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Abstract

In this paper, we are interested in some questions of Greven and
den Hollander [3] about the rate function I

q
η of quenched large devia-

tions for random walk in random environment. By studying the hitting
times of RWRE, we prove that in the recurrent case, limθ→0+(Iq

η)′′(θ) =
+∞, which gives an affirmative answer to a conjecture of Greven and
den Hollander [3]. We also establish a comparison result between the
rate function of quenched large deviations for a diffusion in a drifted
Brownian potential, and the rate function for a drifted Brownian mo-
tion with the same speed.

Key Words: Random walk in random environment, Large deviations.

AMS (2000) Classification: 60K37, 60F10, 60J60.

1 Introduction

1.1 Presentation of the model

We consider a collection of independent and identically distributed random
variables (ωi)i∈Z. A realization of these variables is called an environment.
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Given an environment ω := (ωi)i∈Z, we consider the random walk (Sn)n∈N

defined by S0 = 0 and

Pω(Sn+1 = k|Sn = i) =





ωi if k = i + 1,
1 − ωi if k = i − 1,
0 otherwise.

The process (Sn)n∈N is called a random walk in random environment, abbre-
viated RWRE. This model has many applications in physics, see for example
Hughes [5]. Let η denote the law of (ωi)i∈Z. We call Pω the quenched law,
whereas P(.) :=

∫
Pω(.)η(dω) is the annealed law. For technical reasons, we

assume that there exists an ε0 > 0 such that

η(ε0 ≤ ω0 ≤ 1 − ε0) = 1. (1.1)

For i ∈ Z, let ρi = 1−ωi

ωi
. Solomon [11] proved that the RWRE (Sn)n∈N is

P–a.s. recurrent if and only if
∫

(log ρ0)η(dω) = 0. (1.2)

In order to avoid the degenerate case of simple random walk, we assume in
the following that

Var(log ρ0) := σ2 > 0. (1.3)

Sinai [10] showed that in the recurrent case, the random environment consid-
erably slows down the walk. More precisely, he proved that if (1.2) and (1.3)
are satisfied, there exists a nondegenerate non–Gaussian random variable b∞
such that

σ2 Sn

(log n)2

L−→
n→+∞

b∞, (1.4)

where
L−→ denotes convergence in law under P.

It is moreover known (Solomon [11]) that the RWRE (Sn)n∈N satisfies a
law of large numbers: there exists v ∈] − 1, 1[ such that limn→∞ Sn/n = v
P–a.s. In addition, v is strictly positive if and only if

∫
ρ0η(dω) < 1.

The RWRE (Sn)n∈N satisfies furthermore a quenched large deviation prin-
ciple with deterministic convex rate function Iq

η (see Greven and den Hollan-
der [3]). This means there exists a nonnegative convex function Iq

η such that
η–a.s. for any measurable set A,

lim inf
n→∞

1

n
log Pω

(
Sn

n
∈ A

)
≥ − inf

x∈A◦

Iq
η(x),

lim sup
n→∞

1

n
log Pω

(
Sn

n
∈ A

)
≤ − inf

x∈A
Iq
η(x),
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where A◦ denotes the interior of A and A is the closure of A.
For more details on RWRE, we refer to Zeitouni [13].

1.2 Results

In this paper, we are interested in some questions raised by Greven and den
Hollander about quenched large deviations for RWRE. First, we answer their
Open problem 2 (see [3], p. 1389; see also den Hollander [4] p. 80), and prove
that

Theorem 1.1 Under (1.1), (1.2) and (1.3), the rate function Iq
η for quenched

large deviations of the RWRE satisfies

lim
θ→0+

(Iq
η)

′′(θ) = +∞. (1.5)

This is what Greven and den Hollander conjectured. Observe that this re-
sult is coherent with the subdiffusive behaviour of Sinai’s walk (1.4). We men-
tion that the corresponding problem for Brox–type diffusions (see Brox [1]),
for which the rate functions can be explicitly computed, has already been
solved by Taleb (see [12]).

In order to prove Theorem 1.1, it is useful to study the hitting times of
(Sn)n∈N. Let us define, for a ∈ Z,

τa := inf{n > 0, Sn = a}.

We show the following estimate:

Proposition 1.2 For each α ∈ R
∗
+,

E(τα
1 e−rτ1) =

(
1

r

)α+o(1)

, r → 0+.

We are also interested in Open problem 3 of Greven and den Hollander
([3], p. 1389): they conjectured that in the case

∫
ρ0η(dω) < 1 (i.e., v > 0),

the quenched rate function Iq
η of the RWRE is smaller than the rate function

of the simple random walk on Z with the same speed v. That is, they
conjectured that ∀x > v, Iq

η(x) < Î〈ρ〉(x), where Î〈ρ〉 is the rate function of a
usual nearest neighbour random walk with speed v.

Unfortunately, we have not been able to answer this question, but we
solve the corresponding problem for Brox–type diffusion (see Brox, [1]). For
κ ≥ 0, we define the random potential

Wκ(x) := W (x) − κ

2
x,
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where (W (x), x ∈ R) is a standard two-sided Brownian motion. We consider
a diffusion X in the random potential Wκ, which is defined as the solution
to the formal stochastic differential equation

{
dX(t) = dβ(t) − 1

2
W ′(X(t))dt,

X(0) = 0,

where (β(t), t ≥ 0) is a Brownian motion independent of W . More precisely,
X is a diffusion process whose conditional generator given Wκ is

1

2
eWκ(x) ∂

∂x

(
e−Wκ(x) ∂

∂x

)
.

This diffusion can be considered as the continuous time analogue of RWRE
and share many properties with it. See for example Shi [9] for the relations
between these two processes. For instance, Kawazu and Tanaka [6] estab-
lished a law of large numbers for X. That is, limt→∞ Xt/t = vκ, where

vκ = (κ−1)+

4
is > 0 if and only if κ > 1. Moreover, Taleb [12] proved that

X satisfies quenched and annealed large deviation principles. Let Jκ denote
the rate function of quenched large deviations of X (see (5.4) below for more
details). We compare Jκ with the function

JB
vκ

(x) :=
1

2
(x − vκ)

2,

which is the rate function of large deviations of the drifted Brownian motion
(Bt + vκt, t ∈ R+). We prove

Theorem 1.3 If κ > 1, then

∀x > vκ, Jκ(x) < JB
vκ

(x).

Interestingly, we obtain as a by-product an inequality for the modified
Bessel functions which might be new:

Proposition 1.4 Let Kν be the modified Bessel function of index ν. We
have,

∀ν > 0, ∀y > 0,
Kν(y)

Kν+1(y)
<

1

y

(√
y2 + ν2 − ν

)
.

The rest of the paper is organized as follows: in Section 2 we build envi-
ronments En for which the hitting time of −1 by (Sn)n∈N, denoted by τ−1,
will be large. We give an estimation of τ−1 for ω ∈ En in Section 3. In
Section 4, we prove Theorem 1.1 and Proposition 1.2. Finally, Section 5 is
devoted to the proofs of Theorem 1.3 and Proposition 1.4.
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2 Construction of the event En

In this section we build a set of environments En, such that P(En) is not “too
small” and that for ω ∈ En, τ−1 is almost n (we prove this last assertion in
Section 3).

Throughout Sections 2 and 3, we fix an ε > 0. The constants Ci, 0 ≤ i ≤
10, depend only on η and ε, whereas θ and δ depend only on η. The events
En, Ei,n and E ′

i,n depend on η and ε, but we omit to write ε.
We give some notation in Subsection 2.1. Subsection 2.2 is devoted to

the construction of En. We give an estimation of P(En) in Subsection 2.3,
and study some of the properties of ω ∈ En in Subsection 2.4.

2.1 Some notation

We define the potential V as follows:

Definition 2.1 Let

V (n) :=

n∑

i=1

log ρi =

n∑

i=1

log
1 − ωi

ωi
, n ∈ Z,

where by convention,
∑0

i=1 xi = 0 and
∑n

i=1 xi = −x0 − x−1 − · · · − xn+1 if
n is (strictly) negative.

We define a valley for the potential (see Sinai, [10]):

Definition 2.2 Let a < m < b. (a, m, b) is a valley if

∀a ≤ i ≤ m, V (m) ≤ V (i) ≤ V (a),
∀m ≤ i ≤ b, V (m) ≤ V (i) ≤ V (b).

Its depth is defined as min{V (a) − V (m), V (b) − V (m)}.

2.2 Building En

In this subsection, we build a valley (0, mn, bn) for the potential V , so that
the RWRE will stay for a “good” amount of time in this valley with “large
probability”.

As
∫

(log ρ0)η(dω) = 0 and σ > 0, there exists a real number δ > 0 such
that

P(−2δ ≤ log ρ0 ≤ −δ) := exp(−θ) > 0.
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Now we set

ε′ := εδ, c1,n := ⌊ε log n⌋,
c2,n := ⌊log n⌋2, c3,n := δc1,n,

c4,n := (1 − 10ε′) log n, β := 1−9ε′

1−10ε′
,

c5,n := ε′

2
log n, c6,n := 2 log n.

For i ∈ Z, define Ṽ (i) = V (i+c1,n)−V (c1,n) and V̂ (i) = Ṽ (i+c2,n)− Ṽ (c2,n).
We consider

E1,n := {∀0 ≤ i ≤ c1,n, −2δi ≤ V (i) ≤ −δi} ,

E2,n := {Ṽ (c2,n) ∈ [−βc4,n,−c4,n]},

E3,n :=

{
∀0 < i ≤ c2,n,

∣∣∣∣Ṽ (i) − i

c2,n

Ṽ (c2,n)

∣∣∣∣ ≤ c5,n

}
,

E4,n := {V̂ (c2,n) ∈ [c6,n, 2c6,n]},

E5,n :=

{
∀0 < i ≤ c2,n,

∣∣∣∣V̂ (i) − i

c2,n

V̂ (c2,n)

∣∣∣∣ ≤ c5,n

}
.

Finally, let
En := E1,n ∩ E2,n ∩ E3,n ∩ E4,n ∩ E5,n.

When ω ∈ En, we say the environment is “good”. On E1,n, the potential V (i)
decreases almost linearly for i ∈ [0, c1,n] (this will enable the walk (Sn)n∈N to
go quickly to c1,n before hitting −1 with large probability). On E2,n ∩ E3,n,
V stays within a tunnel of height 2c5,n, and sinks to V (c1,n) − c4,n. On
E4,n ∩ E5,n, V stays within another tunnel of height 2c5,n, and moves up to
positive values. These comments on En are represented in the Figure 1 (bn

and mn are defined in Subsection 2.4).

2.3 Probability of En

Lemma 2.3 There exists a constant C0 > 0 which depends only on η and ε,
such that for n large enough,

P (En) ≥ C0n
−θε.

Proof: First, observe that

P(E1,n) ≥ P (∀1 ≤ i ≤ c1,n, −2δ ≤ log ρi ≤ −δ)

≥ exp(−θε log n) ≥ n−θε. (2.1)

6



j

ic1,n + c2,n c1,n + 2c2,nc1,n

c5,n

c5,n

−1

−c3,n

−2c3,n

V (c1,n) − c4,n

V (c1,n) − βc4,n

V (c1,n + c2,n) + c6,n

V (c1,n + c2,n) + 2c6,n

mn bn

Figure 1: Example of the potential V for a “good” environment ω ∈ En

According to the Komlós–Major–Tusnády strong approximation theorem
(see [7]), possibly in an enlarged probability space, there exists a coupling
for ω and a standard Brownian motion W , and (strictly) positive constants
C1, C2 and C3 such that for all N ≥ 1,

P

(
sup

1≤i≤N
|Ṽ (i) − σW (i)| ≥ C1 log N

)
≤ C2

NC3
.

Define

E ′
6,n :=

{
sup

1≤i≤3(log n)2
|Ṽ (i) − σW (i)| ≥ C1 log[3(log n)2]

}
.

We have,

P(E ′
6,n) ≤ C2

(3(log n)2)C3
.

We then consider the following events:

E ′
2,n :=

{
σW (c2,n) ∈

[
−βc4,n +

ε′

4
log n,−c4,n − ε′

4
log n

]}
,

E ′
3,n :=

{
∀0 ≤ t ≤ c2,n,

∣∣∣∣σW (t) − t

c2,n
σW (c2,n)

∣∣∣∣ ≤ c5,n − ε′

4
log n

}
.
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We notice by scaling that there exists C4 > 0 such that P[E ′
2,n ∩E ′

3,n] ≥ 2C4

for n large enough. Since log[3(log n)2] = o(log n), we have for large n,

P(E2,n ∩ E3,n) ≥ P[E ′
2,n ∩ E ′

3,n ∩ (E ′
6,n)c]

≥ P(E ′
2,n ∩ E ′

3,n) − C2

[3(log n)2]C3

≥ C4. (2.2)

Similarly, there exists a constant C5 > 0 such that

P(E4,n ∩ E5,n) ≥ C5 (2.3)

for n large enough. Since E1,n, E2,n ∩ E3,n and E4,n ∩ E5,n are independent,
we obtain Lemma 2.3 by combining (2.1), (2.2) and (2.3). �

2.4 Properties of a “good” environment

Let ω ∈ En. We define the integers bn and mn such that

bn := inf{k ∈ N, k > 0, V (k) ≥ 0},
mn := inf{k > 0, V (k) = inf

0≤ℓ≤bn

V (ℓ)}.

Note that (0, mn, bn) is a valley (in the sense of Definition 2.2) with depth
−V (mn), and that

V (mn) ∈ [−2c3,n − βc4,n − c5,n,−c3,n − c4,n],

mn ∈
[
c1,n + c2,n − c5,nc2,n

c4,n

, c1,n + c2,n +
c5,nc2,n

c6,n

]
.

In particular, we have for ε′ small enough and n large enough,

−δ + (1 − 9ε′) log n ≤ −V (mn) ≤ (1 − 6ε′) log n,
(1 − ε′)(log n)2 ≤ mn ≤ (1 + ε′)(log n)2.

(2.4)

3 Probability that τ−1 has a “good” length

This section is devoted to the proof of the following result:

Lemma 3.1 There exists a constant C6 > 0, depending only on η and ε,
such that for all large n,

∀ω ∈ En, Pω

(
n1−10ε′ ≤ τ−1 < n

)
≥ C6.
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In Subsection 3.1, we show that when ω ∈ En, with a large quenched
probability, the RWRE goes quickly to the bottom mn of the valley (0, mn, bn)
without hitting −1. In Subsection 3.2, we prove that with a large quenched
probability, after hitting mn, the RWRE stays in N during almost n units of
time and then hits −1 for the first time.

3.1 Going to the bottom mn of the valley

Lemma 3.2 There exists a constant C7 > 0, depending only on η and ε,
such that

∀ω ∈ En, Pω(τmn
< τ−1) ≥ C7.

Proof: Let ω ∈ En. Since E1,n ⊂ En,

c1,n−1∑

i=0

exp(V (i)) ≤
+∞∑

i=0

exp(−δi) ≤ 1

1 − e−δ
. (3.1)

Furthermore,

∀c1,n ≤ i ≤ mn, V (i) ≤ −δc1,n + c5,n ≤ −ε′

2
log n + δ.

Then, for all large n,

0 ≤
mn−1∑

i=c1,n+1

exp(V (i)) ≤ 2c2,nn−ε′/2eδ ≤ 1. (3.2)

Accordingly (see Zeitouni [13] p. 196),

Pω(τmn
< τ−1) =

exp(V (−1))
∑mn−1

k=−1 exp(V (k))
≥

ε0

1−ε0

1−ε0

ε0
+ 1

1−e−δ + 1
:= C7 > 0.

�

We denote by P x
ω and Ex

ω the probability and expectation of (Sn)n∈N,
starting at site x and conditioned on the environment ω. We have (see
Zeitouni, [13], p. 250)

Fact 3.3 If a < x < b,

Ex
ω(τa ∧ τb) ≤

b−1∑

k=x

k∑

ℓ=a

exp[V (k) − V (ℓ)]

ωℓ
. (3.3)
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We can now give an upper bound for the hitting time of mn if the RWRE
hits mn before −1:

Lemma 3.4 There exists a constant C8 > 0 such that

∀ω ∈ En, Pω(τmn
< τ−1 and τmn

≤ n4ε′) ≥ C8.

Proof: According to Fact 3.3 and (2.4), we obtain for ω ∈ En,

Eω(τ−1 ∧ τmn
) ≤

mn−1∑

k=0

k∑

ℓ=−1

exp[V (k) − V (ℓ)]

ωℓ

≤ 1

ε0

(mn + 1)2 exp(c3,n + 2c5,n)

≤ 1

ε0

[(1 + ε′)(log n)2 + 1]2n2ε′ ≤ n3ε′ .

Now, by Chebyshev’s inequality,

Pω(τ−1 ∧ τmn
≥ n4ε′) ≤ n−4ε′Eω(τ−1 ∧ τmn

) ≤ n−ε′.

As a consequence, recalling Lemma 3.2,

Pω(τmn
< τ−1 and τmn

≤ n4ε′) = Pω(τmn
< τ−1) − Pω(n4ε′ < τmn

< τ−1)

≥ C7 − n−ε′ ≥ C7/2 := C8

for n large enough. �

3.2 Leaving the valley

First, we give a majoration of the exit time from the valley (0, mn, bn).

Lemma 3.5 There exists a constant C9 > 0, depending only on η and ε,
such that

∀ω ∈ En, P mn

ω (τ−1 ≤ n1−5ε′) ≥ C9.

Proof: Let ω ∈ En. The probability to leave the valley (0, mn, bn) on the
left is

P mn

ω (τ−1 < τbn
) =

1
∑mn−1

k=−1
exp(V (k))

∑bn−1

k=mn
exp(V (k))

+ 1

≥ 1(
1 + 1

1−e−δ + 1−ε0

ε0

)
1−ε0

ε0
+ 1

:= 2C9, (3.4)

10



due to (3.1) and (3.2), and since exp(V (bn)) ≥ 1.
Moreover, Fact 3.3 gives (by symmetry), recalling (2.4),

Emn

ω (τbn
∧ τ−1) ≤

mn∑

k=0

bn∑

ℓ=k

exp[V (k − 1) − V (ℓ − 1)]

ε0

≤ 1

ε0
(bn + 1)21 − ε0

ε0
exp[V (0) − V (mn)]

≤ (3 log2 n)2 exp[(1 − 6ε′) log n]ε−2
0

≤ n1−11ε′/2

for n large enough. Then Chebyshev’s inequality yields

P mn

ω (n1−5ε′ < τbn
∧ τ−1) ≤ n−ε′/2.

Consequently, for all environment ω ∈ En, recalling (3.4),

P mn

ω (τ−1 ≤ n1−5ε′) ≥ P mn

ω (τ−1 ≤ τbn
and τ−1 ≤ n1−5ε′)

≥ 2C9 − n−ε′/2 ≥ C9

for n large enough. �

Now we give a lower bound for τ−1.

Lemma 3.6 We have,

inf
ω∈En

P mn

ω (τ−1 > n1−10ε′) −→
n→∞

1.

Proof: Let ω ∈ En. To establish Lemma 3.6, we use another argument of
Sinai’s proof. When the RWRE is located at mn − 1, the probability that it
hits −1 before going to mn is

P mn−1
ω (τ−1 < τmn

) =
exp(V (mn − 1))

∑mn−1
k=−1 exp(V (k))

≤ exp(V (mn − 1))

≤
(

1 − ε0

ε0

)
eδ

n1−9ε′
,

due to (2.4). Similarly, we have

P mn+1
ω (τbn

< τmn
) ≤

(
1 − ε0

ε0

)
eδ

n1−9ε′
:=

C10

n1−9ε′
.

11



As the RWRE is recurrent, we can consider the ⌊n1−10ε′⌋ first excursions
away from mn, which are independent under Pω. More precisely, let us
define recursively

{
τ

(1)
mn := τmn

,

τ
(k+1)
mn := inf{ℓ > τ

(k)
mn , Sℓ = mn}, k ≥ 1,

and consider the set

E7,n :=
{
∀1 ≤ k ≤ ⌊n1−10ε′⌋, τ (k)

mn
< τ−1 ∧ τbn

}
.

We obtain

P mn

ω (Ec
7,n) ≤ ⌊n1−10ε′⌋P mn±1

ω (τ−1 ∧ τbn
< τmn

) ≤ C10n
−ε′.

Now, on E7,n, the RWRE (Si)i≥τmn
stays in [0, bn] during the first ⌊n1−10ε′⌋

excursions away from mn, hence τ−1 > n1−10ε′ . Therefore,

∀ω ∈ En, P mn

ω (τ−1 > n1−10ε′) ≥ P mn

ω (E7,n) ≥ 1 − C10n
−ε′.

�

Combining Lemmas 3.5 and 3.6, we get

∀ω ∈ En, P mn

ω (n1−10ε′ < τ−1 ≤ n1−5ε′) ≥ C9

2

for n large enough. Recalling Lemma 3.4, this ends the proof of Lemma 3.1.
�

4 Proofs of Theorem 1.1 and Proposition 1.2

In this section, we use the results of the previous sections to prove Theo-
rem 1.1 and Proposition 1.2.

4.1 Proof of Proposition 1.2

Let α ∈ R
∗
+ and

Mα := sup
x∈R+

(xαe−x) ∈ (0, +∞).

Then,
∀r > 0, E[τα

−1 exp(−rτ−1)] ≤ Mαr−α. (4.1)

12



Now we give a lower bound for Eω[τα
−1 exp(−rτ−1)]. For any 0 < a < 1

and any ω,

Eω[τα
−1 exp(−τ−1/n)] ≥ e−1nαaPω(na ≤ τ−1 ≤ n).

Thus, by Lemma 3.1, for any ε > 0, taking a = 1 − 10ε′ = 1 − 10δε,

∀ω ∈ En, Eω[τα
−1 exp(−τ−1/n)] ≥ C6e

−1nα(1−10δε).

Integrating this inequality on En, and in view of Lemma 2.3, we get, for all
large n,

E[τα
−1 exp(−τ−1/n)] ≥ C6C0e

−1nα(1−10δε)−θε.

Since ε > 0 can be arbitrary small, this, together with (4.1), yields

E(τα
−1e

−rτ−1) =

(
1

r

)α+o(1)

, r → 0+.

By symmetry, we can replace τ1 by τ−1, which gives Proposition 1.2. �

4.2 Proof of Theorem 1.1

It is known (see den Hollander [4], p. 80), that (1.5) is equivalent to

lim
r→0−

[log λ]′′(r)

{[log λ]′(r)}3
= 0, (4.2)

where
log λ(r) = E[log Eω(erτ1)]. (4.3)

Note that

f(r) :=
[log λ]′′(r)

{[log λ]′(r)}3

≤
E

(
Eω(τ2

1
erτ1)

Eω(erτ1 )

)

[
E

(
Eω(τ1erτ1)
Eω(erτ1 )

)]3 := g(r).

Moreover, due to assumption (1.1), we have, for all −1 < r < 0 and for all
environment ω,

ε0e
−1 ≤ ω0e

r ≤ Eω(exp(rτ1)) ≤ 1.

As a consequence, for −1 < r < 0,

g(r) ≤ e

ε0

E[τ 2
1 exp(rτ1)]

{E[τ1 exp(rτ1)]}3 := h(r).
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Furthermore, f(r) ≥ 0 (by the Cauchy–Schwarz inequality). Now, according
to Proposition 1.2,

h(r) = |r|1+o(1) −→ 0
r→0−

,

which proves (4.2) and thus Theorem 1.1. �

5 Comparison between rate functions

In this section we consider the diffusion X in the random potential Wκ and
assume κ > 1. In this case, vκ = (κ − 1)/4. We know (see Taleb [12]) that
the rate function Jκ of quenched large deviations for X can be written as
Jκ(x) = xIκ(1/x) for x > 0, where

Iκ(u) = sup
λ≥0

(Γκ(λ) − λu), (5.4)

and Γκ can be expressed in terms of modified Bessel functions (see (5.5)
below).

Let
φvκ

(λ) :=
√

2λ + vκ
2 − vκ.

We first show that Γκ(λ) < φvκ
(λ) for large λ. Then we use a differential

equation satisfied by Γκ to prove that this inequality is true on R
∗
+. Finally,

we prove Theorem 1.3 and Proposition 1.4.

5.1 Study in the neighbourhood of +∞
According to Taleb (we mention that in Taleb [12], p. 1178, the expression
Fκ(λ) should be 2(2λ)κ/2Kκ[4

√
2λ], see for instance Magnus et al., [8] p. 85;

this misprint has no consequence on the results of [12]), we have

∀λ ≥ 0, Γκ(λ) =
√

2λ
Kκ−1(4

√
2λ)

Kκ(4
√

2λ)
. (5.5)

Using the “series of the Hankel type” (see Magnus et al. [8], p. 139), we
obtain

Γκ(λ) =
√

2λ − 1

4

(
κ − 1

2

)
+ O

(
1√
λ

)
λ → +∞. (5.6)

This yields

Γκ(λ) − φvκ
(λ) −→

λ→+∞
−1

8
.
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Consequently, there exists B > 0, such that

∀λ ≥ B, Γκ(λ) < φvκ
(λ). (5.7)

5.2 Using a differential equation

According to Taleb [12], Γκ is a solution of the differential equation xy′ −
2y2 − κy = −4x on (0, +∞). It is natural to introduce

A(x) := xφ′
vκ

(x) − 2φ2
vκ

(x) − κφvκ
(x) + 4x =

−x − v2
κ + vκ

√
2x + v2

κ√
2x + v2

κ

. (5.8)

In particular, A(x) < 0 for all x > 0.
Let us consider the set

E := {x > 0, Γκ(x) ≥ φvκ
(x)}.

We prove that E = ∅. Indeed, let us assume that E 6= ∅. According to (5.7),
E ∩ [B, +∞) = ∅. Consequently, E would have a supremum x0 ∈ (0, B]. By
continuity, Γκ(x0) = φvκ

(x0). Now, (5.8) would yield

φ′
vκ

(x0) =
1

x0

[A(x0) + 2φ2
vκ

(x0) + κφvκ
(x0) − 4x0]

=
1

x0

[A(x0) + 2Γ2
κ(x0) + κΓκ(x0) − 4x0]

=
A(x0)

x0
+ Γ′

κ(x0) < Γ′
κ(x0).

Consequently, there would exist an ε > 0 such that

∀x ∈ [x0, x0 + ε], φvκ
(x) < Γκ(x).

Therefore, [x0, x0 + ε] ⊂ E, which contradicts x0 = sup E. Hence E = ∅,
which means that

∀λ > 0, Γκ(λ) < φvκ
(λ). (5.9)

5.3 Proofs of Theorem 1.3 and Proposition 1.4

It is easily seen that

∀λ ≥ 0, inf
0<u< 1

vκ

{
λu +

u

2

(
1

u
− vκ

)2
}

=
√

2λ + v
k
2 − vκ = φvκ

(λ).
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Thus (5.9) yields

∀0 < u <
1

vκ
, ∀λ > 0, Γκ(λ) − λu <

u

2

(
1

u
− vκ

)2

. (5.10)

Notice that (5.10) remains true for λ = 0 since Γκ(0) = 0. Now, fix u ∈
(0, 1/vκ). Recalling (5.6), it follows that

Γκ(λ) − λu −→
λ→+∞

−∞.

As the function λ 7→ [Γκ(λ) − λu] is continuous on R+, it has a maximum
on, say, λu ∈ R+. Hence, by (5.10),

sup
λ≥0

(Γκ(λ) − λu) = Γκ(λu) − λuu <
u

2

(
1

u
− vκ

)2

,

which can be written as, recalling (5.4):

∀0 < u <
1

vκ
, Iκ(u) <

u

2

(
1

u
− vκ

)2

.

This is equivalent to

∀x > vκ, Jκ(x) = xIκ

(
1

x

)
< JB

vκ
(x) =

1

2
(x − vκ)

2,

proving Theorem 1.3.

We notice that (5.9) can be written in terms of modified Bessel functions,
using (5.5), which gives Proposition 1.4.

5.4 Remarks

Recall that the rate function of large deviations of the standard Brownian
motion is x 7→ x2/2. By the same arguments as in the case κ > 1, we obtain
for the transient case with zero speed (0 < κ ≤ 1),

Proposition 5.1 (zero speed case),
If κ ∈ (0, 1/2), then ∀x > 0, Jκ(x) > x2/2;
If κ = 1/2, then ∀x > 0, Jκ(x) = x2/2;
If κ ∈ (1/2, 1], then ∀x > 0, Jκ(x) < x2/2.
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(The case κ = 1/2 was obtained by Taleb, [12]).
We also notice that Proposition 1.4 together with the formula Kν−1(z)−

Kν+1(z) = −2ν
z
Kν(z) also give a lower bound for Kν/Kν+1:

∀ν > 0, ∀y > 0,
Kν(y)

Kν+1(y)
>

1

y

[
y2

√
y2 + (ν + 1)2 − (ν + 1)

− 2(ν + 1)

]
.
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12, (2001) 53–74.

17



[10] Sinai, Ya. G.: The limiting behavior of a one-dimensional random walk
in a random medium, (English translation), Th. Probab. Appl. 27, (1982)
256–268.

[11] Solomon, F.: Random walks in a random environment. Ann. Probab. 3,
(1975) 1–31.

[12] Taleb, M.: Large deviations for a Brownian motion in a drifted Brownian
potential, Ann. Probab. 29, (2001) 1173–1204.

[13] Zeitouni, O.: Lectures notes on random walks in random environment.
In: Lect. Notes Math., Springer, Berlin, 1837, pp. 193–312, (2004).

18


