal with varying scattering cross sections, to have
the correct asymptotics behabiour in diffusive regimes, to be implicit
in order to avoid too restrictive time steps limitations.

The solution we should described has been announced in [5] and
it consists of two main steps : the first one is a relaxation method
which permits to transform the nonlinear hyperbolic system into two
independant linear systems, known as the Goldstein Taylor system
or Telegraph equations; the second step is to use the so called well
balanced scheme for each of the two systems. Moreover, we shall pro-
pose an interpretation of the well balanced schemes as a Godunov
scheme when dealing with source terms. We refer to [2] for a com-
plete presentation of well-balanced schemes. This interpretation is
more convenient in order to extend the well balanced schemes for
multi dimensional problem.

The paper is organized as follows : in section 2, we recall the model
of interest and its main properties, namely an invariant domain or
equivalently the positivity of some quantities which are of great phys-
ical importance and the diffusive asymptotics i.e. regimes where the
solutions behave like solution of a parabolic equation. In section 3,
we describe the proposed numerical scheme and its derivation in two
steps (relaxation method in subsection 3.1 and well balanced scheme
in subsection 3.2). In section 4, we present two numerical results :
the first one is concerned with a varying cross section and the second
one to a coupled system with a heat equation for the temperature of
material.

2 Radiative transfert hydrodynamical models

The models, we are interested in, arise from the radiation transport
equation, which is a kinetic equation for the specific intensity of pho-
tons I(Ω, ν, r, t) after integration over the angular variable Ω and the
frequency ν. We refer to [19,7] for a detailled presentation.

In this paper, we are concerned with systems of conservation laws
for the two first moments of the intensity, namely (ρ, ρu) :

{
∂tρ +∇x(ρu) = 0

∂t(ρu) +∇x · P = 0 ,
(1)
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where P is the pressure tensor of the form

P = ρ

(
h(|u|)Id + (1− 3h(|u|))u⊗ u

‖u‖2

)
,

where h(x) = x
g−1(x)

, x > 0 with

g(x) = coth(x)− 1
x

,

the so called Langevin function.

2.1 Eddington factors

In monodimensional case (the velocity is parallel to the first axis) the
above system reduces to{

∂tρ + ∂x(ρu) = 0
∂t(ρu) + ∂xρh(u) = −σρu ,

(2)

where the function h has several forms, which are called Eddington
factors. We refer to [19] or to [24] for a detailled presentation. For
example, Kershaw suggests,

h(x) =
1 + 2x2

3
. (3)

Minerbo uses entropy arguments to obtain the Eddington factor ,

h(x) = 1− 2x

g−1(x)
, (4)

which was called the maximum entropy Eddington factor.

Also, Minerbo [20] suggested that any intensity may be approximated
as a linear function, so the Eddington factor Minerbo linear is:

h(x) =

{ 1
3 , x ∈

[
0, 1

3

]
,

1
2(1− x)2 + x2 , x ∈

(
1
3 , 1
]
.

(5)

Using a Chapman-Enskog approach, we have the following Eddington
factor sugested by Levermore :

h(x) = cothx

(
coth x− 1

x

)
. (6)



4 Christophe Buet, Stéphane Cordier

Another Eddington factor is Levermore-Lorentz [20,19]:

h(x) =
1
3

+
2x2

2 +
√

4− 3x2
. (7)

Let us propose another function, with the same properties of Ed-
dington factors, called Minerbo rational, which is defined by:

h(x) =
1
3

+
2x2

5− |x| − x2
. (8)

This Eddington factors is obtained by making some assumptions for
the function

h(x) =
1
3

+
a|x|+ b

cx2 + d|x|+ e
, (9)

namely:

h(0) = 1
3 ,

h′(0) = 0 ,
h′′(0) = 2

5 .

and

h(1) = 1 ,
h′(1) = 2 .

We remark that these Eddington factors are increasing and convexe
functions.Let us assume the following hypothesis on the h function :
h is a increasing, convex function

u2 < h(u) ≤ 1 , h(0) =
1
3

, h(1) = 1 . (10)

Remark 1 Let us mention that for h ≡ 1 , the system (2) is known
as the Goldstein-Taylor equation or as the telegraph equation. This
particular system will be used in the construction of the solution of
the nonlinear system of interest.

Remark 2 Note also that some two dimensional closure have been pro-
posed [25] where the pressure is a function of ρ and j separately in-
stead of a function of the form ρh(j/ρ) as in (2).
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2.2 Invariant domain

Let us now give some properties of the solutions of the nonlinear hy-
perbolic system (2).

First, for any physically admissible state (ρ, j) such that

ρ > 0, ‖j‖ ≤ ρ, (11)

the system (2) is hyperbolic i.e. the matrix of transpport coefficient is
diagonalizable (see [28] for detailled definitions). Second, the solution
of the Riemann problem without source terms lies in the set of ad-
missible state. Assuming that a Godunov type numerical scheme with
a splitting of the source terms converges, the solution will remain in
the admissible set is invariant.

From the physical point of view, the admissible state comes from
the fact that ρ represents a number of photons which has to be non
negative and that the mean velocity of the photons j/ρ is smaller than
the speed of light (which is normalized to 1 in the choosen scaling).

Note that the proof of convergence of the scheme is behind the
scope of this paper. We shall verify on the numerical results in the
last section that this convergence is expected.

Let us rewrite the system in variable U = (ρ, u) with j = ρu. The
admissible states are characterized by ρ ≥ 0 and ‖u‖ ≤ 1. The matrix
of transport coefficient A(U) such that system (18) reads

∂tU + A(U)∂xU = R(U) , x ∈ R , t > 0 (12)

is given by

A(U) =

(
u ρ

h(u)−u2

ρ h′(u)− u

)
, (13)

Its eigenvalues λ± are given by

λ± =
1
2

(
h′(u)±

√
(h′ − 2u)2 + 4(h− u2)

)
(14)

which are both real using hypothesis (10) on the h function .
The invariant property of the approximated solution is based on a

splitting argument between the transport part and the source terms.
We claim that both of the two operators preserve the properties (11),
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then the composition of the two will have the same property. It re-
mains to prove that the splitting procedure converges as the time step
goes to zero using a argument related to Trotter formula

exp(A + B)t = lim
n→∞

(exp(At/n). exp(Bt/n))n

The invariant property is obvious on the source terms. Indeed, ρ re-
mains constant whereas ‖j‖ decreases. For the transport part i.e. the
system (2) with σ = 0, it can be checked that the properties hold
true for the Riemann problem i.e. considering two states Ul and Ur,
we verify that the 1-wave curve that contains Ul (and which consists
of half shock curve and half rarefaction wave) intersects the 2-wave
curve that contains Ur in a so called intermediate state that is in the
invariant domain.

More precisely, it can be proved that the 1-wave has the follow-
ing behaviour in the ρ, u plane : the curve can be parametrized by u
and the parametrization ρ(u) is decreasing and satisfaies ρ(u) → +∞
as u → −1, ρ(u) ≤ 0,∀u ∈] − 1, 1[ and by construction ρ(ul) = ul.
Similarly, the 2-wave can also be parametrized by u and is increas-
ing, positive and limu→1 ρ(u) = +∞ , ρ(ur) = ρr. Using the above
properties of the 1 and 2-wave curves, one obtain the existence of an
intermediate state (ρ∗, u∗) which satisfy the required properties (11).
We refer to [4] for the details on the construction of the solution for
the Riemann problem of system (2).

Then, if the Godunov type scheme converges, the invariant prop-
erty will be satisfaied for the continuous solution of the transport
part.

Remark 3 This invariant property (11) has a physical interpretation,
since ρ and j the two first moments of the distribution function on
the unit sphere ρ =

∫
fdω, j =

∫
fωdω). From numerical point of

view, this property means that the flux are so-called limited.

2.3 Asymptotic limit - diffusive regimes

Let us formally present the asymptotic limit of the system in so called
diffusives regimes. In such scaling, the system (18) can be written in
the form

ε∂tU + ∂xF (U) =
1
ε
R(U), (15)

where U = (ρ, j), F (U) = (j, ρh(j/ρ), R(U) = (0,−σj), σ(x) > 0,
the cross section and ε is a small parameter.
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In the limit ε → 0, a formal asymptotic gives that j is O(ε) due
to the collision term. At first order in ε, using the second equation of
(15), we get

j = − ε

σ
∂x(h(0)ρ). (16)

This corresponds to suppress the time derivative term into the equa-
tion on j. Then, using h(0) = 1/3 and using (16) into the first equa-
tion, we obtain the following diffusion approximation

∂

∂t
ρ− ∂

∂x
(

1
3σ

∂

∂x
ρ) = 0. (17)

Note that the solution for ρ of the limit heat equation (17) and j
given by by (16) does not satisfy automatically the condition (11),
because the gradient ∂xρ can be arbitrarily large e.g. if the initial
data is discontinuous in ρ. Note also that j or ∂xρ are also solution
of the same heat equation.

Our aim is now to design an implicit scheme compatible with the
limit ε → 0 and with the invariant property (11).

Various methods have been proposed to get ride of these difficulties
such as variable Eddington factors for the so-called P1-approximation
or flux limiters for diffusion approximation (see [19] and ref. therein).
This is also related to a series of papers about asymptotic preserving
schemes for kinetic problems, well balanced schemes, stiff source terms
and relaxation methods in the context of hyperbolic systems [13,9].

3 Numerical method for radiative model

Our method is based on a time splitting in two steps. The first step is
based on a relaxation method [13] and the second on a well-balanced
schemes [9].

Our goal is to solve the nonlinear problem while preserving pos-
itivity. Linearizing the equation is not suitable since the invariance
domain will not be preserved and it will give wrong results when
using implicit method.

3.1 The relaxed system.

Let us briefly recall the relaxation method according to [13]. Consid-
ering a system of the form

∂tu + ∂xf(u) = 0,
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it becomes in the relaxation limit α → 0

∂t(u, v) + ∂x(v, au) = (0,−(f(u)− v)/α).

This can be written in the form

∂tU + A∂xU = R(U), (18)

where A is a constant matrix of transport coefficient and R(U) is a ,
possibly nonlinear, source term.

Let us now apply this method to our system. The first step is to
rewrite system (15) as the limit (α → 0 ) of the following relaxation
system 

∂tρ + 1
ε∂xz = 0

∂tz + a
ε∂xρ + σ

ε2 z = 1
α(j − z)

∂tw + a
ε∂xj = 1

α(ρh( j
ρ)− w)

∂tj + 1
ε∂xw + σ

ε2 j = 0.

(19)

Note that, formally, the relaxed system is equivalent to (15) as the
limit (α → 0 ) since the equilibrium states are given by

z = j, w = ρh(
j

ρ
). (20)

Note also that, when ε → 0 with fixed α, one recovers formally, the
diffusion equation with a diffusion coefficient equal to a. At this point,
the coefficient a remains to be choosen.

Our method consists in splitting the transport part or left hand
side of system (19) and the relaxation term i.e. the right hand side.
In the relaxation part, the original variables (ρ and j) are unchanged
whereas the new variables (z and w) converge to the equilibrium state
given by (20) in the limit α → 0. Thus, the relaxation part reduces
into a projection on equilibrium states. The coefficient a is constant
in space but has to be choosen at each time step in order to recover
the correct diffusion coefficient.

The transport part writes:
∂tρ + 1

ε∂xz = 0
∂tz + a

ε∂xρ + σ
ε2 z = 0

∂tw + a
ε∂xj = 0

∂tj + 1
ε∂xw + σ

ε2 j = 0.

(21)
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Let us point out that the relaxation term on the equation over z is
not classical. However, this term is very important in order to get the
right asymptotic behaviour in diffusives regimes i.e. when ε → 0.

Let us also emphasize that (21) is just two linear and identical
systems. These systems are uncoupled : one for the quantities (ρ and
z), the second for (w and a new variable j̄ = aj) which are equivalent
to the system (15) with h ≡ a.

Note that this system i.e. (15) with h ≡ a once diagonalized is a
well-know Goldstein-Taylor or Telegraph equation with speed ±

√
a

i.e. two transport equations in opposite direction coupled by a relax-
ation term {

∂tu +
√

a
ε ∂xu = σ

2ε2 (v − u)
∂tv −

√
a

ε ∂xv = σ
2ε2 (u− v).

(22)

Let us mention that the invariant domain property (11) can be seen
as the positivity of the transported quantities ρ± j > 0. In the above
system, the transport quantities (u or v) are ρ±z/

√
a (or j±w/

√
a).

We shall choose the coefficient a in such a way that the transport
quantities remain positive.

Using the following change of variable

U =
√

aρ + z + w +
√

aj,
V =

√
aρ− z + w −

√
aj,

Ū =
√

aρ + z − w −
√

aj,
V̄ =

√
aρ− z − w +

√
aj,

(23)

we verify that (U, V ) and (Ū , V̄ ) satisfy a system of the form (22).
We will show that for the transport part, the invariant domain (11)
comes from the positivity of U, V, Ū , V̄ for sufficiently large value of a.

The initial data for the new variables verify, using the equality of
the projected variable at initial time z = j and w = ρh(u) , become

U = ρ(
√

a + h(u)) + j(
√

a + 1),
V = ρ(

√
a + h(u))− j(

√
a + 1),

Ū = ρ(
√

a− h(u))− j(
√

a− 1),
V̄ = ρ(

√
a + h(u)) + j(

√
a− 1).

(24)

Then, using that j = ρu and ρ ≥ 0, we obtain that U at t = 0 is
positive provided that

√
a + h(u) + (

√
a + 1)u ≥ 0.
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Let us assume that u (at initial time) lies in the interval [−b, b] with
some b < 1. We have to choose a. Note that , for any a > b and any
u ∈ [−b, b],

√
a + h(u) + (

√
a + 1)u ≥

√
a + h(b)− (

√
a + 1)b.

Thus, the following value

√
a =

h(b)− b

1− b
,

insurses positivity. Any larger value of a will also be convenient, for
example

a
def
= h(b). (25)

Indeed, it can be easily verify that this choice preserves positivity :
√

a+h(u)+(
√

a+1)u ≥
√

h(b)+h(b)−(
√

h(b)+1)b = (
√

h(b)+1)(
√

h(b)−b) ≥ 0,

since h(y) ≥ y2. The properties hold also the the other three quanti-
ties V, Ū , V̄ .

Thus, we prove that the following choice for the coefficient a

a = h(max
x∈R

‖u(x)‖),

ensurses the positivity of the initial data for U, V, Ū , V̄ and then of
the solution U, V, Ū , V̄ of the system (21). The sketch of the proof
for the positivity is similar to the one of section 2.2. We consider the
two independant systems of the form (22). We construct the solution
of such system as the limit of a approximated solution based on a
splitting. For the transport part (as speed ±

√
a) the positivity of

both u and v is obvious. For the source terms, we easily check that
the solution of the relaxation

∂tu =
σ

2ε2
(v − u), ∂tv =

σ

2ε2
(v − u),

also preserves positivity. Thus, the approximation satisfy the proper-
ties and so does its limit. We assume the convergence of such splitting
based algorithms, which is reasonnable for any fixed ε.

In this case, we can prove directly the above result : For any solu-
tion of (22) with positive initial data, the solution remains positive.
We define the postive and negative part of a fonction f and denote it
by f+ and f−

f+ = (f+ | f |)/2, f− = (f− | f |)/2.
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We multiply the equations of (22) by u− and v− respectively and we
integrate for x ∈ R{

∂t

∫
u−udx +

√
a

ε

∫
u−∂xu =

∫
σ

2ε2 u−(v − u)
∂t

∫
v−vdx−

√
a

ε

∫
v−∂xv =

∫
σ

2ε2 v−(u− v).

We have u−u = (u−)2 and the integral of ∂x(u−)2 is zero assuming
u(x, t) → 0 when x → ±∞. Thus,

∂t

∫
(u−)2 + (v−)2dx =

∫
σ

2ε2
(u−(v − u) + v−(u− v)) ≤ 0.

Indeed,

u−(v−u)+v−(u−v) = u−(v++v−−u−)+v−(u++u−−v−) = u−v++u+v−−(u−−v−)2.

The first two terms are non positive by definition of (u−, v+) and
(u+, v−) respectively.

The initial data being positive implies u−(t = 0) = v−(t = 0) = 0
and the above inequality proves that the L2 norm of u− and v− decay.
This proves that u− and v− vanish for any time i.e. that the solution
u and v remain positive.

Remark 4 The proposed choice for a is not satisfactory since it de-
pends on the whole solution u(x) for x ∈ R. We refer to [7] for a
variant of the solution proposed here that overcomes this difficulty.

In the diffusive limit (ε → 0) or for large time behaviour, we expect
that maxx∈R ‖u(x)‖ → 0 and therefore, a will become close to 1/3 i.e.
we obtain the right asymptotic (17).

Remark 5 Despite its linear structure, the system (22) give raise to
severe numerical problems. It can also be seen as a very simple model
of kinetic theory of gases where particles can only have velocity ±

√
a.

In this context, the limit ε → 0 corresponds to a diffusion limit which
a diffusion coefficient equal to a

σ .

3.2 An interpretation of the Well Balanced scheme

We shall now solve numerically the system (22) for (ρ, z) (and simi-
larly for the other identical system in variable (w, aj)).
We introduce a non-uniform mesh : we note xi, the center of the cell
of size ∆xi with i ∈ Z and define ∆xi+ 1

2
= (∆xi + ∆xi+1)/2.
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In this part, we shall present an interpretation of the WB scheme
for the so called telegraph equation and/or Goldstein-Taylor model

∂tu + ∂xu = −σ(v − u), ∂tv − ∂xv = σ(v − u). (26)

This system, with source term , can be rewritten in a more compact
form

∂tU + A∂xU = R(U).

One possible way to recover the WB scheme is to approximate the
source term using a quadrature formulae that localize the source at
interfaces i.e. R(U) is replaced by∑

i

δ(x− xi+ 1
2
)∆xi+ 1

2
R(Ui+ 1

2
).

Let us now introduce an extended non conservative hyperbolic sys-
tem (without source term) for (U, id) where id represents the identity
function (constant in time){

∂tU + A∂xU = R(U)∂xid,
∂tid = 0,

(27)

with the matrix
B =

(
A −R
0 0

)
.

Note that since A is diagonlizable, B too and its spectrum consists
of the eigenvalues of A and zero. Let us now assume that the matrix
A is diagonal. Then, using a piecewise constant approximation of the
auxillary function id(x) (and thus its derivative becomes sum of delta
function localized at interfaces xi+ 1

2
with weights ∆xi+ 1

2
) yields to

the quadrature formulae proposed above.

This way of introducing the localization of the source at interfaces
permits to extend naturally this approach to non uniform mesh and
to multi-dimensional problem. Let us refer to [2] for a detailled review
of such well-balanced schemes.

We have now to solve the Riemann problem including the source
term. Thus, we localize the analysis near the interface, assuming the
time step small enough such that the waves will not interact from one
cell to another. We have assumed A is diagonal, thus we can treat
each component separately i.e. consider that U is a scalar and the
matrix A reduces to a real number. Let us assume A > 0 for example.
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Let us now introduce a mollifier sequence χβ of the Dirac measure,
for example, we can choose characteristic function with vanishing sup-
port χβ(x) = 1

β for any ‖x‖ < β/2 and 0 elsewhere. The regularized
local Riemann problem with source reads for ‖x‖ < β/2

∂tUβ + A∂xUβ =
1
β

R(Uβ)∆xi+ 1
2
,

and the initial data U(x, t = 0) = UL for x < 0 and U(x, t = 0) = UR

for x > 0. Since a > 0 the transport propagates to the right, the
solution of this Riemann problem satisfaiesU(x, t) = UL, ∀(x, t)s.t.x < −β/2,

U(x, t) = UR, ∀(x, t)s.t.x > At + β/2,
U(x, t) = U∗, ∀(x, t)s.t.β/2x < At + β/2,

where U∗ is the outgoing value of U associated to the entering value
UL after crossing the interval [−β/2, β/2]. Note that we do not detail
the solution inside the interval since this interval is vanishing in the
limit β → 0, but we need to compute the outgoing value U∗. When
rescaling the interval y = x/β, the problem becomes

β∂tU(y, t) + A∂yU(y, t) = R(U)∆xi+ 1
2
,

and formally, when β → 0 the problem becomes stationnary. Thus,
in the limit β → 0 the outgoing value U∗ is given by the stationnary
solution.

Let us now solve the stationary problem for the telegraph equation
of interest and an arbitrary mollifier. Setting ρ = (u + v)/2 and j =
(u − v)/2, the stationnary equation (in variable y) associated with
(26) reads (let us assume σ = 1 for simplifying the notations).

∂yρ = −χ(y)j, ∂yj = 0.

The current j is constant (equal to uL − vL and to uR − vR) and the
equation for ρ gives

ρR − ρL = j

∫ 1/2

−1/2
χ(y)dy = j.

Thus, the stationnary solution is characterized by the equations

ρR − ρL = j = jR = jL.

These equations are independent of the choosen mollifier.
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For the telegraph equation (A = 1), the eigenvalues are ±1 and
the Riemann invariant are the functions u and v respectively. Then,
the solution of the Riemann problem with a localized source terms is
defined by

U(x, t) = UL = (uL, vL), ∀(x, t)s.t.x < −t,
U(x, t) = U∗

L = (uL, v∗L), ∀(x, t)s.t.− t ≥ x < 0,
U(x, t) = U∗

R = (u∗R, vR), ∀(x, t)s.t.0 ≥ x < t,
U(x, t) = UR = (uR, vR), ∀(x, t)s.t.x ≥ t,

Indeed, the Riemann invariant uL is constant through the left wave
with speed −1. The intermediate states U∗

L and U∗
R are connected by a

stationnary wave and thus satisfy the above relations. Once expressed
in the original variable ρ and j, the solution is uniquely defined by j∗R = j∗L = j0, ρ∗R − ρ∗L = −j0∆x,

ρ∗L + j0 = uL,
ρ∗R − j0 = vD.

The first equations are nothing but the relations for states connected
by a stationnary wave. The last two equations come from the conser-
vation of the u (resp. v ) through the wave of speed −1 (resp. +1).
The solution of this linear system is

j0 =
uL − uR

2 + ∆x
, ρ∗L = uL − j0, ρ∗R = vD + j0.

Then, one can write a Godunov scheme using these exact solution for
the Riemann problem.

When performing the same analysis i.e. solving the Riemann prob-
lem with a cross section σ/ε instead of σ), we find

j0 =
uL − uR

2 + σ∆x
ε

,

and with velocity ±
√

a (as in (22) instead of ±1 (as in (26), we have
to replace ∆x by ∆x/

√
a and, thus, the coefficient becomes

j0 = M(uL − uR), M =
2ε
√

a

2ε
√

a + σ∆x
.

Last, we have to project onto piecewise constant solution at iter-
ation n + 1. The average value over the cell is given by

Un+1
i+ 1

2

=
A∆tU∗ + (∆xi+ 1

2
−A∆t)Ui+1

∆xi+ 1
2

.
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We have a similar formula with Ui instead of Ui+1 in the case A < 0.

Let us now integrate - in time and space - the obtained solution
onto the cell without the thin boundary layer near interfaces i.e. we
integrate the equation onto [xi− 1

2
+ ε/2, xi+ 1

2
− ε/2] × [tn, tn+1[. By

construction, the time derivative gives the difference Un+1
i − Un

i and
the source term is identically zero. We obtain

Un+1
i − Un

i +
1

∆xi

∫ ∆t

0
F (U ε

i− 1
2

(s))− F (U ε
i− 1

2

(s))ds = 0.

The obtained scheme is a direct extension of the, so called well
balanced scheme described in [9] for telegraph equation with velocity
±
√

a, variable cross section σ and non uniform mesh:
∆ui
∆t + Mi− 1

2

√
a

ε∆xi
(ui − ui−1) = Mi− 1

2

∆x
i− 1

2
∆xi

σ
i− 1

2
2ε2 (vi − ui)

∆vi
∆t −Mi+ 1

2

√
a

ε∆xi
(vi+1 − vi) = Mi+ 1

2

∆x
i− 1

2
∆xi

σ
i+1

2
2ε2 (ui − vi).

(28)

where ∆ui
∆t denotes either the partial derivative of ui with respect to

t i.e. a semi-discretized system or a time discretization (e.g un+1
i −un

∆t )
and the coefficient Mi+ 1

2
defined by

Mi+ 1
2

=
2
√

aε

σi+ 1
2
∆xi+ 1

2
+ 2

√
aε

, (29)

with
√

a is the constant value of the limit diffusion coefficient as de-
fined above and σi+ 1

2
is an arbitrary average of σ at interface (e.g.

arithmetic, harmonic...). The above scheme corresponds to the one
proposed in [9] for a uniform mesh, σ = 2 and a diffusion coefficient
in the limit heat equation equal to 1

2 . Note that, in our case, the cross
section is not assumed to be constant, which is of main interest from
applications point of view.

We can show that (28) is a monotone scheme and then (11) re-
mains an invariant domain during the transport part. It is readily
seen that, in the limit maxi(∆xi) → 0, the coefficient Mi+ 1

2
tends to

1 and the consistency of the scheme (28) with the continuous system
(22) is satisfied provided that, in the limit, the mesh is smooth enough
i.e. that is locally an uniform mesh (∆xi+1

∆xi
) → 1 when maxi(∆xi) → 0.
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Note that the proposed scheme (28) can be simplified for an uni-
form mesh and constant cross section. In this case, the coefficient M
is also constant and the equation for ∆ui

∆t reads

∆ui

∆t
+ M

√
a

ε∆x
(ui − ui−1) = M

σ

2ε2
(vi − ui)

can be equivalently writen as

∆ui

∆t
+
√

a

∆xε
ui = M(

σ

2ε2
vi +

√
a

ε∆x
ui−1). (30)

This form is suitable for insuring the positivity of the solution or,
equivalently, the condition ‖j‖ ≤ ρ) i.e. ui(t = 0) > 0∀i ∈ Z ⇒
ui(t) > 0, ∀i, ∀t > 0 either for the semi-discretized system (when
∆ui
∆t represents ∂ui

∂t ) or for semi-implicit schemes (when it represents
un+1

i −un

∆t ). For semi-discretized system we have

ui(t) ≥ ui(0) exp(−
√

a

∆xε
t).

A similar argument holds for the positivity of v.
Let us mention a last equivalent forms of the scheme with uncen-

tred source terms like in [1]

∆ui

∆t
+
√

a

∆xε
(ui − vi) = M

√
a

∆xε
(ui−1 − vi). (31)

These equivalences come from the equality

M(
√

a

∆xε
+

σ

2ε2
) =

√
a

∆xε
.

3.3 Interpretation as HLL scheme

Let us now interpret the obtained scheme in terms of the so called
Harten-Lax-Van Leer scheme described in [28].

Indeed, the scheme (28) can be writen in the original variables
(ρ, z) and the same for (w, j̄)

∂ρi

∂t + 1
ε∆xi

(Mi+ 1
2
zi+ 1

2
−Mi− 1

2
zi− 1

2
) = 0,

∂zi
∂t + a

ε∆xi
(Mi+ 1

2
ρi+ 1

2
−Mi− 1

2
ρi− 1

2
) = −λi

2ε2 zi +
M

i+1
2
−M

i− 1
2

ε∆xi
(aρi),

(32)
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with

zi+ 1
2

= (zi + zi+1 + ρi+1 − ρi)/2, ρi+ 1
2

= (ρi + ρi+1 + zi+1 − zi)/2,

and

λi =
∆xi+ 1

2

∆xi
Mi+ 1

2
σi+ 1

2
+

∆xi− 1
2

∆xi
Mi− 1

2
σi− 1

2
.

Once again, the consistency of the scheme (when ∆x → 0 for fixed ε)
requires a asymptotically regular mesh . More precisely, this means

that, when the mesh is refined, it becomes locally regular
∆x

i− 1
2

∆xi
→ 1

as maxi ∆xi → 0.

One can also check the asymptotics ε → 0 (with fixed ∆xi pre-
sumably non uniform) using the above form. It is readily seen that z
has to remain small and, more precisely, of the order of magnitude of
O(ε). On the other hand, the limit behaviour of M is given by

Mi+ 1
2
∼ 2ε

√
a

σi+ 1
2
∆xi+ 1

2

,

and for the λ coefficient
λi ∼

4ε
√

a

∆xi
.

Moreover, the last term of the r.h.s. is small and the leading order of
the equation for z is

a

ε∆xi
(

2ε

σi+ 1
2
∆xi+ 1

2

ρi+ 1
2
− 2ε

σi− 1
2
∆xi− 1

2

ρi− 1
2
) =

−4ε

2
√

aε2∆xi
zi.

Furthermore, in the limit ε → 0, we have (since zi is of order ε)

zi+ 1
2

= (ρi+1 − ρi)/2.

Then, reporting the last expressions in the equation for ρi, one obtain
the discretization of the heat equation on a nonuniform grid. Indeed,
retaining only the first order terms in the preceeding expressions, the
equation for ρi in (32) becomes

∂ρi

∂t
+
√

a

∆xi
(
ρi+1 − ρi

∆xi+ 1
2

− ρi − ρi−1

∆xi− 1
2

) = 0.

Note that the formulae can be simplified for uniform mesh and
constant cross section : in this case, we have λ = 2σM and the sec-
ond term of the right hand side vanishes. Then, the proposed scheme
reduces to a classical Godunov scheme

ε
∂Ui

∂t
+ M(Fi+ 1

2
− Fi− 1

2
)/∆x =

M

ε
R(Ui), (33)
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where the flux at interfaces are given by

Fi+ 1
2

= [biFi+1 + bi+1Fi + bibi+1(Ui+1 − Ui)]/(bi + bi+1), (34)

which are just upwind fluxes for(22) with bi =
√

a The multiplicative
coefficient M = 2Dε

σ∆x+2Dε comes from the well balanced scheme where
D is the expected diffusion coefficient i.e. h(0).

This form is useful because it is expressed in the original variable
and this can be easily generalized to nonlinear case. The discretiza-
tion is a sum of a diffusive term and classical convective term. Thus,
this discretization can be interpreted as a particular choice of adding
numerical viscosity depending of ε.

3.4 Comparison

Let us now detail the comparison with other proposed scheme for
similar models.

For example, the scheme proposed in [16] can be written, using
our notations, as an interpolated scheme between an upwing scheme
and a centrered one. Starting from the system in the form (2) with
h = 1 i.e. the telegraph equation, we set j = εj̄{

∂tρ + ∂xj̄ = 0
∂tj̄ + (1 + (1− ε2)/ε2)∂xρ = −σ

ε2 j̄.
(35)

Let us split the system into a transport part with velocity ±1 which
is discretized using a upwind scheme (in variable u and v) and the
remaining part of the term ∂x(ρh) is taken as a source term, using
a centrered scheme. Once back into the original variable (ρ, j̄), the
semi-discretized system, on a uniform grid in space, reads

∂tρi + 1
2∆x(j̄i+1 − j̄i−1 − (ρi+1 + ρi−1 − 2ρi)) = 0

∂tj̄i + 1
2∆x(ρi+1 − ρi−1 − (j̄i+1 + j̄i−1 − 2j̄i)) =

−1
ε2

[
σj̄i + (1− ε2)(ρi+1 − ρi−1)/(2∆x)

]
.

(36)

The above discretization can be written equivalently in ρ, j as{
∂tρi + 1

ε
1

2∆x(ji+1 − ji−1)− 1
2∆x(ρi+1 + ρi−1 − 2ρi) = 0

∂tji + 1
ε

1
2∆x(ρi+1 − ρi−1)− 1

2∆x(ji+1 + ji−1 − 2ji) = −σ
ε2 ji

(37)

or, 
∂tρi + 1

ε
1

2∆x [(1− ε)(ji+1 − ji−1)+
+ε(ji+1 − ji−1 − (ρi+1 + ρi−1 − 2ρi))] = 0

∂tji + 1
ε

1
2∆x [(1− ε)(ρi+1 − ρi−1)+

+ε(ρi+1 − ρi−1 − (ji+1 + ji−1 − 2ji))] = −σ
ε2 ji

(38)
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i.e. a centered scheme for the (1− ε) part and the upwind scheme for
the ε part.

The proposed scheme can also be related to scheme proposed re-
cently in [1,21] and compared with previous works like [12,18,16].

4 Numerical results

We shall now present 2 numerical tests. The first is a validation of
our method with a strongly variable cross section. The second case is
a more complex case with a coupling with heat equation for material.
The scheme is implicit in time which leads to the solving of a band
matrix system.

4.1 Variable opacity coefficient

Let us consider the case

x ∈ [0, 2], σ(x) = 100(x− 1)4.

This corresponds to a case of transparent media in the center (σ = 0
for x = 1) with opaque walls at boundary (x = 0 and x = 2).

The initial data is a characteristic function, for ρ with support in
[12 , 3,

2 ]. The initial flux j is equal 0. The simulated time is T = 0.1
and the small parameter value takes the following values : ε = 0 (i.e.
the diffusion case ) and the following values 10−2, 0.1, 1. The mesh is
uniform with either 100 or 1000 points and the time step is chosen
such that ∆t/∆x = 0.05. Note that the expected time step restriction
for the transport part (C.F.L. condition) is much more restrictive
∆t
∆x ≤ ε, and, similarly, the characteristic relaxation time is such that
∆tσ ≤ ε2.
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epsilon=0,01 1000 mailles
epsilon=0,1 1000 mailles
epsilon=1  1000 mailles
diffusion 1000 mailles
epsilon=0,01 100 mailles
diffusion 100 mailles

The computation using various number of discretization points in-
dicates that the solution converges when the mesh size (and thus the
time step) goeas to 0. This is some kind of numerical consistency re-
sult. On the other hand, when ε goes to 0, we obtain a solution that
converges toward the one of a diffusion equation with the diffusion co-
efficient 1/3. This illustrates that the proposed scheme is compatible
with the diffusive asymptotics.

4.2 Coupling with material

Let us consider the system coupled with an heat equation for some
material. This test can be seen as a simplified model of laser-plasma
interaction ε∂tρ + ∂xj = τ

ε (K − ρ)
ε∂tj + ∂xρh(j/ρ) = − τ+σ

ε j
Cv∂tT = −τ

ε2 (K − ρ),
(39)

σ is the scattering coefficient for photons, τ is the absorption coeffi-
cient of the material. K can be either given or equal to T 4 following
Stefan law. We have τ = Cv

T 3ε2 .

The choosen closure relation is the Levermore-Lorentz one [20,19]
given by (7). We are using a time splitting :one time step for the mo-
ment systems in (ρ, j) with fixed temperature T and then, the system
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for (ρ, T ). The first test consists of a domain, scaled to [0, 2], between
2 walls. Let us summarize the scaled parameters of the simulation

x<0.1 0.1 < x < 0.2 0.2 < x < 1.8 1.8 < x < 1.9 x > 1.9
σ + ∞ 0 0 0 +∞
C 0 10 0 10 0
ρ0 0 16 0 10−4 0
j0 0 0 0 0 0
T 0 0 2 0 10−1 0

0 0.02 0.04 0.06 0.08 0.1
0

0.5

1

1.5

2
diffusion x=1.8 epsilon=.001
diffusion  x=1.84 epsilon=.001
x=1.8     epsilon=.001
x=1.84   epsilon=.001
x=1.8     epsilon=.003
x=1.84   epsilon=.003
x=1.8     epsilon=.01
x=1.84   epsilon=.01

VEF  Levermore
time evolution of the  temperatures

Initially, the left wall is hot and, then, by radiation, it warms the
right one. We plot the evolution of temperature due to this heating
at the surface x = 1.8 , and inside the right wall for x = 1.84.The
computations were made with ∆x = 1/500 and ∆t = 10−4.

We observe on figure 2 that the solution converges toward those
of the diffusion model when ε → 0 as expected. Note that the depen-
dance with respect to ε is weaker in the material (at x = 1.84) than
at the surface (at x = 1.8). The front of heating reaches the surface
x = 1.8 at time t = 0.012 for ε = 0.01 and this time goes to zero as
ε → 0 as expected for a diffusive equation. The oscillations (in time)
of the temperature at x = 1.8 (surface of the material) are due to the
heat wave that rebounds between the walls. The speed of the wave
goes to infitnity as ε → 0 and in the diffusive limit, the heat propa-
gates instantaneously and, thus, the oscillations disappear. The front
of heat is less sharp within the material and the delay to warm the
material increases as ε → 0 (from t = 0.05 at ε = 0.01 to t = 0.075
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when ε → 0).

The second test is taken from [22], page 625, with a constant
opacity but with Cv = αT 3 and a source term S = 1 localized in
‖x‖ ≤ 1/2. All coefficients in (39) are taken to one thus the system
of equations to solve is∂tρ + ∂xj = (K − ρ) + S

∂tj + ∂xρh(j/ρ) = −j
∂tK = −(K − ρ).

(40)

The computations were made with ∆x = 3/50 and ∆t = 1/100. Solu-
tions, with different Eddington factors are viewed at times t = .1, 1, 3
and t = 10.

At early time, the discrepancies between various variable Edding-
ton factors (VEF) and diffusion are important since diffusion is a less
accurate model for short time. These differences, as expected , tend to
reduce to zero as the time growing. At time t = 10, these discrepancies
are negligible. We also show the results for the P1 model withh = 1/3
and for the, so called, P1/3 model derived from the P1, (see [22] for
a detailled presentation), by taken h = 1 and by multiplying the
opacity by a factor 3. For these two constant Eddington factors, the
discrepancies with diffusion results, still exist at time t = 10. This
proves that is is important to use the correct closure relation or Ed-
dington factor in order to recover the right behaviour of the solutions
in particular at early time but also after rather long time.

1

0.01

0.1

1

P 1/3
vef levermore
vef minerbo
P1
diffusion
P 1/3
vef levermore
vef minerbo
P1
diffusion
P 1/3
vef levermore
vef minerbo
P1
diffusion

Test Su-Olson 
Radiative energy, t=1,3 and 10
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Moreover, our results are very close to those obtained in [22], with
a important difference : our scheme for variable Eddington factors
gives no noisy solutions, in contrast with the corresponding results
presented in [22]. This fact illustrates the robustness of our scheme.

We also show the profile of the Levermore-Lorentz Eddington fac-
tor at the same times.

0.1 1 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

t=.1
t=1
t=3
t=10

Test Su-Olson
Levermore-Lorentz VEF

for which we can give the same conclusion as for the precedent figure:
no noisy solution for variables Eddington factors with our scheme.
Thus, the instability or noise observed for the VEF calculations in
[22] are certainly due to a bad discretization of nonlinear hyperbolic
problem.

5 Conclusions

The proposed scheme has all the required properties announced in
the introduction.

The scheme consists of two steps : first to replace the nonlinear
into two independant and identical linear system of telegraph equa-
tions and, second, the use of a well balanced scheme for each of the
two systems. The interpretation of the well balanced scheme as a Go-
dunov scheme using the Riemann solution of hyperbolic system with
source term (section 3.2) can be extended to more complex relaxation
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term.

A first example arises from relativistic effect as presented in the
models described in [6]. The obtained equation is, in such case, a
Burgers equation with diffusion instead of the heat equation in the
case considered here. It can also be extended to discrete velocity mod-
els of kinetic equation in the diffusive regime with a linear collision
operator of Lorentz type (see [3] for a detailled presentation). A third
extension is to consider two dimensional (in space) model. The use of
alternate direction (i.e. a splitting between the x and y direction) is,
in diffusive regime, not suitable. Our method yields to choose distincts
quadrature points for the transport in direction x and y respectively,
or, in other words, it yields to localize the source terms at interfaces.

Moreover, the proposed approach can be combined with adapta-
tive mesh refinement technics since it requires to evaluate the flux
at interface by solving stationnary Riemann problem as explained in
subsections 3.2 and 3.3. These are, in our opinion, promissing direc-
tion for forthcoming developpements of the proposed scheme.

The main drawback of the proposed scheme is that the choice of the
velocity a for the relaxed system (2) is non local and thus, the diffusive
regime is obtain only when the whole domain is in isotropic equilib-
rium. This is a rather severe limitation for the use of this scheme in
complex situations. One possible solution is to use domain decompo-
sition and to use a different value of a in the different domains. We
also mention a forthcoming paper [7] that proposed a variant of the
proposed scheme for which the choice of the coefficient a is no more
local.
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