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Abstract

The main result presented here is that the flow associated with a
riemannian metric and a non zero magnetic field on a compact oriented
surface without boundary, under assumptions of hyperbolic type, cannot
have the same length spectrum of topologically corresponding periodic
orbits as the geodesic flow associated with another riemannian metric
having a negative curvature and the same total volume. The main tool
is a regularization inspired by U. Hamenstddt’s methods.

1 Introduction

The problems of entropic and spectral rigidity of riemannian manifolds have
been widely studied, beginning with the surfaces [@ The works treat rie-
mannian metrics on compact surfaces [[], [], 2], on higher dimension mani-
folds [}, B1, B, 13, or on surfaces with singularities [R1]. The related problem
of boundary rigidity of a riemannian metric features many results [R5, Bd], [B1].
The rigidity of an absolutely continuous flow conjugacy persists in some way
with the presence of a magnetic field on a compact surface [E], and so do
entropic rigidity in this case [ The topological entropy of the magnetic flow
in higher dimension has also been studied [29], [H.

Unlike the geodesic flow, a conjugacy being only continuous (in fact Holder-
continuous) between two magnetic flows on a surface had not been treated.

When the surface is compact and the Jacobi endomorphism [% of the
magnetic flow is negative, this flow has got the Anosov property | ; two
such flows have got the same marked length spectrum of periodic orbits if and
only if they are C°-conjugated [[L7].

The main result presented here is that the flow associated with a riemannian
metric and a non zero magnetic field on a closed surface, if it has got a negative



Jacobi endomorphism, cannot have the same marked length spectrum as the
geodesic flow associated with another riemannian metric having a negative
curvature and the same total volume. The assumption on the equality of the
total volumes is essential [[7).

Theorem Let M be a closed (compact without boundary), connected,
oriented surface. Let g1 and ga be two C*-riemannian metrics over M whose
curvatures are negatively pinched : —ki < K; < —k? <0 fori=1,2,. Let k1
be a C>-magnetic field over M. The magnetic flow 1} = """ is supposed to
have a negative Jacobi endomorphism. If the magnetic flow 1} and the geodesic
flow o7 = I have the same marked length spectrum, and if the surface M has
the same total volume for the two metrics, then the two metrics are isotopic,
which means that one is the image of the other by a diffeomorphism f of M
homotopic to the identity, and the magnetic field k1 is zero.

The proof consists in coming back to the known case where there exists an
absolutely continuous conjugacy between the two flows [E] The proof of the
regularity of the conjugacy is inspired by U. Hamenstadt’s methods @, @]
We construct linearizations of the universal covering of the surface, compatible
with the stable spaces of the flow. This is useful to proof that the Lyapounoff
exponents of the periodic orbits are preserved (theorem ), which ensures
that the conjugacy is smooth [@] The regularity of the conjugacy used to proof
the theorem is valid in general for two magnetic flows (we denote T}! M
the unit tangent bundle of g;) :

Corollary Let M be a closed (compact without boundary), connected, ori-
ented surface. Let g1 and gs be two C°°-riemannian metrics over M whose cur-
vatures are negatively pinched : —kzg <K; < —k% <0 fori=1,2. Let k1, k2
be two C*®-magnetic fields over M. The two magnetic flows ¥} = pJ*™
and ¥} = J*"™ are supposed to have negative Jacobi endomorphisms. If
the two magnetic flows have the same marked length spectrum, then they are

conjugated by a C*°-diffeomorphism h from TLM onto Ty M.

A uniformization of a surface equipped with a metric with negative curva-
ture has already been constructed [B] ; it applies to an Anosov flow on a 3-
manifold, but with the condition that the stable spaces be of C!-class, which is
unlikely for the magnetic flow [@] The uniformly quasiconformal diffeomor-
phisms present another example of uniform structures on stable spaces [@]

It seems legitimate to ask if the construction presented here is practica-
ble for other flows whose stable spaces are not necessarily of C!-class, and
particularly to which extent a C°-conjugacy between two such flows could be
differentiable.

Given a manifold M, diffeomorphic to R?, with a magnetic flow having a
negative Jacobi endomorphism and having the gradient of centre-stable and
centre-unstable spaces uniformly bounded, and given a point p € M, and a
unitary vector v € T M, the linearization E, (defined in section H) sends M
onto T,M ; the geodesic directed by v onto the straight line Rv ; and the



horocycles associated with the centre-stable manifold of v onto the straight
lines orthogonal to v. This linearization, used as is, presents a little rigidity.

Theorem Let M be an oriented surface diffeomorphic to R?, equipped
with two C*-riemannian metrics g1 and gs whose curvatures are megatively
pinched : —kzg < K; < —k:% <0 fori=1,2. Let k1, ko be two C*°-magnetic
fields over M. The two magnetic flows ¥f = ¥J"" and 2 = 7,/};?2’]62 are
supposed to have pinched negative Jacobi endomorphisms (the C*-norms of k1
and ko are thus bounded), and the gradient of the centre-stable u_ ; spaces
and the gradient of the centre-unstable uy ; spaces for i = 1,2 are supposed
to be uniformly bounded. If there exist a diffeomorphism f : M — M and a
point p € M satisfying

Vel ,M W eTy;,M  E.of=E,

then the two metrics are images one of each other by f, and so are the two
magnetic fields : ko = K10 f.

When metrics and magnetic fields are invariants under a cocompact group,
the rigidity of the linearization is stronger in some way.

Theorem Let M be a closed (compact without boundary), connected, ori-
ented surface. Let g1 and ga be two C°°-riemannian metrics over M whose cur-
vatures are negatively pinched : —kzg <K; < —k% <0 fori=1,2. Let k1, k2
be two C*-magnetic fields over M. The two magnetic flows 1} = pJ*"™
and 2 = {*"* are supposed to have negative Jacobi endomorphisms. If there
exist two vectors vy € Tlllq, vy € T21]/\\4/ and a C'-diffeomorphism f: M — M
homotopic to the identity, of which a lift f over M satisfies E?}Q of = Eil,
then the two metrics are isotopic, transported by f, and so are the two magnetic

fields : ko = K10 f.

Using the tools of the construction of the linearization, we also get a result of
constancy of (future) Lyapounoff exponents along the centre-stable manifolds

(theorem [6.1)).

2 Notations and background

In the following, M denotes a complete, connected, oriented surface, equipped
with a C*°-riemannian metric whose curvature is negatively pinched : —kZ <
K < —k? < 0. The Cartan-Hadamard theorem ([L], p.138) implies that the
universal cover M is diffeomorphic to R?, with cover mapping II : M — M.
Within sections , E, E,E and E, the surface M is simply connected, thus equal
to M. The projection of T'M and T'M on M is written down . The cover
mapping is II : M — M.

The surface M is said closed if it is compact (without boundary).

Let N be the rotation of angle +x/2 in the tangent space TM.



For a curve ¢ : R — M, the equation of the magnetic flow 1, = ¢J"™ = ¥
associated with a magnetic field x : M — R is ] :

2~ ety N (%) .

The flow is a one-parameter group of diffeomorphisms acting on T'M. The
magnetic field k is supposed to be smooth.
The Jacobi endomorphism associated with this second order differential

equation [[[4] is the application [[[7 :

q : T'M — R
v = K(n(v) + () = (N(v), (grad £)(n(v))) -

When the surface M is compact (closed), saying that the Jacobi endomorphism
is negative is equivalent to saying that it is pinched between two strictly neg-
ative constants. In the following, the real function x : M — R is a magnetic
field such that the associated Jacobi endomorphism ¢ satisfies the pinching
condition, which means that there exist two positive constants qg et ¢ verify-
ing :

—q<q<—q <0. (1)

Definition 2.1 [@] With the assumption (ﬂ), to a vector v € T'M are
associated the stable j_(v,t) and unstable j(v,t) Jacobi fields along the or-
bit of v, with components (x_(v,t),y—(v,t)) and (x4 (v,t),y+(v,t)) in the
base (v, N (pv)) satisfying

z-(v,+00) =0, y—(v,400) =0, y—(v,0)=1;
2y(v,—00) =0, yq(v,—0) =0, yi(v,0)=1.

The stable and unstable spaces are determined by the mappings :
U= (w— (U)a U— (U)) = (x_(v, 0), y—l(va 0)) )
U= (w-‘r(v)vu-i-(v)) = ($+(U, 0)7y+l(va 0)).

The tangential component of the stable space at v € T'M satisfies the
relation [[L7] :

0

w-(v) =z_(v,0) = / k(mpfv)y— (v, t) dt. (2)

t=4o00

Writing
2

S LN "

a1

yields as in ], section 3.2 :

7= (v, )l + 1152 (v, )| < Cry—(v,1). (4)



Let W9 (v), W (v), WY (v) and WU (v) be respectively the stable, centre-
stable, unstable, centre-unstable manifolds associated with the unitary vec-
tor v. The stable horocycle of the magnetic flow associated with v is Hf(0) =
H,(0) = aW*(v). The stable horocycle associated with v is Hf(t) = H,(t).
The Busemann function associated with v is the mapping B, : M — R
such that B,(H,(t)) = t. Under the assumption ([l), the centre-stable and

centre-instable spaces identified to the Ricatti applications u_(v) = y” (v,0)
and u (v) = ¥/, (v,0) are of C'-class over T'M and T'M ; the horizontal (or-
thogonal) component of the stable ((v,t) — y_(v,t)) and instable ((v,t) —
y+(v,t)) jacobi fields are of Cl-class over T*M x R and T'M x R ; the circle
at infinity OM admits also a differential structure of C'-class ([L7), section 7).

Let v}, = v4 be the point at infinity corresponding to the future orbit

of v € T'M (and identified with its centre-stable manifold). Given two distinct
points x € M and y € M U OM, we denote v*(x,y) = v(z,y) as the unitary
vector tangent to M at z, directing the unique curve solution joining x to y
(in this order).

3 Liouville measure and symplectic structure
on the space of orbits

Let M be a complete connected oriented surface, equipped with a riemannian
metric g of C*°-class with pinched negative curvature —k3 < K < —kf, and
with a uniformly bounded magnetic field x, of C*°-class, with its Jacobi en-
domorphism satisfying the pinching condition ﬁ) Using the method of the
second order differential equations of Foulon [[L§], let X (k) be the generating
field of the magnetic flow, Hy be the horizontal field, Y be the vertical field ; to-
gether, they constitute a basis field of the bundle TT'M, tangent to the unitary
tangent bundle. Let (X (k)*, HY,Yy) be the dual basis field. Let v be in T M
and j; = x50 4+ y; N(¢fv) for i = 1,2 be two Jacobi fields, with «} = ky; ;
they are associated to the tangent vectors & = x; X (k) + y; Ho + v, Yo at every
point of the orbit of v. The wronskian form

Q=HAYf
applied to the pair of Jacobi fields yields
Qj1,J2) = v1vs — Y291

This is an invariant 2-form under the magnetic flow on T1M. It gives a sym-
plectic form on the space of orbits of the magnetic flow. Its absolute value is
equal to the Liouville measure on the space of orbits [@, E] We have :

QG-(0,7), 5+ (v; ) = (ug —u)(v) = y-(v,8)(uy —u) (W)Y (v,1)  (5)

for every t € R. This quantity lays between 2¢; and 2qp.



4 Curvature of the horocycles

Theorem 4.1 On a complete, connected, simply connected, oriented surface M,
equipped with a C*-riemannian metric g whose curvature is negatively pinched :

—kg < K < —k:% < 0, and with a C®-magnetic field k whose C'-norm is

bounded, with Jacobi endomorphism satisfying the pinching condition (ﬂ), and

such that the gradient of the centre-stable u_ (respectively centre-unstable u )

spaces is uniformly bounded, the geodesic curvature of the stable (respectively

unstable) horocycles of the magnetic flow is uniformly bounded.

Proof : The unstable case is similar to the stable case ; we only consider this

Figure 1:

last one. Let :
i) v bein T*M,

ii) s — v, be a smooth curve from |—¢, e[ to W*(v) such that <%7rvs, N(vy)) =
1 for every s €] — ¢, ¢],



iil) ¢(s) = s,

iv) ci(s) = mivs,

v) T(s,t) = %ct(s), N(s,t) = N(T(s,t)),

vi) S(s,t) = %ct(s) =z_(v,t)T +y_(v,t)N,

vii) Y(s,t) = %y_(vs,t),

viid) - ($fvs) =y (vs, ) Gy (v, 1) = S Iny- (v, 1),

ix) W(s, t) = y—(vs,t) *V(s,t) = £ Iny_(vs, t),

x) L§(c;) be the length of the curve ¢; on the interval [0, s].
We have W(s,0) = 0 for all s and

0 0
W (s, t) = EW(s,t) = gu_(z/}fvs).

The equations (B), (i), imply
IW(s, )] < [[Vuloo Cr y—(vs,1). (6)

Thus we have for all ¢ > 0 and all s :

t
W(s,1)] < clnvu,uoo/ e gr < CllVu-lleo.
=0 ql
C1|Vu_||oo
sl < ATy 0 -

With the assumption (S, N(T)) (s,0) = 1 for all s €] — ¢, ¢][, there comes :

%(s) — S(s,0) = w_(vs)vs + N(vs), (8)
thus
We have also :
Doy D , B
ds EJio (Y~ + k- )(s,0)N (vs) = (u—(vs) + K(c(s))w—(vs)) N (vs).

9)

From the relations () and () comes :

— (u— + kw_) | vs + (u— + kw_)w_N(vs). (10)

Ddc, . [dw_(vy)
aa@—[ a5



In order to estimate the curvature of ¢, the norm of dw_(vs)/ds should be
controlled. The equation () gives :

0
dw-(vs) _ /t (V5. 8) y-(vs, t) + £V (s,1)) dt.

ds —too
The upper estimate (@) implies :
1S(s, )l < Cry—(vs, t) < Cre ™.

With the equation ([), this yields for all s € [—¢,¢]

dw_(v)| _ [ VHllos 1 Vu_
< C c——5——.
‘ ds - 2q 1+ lix q%

Let this last constant be written down C3. The geodesic curvature of the
horocycle ¢(s) is
det (@ 2@)
B ds’ ds ds
(s) = o
|
From the equalities (§) and ([L]) we deduce

dw_(vs)

n,(1+w%)% =1+ uw)(u_ + rw_) — Fra

thus
[h—| < (g0 + [|&]los|lw=lc) + C2.

In conclusion, the geodesic curvature of the stable horocycles is uniformly
bounded, and so is the geodesic curvature of the unstable horocycles. o

The proof of the following result is left to the reader as an exercise.

Corollary 4.1 With the assumptions of the theorem E, there exists a map-
ping f : RT — R™T, continuous at 0 and which annulates at 0, such that for
all horocycle H of the magnetic flow, every diffeomorphism ¢ : R — H and
all a,b € R, we have

Lg(c) < f (d(c(a), c(b))).

5 Fluctuation of the stable Jacobi fields

Theorem 5.1 Let M be a complete, connected, oriented, simply connected
surface, equipped with a C°°-riemannian metric g whose curvature is nega-
tively pinched : —k} < K < —k? < 0, and with a C®-magnetic field r
whose C'-norm is bounded, with Jacobi endomorphism satisfying the pinch-
ing condition (ﬂ), and such that the gradient of the centre-stable space u_



is uniformly bounded. For € OM and (p',p) € M?, the family of map-
pings y—(v(p',8),t)/y—(v(p, 0),t) converges when t grows to +00, uniformly on
the compacts of OM x M?, to a mapping X (0,p,p’), continuous on OM x M?,
and which admits a partial derivative with respect to p,p’ in the direction M?,
continuous on OM x M?.

Proof : Let :
i) 6 belong to OM,
ii) p belong to M,

iii) ¢(s) be a smooth parametrization of the horocycle W (v(p, §)) such
that ¢(0) = p and (9, N(v(c(s,0))) = 1,

iv) pa(r,s) = wrv(c(s),d) the smooth parametrization of M by R?
which follows from it for all 8 € OM,

v) Ty(s,t) = %pg(t, s), No(s,t) = N(Tp(s,1)), Se(s,t) = 5=pa(t,s),

Flo

; _ Y- (’U(p (T’ S)’ 9)’t)
vi) Z(0,r, s, t) = yf(g(p, 8).1)

vid) V(0,5,t) = Ly_(v(c(s),0). 1),

viii) W(8, s,t) = y—(v(c(s),0),t)71V(0, s,t) = % Iny_(v(c(s),0),t),
(r,

ix) L2(pg(r,.)) be the length of the curve s — pg(r, s) on the interval [a, b].

For all real numbers 7, s,t we have :

Y- (’U(pe(?", S)v 9)7 77’)
Y- (U(pg (T, 0)’ 9)’ —)

The mapping (0,7, s,t) — y_(v(pe(r,s),0),t) is continuous on M x R3 and
admits partial derivatives with respect to r, s, ¢, continuous on M xR3. Study-
ing the uniform convergence of W when t tends to +oo is thus sufficient to
proof the derivability of X' (6, p,p’) with respect to p’.

We have Z(0,0,0,t) = 1 for all ¢,6, and Z(0,r,s,0) = 1 for all r,s,0 ;
thus W(6, s,0) = 0 for all s,6. The relation

Z(0,r,s,t) = Z(0,0,s,t+ 7). (11)

W(0,s,t) = %W(@, s,t) = %u,(w{fv(c(s),@))

and the equation (fl) imply

(W0, 5,)] < IVu—]ocCry—(v(c(s),0), ). (12)



Thus we have for all ¢ > 0 and all s :

t
W, 5,8)] < |\Vu-|\oocl/ e gy < CillVu-lloe
7=0 q1
Ch||Vu—||so

05,0 < A==y (e 00,0,

D C1||Vu—||o

I < i 77lce )

dSZ(97O,S,t) - q 2(950757t>

Integrating the last inequality with respect to s gives
exp( M| |> < |2(6,0,s,t)| <exp (Clnvq%noobo .
Because of |s| < L§(c) < C1]s|, we obtain
|2(0,0,s,t) — 1] < exp (CH'V(]%“OLB(C)) — exp (—CH'V(]%“OLS(C)) .

Even by changing the horocycle, there comes for all ¢ > 0 and all r, s :

|Z(9,T,S,ﬁ) - 1|

<o (=500 ) ) - o (- LT o) )

We get for all ¢,7 > 0 and all s € [—¢,¢] :

|2(0,0,s,t+7)— Z(0,0,s,t)] = |2(0,0,s,t)| | Z2(0,t,s,7) — 1]
o (T )

q1
oo (S e, ) = enp (- g0, )

From the upper estimate L§(pg(r,.)) < L§(c)e™ ! results the existence of a
constant C3 depending only from ||Vu_||co, ||%|lco, L (), ¢1 and go such that
for all ¢, positive and s € [—¢, e] we have

|Z2(0,0,s,t+7)— Z(0,0,s,t)] < C3Li(po(t,.)) < C3LE _(c)e M. (13)
From the corollary [£.1], the equations ([L1]) and (L) imply :

y-((po(r;),0),t +7)  y—(v(pe(r,5),0),t)
y—(v(p,0),t + ) y-(v(p,0),1)

|Z(0,r,s,t+7)— Z(0,r,s,t)] =

PPl ) G (e, e

)
~(v(po(r,0),0),—7)

10



The uniform Cauchy criterion on the compacts of M x M? implies the conver-
gence when ¢ goes to +oo of Z(0,r, s,t) to a fonction X (6, p, pa(r, s)) continuous
on OM x M?.

The equation ([L1]) ensures the existence and continuity of the partial deriva-
tive of X(0,p, pg(r, s)) with respect to r.

The equation (d) implies the upper estimate for ¢t,7 > 0 :

t+1
WO s,t+7) - WO < [ Cret? [Vull dp
p=t
thus o
W0, s,t+7) — W(b,s,t)| < e*qltq—l IVu_||,, (14)
1

which ensures the convergence, uniform over the compacts of 0M x R, of the
family of mappings W(6, s,% when t goes to +00, to a continuous mapping
)

of 0,s. The relations ([L1), (l4) and
833(9, 0,5,6) = W0, 5,)2(6,0, 5, 1)
s

imply the uniform convergence, over the compacts of M x R?2, of the fam-
ily of mappings 0Z/0s(0,r,s,t), when ¢ goes to 400, to a continuous map-
ping. This gives the condition of derivability with respect to s for the func-
tion X(0, p, pe(r, s)), thus the derivability with respect to p’ anounced for the
function X' (6,p,p’). The trivial relation

X(0,p,p)-X(0,p',p) =1 (15)

gives the derivability with respect to p. o

Definition 5.1 With the assumptions of the theorem .1, for v € T'M, v' €
WES(v), the limit mapping calculated in the theorem 1s called stable trans-
fer from v’ to v and is written down :

!
_ t
X(v,v') = lim y-v,t W)

o /
A ) X (Vioo, T0, V).

The extended stable transfer from v’ to v is the mapping which to & € Ty M
associates

X (v,0")€ = X (v,0")(€, N(0)N () + (€, 0")o.

Corollary 5.1 Let M be a complete, connected, oriented, simply connected
surface, equipped with a C*°-riemannian metric g whose curvature is negatively
pinched : —ki < K < —k} < 0, and with a C*-magnetic field k whose C*-norm
is bounded, with Jacobi endomorphism satisfying the pinching condition (ﬂ),
and such that the gradient of the centre-stable space u_ is uniformly bounded.
The stable transfer and extended stable transfer are of C'-class on a given
centre-stable manifold.

11



Proof : This follows from the derivability of the stable transfer stated in the
theorem @ o

The symplectic structure of the space of geodesics (section E) leads to the
following result.

Theorem 5.2 Let M be a complete, connected, oriented, simply connected
surface, equipped with a C*>®-riemannian metric g whose curvature is nega-
tively pinched : —k} < K < —k? < 0, and with a C®-magnetic field r
whose Ct-norm is bounded, with Jacobi endomorphism satisfying the pinching
condition (E), and such that the gradient of the centre-stable u_ (respectively
centre-unstable uy ) spaces is uniformly bounded. For a given point 0 at infin-
ity, and unitary vectors v, v’ belonging to the centre-stable manifold W3 ()
determined by 0, the family of mappings (v,v") — y4(V',t)/y+(v,t) converges
uniformly when t goes to +00 to a continuous mapping. The limit mapping
admits a partial derivative with respect to v' (in the direction W5(0)), con-
tinuous with respect to (v,v’).

Proof : Following the formula (E), for v,v' € T'M, t € R*, we have
y+ (1) (ug —u )W) - (uy —u)(PFv) -y (v,1)

v t)  (uy —u )W) Y- (1) - (us —u_)(v)’
Because the gradient of (u4 — u_) is uniformly bounded, the quotient (uy —

u_)(VFv)/(ugs —u_)(fv") tends to one uniformly over the compacts, when ¢
goes to 400, this fact implying the uniform convergence over the compacts :

/ t _ _ !
y+(’U ) ) N (U+ u )(U )X(v',v)
yrd) e (us —uo)(0)
The regularity of the limit results from the theorem @ o
Definition 5.2 With the assumptions of the theorem {5.4, for v € T'M, v' €

WES(v), the limit mapping calculated in the theorem |5.2 is called unstable
transfer from v’ to v and is written down :

X(’U,’Ul) — lim y+(vlat) _ (U+ — u_)(UI)X(UI,’U).

ey (0,8 (ur —us)(v)
The extended unstable transfer from v’ to v is the mapping which to & € Ty M
associates _

X(v,0)€ = X(0,0"){§ N@))N(v) + (£, 0')v.

The following result is immediate.

Corollary 5.2 Let M be a complete, connected, oriented, simply connected
surface, equipped with a C°°-riemannian metric g whose curvature is nega-
tively pinched : —ki < K < —k} < 0, and with a C*®-magnetic field x
whose Ct-norm is bounded, with Jacobi endomorphism satisfying the pinching
condition (E), and such that the gradient of the centre-stable u_ (respectively
centre-unstable uy ) spaces is uniformly bounded. The unstable transfer and the
extended unstable transfer are of C'-class on a given centre-stable manifold.

12



6 Lyapounoff exponents

Theorem 6.1 Let M be a compact, connected, oriented, surface, equipped
with a C*-riemannian metric g whose curvature is negatively pinched : —k3 <
K < —k} < 0, and with a C®-magnetic field x with Jacobi endomorphism
satisfying the pinching condition (l]) If the (future) Lyapounoff exponents of
the magnetic flow are defined at an element v of T'M, then they are defined
and constant along its centre-stable manifold W5 (v).

Proof : The compacity insures the uniform bounds over the gradients of x, u4
and u_. It is sufficient to pass to the universal cover of M and to apply the
theorems p.1 and .9, o

7 Horocyclic transport

In this section are collected some tools for the section E ; the notations and
the assumptions are those of the section E, particularly of the proof of the
theorem E Let 7(6,s,t) be the parallel transport along the curve py(t,.)
which sends T}, .M onto T}, 0)M. Let ((0,s,t) be the angle between the
vectors (6, s,t)-Tp(s,t) and Ty(0,t). Composing 7 with the rotation of angle ¢
yields the isometry
X(gv s5,t) = p((e,s,t)T(Ga S, t)

which sends the direct orthonormal basis (Tp(s,t), Ng(s,t)) onto the direct
orthonormal basis (Tp(0,t), Ng(0,1)).

Definition 7.1 The mapping x (0, s,t) is called horocyclic transport.
Remark 7.1 The horocyclic transport is continuous on OM x R2.
In this section the control of x is precised in different ways.

Lemma 7.1 With the above notations, we have for all 0 € OM, s € [—¢,¢€],

teR* :
D
H%x((%s,t)H < (2k§ + || VE| o) Cre "|s|.
Proof : For all 0 € OM,t € R, s €] —¢,¢[, £ € Ty,1,5)M, 0 € Tpye,00M, we
have D
{ ET(G7 Sat)é- = 0)
7(6,0,t)n =n.
The field D7(0, s,t)/dt is the solution 7T of
DT
{ ——(0.5,0) = R(T, $)r(0.5.1),
s
7(0,0,t) =0,

13



thus, due to the upper estimate (), it satisfies the differential inequality

‘ z—j(o,s,t)H < k3Cre 1t
therefore
H%(@,s,t) ’ < /U_O k3Cie 1 do < k3Cie”1Y|s]. (16)
We have
cos((0,s,t) = (1(0,s,t)Tp(s,t),Tp(0,1)),
SnC(6,5,0) = (r(0,5,)To(s, 1), No(0, 1)
thus 9] Dt
5t <8 ¢(8,s,t) = <E(9’ s,t)Tg(s,t),Tg(O,t)>
+(7(0, 5, 1)k(po(t,5))No(s,t), To(0, 1)) + (7(6, 5, )Ty (s, 1), K(pe(t,0)) No(0, 1))
= (O, 05,0, To(0,1) ) + sin (8, 5,0) pat,0) (15
and 0 Dt
g 51€(0.5.0) = (5 (0.5.0T0(6.0) No(o.1))
(70,5, 08(po (1, ) No(5 1), No(0,1)) + (7(0, 5,1y, 2), ~w(pa(t,0))To(0, 1)

= <%(9a S, t)TH(S’ t), NO(Oa t)> + COSC(Ha S, t) [H(pg (ta S)) - ’i(pé(ta 0))] .

We deduce from this

o¢ Dr

E(e; S, t) = H(pO(tﬂ S))fﬁ(pe(tﬂ 0))<E(07 Svt)TG(Sa t)7T9(0ﬂ t)> Sin((@, S, t)

+ <%(9, s5,t)Tp(s,t), No(O, t)> cos((0, s,1).

The formula () implies :
(e (t. 5)) — w(po(t, 0))] < [V, Cre™®"s].

Following, due to the upper estimate (E), the rotation satisfies the differential
inequality

D 0 Dt
| Bocon| < | e8] < |5 0,00 + oote. o - sttt 0)

< (k§ + IVk|| ) Cre™ ).

The definition of x permits to conclude. o
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We have also the upper estimate

D D D D
| 2350 < | Zocose| < |2t = |[250ts.0)

S Cleithta
from which follows the :

Lemma 7.2 With the preceding notations, we have for all@ € OM, s € [—¢, €],
teRT :
dc

E(S)

D
H%X&&”HSCW””SCWﬂﬁ

The horocyclic transport presents some uniformity.

Lemma 7.3 Let A : v € T'M — A(v) € L(Tr)yM) be a field of linear
endomorphisms of class C* over T* M, bounded in Ct-norm. With the preceding
notations, for all 0 € OM, s € [—¢,¢] and t € RT, we have

| A(v(pe(0,1),0))x(0, s, ) — x(0, 5, t)A(v(po(s,1),0))|l
< C1 (2| Al + [IDA]l) e " s].
Proof : We have

HDMQ&QA@@M&ﬂﬁD
ds

| < 1Attt 0,001 | 6,50

(@) | Ao, 0.00)

which is bounded from above, following the lemma E, by
—qit D
1Al Cre™ ™" + [|1DAllo [ IS(s, Ol + | = 5(s,2)

< (Al + I DA| ) Cre=".

The covariant derivative with respect to s of A(v(pg(0,t),0))x(0,s,t) admits
the same first term as above for upper bound. The quantity that we aim to
estimate in the lemma annulates at s = 0, the upper estimate of the statement
is obtained by integrating the expression

(2[| Al + [I1DA] ) Cre™

over s from 0. o
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8 Linearization

Definition 8.1 Let M be a complete, connected, oriented, simply connected
surface, equipped with a C*°-riemannian metric g whose curvature is negatively
pinched : —k3 < K < —k} < 0, and with a C*°-magnetic field k whose C'-norm
is bounded, with Jacobi endomorphism satisfying the pinching condition (ﬂ),
and such that the gradient of the centre-stable space u—_ is uniformly bounded.
Forv e T'M, t € R, the stable push is the mapping ®;"" : M — M which to
every p € M associates @, 'p = mpfv" (p, v5 ).

Theorem 8.1 With the assumptions of the definition , for all unitary vec-
tor v € T'M, there exists a unique mapping E, from M into TryM such
that :

1) Vze M (E,(2),v) = By(2),

i7) Vze MVt e R E, (9;"(2)) = tv + Ey(2),

—1
i) Yz e HF(0) E,(z)= lim y(v,t)1<(expmptﬁu) @f’v(z),n>n,

t——+o0

writing down n = N (¢Yfv). Moreover, the mapping (v,p) — E,(p) is continu-
ous from TYM x M into TM.

Proof : The conditions ), i) and #i¢) ensure naturally the uniqueness of the
solution. Let v be in T'M. Let us define § = vy, p = mv. Taking the
notations of the sections E and ﬂ, we have Ny(0,t) = n and we define :

X0 s = / X(ov a, 0>@(O—) dO’, Xé s = / X(@, g, t)M(U) dO’,
’ o=0 ds 1 o=0 s

<n,Xgﬁs>

We have
X(Ga Sat)TH(Sat) = an X(Ga Sat)NO(Sat) = N("/’f”) = NO(O’t)a
thus s p
/a_yo_(v(pg(t,a)ﬁ),t)<E(U),N9(U,O)> do
y—(vat)

- SZ(G,O,o,t)<%(o),N9(0,0)> do.

o=0

ey(s) =

The equation (E) implies for t,7 > 0:

€77 (s) —en(s)] < [ C5LZ (c)e™
c€l0,s]

d
<E§(“)’N9<U’ 0)>’do < CgLia(C)%fqlt_
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By taking
Ex(po(r; 5)) =rv + €, ()N (v),

and with the foregoing upper estimate and the corollary @ we get :
€5 (po(r,8)) — EL(po(r,))] < C3LE ()P ™! < Caf (d(c(—e), c(e)))” e

For every compact K of T M x M, the family of continuous mappings £ (pg(r, s))
satisfies the uniform Cauchy condition over K when ¢ tends to +oo. It con-
verges thus towards a mapping continuous over T'M x M. Establishing the
formulas 7) and %) is immediate. There remains to proof the formula 7).

Forw € T'M,r € R, € € Ty M, if J(w, r) is the geodesic Jacobi field along
the geodesic curve directed by w, such that J(w 0) =0z, a and J'(w,0) =
Idr,,a, the linear mapping tangent to the exponential satlsﬁes ([lﬁ] 3.46
p.117) :

1-
Te exp,,, rw = —J(w, r)é. (17)
r

From the bounds on the Gauss cuvature results the existence of a constant Cy
such that for all r € [0,1] :

Hj(w,r) — rIdTmMH < Cyrd.
The derivative of the exponential in every zero vector is the identity of the

tangent vector space, and x(0,0,t) is the identity of T}, ;,0)M. Even by sit-
uating in a chart in the neighbourhood of py(t, s), there exists a constant Cj

such that :
’<eXp;ifU pa(t, s), n> —y—(v, t)efj(s)‘

< /a'O _583 exp;})tnvpg(t,a) x(0,0,t) 861;6 (t,0) doH
8p9 de
< t qit / dod /
Csd (v, py(t, s))* + Cre™ / /00 as o) dS(U) do

< Csd (wdj v, po(t,8))” + CsLi(po(t, ) )e " LE (). (18)

The first term of the last member comes from the effect of the bounds over
the Gauss curvature on the exponential, and the second term comes from
the lemma @ by carrying out two successive integrations. We deduce the
inequality :

<exp;ifvp9(t, s), n>

y,(’U,t) - GU(S)
< Co (o putt ) o' 12,0] [ LRIGEOD 0| a

The quantity d(mfv, pe(t,s)) is bounded from above by L§(pg(t,.) which is
inferior or equal to C; L% _(c)e~ %!, According to the theorem [.1], there exists
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a constant Cg (depending on ¢) such that the last integral above is bounded
by CsL{(c) independently of ¢, from which we get the upper estimate :

-1
<eXpﬂ—'L/Jf'u Do (t7 5)7 TL> B et (S) - (1 N o )C o e (C)Qefqlt
v )= @ GG e

The limit stated in the formula #ii) of the theorem is thus obtained. o

The linearization cooperates to some extent with the magnetic flow.

Corollary 8.1 Forvc T'M, pc M, t € R, we have

Eyo(p) = ((Bu(p),v) — t) v + y—(v,8){Ey(p), N(v) )N (¢pyv).

Proof : This immediately results from the construction of the theorem B.1. ©

9 Regularity of the linearization

Theorem 9.1 Let M be a complete, connected, oriented, simply connected
surface, equipped with a C*°-riemannian metric g whose curvature is negatively
pinched : —ki < K < —k} < 0, and with a C*-magnetic field k whose C*-norm
is bounded, with Jacobi endomorphism satisfying the pinching condition (ﬂ),
and such that the gradient of the centre-stable u—_ spaces is uniformly bounded.
Forv € T'M and 6 = v, the mapping E, is of C? over M, and with
the extended stable transfer X coming from the definition , its derivative
aty e M is : _
X (v,0%(5,0)).

Proof : With the notations of the sections | and f, we have

Oeqy(s)
T - 2(950757t>5

which converges when t tends to +o00 towards
X (v, vg).

The longitudinal component of the derivative of E, is v, and the continuous
derivability of the derivative of E,, results from the corollary . o

Corollary 9.1 With the same assumptions as in the theorem , for allv €
T'M, the mapping E, is a C*-diffeomorphism.

Proof : It is clear that the mapping E, is surjective. It is a local C?-
diffeomorphism according to the theorem @, it is therefore a cover of T,y M
(which is isomorphic to R?), and consequently it is a diffeomorphism. o
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Remark 9.1 We may notice that the mapping v — E,(p) with p fized cannot
be absolutely continuous.

Let v and w be two unitary tangent vectors belonging to a same unstable
manifold, such that p belongs to the curve directed by v. The vectors v
and Y,w are arbitrarily close when ¢ tends to —oco. The orthogonal component
of Ey,,(p) is zero and the norm of the orthogonal component of Ey,.,(p) tends
to 400 when t tends to —oo.

10 Flow conjugacy

Theorem 10.1 Let M be a closed (compact without boundary), connected,
oriented surface. Let g1 and go be two C*°-riemannian metrics over M whose
curvatures are mnegatively pinched : —ki < K; < —ki < 0 for i = 1,2.
Let k1, ka2 be two C*®-magnetic fields over M. The two magnetic flows ¥} =

IR and 2 = I are supposed to have negative Jacobi endomorphisms
(thus satisfying the pinching condition ([1)). If the two magnetic flows have
the same marked length spectrum, then they are conjugated by a bi-hoélder-
continuous homeomorphism h from T{ M onto T} M which preserves the Lya-
pounoff exponents of periodic orbits.

Proof : The gradient of the centre-stables spaces u_ and of the centre-
instables spaces u are uniformly bounded because the unitary tangent bundles
are compact. The Jacobi endomorphisms satisfie the pinching condition (EI)
for the same reason. The existence of the bi-holder-continuous conjugacy h
from T} M onto T3 M is well-known [L1], BQ, Rd. Let v be a T-periodic
vector for ¢! ; its conjugate hv is T-periodic for ? and the conjugacy h
maps W9 (v) onto W9 (hv). The linearizations associated to ¢’ are written
down E° for i = 1,2. Let A be the bijection, restricted to the orthogonal
spaces identified to the real line, defined as follows :

1 o -1 2 °
A: R=~RN;(v) (EU—7>T) W (v) h, W4 (hv) By o RNy (hv) ~ R
EN1(v) — w o hw — A Na(hv).

The Lyapounoff exponents are written down :
Ao1(v) ==Xy 1(v) and A_a(hv) = —A4 2(hv).
Let us denote :
v = eTA-a) = y—1(v,T) and 1y = eTr-2(hv) y—o2(hv,T).

According to the corollary @, for each of the two flows, every T-periodic
vector v satisfies :

Ey v Ws(v) =y_(v,TE, Ws(v)'
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For all n € N and £ € R we therefore have :
A1€) = vy A(E).

Because the conjugacy h is bi-holder-continuous and because the linearizations
are of C?-class, there exist two constants C' > 0 and « €]0, 1] such that for
all £ € [-1,1] we have :

[A(E)l < Cl¢]* and  [¢] < CA(§)]”
Thus for all natural integer n we have :
vy|A()| < Cvi® and vy < C|A(1)|*vE,

which implies for all n € N* :
InC+ aln|A(1)]

1 —1 1
HC—HLA(” and Inv; < alnvy + .
n n

Invy < alnvy +

By making n tend to +o0o there comes
Invs <alnvy and Iny; < alnws,

from which comes
a=1 and Invy=Inv ;

thus the Lyapounoff exponents coincide on the periodic orbits. o

The following result is a direct consequence of a property of transitive
Anosov flows on 3-manifolds [R4].

Corollary 10.1 With the assumptions of the theorem , the conjugacy h
is of C*°-class.

The linearization allows to proof the following result.

Theorem 10.2 Let M be a closed (compact without boundary), connected,
oriented surface. Let g1 and g2 be two C*>-riemannian metrics over M whose
curvatures are negatively pinched : —k} < K; < —k? <0 for i =1,2,. Let r1
be a C*°-magnetic field over M. The magnetic flow ¥} = ¥J*" is supposed
to have a negative Jacobi endomorphism (thus satisfying the pinching condi-
tion (E)) If the magnetic flow ¥} and the geodesic flow ¢? = J* have the
same marked length spectrum, and if the surface M has the same total volume
for the two metrics, then the two metrics are isotopic, which means that one is
the image of the other by a diffeomorphism f of M, homotopic to the identity,

and the magnetic field k1 is zero.

Proof : This results from the corollary . if the two volumes are equal,
and the flows 9! and ¢? are conjugate by an absolutely continuous homeomor-
phism, the result is known [[L7]. o

To some extent, the linearisation determines the flow and the geometry.
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Theorem 10.3 Let M be an oriented surface diffeomorphic to R?, equipped
with two C*°-riemannian metrics g1 and go whose curvatures are negatively
pinched : —ki < K; < —k} <0 fori = 1,2. Let k1, k2 be two C*°-magnetic
fields over M. The two magnetic flows P} = 9" and ¥2 = 9" are
supposed to have negative Jacobi endomorphisms satisfying the pinching con-
dition (E) (the Ct-norms of k1 and ko are thus bounded), and the gradient of
the centre-stable u_ ; spaces and the gradient of the centre-unstable uy ; spaces
for i = 1,2 are supposed to be uniformly bounded. If there exist a diffeomor-
phism f: M — M and a point p € M satisfying

VweTl,M 3 eTy M  E.of=E,

then the two metrics are images one of each other by f, and so are the two
magnetic fields : ko = k1 0 f.

Proof : Let w be in T M, ¢ = mw and v = v (p, w4 ). Let v’ be in Tgf(p)M
such that E2 o f = E. We have necessarily d., f(q) = v*(f(q),v/ o) : thus
the mapping f is an isometry. Its differential conjugates the flows, therefore

it preserves the geodesic curvature of the orbits, which means the magnetic
fields. o

Theorem 10.4 Let M be a closed (compact without boundary), connected,
oriented surface. Let g1 and go be two C*°-riemannian metrics over M whose
curvatures are megatively pinched : —ki < K; < —k3 < 0 for i = 1,2.
Let k1, ka2 be two C*®-magnetic fields over M. The two magnetic flows 1} =
U and ) = ¢J*"? are supposed to have negative Jacobi endomorphisms
(thus satisfying the pinching condition (E)) If there exist two vectors vy €
Tf]f\z, vg € T21]/\\4/ and a C*-diffeomorphism f : M — M homotopic to the iden-
tity, of which a lift f over M satisfies E?}Q o f: E%w then the two metrics are
isotopic, transported by f, and so are the two magnetic fields : ko = k10 f.

Proof : Let w be in W (v), ¢ = mw. We have necessarily d,f(q) =
vQ(f(q),vjroo). Since w is chosen arbitrarily in the centre-stable manifold
of v, we may chose a vector w whose projection on T M has a dense or-
bit under 1! when the time tends to —oo ; we may also  replace w by every
element of its orbit. Writing down II the covering of M onto M, we ob-
tain dyri(w)f(Ilg) = dII(v*(f(q),?v" o)) The differential of f thus preserves
the norm on a dense subset of the unitary tangent bundle ; because it is as-
sumed continuous, the mapping f is an isometry. The differential of f preserves
the geodesic curvature on the whole orbit of w, thus by projecting and by a
density argument, we deduce that ks is the composed of x; by f. o
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