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Abstract

We derive a high-resolution formula for the L2-quantization errors of Riemann-Liouville
processes and the sharp Kolmogorov entropy asymptotics for related Sobolev balls. We describe
a quantization procedure which leads to asymptotically optimal functional quantizers. Regular
variation of the eigenvalues of the covariance operator plays a crucial role.
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1 Introduction

Functional quantization of stochastic processes can be seen as a discretization of the path-space
of a process and the approximation (coding) of a process by finitely many deterministic functions
from its path-space. In a Hilbert space setting this reads as follows.

Let (H,< ·, · >) be a separable Hilbert space with norm ‖ · ‖ and let X : (Ω,A,P) → H be
a random vector taking its values in H with distribution PX . For n ∈ N, the L2-quantization
problem for X of level n (or of nat-level log n) consists in minimizing

(
Emin

a∈α
‖X − a‖2

)1/2

= ‖min
a∈α

‖X − a‖‖L2(P)

over all subsets α ⊂ H with card(α) ≤ n. Such a set α is called n-codebook or n-quantizer. The
minimal nth quantization error of X is then defined by

en(X) := inf

{
(Emin

a∈α
‖X − a‖2)1/2 : α ⊂ H, card(α) ≤ n

}
. (1.1)

Under the integrability condition
E ‖X‖2 <∞ (1.2)

the quantity en(X) is finite.
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For a given n-quantizer α one defines an associated closest neighbour projection

πα :=
∑

a∈α

a1Ca(α)

and the induced α-quantization (Voronoi quantization) of X by

X̂α := πα(X), (1.3)

where {Ca(α) : a ∈ α} is a Voronoi partition induced by α, that is a Borel partition of H satisfying

Ca(α) ⊂ Va(α) := {x ∈ H : ‖x− a‖ = min
b∈α

‖x− b‖} (1.4)

for every a ∈ α. Then one easily checks that, for any random vector X
′
: Ω → α ⊂ H,

E ‖X −X
′‖2 ≥ E ‖X − X̂α‖2 = E min

a∈α
‖X − a‖2

so that finally

en(X) = inf
{
(E ‖X − X̂‖2)1/2 : X̂ = f(X), f : H → H Borel measurable, (1.5)

card(f(H)) ≤ n}
= inf

{
(E ‖X − X̂‖2)1/2 : X̂ : Ω → H random vector, card(X̂(Ω)) ≤ n

}
.

Observe that the Voronoi cells Va(α), a ∈ α are closed and convex (where convexity is a charac-
teristic feature of the underlying Hilbert structure). Note further that there are infinitely many
α-quantizations of X which all produce the same quantization error and X̂α is P-a.s. uniquely
defined if PX vanishes on hyperplanes.

A typical setting for functional quantization is H = L2([0, 1], dt) but is obviously not restricted
to the Hilbert space setting. Functional quantization is the natural extension to stochastic processes
of the so-called optimal vector quantization of random vectors inH = Rd which has been extensively
investigated since the late 1940’s in Signal processing and Information Theory (see [4], [8]). For the
mathematical aspects of vector quantization in Rd, one may consult [5], for algorithmic aspects see
[15] and ”non-classical” applications can be found in [14], [16]. For a first promising application
of functional quantization to the pricing of financial derivatives through numerical integration on
path-spaces see [17].

We address the issue of high-resolution quantization which concerns the performance of n-
quantizers and the behaviour of en(X) as n→ ∞. The asymptotics of en(X) for Rd-valued random
vectors has been completely elucidated for non-singular distributions PX by the Zador Theorem
(see [5]) and for a class of self-similar (singular) distributions by [6]. In infinite dimensions no such
global results hold, even for Gaussian processes.

It is convenient to use the symbols ∼ and
<∼, where an ∼ bn means an/bn → 1 and an

<∼ bn
means lim supn→∞ an/bn ≤ 1. A measurable function ϕ : (s,∞) → (0,∞) (s ≥ 0) is said to be
regularly varying at infinity with index b ∈ R if, for every c > 0,

lim
x→∞

ϕ(cx)

ϕ(x)
= cb.

Now let X be centered Gaussian. Denote by KX ⊂ H the reproducing kernel Hilbert space
(Cameron-Martin space) associated to the covariance operator

C
X

: H → H, C
X
y := E (<y,X>X) (1.6)

2



of X. Let λ1 ≥ λ2 ≥ . . . > 0 be the ordered nonzero eigenvalues of CX and let {uj : j ≥ 1} be the
corresponding orthonormal basis of supp(PX) consisting of eigenvectors (Karhunen-Loève basis).

If d := dimKX < ∞, then en(X) = en

(
d⊗

j=1
N(0, λj)

)
, the minimal nth L2-quantization error of

d⊗
j=1

N(0, λj) with respect to the l2-norm on Rd, and thus we can read off the asymptotic behaviour

of en(X) from the high-resolution formula

en(
d⊗

j=1

N(0, λj)) ∼ q(d)
√

2π
(
Πd

j=1λj

)1/2d
(
d+ 2

d

)(d+2)/4

n−1/d as n→ ∞ (1.7)

where q(d) ∈ (0,∞) is a constant depending only on the dimension d (see [5]). Except in dimension
d = 1 and d = 2, the true value of q(d) is unknown. However, one knows (see [5]) that

q(d) ∼
(

d

2πe

)1/2

as d→ ∞. (1.8)

Assume dimKX = ∞. Under regular behaviour of the eigenvalues the sharp asymptotics of
en(X) can be derived analogously to (1.7). In view of (1.8) it is reasonable to expect that the
limiting constants can be evaluated. The recent high-resolution formula is as follows.

Theorem 1 ([11]) Let X be a centered Gaussian. Assume λj ∼ ϕ(j) as j → ∞, where ϕ :
(s,∞) → (0,∞) is a decreasing, regularly varying function at infinity of index −b < −1 for some
s ≥ 0. Set, for every x > s,

ψ(x) :=
1

xϕ(x)
.

Then

en(X) ∼
((

b

2

)b−1 b

b− 1

)1/2

ψ(log n)−1/2 as n→ ∞.

A high-resolution formula in case b = 1 is also available (see [11]). Note that the restriction

−b ≤ −1 on the index of ϕ is natural since
∞∑

j=1
λj < ∞. The minimal Lr-quantization errors of

X, 0 < r < ∞, are strongly equivalent to the L2-errors en(X) (see [2]) and thus exhibit the same
high-resolution behaviour.

A related quantization problem is the Kolmogorov metric entropy problem for the closed unit
ball

UX :=



x ∈ KX : ‖x‖KX

≤ 1} = {x ∈ supp(PX) :
∑

j≥1

<x, uj>
2

λj
≤ 1



 (1.9)

of KX (Strassen ball). Note that UX is a compact subset of H. For n ∈ N, the metric entropy
problem for UX consists in minimizing

max
x∈UX

min
a∈α

‖x− a‖ = ‖min
a∈α

‖X ′ − a‖‖L∞(P)

over all subsets α ⊂ H with card(α) ≤ n, whereX
′
is anyH-valued random vector with supp(PX′ ) =

UX . The nth entropy number is then defined by

en(UX) := inf

{
max
x∈UX

min
a∈α

‖x− a‖ : α ⊂ H, card(α) ≤ n

}
. (1.10)
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If d := dimKX <∞, then en(UX) = en(Ed), the nth entropy number of the ellipsoid

Ed :=



x ∈ R

d :
d∑

j=1

x2j

λj
≤ 1





with respect to the l2-norm on Rd. Thus we can read off the asymptotic behaviour of en(UX) from
the formula

en(E) ∼ p(d)(Πd
j=1λj)

1/2(vol (Bd(0, 1)))
1/dn−1/d as n→ ∞ (1.11)

where the constant p(d) ∈ (0,∞) is unknown for d ≥ 3 and p(d) ∼ q(d), d → ∞ (see [9], [5]).
If dimKX = ∞, the recent solution of the Kolmogorov metric entropy problem for UX is as

follows.

Theorem 2 ([12]) Assume the situation of Theorem 1. Then

en(UX) ∼
(
b

2

)b/2

ϕ(log n)1/2 as n→ ∞.

This formula is still valid for b = 1 and, ignoring the probabilistic interpretation, also for b ≥ 0
(00 := 1) provided λj → 0 as j → ∞. (see [7], [12]). A different approach via the inverse of en(UX),
the Kolmogorov ε-entropy, is due to Donoho [3]. (However, his result does not provide the correct
constant.) ¿From Theorems 1 and 2 we conclude that functional quantization and metric entropy
are related by

en(X) ∼
(

2 log n

b− 1

)1/2

en(UX) as n→ ∞. (1.12)

The paper is organized as follows. In Section 2 we investigate Riemann-Liouville processes in
H = L2([0, 1], dt). For ρ ∈ (0,∞), the Riemann-Liouville process Xρ = (Xρ

t )t∈[0,1] on [0, 1] is
defined by

Xρ
t :=

∫ t

0
(t− s)ρ−

1
2 dWs (1.13)

where W is a standard Brownian motion. We derive a high-resolution formula for Xρ and cor-
respondingly, the precise entropy asymptotics for fractional Sobolev balls. As a consequence we
obtain a new result for fractionally integrated Brownian motions. In Section 3 we describe a quan-
tization procedure which furnishes asymptotically optimal quantizers in the situation of Theorem
1. Here the Karhunen-Loève expansion plays a crucial rôle. In Section 4 we discuss a dimension
conjecture.

2 Riemann-Liouville processes

Let Xρ = (Xρ
t )t∈[0,1] be the Riemann-Liouville process of index ρ ∈ (0,∞) as defined in (1.13). Its

covariance function is given by

EXρ
sX

ρ
t =

∫ s∧t

0
(t− r)ρ−

1
2 (s− r)ρ−

1
2 dr. (2.1)

Using ρ∧ 1
2 -Hölder continuity of the application t 7→ Xρ

t from [0,1] into L2(P) and the Kolmorogov
criterion one checks that Xρ has a pathwise continuous modification so that we may assume without
loss of generality that Xρ is pathwise continuous. In particular, Xρ can be seen as a centered
Gaussian random vector with values in

H = L2([0, 1], dt).
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The following high-resolution formula relies on a theorem by Vu and Gorenflo [18] on singular
values of Riemann-Liouville integral operators

Rβ g(t) =
1

Γ(β)

∫ t

0
(t− s)β−1g(s)ds, β ∈ (0,∞). (2.2)

Theorem 3 For every ρ ∈ (0,∞),

en(Xρ) ∼ π−(ρ+ 1
2
)(ρ+ 1/2)ρ(

2ρ+ 1

2ρ
)1/2Γ(ρ+ 1/2)(log n)−ρ as n→ ∞.

Proof. For β > 1/2, the Riemann-Liouville fractional integral operator Rβ is a bounded operator
from L2([0, 1], dt) into L2([0, 1], dt). The covariance operator

Cρ : L2([0, 1], dt) → L2([0, 1], dt)

of Xρ is given by the Fredholm transformation

Cρg(t) =

∫ 1

0
g(s)EXρ

sX
ρ
t ds.

Using (2.1), one checks that Cρ admits a factorization

Cρ = SρS
∗
ρ ,

where
Sρ = Γ(ρ+ 1/2)Rρ+ 1

2
.

Consequently, it follows from Theorem 1 in [18] that the eigenvalues λ1 ≥ λ2 ≥ . . . > 0 of Cρ satisfy

λj ∼ Γ(ρ+ 1/2)2(πj)−(2ρ+1) as j → ∞. (2.3)

Now the assertion follows from Theorem 1 (with ϕ(x) = Γ(ρ+ 1/2)2π−bx−b and b = 2ρ+ 1). 2

An immediate consequence for fractionally integrated Brownian motions on [0, 1] defined by

Y β
t :=

1

Γ(β)

∫ t

0
(t− s)β−1Wsds (2.4)

for β ∈ (0,∞) is as follows.

Corollary 1 For every β ∈ (0,∞),

en(Y β) ∼ π−(β+1)(β + 1)β+ 1
2 (

2β + 2

2β + 1
)1/2(log n)−(β+ 1

2
) as n→ ∞.

Proof. For ρ > 1/2, the Ito formula yields

Xρ
t = (ρ− 1

2
)

∫ t

0
(t− s)ρ−

3
2Wsds.

Consequently,

Y β
t =

1

βΓ(β)
β

∫ t

0
(t− s)β+ 1

2
− 3

2Wsds =
1

Γ(1 + β)
X

β+ 1
2

t .

The assertion follows from Theorem 3. 2
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Remark. The preceding corollary provides new high-resolution formulas for en(Y β) in the cases
β ∈ (0,∞) \ N.

One further consequence is a precise relationship between the quantization errors of Riemann-
Liouville processes and fractional Brownian motions. The fractional Brownian motion with Hurst
exponent ρ ∈ (0, 1] is a centered pathwise continuous Gaussian process Zρ = (Zρ

t )t∈[0,1] having the
covariance function

EZρ
sZ

ρ
t =

1

2
(s2ρ + t2ρ− | s− t |2ρ). (2.5)

Corollary 2 For every ρ ∈ (0, 1),

en(Xρ) ∼ Γ(ρ+ 1/2)

(Γ(2ρ+ 1) sin(πρ))1/2
en(Zρ) as n→ ∞.

Proof. By [11], we have

en(Zρ) ∼ π−(ρ+ 1
2
)(ρ+ 1/2)ρ

(
2ρ+ 1

2ρ

)1/2

(Γ(2ρ+ 1) sin(πρ))1/2(log n)−ρ, n→ ∞.

Combining this formula with Theorem 3 yields the assertion 2

Observe that strong equivalence en(Xρ) ∼ en(Zρ) as n → ∞ is true for exactly two values of
ρ ∈ (0, 1), namely for ρ = 1/2 where even en(X1/2) = en(Z1/2) = en(W ) and, a bit mysterious, for
ρ = 0.81557 . . .

Now consider the Strassen ball Uρ of Xρ. Since the covariance operator Cρ satisfies Cρ =
Γ(ρ+ 1

2)Rρ+ 1
2
(Γ(ρ+ 1

2)Rρ+ 1
2
)∗, one gets

Uρ = Γ(ρ+ 1/2)Rρ+ 1
2
(BL2(0, 1)) (2.6)

=

{
Rρ+1/2g : g ∈ L2([0, 1], dt),

∫
10g(t)

2dt ≤ Γ(ρ+ 1/2)2
}
,

a fractional Sobolev ball. Theorem 2 and (2.3) yield the solution of the entropy problem for
fractional Sobolev balls.

Theorem 4 For every ρ ∈ (0,∞),

en(Uρ) ∼
(
ρ+ 1

2

π

)ρ+ 1
2

Γ(ρ+ 1/2)(log n)−(ρ+ 1
2
)

∼
(

ρ

log n

)1/2

en(Xρ) as n→ ∞.

3 Asymptotically optimal functional quantizers

Let X be a H-valued random vector satisfying (1.2). For every n ∈ N, L2-optimal n-quantizers
α ⊂ H exist, that is

(E min
a∈α

‖X − a‖2)1/2 = en(X).

If card (supp(PX)) ≥ n, optimal n-quantizers α satisfy card(α) = n, P(X ∈ Ca(α)) > 0 and the
stationarity condition

a = E (X | {X ∈ Ca(α)}), a ∈ α

6



or what is the same
X̂α = E (X | X̂α) (3.1)

for every Voronoi partition {Ca(α) : a ∈ α} (see [10]). In particular, E X̂α = EX.
Now let X be centered Gaussian with dimKX = ∞. The Karhunen-Loève basis {uj : j ≥ 1}

consisting of normalized eigenvectors of C
X

is optimal for the quantization of Gaussian random
vectors (see [10]). So we start with the Karhunen-Loève expansion

X
H
=

∞∑

j=1

λ
1/2
j Zjuj ,

where Zj =<X,uj > /λ
1/2
j , j ≥ 1 are i.i.d. N(0, 1)-distributed random variables. The design of

an asymptotically optimal quantization of X is based on optimal quantizing blocks of coefficients
of variable (n-dependent) block length. Let n ∈ N and fix temporarily m, l, n1, . . . , nm ∈ N with
Πm

j=1nj ≤ n, where m denotes the number of blocks, l the block length and nj the size of the
quantizer for the jth block

Z(j) := (Z(j−1)l+1, . . . , Zjl), j ∈ {1, . . . ,m}.

Let αj ⊂ Rl be an L2-optimal nj-quantizer for Z(j) and let Ẑ(j) = Ẑ(j)
αj

be a αj-quantization of
Z(j). Then, define a quantized version of X by

X̂n :=
m∑

j=1

l∑

k=1

λ
1/2
(j−1)l+k(Ẑ

(j))ku(j−1)l+k. (3.2)

It is clear that card(X̂n(Ω)) ≤ n. Using (3.1) for Z(j), one gets E X̂n = 0. If

Ẑ(j) =
∑

b∈αj

b1Cb(αj )(Z
(j)),

then

X̂n =
∑

a∈×m
j=1αj

(
m∑

j=1

l∑

k=1

λ
1/2
(j−1)l+ka

(j)
k u(j−1)l+k)Π

m
j=11C

a(j) (αj)(Z
(j))

where a = (a(1), . . . , a(m)) ∈ ×m
j=1αj. Observe that in general, X̂n is not a Voronoi quantization of

X since it is based on the (less complicated) Voronoi partitions for Z(j), j ≤ m. (X̂n is a Voronoi
quantization if l = 1 or if λ(j−1)l+1 = . . . = λjl for every j.) Using again (3.1) for Z(j) and the

independence structure, one checks that X̂n satisfies a kind of stationarity equation:

E (X | X̂n) = X̂n.

Lemma 1 Let n ≥ 1. For every l ≥ 1 and every m ≥ 1

E ‖X − X̂n‖2 ≤
m∑

j=1

λ(j−1)l+1enj (N(0, Il))
2 +

∑

j≥ml+1

λj . (3.3)

Furthermore, (3.3) stands as an equality if l = 1 (or λ(j−1)l+1 = . . . = λjl for every j, l ≥ 1).
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Proof. The claim follows from the orthonormality of the basis {uj : j ≥ 1}. We have

E ‖X − X̂n‖2 =
m∑

j=1

l∑
k=1

λ(j−1)l+kE | Z(j)
k − (Ẑ(j))k |2 +

∑
j≥ml+1

λj

≤
m∑

j=1
λ(j−1)l+1

l∑
k=1

E | Z(j)
k − Ẑ(j))k |2 +

∑
j≥ml+1

λj

=
m∑

j=1
λ(j−1)l+1enj (Z

(j))2 +
∑

j≥ml+1
λj .

2

Set
C(l) := sup

k≥1
k2/lek(N(0, Il))

2. (3.4)

By (1.7), C(l) <∞. For every l ∈ N,

enj (N(0, Il)
2 ≤ n

−2/l
j C(l) (3.5)

Then one may replace the optimization problem which consists, for fixed n, in minimizing the right
hand side of Lemma 1 by the following optimal allocation problem:

min{C(l)
m∑

j=1

λ(j−1)l+1n
−2/l
j +

∑

j≥ml+1

λj : m, l, n1, . . . , nm ∈ N,Πm
j=1nj ≤ n}. (3.6)

Set
m = m(n, l) := max{k ≥ 1 : n1/kλ

l/2
(k−1)l+1(Π

k
j=1λ(j−1)l+1)

−l/2k ≥ 1}, (3.7)

nj = nj(n, l) := [n1/mλ
l/2
(j−1)l+1(Π

m
i=1λ(i−1)l+1)

−l/2m], j ∈ {1, . . . ,m}, (3.8)

where [x] denotes the integer part of x ∈ R and

l = ln := [(max{1, log n})ϑ], ϑ ∈ (0, 1). (3.9)

In the following theorem it is demonstrated that this choice is at least asymptotically optimal
provided the eigenvalues are regularly varying.

Theorem 5 Assume the situation of Theorem 1. Consider X̂n with tuning parameters defined
in (3.7)-(3.9). Then X̂n is asymptotically n-optimal, i.e.

(E ‖X − X̂n‖2)1/2 ∼ en(X) as n→ ∞.

Note that no block quantizer with fixed block length is asymptotically optimal (see [11]). As
mentioned above, X̂n is not a Voronoi quantization of X. If αn := X̂n(Ω), then the Voronoi
quantization X̂αn is clearly also asymptotically n-optimal.

The key property for the proof is the following l-asymptotics of the constants C(l) defined
in (3.4). It is interesting to consider also the smaller constants

Q(l) := lim
k→∞

k2/lek(N(0, Il))
2 (3.10)

(see (1.7)).
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Proposition 1 The sequences (C(l))l≥1 and (Q(l))l≥1 satisfy

lim
l→∞

C(l)

l
= lim

l→∞

Q(l)

l
= inf

l≥1

C(l)

l
= inf

l≥1

Q(l)

l
= 1.

Proof. From [11] it is known that

lim inf
l→∞

C(l)

l
= 1. (3.11)

Furthermore, it follows immediately from (1.7) and (1.8) that

lim
l→∞

Q(l)

l
= 1. (3.12)

(The proof of the existence of lim
l→∞

C(l)/l we owe to S. Dereich.) For l0, l ∈ N with l ≥ l0, write

l = n l0 +m with n ∈ N,m ∈ {0, . . . , l0 − 1}.

Since for every k ∈ N,
[kl0/l]n [k1/l]m ≤ k,

one obtains by a block-quantizer design consisting of n blocks of length l0 and m blocks of length
1 for quantizing N(0, Il),

ek(N(0, Il))
2 ≤ ne[kl0/l](N(0, Il0))

2 +me[k1/l](N(0, 1))2. (3.13)

This implies

C(l) ≤ nC(l0) sup
k≥1

k2/l

[kl0/l]2/l0
+mC(1) sup

k≥1

k2/l

[k1/l]2

≤ 41/l0nC(l0) + 4mC(1).

Consequently, using n/l ≤ 1/l0,

C(l)

l
≤ 41/l0C(l0)

l0
+

4mC(1)

l

and hence

lim sup
l→∞

C(l)

l
≤ 41/l0C(l0)

l0
.

This yields

lim sup
l→∞

C(l)

l
≤ lim inf

l0→∞

C(l0)

l0
= 1. (3.14)

It follows from (3.13) that
Q(l) ≤ nQ(l0) +mQ(1).

Consequently
Q(l)

l
≤ Q(l0)

l0
+
mQ(1)

l

and therefore

1 = lim
l→∞

Q(l)

l
≤ Q(l0)

l0
.
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This implies

inf
l0≥1

Q(l0)

l0
= 1. (3.15)

Since Q(l) ≤ C(l), the proof is complete. 2

The n-asymptotics of the number m(n, ln)ln of quantized coefficients in the Karhunen-Loève
expansion in the quantization X̂n is as follows.

Lemma 2 ([12], Lemma 4.8) Assume the situation of Theorem 1. Let m(n, ln) be defined by (3.7)
and (3.9). Then

m(n, ln)ln ∼ 2 log n

b
as n→ ∞.

Proof of Theorem 5. For every n ∈ N,

m∑

j=1

λ(j−1)l+1n
−2/l
j ≤

m∑

j=1

λ(j−1)l+1(nj + 1)−2/l(
nj + 1

nj
)2/l

≤ 41/lmn−2/ml(Πm
j=1λ(j−1)l+1)

1/m

≤ 41/lmλ(m−1)l+1.

Therefore, by Lemma 1 and (3.5),

E ‖X − X̂n‖2 ≤ 41/lC(l)

l
mlλ(m−1)l+1 +

∑

j≥ml+1

λj

for every n ∈ N. By Lemma 2, we have

ml = m(n, ln)ln ∼ 2 log n

b
as n→ ∞.

Consequently, using regular variation at infinity with index −b < −1 of the function ϕ,

mlλ(m−1)l+1 ∼ mlλml ∼
(

2

b

)1−b

ψ(log n)−1

and
∑

j≥ml+1

λj ∼
mlϕ(ml)

b− 1
∼ 1

b− 1

(
2

b

)1−b

ψ(log n)−1 as n→ ∞,

where, like in Theorem 1, ψ(x) = 1/xϕ(x). Since by Proposition 1,

lim
n→∞

41/lnC(ln)

ln
= 1,

one concludes

E ‖X − X̂n‖2 <∼
(

2

b

)1−b b

b− 1
ψ(log n)−1 as n→ ∞.

The assertion follows from Theorem 1. 2

Numerical and computational aspects: As soon as the Karhunen-Loève basis (uj)j≥1 of
a Gaussian process X is explicit, it is possible to compute the asymptotically optimal functional
quantization (3.2) which solves the minimization problem (3.6) as well as its distribution and
induced quantization error (at least for a given ϑ∈ (0, 1)). This is possible since some optimal (or

10



at least locally optimal) vector quantizations of theN(0, Id)-distribution has been already computed
and kept off line. Let us be more specific.

– In 1-dimension, the normal distribution N(0, 1) has only one stationary n-quantizer – hence
optimal – since its probability density is log-concave (for this result due to Kiefer, see e.g. [5]).
Deterministic methods to compute these optimal quantizers are based on the stationary equa-
tion (3.1). They are very easy to implement, converge very fast with a very high accuracy. The
Newton-Raphson algorithm is a possible choice (see [15] for details). Closed forms for the lowest
quadratic quantization error ‖Z − Ẑ‖L2(P) and for the distribution of the optimal n-quantization

Ẑα as a function of the optimal n-quantizer α are also available in [15]. These three quanti-
ties have been tabulated up to very high values of n. A file can be downloaded at the URL
www.proba.jussieu.fr/pageperso/pages.html.

– In higher dimension, one still relies on the stationary equation (3.1) which reads:

E

(
1Ca(α)(Z)(a− Z)

)
= 0, a∈ α

One must keep in mind that the left hand side of the above equation is but the gradient of the
(squared) quantization error E‖Z− Ẑα‖2 viewed as a function of the quantizer α (assumed to be of
full size n). A stochastic gradient descent based on this integral representation can be implemented
easily since the normal distribution N(0, Id) can be simulated on a computer from (pseudo-)random
numbers (e.g. by the Box-Muller method). This algorithm is known as the Competitive Learning
Vector Quantization (or CLV Q) algorithm. It has been extensively investigated both from a
theoretical (see e.g. [14], [1]) and numerical (see e.g. [15] as concerns normally distributed vectors)
viewpoints. The algorithm reads as follows: let (ζ(t))t≥1 be an i.i.d. sequence ofN(0, Id)-distributed
random vectors, let (γt)t≥1 be a decreasing sequence of positive gain parameter satisfying

∑
t γt =

+∞ and
∑

t≥1 γ
2
t < +∞ and let α(0)∈ (Rd)n denote a starting n-quantizer. Then, at time t∈ N,

one update the running n-quantizer α(t− 1) := (α1(t− 1), . . . , αn(t− 1)) as follows

Competitive phase: select i(t) ∈ argmin{i : ‖αi(t− 1) − ζ(t)‖ = min
j

‖αj(t− 1) − ζ(t)‖}

Learning phase: αi(t)(t− 1) = (1 − γt)αi(t)(t− 1) + γt ζ(t)

α(t)j = αj−1(t− 1), j 6= i(t).

Some further details concerning the numerical implementation of this procedure can be found in [15],
especially some heuristics concerning the initialization and the specification of the gain parameter
sequence usually choosen of the form γt = A

B+t . It converges toward some local minima of the
quantization error at a

√
γt-rate. Some d-dimensional grids (d = 2 up to 10) can be downloaded at

the above URL for many values of n in the range 2 up to 2 000. These quantizations were carried
out to solve numerically multi-dimensional stopping time problems (pricing of American options
on baskets, see [16] and the references therein).

The 1-dimensional optimal quantization of the N(0, 1)-distribution has already been used to
produce some optimal scalar product functional quantization - i.e. based on blocks of fixed length
1- in [17] with some promising applications to the pricing of path-dependent European options in
stochastic volatility models (this work is also based on results about diffusion processes from [13]).
To be competitive with other methods (Monte Carlo, pde’s) one needs to have good performances
for not too large values of n. Within this range of values, it is more efficient to perform directly a
numerical optimisation of (3.3) (or (3.6)) with l = 1 rather than using the theoretical asymptotically
optimal parameters (3.7) and (3.8).

As far as numerical implementation of functional quantization with n-varying block size is
concerned, some first numerical experiments carried out by Benedikt Wilbertz [19] suggest that

11



it slightly improves the scalar approach for high values of n, say n ≤ 106, simply using up to
3-dimensional nj-quantizers with some nj not greater than 100. A similar improvement can vbe
obtained for lower values of n (say n ≥ 20 000) by using product quantizers made of blocks with
mixed diemnsions (1, 2 or 3).

Examples: The basic example (among Riemann-Liouville processes) is X1/2 = W and H =
L2([0, 1], dt), where

λj = (π(j − 1/2))−2, uj(t) =
√

2 sin
(
t/
√
λj

)
, j ≥ 1. (3.16)

Since for δ, ρ ∈ (0,∞),

Xδ+ρ =
Γ(δ + ρ+ 1

2 )

Γ(ρ+ 1
2)

Rδ(X
ρ),

one gets expansions of Xδ+ρ from Karhunen-Loève expansions of Xρ. In particular,

Xδ+ 1
2 = Γ(δ + 1)

∞∑

j=1

√
λjZjRδ(uj).

However, the functions Rδ(uj), j ≥ 1, are not orthogonal in H so that the nonzero correlation

between the components of (Z(j) − Ẑ(j)) prevents the previous estimates for E‖X − X̂n‖2 given in
Lemma 1 from working in this setting in the general case.

However, when l = 1 (scalar product quantizers made up with blocks of fixed length l = 1), one
checks that these estimates still stand as equalities since orthogonality can now be substituted by
the independence of Zj − Ẑj and stationarity property (3.1) of the quantizations Ẑj , j ≥ 1. It is
often good enough for applications to use scalar product quantizers (see [10], [17]). If, for instance
δ = 1, then

X := X3/2 =
∞∑

j=1

√
λjZjR1(uj),

where
R1(uj)(t) =

√
2λj(1 − cos(t/

√
λj)).

Note that ‖R1(uj)‖2 = λj(3 − 4(−1)j−1
√
λj), j ≥ 1. Set

X̂n =
m∑

j=1

√
λjẐjR1(uj).

The quantization X̂n is non Voronoi (it is related to the Voronoi tessellation of W ) and satisfies

E‖X − X̂n‖2 =
m∑

j=1

λ2j(3 − 4(−1)j−1
√
λj)enj (N(0, 1))2 +

∑

j≥m+1

λ2
j(3 − 4(−1)j−1

√
λj). (3.17)

It is possible to optimize the (scalar product) quantization error using this expression instead
of (3.6). As concerns asymptotics, if the parameters are tuned following (3.7)-(3.9) with l = 1 and
λj replaced by

νj := λ2
j (3 + 4

√
λj) ∼ 3π−4j−4 as n→ ∞,

and using Theorem 3 gives

(E ‖X − X̂n‖2)1/2 <∼
(

3(12C(1) + 1)

4

)1/2

en(X) as n→ ∞. (3.18)
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Numerical experiments seem to confirm that C(1) = Q(1). Since Q(1) = π
√

3/2 (see [5], p. 124),
the above upper bound is then

(
3(6π

√
3 + 1)

4

)1/2

= 5.02357 . . .

4 Dimension

Let X be a H-valued random vector satisfying (1.2). For n ∈ N, let Cn(X) be the (nonempty) set
of all L2-optimal n-quantizers. Introduce the integral number

dn(X) := min {dim span (α)) : α ∈ Cn(X)} . (4.1)

It represents the dimension at level n of the functional quantization problem for X. Here span(α)
denotes the linear subspace of H spanned by α. In view of Section 3, a reasonable conjecture for
Gaussian random vectors is dn(X) ∼ 2 log n/b in regular cases, where −b is the regularity index.
We have at least the following lower estimate in the Gaussian case.

Proposition 2 Assume the situation of Theorem 1. Then

dn(X)
>∼ 1

b1/(b−1)

2 log n

b
as n→ ∞.

Proof. For every n ∈ N, we have

dn(X) = min



k ≥ 0 : en(

k⊗

j=1

N(0, λj))
2 +

∑

j≥k+1

λj ≤ en(X)2



 (4.2)

(see [10]). Define

cn := min



k ≥ 0 :

∑

j≥k+1

λj ≤ en(X)2



 .

Clearly, cn increases to infinity as n → ∞ and by (4.2), cn ≤ dn(X) for every n ∈ N. Using
Theorem 1 and the fact that ψ is regularly varying at infinity with index b− 1, we obtain

((b− 1)ψ(cn))−1 ∼
∑

j≥cn+1

λj ∼ e2n(X) ∼
(

2

b

)1−b b

b− 1
ψ(log n)−1

and thus

ψ(cn) ∼
(

2

b

)1−b 1

b
ψ(log n) ∼ ψ

(
1

b1/(b−1)

2 log n

b

)
as n→ ∞.

Consequently,

cn ∼ 1

b1/(b−1)

2 log n

b
as n→ ∞.

This yields the assertion. 2

For Riemann-Liouville processes one concludes

dn(Xρ)
>∼ (2ρ+ 1)−1/2ρ 2 log n

2ρ+ 1

(see (2.3)).

For the metric entropy problem one may introduce the numbers dn(UX) analogously. Then,

in the situation of Theorem 1 it is known that dn(UX)
>∼ 2 log n/b (see [12]). It remains an open

question whether dn(X) ∼ dn(UX) ∼ 2 log n/b.
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