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Abstract

We find out for which t shells of selfdual lattices and of theirs shadows

are spherical t-designs. The method uses theta series of lattices, which are

modular forms. We analyse fully cubic and Witt lattices, as well as all selfdual

lattices of rank at most 24.

Introduction

A nonempty finite subset of a Euclidean sphere provides approximations for integrals
of functions defined on that sphere. In this context, such a subset is called a
spherical design and its efficiency is measured by an integer t > 0 called its strength
[DeGoSe77] (precise definitions are given in Section 1). We are interested here in
computing (or at least estimating) the strengths of shells in some selfdual lattices.
These problems have natural formulations in terms of vanishing Fourier coefficients
of modular forms which are appropriate theta series of the lattices.

The method used in this article was already used for finding the spherical design
strengths of shells of extremal (even) lattices. (Do not confuse with “extreme
lattice”. The definition of extremal lattices of level 1 is given at the end of Section 5.)
See [Venk84] and [VenMar01, §16] for unimodular case, and [BacVen01] for some
other cases.

Let Λ be a lattice in the standard Euclidian space Rn; we denote by 〈x | y〉 the
scalar product of two vectors x, y ∈ Rn. For a positive number m, we denote by

Λm := {λ ∈ Λ | 〈λ | λ〉 = m}

the shell (or layer) of norm m (that is to say of radius
√
m in the usual sense of

Euclidean geometry).

Given a lattice and a positive integer t, we would like to single out the three
following questions:

(1) Is the shell of minimal norm a spherical t-design?

(2) Is some shell a spherical t-design?

(3) Is every shell a spherical t-design?

It is quite easy to show that, if any of these question is true for t = 2 then the
lattice is rational, that is proportional to an integral lattice (see, e.g., [MartV01,
Chap. 3, § 1]). It is therefore reasonable to restrict the discussion to integral lattices.
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Question (1) with t = 4 (or t = 5 which is equivalent in this case) asks whether a
lattice is strongly perfect, which is the basic question in [VenMar01]. It is motivated
by the classical result of Voronoi characterising extreme lattices as those which
are “eutactic and perfect” [Voro08]. (A lattice is extreme if the density of the
corresponding sphere packing of Rn is a local maximum in the space of all lattices.)
Strongly perfect lattices in dimensions n 6 11 have been classified (see [VenMar01]
for dimensions n 6 9 and n = 11, and [NebVen00] for n = 10); there are ten
isometry classes, usually denoted by Z, A2, D4, E6, E∗

6, E7, E∗
7, E8, K ′

10, and K ′
10

∗

(subscripts indicate dimensions).

Whenever Question (2) has a positive answer, it is an experimental fact that
there exists a “rather small” m for which Λm is a spherical t-design, but we do not
know any general result in this direction.

For the answer to Question (3) to be positive, it is sufficient that the space
H(2j)(Rn)Aut(Λ) of Aut(Λ)-invariant harmonic polynomials on R

n which are ho-
mogeneous of degree 2j is reduced to {0} for every positive integer 2j 6 t (see
[GoeSei81, Thm. 3.12]).

Questions (1) to (3) make sense for various sets associated to a lattice Λ, and
in particular for shadows of selfdual lattices. Recall that, if Λ is an odd selfdual
lattice with even part Λ0 = {λ ∈ Λ | 〈λ | λ〉 ≡ 0 mod 2}, its shadow Sh(Λ) is the
complement of Λ in the dual Λ♯

0 of Λ0. (Shadows enter naturally the discussion
since they provide efficient tools to compute theta series.)

We denote by Zn the cubic lattice of rank n. We denote by Γn the Witt lattice of
rank n, where n is a multiple of 4 (see Section 10 for the definition); Γ8 is the unique
even selfdual lattice of rank 8 (also known as the Korkine-Zolotareff lattice). If R is
a root system of norm 2, we denote by R+ a selfdual lattice of minimal norm 2 with
Λ2 = R; it happens that, up to rank 23, such a lattice is unique (whenever it exists).
We denote by k1R1 + · · ·+ksRs the root system whose irreducible components are
R1, . . . , Rs with multiplicity k1, . . . , ks respectively; such a root system is called
strongly eutactic if all its components have the same Coxeter number. Recall that
the Leech lattice is the unique even selfdual lattice of rank 24 with minimal norm 4,
and the shorter Leech lattice is the unique selfdual lattice of rank 23 with minimal
norm 3. We say that a noncubic selfdual lattice Λ of rank n has a long shadow if
σ(Λ) = n−8, where σ(Λ) is the minimum norm of a characteristic (or parity) vector
of Λ. The definitions of spherical t-design and t1/2-design are given in Section 1.

Theorem A below is partly a reformulation of known results: Claims (i) to (iii)
and some cases of Claims (iv) and (v) follow from results on harmonic polynomi-
als that are invariant by the action of the automorphism group of the lattice, as
explained above ([GoeSei81, Thm. 3.2]; [GoeSei79, Examples 7.6 and 7.7]).

Theorem A.

(i) All shells of the Leech lattice are spherical 111/2-designs.

(ii) All shells of the shorter Leech lattice and of its shadow are spherical 7-designs.

(iii) All shells of the Korkine-Zolotareff lattice are spherical 71/2-designs.

(iv) The following special shells of selfdual lattices of rank at most 24 and of their
shadows are spherical 5-designs:

(Z4)m for m = 2a,

(Z7)m for m = 4a(8b+ 3), a, b > 0,(
Sh(Z16)

)
m

for m = 4a+ 2, a > 1,
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(4A5)
+
m, (5D4)

+
m for m = 4a, a > 0,

(2D8)
+
m for m = 4a+ 2, a > 1.

(v) All shells of the following lattices and of their shadows are spherical 3-designs:
the cubic lattices Zn, the Witt lattices Γn, all selfdual lattices of rank at
most 24, of minimum 2, and with strongly eutactic root system (see Defini-
tion 20; that includes all selfdual lattices of minimum 2 with long shadow and
all even selfdual lattices of rank at most 24). Moreover some other selfdual
lattices of rank at most 24 have some shells which are spherical 3-designs.

Our approach provides a setting for numerical computations; so we have checked
that no shell of norm at most 1200 of selfdual lattices up to rank 24 or of theirs
shadows is a spherical t-design for larger values of t than those indicated in the
theorem.

See Theorems 25, 28, 32, 36, 38, and 43 for details.

Let
∆24 = q2

∏

m>1

(
1 − q2m

)24
=

∑

m>1

τ(m) q2m

be the generating series of the Ramanujan numbers τ(m). It is a famous conjecture
of Lehmer that τ(m) is never zero, and it has been verified for m 6 1015 [Serr85,
§ 3.3]. The following Proposition gives a reformulation of that conjecture in terms
of spherical design strengths of shells of the Korkine-Zolotareff lattice and of the
even selfdual lattices of rank 16. It is Proposition 33 in our article.

Proposition B. For m > 1, the following are equivalent:

(a) τ(m) = 0;

(b) the shell of norm 2m of the Korkine-Zolotareff lattice is an 8-design (and
therefore an 11-design);

(c) the shell of norm 2m of any even selfdual lattice Λ of rank 16, is a 4-design
(and therefore a 7-design);

[Note that, for example, in Condition (c) above, the shells of Λ are not only
3-designs, but also 31/2-designs (see Definition 2); therefore, if a shell of Λ is a
4-design, then it is a 7-design.]

Here are other similar equivalences between spherical design strengths of shells
of lattices and vanishing Fourier coefficients of modular forms. (The definitions of
the series ∆8, θ2, θ3, and θ4 appear in Section 5.)

Proposition C. Consider any of the following choice of a selfdual lattice Λ, a
positive integer t, and a series Θ(z) =

∑
m>1 amq

m where q = eiπz.

– Λ = Zn the cubic lattice of rank n > 2, t = 3, Θ = ∆8 θ
n
3 (Section 9);

– Λ = Γn the Witt lattice of rank n > 12, n ≡ 0 mod 4, t = 3, Θ = θ42θ
4
3θ

4
4 ×(

−θn−4
2 + θn−4

3 − θn−4
4

)
(Section 10);

– Λ the Korkine-Zolotareff lattice, of rank 8, t = 7, Θ = ∆24 (Section 11);

– Λ an even selfdual lattice of rank 16, t = 3, Θ = ∆24 (Section 11);

– Λ one of the 23 Niemeier lattice, of rank 24, t = 3, Θ = Q ∆24 (Section 11);

– Λ the Leech lattice, t = 11, Θ = ∆2
24 (Section 11);
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– Λ one of the 12 odd selfdual lattices with long shadow and of minimum 2
(with rank n = 12 or 14 6 n 6 22), t = 3, Θ = ∆2

8 θ
n−8
3 (Section 12);

– Λ the shorter Leech lattice, of rank 23, t = 7, Θ = ∆2
8 θ

15
3 (Section 12).

Then, for each m > 1, the shell of Λ of norm m is a spherical t-design; moreover it
is not a spherical (t+ 1)-design if and only if am 6= 0.

It is therefore interesting to look for vanishing coefficients of the series mentioned
above. For example, we ask the following questions:

(1) Consider the series

∆2
24 =

∑

m>2

amq
2m, am =

∑

i+j=m

τ(i) τ(j),

where τ(i) is the ith Ramanujan number. Is it true that am 6= 0 for every
m > 2 ?

(2) Consider the series

∆8 θ
n
3 =

∑

m>1

amq
m.

Is it true that am 6= 0 for every positive integer m not of the form 4a(8b+ 3),
a, b > 0 ?

(There are similar questions for the other forms mentioned in Proposition C.)

We have checked numerically that the answers are positive for m 6 1200.

In Sections 1 to 5, we recall standard material on spherical designs, selfdual
lattices, theta series, and modular forms. Section 6 gives the form of the theta
series of selfdual lattices; this is the centre of our analysis. Some indices of vanishing
Fourier coefficients for modular forms are given in Section 7. In Section 8, we analyse
the spherical design strengths of root systems of norm 2. Sections 9 to 14 contain
the results on the strength of shells of some selfdual lattices, namely the two infinite
series of cubic and Witt lattices, and all selfdual lattices of rank at most 24. Finally,
an appendix contains an alternative proof not using modular forms of the fact that
appropriate shells of Z4 and Z7 are spherical 5-designs.
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A General theory

1 Spherical designs

Let n > 2 be an integer, and let m be a positive real number; we denote by

S
n−1
m := {x ∈ R

n | 〈x | x〉 = m}

the sphere of square radius m, and by σ the probability measure on S
n−1
m invariant

under the action of the orthogonal group O(n). A spherical design of strength t, or
a t-spherical design, is a nonempty finite subset X ⊆ Sn−1

m such that

1

|X |
∑

x∈X

P (x) =

∫

S
n−1
m

P (y) dσ(y)

for every polynomial form P on Rn of degree at most t [DeGoSe77].

We denote by H(j)(Rn) the set of homogeneous polynomial forms on Rn of
degree j that are harmonic. It is classical that X is a spherical t-design if and only
if the condition

(Cj)
∑

x∈X

P (x) = 0, ∀P ∈ H(j)(Rn)

holds for every integer j such that 1 6 j 6 t. It is indeed an immediate consequence
of the decomposition

P(t)(Rn) = H(t)(Rn) ⊕ ωP(t−2)(Rn),

where P(t)(Rn) is the space of homogeneous polynomial forms on Rn of degree t,
and ω(x) := 〈x | x〉; see [Vile68, §IX.2] and [MartV01, Chap. 1, §§2, 3].

In this article, we study spherical designs which are shells of selfdual lattices or of
their shadows. These designs are antipodal sets, that is sets X satisfying −X = X ;
in this case, Condition (Cj) is automatically fulfilled for j odd. Therefore we use
the following reformulation for antipodal sets:

1. Definition. A nonempty finite antipodal subset X ⊆ Sn−1
m is a spherical

(2s+ 1)-design (or, equivalently, a spherical 2s-design) if the condition

(C2j)
∑

x∈X

P (x) = 0, ∀P ∈ H(2j)(Rn)

holds for every even integer 2j such that 2 6 2j 6 2s.

Some antipodal spherical (2s + 1)-designs, although not satisfying Condition
(C2s+2), do verify Condition (C2s+4). Therefore, we define [Venk84]:

2. Definition. A nonempty finite antipodal subset X ⊆ Sn−1
m is a spherical

(2s+ 1 + 1
2 )-design if it verifies condition (C2j) for 2 6 2j 6 2s and 2j = 2s+ 4.

2 Selfdual lattices and shadows

For a subset A ⊆ Rn and a positive real number m > 0, the shell (or layer) of
norm m of A is

Am := {x ∈ Λ | 〈x | x〉 = m} = A ∩ S
n−1
m .

A lattice of rank n is a discrete Z-submodule of Rn which spans Rn as R-module.
Two lattices are equivalent if there exists an orthogonal linear transformation which
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sends one lattice onto the other; we often consider two equivalent lattices as being
the same lattice. We define the minimum (or the minimal norm) of Λ as

min(Λ) := min{m > 0 | Λm 6= ∅}.
The dual of a lattice Λ is the lattice

Λ♯ := {y ∈ R
n | 〈y | x〉 ∈ Z ∀x ∈ Λ}.

The lattice Λ is called integral if Λ ⊆ Λ♯, that is if 〈x | y〉 ∈ Z for all x, y ∈ Λ.
An integral lattice Λ is called even if 〈x | x〉 ∈ 2Z for all x ∈ Λ; it is called odd
otherwise. An integral lattice is called selfdual (or unimodular) if Λ♯ = Λ.

For A ⊆ Ra and B ⊆ Rb we set A⊕B := {(x, y) ∈ Ra+b | x ∈ A, y ∈ B}. It is
easily checked that any integral lattice Λ of rank n is of the form

Λ ≃ Zp ⊕ L,

where L is an integral lattice of rank N = n − p and of minimum at least 2, and
where

Zp := {(x1, . . . , xp) | xi ∈ Z} ⊆ R
p

is the cubic lattice of rank p. Note that L is selfdual if and only if Λ is selfdual.

The shadow Sh(Λ) of a selfdual lattice Λ is defined as follows: If Λ is even, we
set Sh(Λ) := Λ. Otherwise let

Λ0 := {x ∈ Λ | 〈x | x〉 ≡ 0 mod 2},
which is an even sublattice of Λ of index 2; therefore Λ is a sublattice of Λ♯

0 of
index 2. We set

Sh(Λ) := Λ♯
0 \ Λ.

An alternative description of the shadow is Sh(Λ) = {x/2 | x is a characteristic
vector of Λ}, where a characteristic vector (or parity vector) of Λ is a vector x ∈ Λ
such that 〈x | y〉 ≡ 〈y | y〉 mod 2 for all y ∈ Λ.

For a selfdual lattice Λ, we define:

σ(Λ) := 4 min{〈x | x〉 | x ∈ Sh(Λ)},
which is a nonnegative integer. (It is the minimal norm of the characteristic vectors
of Λ.) We have σ(Λ) = 0 if and only if Λ is even.

It is easily checked that, if Λ′ and Λ′′ are selfdual lattices, then Λ′ ⊕ Λ′′ is a
selfdual lattice, and

Sh(Λ′ ⊕ Λ′′) = Sh(Λ′) ⊕ Sh(Λ′′),

σ(Λ′ ⊕ Λ′′) = σ(Λ′) + σ(Λ′′).

The following facts are well-known; a proof using modular forms appears at the
end of Section 5:

3. Proposition. Let Λ ⊆ Rn be a selfdual lattice. Then

(i) for every x ∈ Sh(Λ), we have 4〈x | x〉 ≡ n mod 8;

(ii) there exists a nonnegative integer k such shat σ(Λ) = n − 8k. In particular,
if Λ is even, then n ≡ 0 mod 8;

(iii) we have σ(Λ) = n if and only if Λ ≃ Zn,

The characterisation of Zn given in Claim (iii) is due to Elkies [Elki95a].

Note that, in the decomposition Λ ≃ Zp ⊕ L, if σ(Λ) = n − 8k, then σ(L) =
N − 8k, where n is the rank of Λ, and N is the rank of L.

The list of selfdual lattices of rank at most 24 can be found in [ConSlo99, Chap.
16 and 17] and [Bach97].
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3 Theta series

Let us now introduce the tools for analysing the spherical design strengths of shells
of selfdual lattices. Let

H := {z ∈ C | ℑz > 0}
be the Poincaré half-plane. Recall that a holomorphic function f : H → C is bounded
at infinity if there exists r > 0 such that {f(z) | ℑz > r} is bounded.

4. Lemma – Definition. Let A be a nonempty subset of R
n for which there exists

δ > 0 such that |x− y| > δ for all distinct x, y ∈ A. Let P be a polynomial form
on Rn. Then the series

ΘA,P (z) :=
∑

x∈A

P (x) eiπz〈x|x〉, z ∈ H,

converges absolutely to a function on H that is holomorphic and bounded at infinity.
It is the theta series of A weighted by P .

Let us assume moreover that there exists a real number α > 0 such that
α〈x | x〉 ∈ 2Z for every x ∈ A. Then we have

ΘA,P (z + α) = ΘA,P (z), ∀z ∈ H.

Proof. The condition on the distance of two distinct points of A implies that there
exist a constant C > 0 such that for every r > 0 the set

{x ∈ A | r 6 〈x | x〉 6 r + 1}

contains at most C rn−1 points; the absolute convergence of ΘA,P follows. The
second claim of the lemma is straightforward.

Remarks.

(i) For a holomorphic function F : H → C verifying F (z+α) = F (z) for all z ∈ H

and for some α > 0, the condition to be bounded at infinity is equivalent to
the condition that there exists a Fourier expansion of the form

F (z) =
∑

m∈2α−1N

ame
iπzm

which converges for ℑz sufficiently large. (We use N = {0, 1, 2, . . .}.) In this
case, F is said to be holomorphic at infinity.

(ii) For a real number m and if z ∈ H is understood, we write

qm := eiπzm, where z ∈ H.

Thus the theta series of A weigted by P can be written

ΘA,P (z) =
∑

x∈A

P (x) q〈x|x〉 =
∑

m∈2α−1N

a(P )
m qm, where a(P )

m :=
∑

x∈Am

P (x).

(iii) The classical theta series of A is

ΘA := ΘA,1 =
∑

m>0

|Am| qm.
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(iv) Let A ⊆ Ra and B ⊆ Rb, and let P , respectively Q, be polynomial forms on
Ra, respectively Rb. Then

ΘA⊕B, PQ = ΘA,P ΘB,Q.

Now we reformulate the condition of being a spherical design using theta series.

5. Lemma. Let A be a nonempty subset of Rn such that there exist δ > 0 verifying
|x− y| > δ for all distinct x, y ∈ A. Then, for m > 0, the shell Am is a spherical
t-design or is empty if and only if

a(P )
m = 0 for every P ∈ H(2j)(Rn), 1 6 2j 6 t,

where a
(P )
m are the Fourier coefficients of the theta series

ΘA,P (z) =
∑

m

a(P )
m qm.

Proof. This follows directly from the definitions. Note that the Fourier coefficients
a
(P )
m are retrieved from ΘA,P by the formula

a(P )
m = lim

R→∞

1

2R

∫ R

−R

e−iπm(x+iy0)ΘA,P (x+ iy0) dx,

valid for any y0 > 0.

4 Modular forms

The interest of theta series of lattices is that they have the following property, which
will help to compute them, at least if the lattice is selfdual. This proposition is a
direct consequence of the Poisson Summation Formula; see for example [Ebel94,
Prop. 3.1, p. 87].

6. Proposition. Let Λ ⊆ Rn be a lattice, and let P : Rn → C be a harmonic
polynomial of degree 2j. Then

ΘΛ♯,P (z) = (detΛ)1/2(−1)j(i/z)n/2+2jΘΛ,P (−1/z).

(For the power of i/z, we use the principal branch; observe that −π/2 6 arg(i/z) 6

π/2 for z ∈ H.)

In the case of selfdual lattices, the latter formula gives a relation between ΘΛ,P (z)
and ΘΛ,P (−1/z). To be more precise, let us give the following definitions. Recall
that N = {0, 1, 2, . . .}.

7. Definition.

(i) Let λ ∈ {1, 2}, ω ∈ 1
2N, and ǫ ∈ {+,−}. A modular form of signature (λ, ω, ǫ)

is a holomorphic and holomorphic at infinity function f : H → C that verifies

f(z + λ) = f(z),

f(−1/z) = ǫ(z/i)ωf(z),

for all z ∈ H. The number ω is the weight of the form. We denote by Mλ,ǫ
ω the

vector space of modular forms of signature (λ, ω, ǫ); note that M1,ǫ
ω ⊆ M2,ǫ

ω .
We set:

Mλ,ǫ :=
⊕

ω∈(1/2)N

Mλ,ǫ
ω , Mλ := Mλ,+ ⊕Mλ,−.

Observe that Mλ and Mλ,+ are algebras, graded by the weight.
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(ii) A modular form f is parabolic if

lim
ℑz→+∞

f(z) = 0.

Nonzero modular forms of signature (1, ω, ǫ) exist only for weights ω ∈ 4N if
ǫ = +, and for weights ω ∈ 4N + 2 if ǫ = −. Indeed, let S : z 7→ −1/z and
T : z 7→ z + 1. We have STSTST = idH, therefore f(STSTSTz) = f(z) for every
z ∈ H. On the other hand, it is straightforward to check that, for f ∈ M1,ǫ

ω ,

f(STSTSTz) = ǫ iωf(z),

where i must be taken with argument π/2. Thus ǫ eiωπ/2 = 1 if f 6= 0.

Nonzero modular forms of signature (2, ω, ǫ) exist for every weight ω ∈ 1
2N;

for example, according to Proposition 8 below, θn
3 = ΘZn is a modular form of

parameters (1, n/2,+).

Modular forms of signature (1, ω, ǫ), are the classical modular forms for SL(2,Z).
Modular forms of signature (2, ω, ǫ) are modular forms for the subgroup of index 3
in SL(2,Z) whose elements are the matrices that reduce to ( 1 0

0 1 ) or ( 0 1
1 0 ) modulo 2

(sometimes noted G(2) or ΓV (2)).

Proposition 6 implies immediately:

8. Proposition. Let Λ ⊆ R
n be a selfdual lattice, and let P ∈ H(2j)(Rn). Then

ΘΛ,P ∈ M2,+
n/2+2j if 2j ≡ 0 mod 4,

ΘΛ,P ∈ M2,−
n/2+2j if 2j ≡ 2 mod 4.

If moreover Λ is even, then

ΘΛ,P ∈ M1,+
n/2+2j if 2j ≡ 0 mod 4,

ΘΛ,P ∈ M1,−
n/2+2j if 2j ≡ 2 mod 4.

Moreover, if 2j > 0 then ΘΛ,P is parabolic.

Let us now look at theta series of shadows of selfdual lattices.

9. Definition. Let f ∈ M2,ǫ
ω . The shadow of f is the function Shf : H → C

defined by
Shf(z) := (i/z)ωf(−1/z + 1).

10. Proposition. Let Λ be a selfdual lattice, and let P ∈ H(2j)(Rn). Then

ΘSh(Λ),P = (−1)jShΘΛ,P .

Proof. If Λ is even, this follows immediatly from Sh(Λ) = Λ and from Proposition 8.
If Λ is odd, we observe that

2ΘΛ0,P (z) = ΘΛ,P (z) + ΘΛ,P (z + 1),

where Λ0 is the even sublattice of Λ, of index 2. Then we apply Proposition 6 to
Λ0 and Λ to obtain, for P ∈ H(2j)(Rn),

ΘSh(Λ),P = ΘΛ♯
0,P (z) − ΘΛ,P (z)

= 2(−1)j(i/z)n/2+2jΘΛ0,P (−1/z)− (−1)j(i/z)n/2+2jΘΛ,P (−1/z)

= (−1)jShΘΛ,P (z).
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5 A theorem of classification for modular forms

In order to use Proposition 8, we need a description of the vector spaces Mλ,ǫ
ω

defined in the previous section. There are very nice results of classification that we
recall in this section.

Before giving examples of modular forms, it is convenient (although not es-
sential) to formulate a definition of the weight which applies to a larger class of
functions than modular forms:

11. Definition. Let ω ∈ R. Let f and g be two meromorphic functions on H.
Assume that there exist α and β > 0 such that

f(z + α) = f(z),

g(z + β) = g(z),

f(−1/z) = (z/i)ωg(z),

for all z ∈ H. (Note that the last condition is symmetric in f and g.) We say that
f and g are of weight ω.

When f is a modular form of signature (λ, ω, ǫ) (Definition 7), the assumptions
of the Definition above are verified for α = β = λ and g = ǫ f , and so f is of
weight ω as expected. However, some functions on H that are holomorphic and
holomorphic at infinity, although not being modular forms, do have a weight in the
sense of Definition 11. For example, we have θ4(−1/z) = (z/i)1/2θ2(z), where θ4
and θ2 are the two periodic functions in z defined below. Therefore θ2 and θ4 are
both of weight 1/2; but they are not modular forms.

It is easily checked that the algebra of meromorphic functions f on H satisfying
the assumptions of Definition 11 with some meromorphic function g and some
rational positive numbers α and β is an algebra graded by the weight.

We give here a list of functions that have a weight in the sense of the Defini-
tion 11. Recall that we write qm := eiπzm.

θ2(z) =
∑

m∈Z+1/2

qm2

= 2q1/4
(
1 + q2 +O(q6)

)
of weight 1/2,

θ3(z) =
∑

m∈Z

qm2

= 1 + 2q + 2q4 +O(q9) of weight 1/2,

θ4(z) =
∑

m∈Z

(−q)m2

= 1 − 2q + 2q4 +O(q9) of weight 1/2,

θ42 + θ44 = θ43

Φ(z) = θ44(z) − θ42(z) = 1 − 24q + 24q2 − 96q3 + O(q4) of weight 2,

∆8(z) =
1

16
θ42(z) θ

4
4(z) = q − 8q2 + 28q3 +O(q4) of weight 4,

Q(z) = θ83(z) − 16∆8(z) = 1 + 240q2 + 2160q4 +O(q6) of weight 4,

R(z) = Φ(z)
(
θ83(z) + 8∆8(z)

)
= 1 − 504q2 +O(q4) of weight 6,

∆24(z) = θ83(z)∆2
8(z) = q2 − 24q4 + 252q6 +O(q8) of weight 12.

The coefficients of the latter form

∆24(z) =
∑

m>1

τ(m)q2m

10



are the celebrated Ramanujan numbers. All the functions listed above can be
expressed in terms of the Jacobi theta function

θ3(ξ | z) =
∑

m∈Z

e2iξm+iπzm2

, z ∈ H;

indeed, we have

θ2(z) = eiπz/4θ3(πz/2 | z), θ3(z) = θ3(0 | z), θ4(z) = θ3(π/2 | z).
Let M be the algebra generated by θ2, θ3 and θ4. It is an algebra graded by

the weight, where the weight ranges over the set of nonnegative half-integer. The
elements of weight zero are the constants.

The definition of the shadow of a modular form (Definition 9) carries over to
functions having a weight in the sense of Definition 11, and provides an endomor-
phism of the graded algebra M. We give here shadows of some functions in M.

Shθ2 =
√
iθ4, Shθ4 = θ3, Shθ3 = θ2,

Sh∆8(z) = − 1

16
+ q2 − 7q4 +O(q6),

ShΦ(z) = 2 + 48q2 + 48q4 +O(q6),

ShQ = Q, ShR = −R, Sh∆24 = ∆24.

These formulae (and many other useful identities) can be found in [ConSlo99,
Chap. 4, §4.1].

All modular forms of signature (1, ω,±) or (2, ω,±) are elements of M. More
precisely:

12. Theorem.

M2,+ = C[θ3,∆8], M1,+ = C[Q,∆24],

M2,− = Φ C[θ3,∆8], M1,− = R C[Q,∆24].

For a proof of this deep result, see [Rank77], Section 6.1 for M1,±, and Sec-
tion 7.1 for M2,±. The notation of [Rank77] are:

{Γ(1), ω} for M1,+
ω when ω ∈ 4N, and for M1,−

ω when ω ∈ 4N + 2;
{ΓV (2), ω, v2ω} for M2,+

ω , ω ∈ 1
2N, and

{ΓV (2), ω, v∗2ω} for M2,−
ω , ω ∈ 1

2N.
Moreover modular forms are called there integral modular forms.

Here is a first application of this theorem:

Proof of Proposition 3. For brevity, we write ΘΛ, ∆8, etc. instead of ΘΛ(z), ∆8(z),
etc. By Theorem 12 and Proposition 8, for Λ a selfdual lattice, the theta series

ΘΛ = 1 +
∑

m>1

|Λm| qm

is a polynomial in θ3 and ∆8 and is of weight n/2; therefore it is of the form

ΘΛ = θn
3 + c1θ

n−8
3 ∆8 + · · · + ckθ

n−8k
3 ∆k

8 = 1 + |Λ1| q + |Λ2| q2 + · · · ,
with ck 6= 0. (There is no coefficient in front of θn

3 , because the series expansion
in q begins with 1 + · · · .) By Proposition 10, the theta series of the shadow is then

ΘSh(Λ) =
∑

m

|Sh(Λ)m| qm = ShΘΛ

= θn
2 + c1θ

n−8
2 Sh∆8 + · · · + ckθ

n−8k
2 Sh∆k

8

= d1q
(n−8k)/4 + d2q

(n−8k+8)/4 + · · · ,

11



where d1 = (−1/16)k2n−8kck 6= 0. So, Sh(Λ)m 6= ∅ implies 4m ≡ n mod 8, and we
have σ(Λ) = n−8k. In particular, if Λ is even, we have σ(Λ) = 0 = n−n, therefore
n is a multiple of 8.

Finally, it follows from the decomposition Λ ≃ Zp ⊕ L, with L a selfdual lattice
of minimum at least 2, that |Λ1| = 2p 6 2n with equality if and only if Λ ≃ Zn.
On the other hand, if σ(Λ) = n then ΘΛ = θn

3 = 1 + 2nq + O(q2), and therefore
|Λ1| = 2n. Thus σ(Λ) = n implies Λ ≃ Zn.

Remark. Let ω > 0 be a multiple of 4. From Theorem 12, we have dimM2,+
ω =

m+ 1, where m = [ω/12], and there exists a unique Θω ∈ M2,+
ω such that

Θω(q) = 1 + a2m+2q
2m+2 +O(q2m+4).

Moreover, it is known that a2m+2 > 0. Such a theta series is called extremal, and
an even selfdual lattice Λ of rank 2ω with ΘΛ = Θω is called extremal (or, more
precisely, extremal of level 1 ).

The method used in our paper also apply to extremal lattices: see [Venk84]
and [VenMar01, §16]. See also [BacVen01], where the case of non-selfdual extremal
lattices is also treated.

See [SchSch99] for more informations on extremal lattices.

6 Computing the theta series of a selfdual lattice

We can now give more precisely the general form of the theta series of a selfdual
lattice.

13. Proposition. Let Λ ⊆ Rn be a selfdual lattice with σ(Λ) = n − 8k. Let us
write

Λ = Zp ⊕ L, L ⊆ R
N ,

where L is of minimum at least 2. Then there exist ci ∈ Z such that

ΘΛ = θn
3 + c1∆8θ

n−8
3 + c2∆

2
8θ

n−16
3 + · · · + ck∆k

8θ
n−8k
3 .

Some values of ci are:

c1 = −2N

c2 = (h− 46 + 2N)N, where h := |L2| /N
ck = (−1)k2−n+12k

∣∣Sh(Λ)(n−8k)/4

∣∣ .

Proof. As in the proof of Proposition 3 given at the end of the previous Section, we
can write

ΘΛ = θn
3 + c1θ

n−8
3 ∆8 + · · · + ckθ

n−8k
3 ∆k

8 ,

with ci ∈ R and ck 6= 0, and k is given by σ(Λ) = n − 8k. The first coefficients of
the Fourier expansion in q = eiπz are

ΘΛ = (1 + 2q + 2q4 + · · · )n + c1(1 + 2q + · · · )n−8(q − 8q2 + · · · )
+ c2(1 + · · · )n−16(q + · · · )2 + · · ·

=
(
1 + 2nq + 2n(n− 1)q2 + · · ·

)
+ c1

(
q + (2n− 24)q2 + · · ·

)
+ c2q

2 + · · ·
= 1 + (2n+ c1)q +

(
2n(n− 1) + (2n− 24)c1 + c2

)
q2 + · · · .

12



In particular, we have |Λ1| = 2n + c1. Since |Λ1| = 2p = 2(n − N), we have
c1 = −2N . The second coefficient is then

|Λ2| = 2n(n− 1) + (2n− 24)c1 + c2

= 2(p+N)(p+N − 1) − (2p+ 2N − 24)2N + c2

= 2p(p− 1) + (46 − 2N)N + c2.

Since |Λ2| = 2p(p− 1) + |L2|, this gives c2 = (h− 46 + 2N)N where h = |L2| /N .

By induction on i, it is clear that ci is integral.

Now, the theta series of the shadow is

ΘSh(Λ) = ShΘΛ = ckθ
n−8k
2 Sh∆k

8 + · · · + c1θ
n−8
2 Sh∆8 + θn

2

= ck
(
2q1/2 + · · ·

)n−8k(
−1/16 + · · ·

)k
+ · · ·

= ck2n−8k(−1)k2−4kq(n−8k)/4 + · · ·
= (−1)k2n−12kckq

(n−8k)/4 + · · · ;

this shows that
∣∣Sh(Λ)(n−8k)/4

∣∣ = (−1)k2n−12kck.

14. Proposition. Let Λ ⊆ Rn be a selfdual lattice with σ(Λ) = n − 8k and of
minimum m.

(i) For every even positive integer j, there exist linear forms ci : H(2j)(Rn) → C

such that

ΘΛ,P =

k+j/2∑

i=m

ci(P )∆i
8θ

n+4j−8i
3 , ∀P ∈ H(2j)(Rn).

In particular, if m > k + j/2, then ΘΛ,P = 0 for every P ∈ H(2j)(Rn).

(ii) For every odd positive integer j, there exist linear forms ci : H(2j)(Rn) → C

such that

ΘΛ,P =

k+(j−1)/2∑

i=m

ci(P )Φ ∆i
8θ

n+4j−2−8i
3 , ∀P ∈ H(2j)(Rn).

In particular, if m > k + (j − 1)/2, then ΘΛ,P = 0 for every P ∈ H(2j)(Rn).

Proof. We prove only Claim (i), since the proof of Claim (ii) is similar.

Let j be an even positive integer. By Proposition 8, for each P ∈ H(2j)(Rn),
ΘΛ,P is a parabolic form of weight n/2 + 2j. By Theorem 12, it is of the form

ΘΛ,P =
∑

i>1

ci(P )∆i
8θ

n+4j−8i
3 .

Since ΘΛ,P is linear in P , the coefficients ci are also linear in P .

Let us now suppose that ci 6≡ 0 for some index i, and let a [respectively b] be
the smallest [respectively the largest] index i such that ci 6≡ 0. It remains to prove
that a > m and b 6 k + j/2. We have

ΘΛ,P = ca(P ) θn+4j−8a
3 ∆a

8 + · · ·
= ca(P ) qa + · · · ,

hence ca(P ) =
∑

x∈Λa
P (x) is different of zero for some P ∈ H(2j)(Rn). So, m 6 a.

13



Now, the theta series of the shadow is

ΘSh(Λ),P = ShΘΛ,P = cb(P ) θn+4j−8b
2 Sh∆b

8 + · · ·
= 2n+4j−8b(−1/16)bcb(P ) q(n+4j−8b)/4 + · · · ,

hence 2n+4j−8b(−1/16)bcb(P ) =
∑

x∈Sh(Λ)(n+4j−8b)/4
P (x) is different of zero for

some P ∈ H(2j)(Rn). So, σ(Λ) = n− 8k 6 n+ 4j − 8b, and therefore b 6 k +
j/2.

We give now similar statements for even selfdual lattices. (The two propositions
above are naturally true also for these lattices; though less precise.) We do not
give the proofs, since the arguments are essentially the same as for the equivalent
statements for general selfdual lattices.

15. Proposition. Let Λ ⊆ Rn be an even selfdual lattice of rank n = 8N . Then
there exist ci ∈ Z such that

ΘΛ = QN + c1∆24Q
N−3 + · · · + ck∆k

24Q
N−3k, k = [N/3],

with
c1 = n(h− 30), where h := |Λ2| /n.

16. Proposition. Let Λ ⊆ R
n be an even selfdual lattice of of rank n = 8N and

of minimum m = 2M .

(i) For every even positive integer j, there exist linear forms ci : H(2j)(Rn) → C

such that

ΘΛ,P =

[(N+j/2)/3]∑

i=M

ci(P )∆i
24Q

N+j/2−3i, ∀P ∈ H(2j)(Rn).

In particular, if 3M > N + j/2, then ΘΛ,P = 0 for every P ∈ H(2j)(Rn).

(ii) For every odd positive integer j, there exist linear forms ci : H(2j)(Rn) → C

such that

ΘΛ,P =

[(N+j/2)/3]∑

i=M

ci(P )R ∆i
24Q

N+(j−3)/2−3i, ∀P ∈ H(2j)(Rn).

In particular, if 3M > N +(j− 3)/2, then ΘΛ,P = 0 for every P ∈ H(2j)(Rn).

7 Zero coefficients of modular forms

From Lemma 5, in order to find spherical design strengths of the shells of a lattice,
we have to look for vanishing coefficients of ΘΛ,P for P harmonic homogeneous
polynomials of different degrees. We give here the results concerning vanishing
coefficients of modular forms of the form Φǫθα

3 ∆β
8 , since we will meet them several

times later. Recall that N = {0, 1, 2, . . .}.

17. Lemma. Among the coefficients of the modular forms

Φǫθα
3 ∆β

8 =
∑

m∈α+N

amq
m and Sh(Φǫθα

3 ∆β
8 ) =

∑

m∈α/4+2N

amq
m,

where ǫ ∈ {0, 1}, α > 0, β > 0, the following are equal to zero:

14



(a) (θ43∆8)
k : m− k ≡ 1 mod 2, Sh

(
(θ163 ∆8)

k
)

: m ≡ 2 mod 4;

(b) θ3 : m 6= a2, Sh(θ23) : m 6= (a2 + b2)/4,

Sh(θ3) : m 6= a2/4, θ33 : m = 4a(8b+ 7),

θ23 : m 6= a2 + b2, Φ θ123 : m = 1;

(c) θ3∆8 : m = 4a(8b+ 5), Φ θ33∆8 : m = 4a(8b+ 7),

θ23∆8 : m 6= a2 + b2, Φ θ163 ∆8 : m = 4a2,

Sh(θ23∆8) : m 6= (a2 + b2)/4, Sh(Φ θ163 ∆8) : 4a2,

θ33∆8 : m = 4a(8b+ 7), Sh(Φ θ403 ∆8) : m = 24,

θ73∆8 : m = 4a(8b+ 3);

(d) θ53∆
2
8 : m = 4a(8b+ 1), Φ θ203 ∆2

8 : m = 3,

θ123 ∆2
8 : m = 4a, Φ θ333 ∆2

8 : m = 4,

Φ θ83∆
2
8 : m = 4a, Sh(Φ θ333 ∆2

8) : m = 49/4,

Sh(Φ θ83∆2
8) : m = 4a;

(e) θ43∆
3
8 : m = 4a2, Sh(Φ θ243 ∆3

8) : m = 2a,

Φ θ243 ∆3
8 : m = 2a.

Remark. We have checked numerically that, for modular forms of the Lemma with
β 6 3 and α 6 36, there is no other zero coefficient am for m 6 1200.

Sketch of the proof. Let Θ(z) be one of the series of the Lemma.

If Θ(z) is of the form Φǫθα
3 ∆β

8 or of the form Sh(Φǫθ4γ
3 ∆β

8 ), we can express Θ(z)
as a polynomial function of θ3(z) and θ4(z). If Θ(z) is of the form Sh(Φǫθα

3 ∆β
8 ), with

α an integer which is not a multiple of 4, we can express Θ(4z) as a polynomial
function of θ3(z) and θ4(z), by using the formulae of [ConSlo99, Chap. 4, §4.1,
p. 104]. In the sequel of the proof, we suppose that we are in the first case; the
second case is treated in a similar way, replacing Θ(z) by Θ(4z).

Let be ω := eiπ/4. For c an integer between 0 and 7, we define

Θc(z) :=
1

8

7∑

k=0

ω−ck Θ

(
z + k

4

)

=
1

8

7∑

k=0

ω−ck
∑

m>0

ame
iπm(z+k)/4

=
1

8

7∑

k=0

ω−ck
7∑

j=0

ωjk
∑

m>0
m≡j mod 8

ame
iπmz/4

=

7∑

j=0

(
1

8

7∑

k=0

ω(j−c)k

︸ ︷︷ ︸
0 if j 6= c
1 if j = c

) ∑

m>0
m≡j mod 8

ame
iπmz/4

=
∑

m>0
m≡c mod 8

ame
iπmz/4.

Therefore, whenever Θc(z) = 0, we have am = 0 for m ≡ c mod 8. Using the
identities given in [ConSlo99, Chap. 4, §4.1, p. 104], we can express

Θc(z) = θ2(z)
d F

(
θ3(z), θ4(z)

)
, 0 6 d 6 3, d ≡ c mod 8,
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where F is a polynomial; so we can check whether Θc(z) = 0. (A computer software
like Maple is highly recommended for performing these calculations.)

We have

Θeven(z) :=
1

2

(
Θ(z) + Θ(z + 1)

)
=

∑

m≡0 mod 2

ame
iπmz,

Θodd(z) :=
1

2

(
Θ(z)− Θ(z + 1)

)
=

∑

m≡1 mod 2

ame
iπmz,

Θ0(z) =
∑

m≡0 mod 2

a4me
iπmz, Θ4(z) =

∑

m≡1 mod 2

a4me
iπmz,

and Θeven, Θodd, Θ0 and Θ4 can be expressed in function of θ3 and θ4. If Θeven = 0
[respectively Θodd = 0], then am = 0 for m even [resp. odd]. If Θeven [respectively
Θodd] is a multiple of Θ0 [resp. Θ4], we have a relation between am and a4m for
m even [resp. odd], which allows to decide whenever a4km = 0.

These considerations suffice for most of the theta series mentioned in the Lemma.
For θ23∆8 [resp. Sh(θ23∆8)], we use Lemma 24 below to show that am = 0 whenever
the shell of Z2 [resp. Sh(Z2)] of norm m is empty.

The following lemma provides another method to show that certain coefficients
of modular forms are nonzero.

18. Lemma. Let ϕ(0) and ψ be two formal series in q with integral coefficients such
that

ϕ(0) = a
(0)
k qk +

∑

j>k+1

a
(0)
j qj , a

(0)
k > 1, a

(0)
j ∈ Z,

ψ = b0 + b1q +
∑

j>2

bjq
j , b0, b1 > 1, bj > 0,

and let
ϕ(n) := ϕ(0) ψn =

∑

j>k

a
(n)
j qj .

Then the sequence Mn, n > 0 defined by

Mn := max{m ∈ N | a(n)
j > 0, k 6 j 6 m}

is nondecreasing and unbounded.

Proof. We have M0 > k. For every n > 0, we have ϕ(n+1) = ϕ(n)ψ; thus, for
k 6 j 6 Mn,

a
(n+1)
j = a

(n)
j b0 +

∑

i>1

a
(n)
j−ibi > a

(n)
j b0 > 0.

Consequently, Mn+1 > Mn. Moreover, for M = Mn, we have

a
(n+1)
M+1 = a

(n)
M+1b0 + a

(n)
M b1 +

∑

i>2

a
(n)
M+1−ibi > a

(n)
M+1b0 + a

(n)
M b1 > a

(n)
M+1.

Consequently, a
(n+1)
M+1 > a

(n)
M+1 + 1, since all coefficients are integers. Similarly,

a
(n+h)
M+1 > a

(n+h−1)
M+1 + 1 > · · · > a

(n)
M+1 + h.

Therefore, for h large enough, we have a
(n+h)
M+1 > 0, and then Mn+h > Mn +1. That

shows that the sequence Mn is unbounded.
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8 Root systems of norm 2

For analysing selfdual lattices of rank at most 24, we need some informations on
the first shells of a selfdual lattice Λ. The decomposition Λ = Zp ⊕ L gives us the
exact form of the shell Λ1; we give now the form of Λ2.

Let us first recall that a root system is a subset R ⊆ Rn such that

(i) R is finite and does not contain 0;

(ii) for every x, y ∈ R, we have ry(x) ∈ R, where ry is the reflection of axis Ry;

(iii) for every x, y ∈ R, the number 2〈x | y〉/〈x | x〉 is an integer.

Warning. In the usual definition, it is required that R span Rn as a vector
space. Here, we leave out this condition in order to simplify the formulation of our
results; in particular, we consider the empty set in R

n as a root system.

19. Lemma – Definition. Let Λ be an integral lattice. Then Λ2 is a root system,
called the root system of Λ.

Proof. For x and y ∈ Λ2, we have ry(x) = x − 〈x | y〉y. Therefore, since 〈x | y〉 is
an integer, we have ry(x) ∈ Λ2. Moreover, 2〈x | y〉/〈x | x〉 = 〈x | y〉 is clearly an
integer.

If Λ is a selfdual lattice of minimum at least 2 and of root system R, we write
sometimes Λ = R+. (It happens that this notation is unambiguous up to rank 23,
that is there is at most one selfdual lattice of minimum at least 2 whose root system
is a given root system in R

n, n 6 23.)

Let us now recall some classical facts on root systems. If R ⊆ Rp and S ⊆ Rq

are root systems, their orthogonal union is the root system in Rp+q defined by

R+ S :=
(
R⊕ {0}

)
∪

(
{0} ⊕ S

)
⊆ R

p ⊕ R
q.

We write k R for R + · · · + R, k terms. A root system is called irreducible if it
is not an orthogonal union of smaller root systems. Clearly, any root system can
be written uniquely (up to permutation of the terms) as an orthogonal union of
irreducible root systems. Note that a nonempty irreducible root system always
spans its ambient space. The only empty irreducible root system is of dimension 1,
and is noted O1.

An important number for an irreducible root system R is its Coxeter number,
which is the integer h satisfying the relation

|R| = nh.

If R is empty, we have h = 0.

The list of irreducible root systems is well known. We give here the list of those
of norm 2, that is those root systems R that verify 〈x | x〉 = 2 for every x ∈ R
(they are also called simply laced root systems by some authors). In the notation,
the index indicates the dimension of the space where the root system lies.

O1, h = 0; E6, h = 12;
An, n > 1, h = n+ 1; E7, h = 18;
Dn, n > 4, h = 2(n− 1); E8, h = 30.

We denote by On := nO1 the empty root system in Rn.

The following definition, justified by the next lemma, is inspired by the corre-
sponding notion for lattices (see [MartV01, pp. 28ff]).
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20. Definition. A root system R is called strongly eutactic if, in its decomposi-
tion in irreducible root systems, all irreducible components have the same Coxeter
number. In this case, we define the Coxeter number of R as the Coxeter number of
any of its irreducible components.

A nonempty strongly eutactic root system spans its ambiant space. Note that
the equality |R| = nh holds for strongly eutactic root systems.

21. Lemma. Let R be a root system of norm 2 that is a spherical 3-design. Then
R is strongly eutactic.

The converse is true also: see Proposition 23.i.

Proof. Let us write a root system R ⊆ Rn as

R = R1 +R2 + · · · +Rk,

where the Ri’s are irreducible. Let Vi be the subspace of Rn where Ri lies (thus
Rn = V1⊕V2⊕· · ·⊕Vk), and let ni = dim Vi. Any point x ∈ Rn, is written uniquely
as

x = x1 + x2 + · · · + xk, xi ∈ Vi.

Let us consider the harmonic polynomials of degree 2 defined by

fi,j(x) =
1

2ni
〈xi | xi〉 −

1

2nj
〈xj | xj〉.

We have ∑

x∈R

fi,j(x) =
2 |Ri|
2ni

− 2 |Rj |
2nj

= hi − hj .

So, if R is a spherical 3-design, we must have
∑

x∈R fi,j(x) = 0 and therefore
hi = hj ; in other words, R is strongly eutactic.

We recall now the notion of reproducing kernel, which will help us to analyse
strongly eutactic root systems:

Let H be a complex (or a real) finite-dimensional Hilbert space of functions
on a nonempty set Ω. We use the convention that hermitian scalar products are
antilinear in the first variable. There exists a unique function Φ : Ω×Ω → C, called
reproducing kernel, such that Φ(x, ·) ∈ H for all x ∈ Ω, and

f(x) = 〈Φ(x, ·) | f〉, ∀f ∈ H, ∀x ∈ Ω.

This kernel verifies Φ(y, x) = Φ(x, y). It is of positive type; that is, for any finitely
supported function Ω → C, y 7→ λy ,

∑

x,y∈Ω

λxλyΦ(x, y) > 0.

Moreover, the set {Φ(x, ·) | x ∈ Ω} generates H. For all this, see for example
[BekHar02].

The positivity of Φ implies the following result:

22. Lemma. Let Ω → C, y 7→ λy be a finitely supported function. Then

∑

x,y∈Ω

λx λy Φ(x, y) = 0 if and only if
∑

y∈Ω

λy f(y) = 0, ∀f ∈ H.
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Proof. Let Ω′ be the vector space of finitely supported functions on Ω. We define a
hermitian form h on Ω′ by:

h
(
µ, λ

)
=

∑

x,y∈Ω

µx λy Φ(x, y), µ, λ ∈ Ω′.

For x ∈ Ω, let δx ∈ Ω′ denote the function on Ω that takes value 1 at x and value 0
elsewhere. Let Ω′

0 be the set of λ ∈ Ω′ such that 〈µ | λ〉 = 0 for every µ ∈ Ω′. Then
λ ∈ Ω′

0 if and only if h(δx, λ) = 0 for all x ∈ X , if and only if

∑

y∈Ω

λyΦ(x, y) = 0, ∀x ∈ Ω.

But since {Φ(x, ·) | x ∈ Ω} generates H, the last condition is equivalent to

∑

y∈Ω

λyf(y) = 0, ∀f ∈ H.

Now, the positivity of Φ implies that

h(λ, λ) = 0 if and only if λ ∈ Ω′
0.

This is exactly what is claimed by the Lemma.

Let us now consider the following special case:

Ω = S
n−1, H = H(j)(Rn),

〈f | g〉 =

∫

Sn−1

f(u) g(u) dσ(u), f, g ∈ H(j)(Rn),

where σ is the probability measure on Sn−1 invariant by rotation. Let Φ(j) be the
corresponding reproducing kernel. It is known that

(∗) Φ(j)(x, y) = Q(j)
(
〈x | y〉

)
∀x, y ∈ S

n−1,

where Q(j)(t) is an appropriate Gegenbauer polynomials, with the normalisation
Q(j)(1) = dim

(
H(j)(Rn)

)
; see [DeGoSe77] and [Vile68, §IX.3]. We have, for exam-

ple,

Q(0)(t) = 1, Q(1)(t) = nt, Q(2)(t) =
n+ 2

2

(
nt2 − 1

)
,

Q(3)(t) =
n(n+ 4)

6

(
(n+ 2)t3 − 3t

)
,

Q(4)(t) =
n(n+ 6)

24

(
(n+ 2)(n+ 4)t4 − 6(n+ 2)t+ 3

)
.

We can now prove:

23. Proposition. Let R be a nonempty strongly eutactic root system of norm 2.
Let us consider the conditions

(C2j)
∑

x∈R

f(x) = 0, ∀f ∈ H(2j)(Rn).

Then:

(i) Condition (C2) always holds (equivalently, nonempty strongly eutactic root
systems are spherical 3-designs);
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(ii) Condition (C4) holds if and only if R is equivalent to one of the following
systems:

A1, A2, D4, E6, E7, E8;

(iii) Condition (C6) holds if and only if R is equivalent to one of the following
systems:

A1, 2A1, E8, 2E8, D16;

(iv) Condition (C8) holds if and only if R is equivalent to one of the following
systems:

A1, A2;

(v) Condition (C10) holds if and only if R is equivalent to one of the following
systems:

A1, 2A1, A2 D4, E8;

(vi) Condition (C12) holds if and only if R is equivalent to the system

A1.

Proof. For x and y ∈ R, we have 〈x | y〉 ∈ {0,±1,±2}. Let x ∈ R, and let, for
α ∈ {0,±1,±2},

Nα := |{y ∈ R | 〈x | y〉 = α}| .
We have the evident relations N−α = Nα, N2 = 1, and N0 + 2N1 + 2N2 = nh.
Moreover, it is known that Nα is independent of x and that

N1 = 2h− 4

(see Bourbaki [Bour81], Lie VI, § 1.11, prop. 3.2, where it is stated for (nonempty)
irreducible root systems; but it immediately extends to nonempty strongly eutactic
root systems).

Now, we renormalize R by R̃ = 1√
2
R, so that R̃ ⊆ Sn−1. By Lemma 22 (applied

with λx = 1 if x ∈ X and λx = 0 otherwise) and equation (∗), Condition (C2j) is
equivalent to ∑

x,y∈R̃

Q(2j)
(
〈x | y〉

)
= 0.

However, since for every x ∈ R we have [note that Q(2j)(−α) = Q(2j)(α)]:

∑

y∈R̃

Q(2j)
(
〈x | y〉

)
=

∑

α

NαQ(2j)(α/2)

= 2Q(2j)(1) + (4h− 8)Q(2j)(1/2) + (nh− 4h+ 6)Q(2j)(0),

Condition (C2j) is equivalent to

2Q(2j)(1) + (4h− 8)Q(2j)(1/2) + (nh− 4h+ 6)Q(2j)(0) = 0.

This condition is linear in h and polynomial in n (since Q(2j) is polynomial in n).
It is, for 2j 6 12:

0 = 0(C2)

n(n+ 4)(n+ 6)
(
(n− 10)h+ 6(n+ 2)

)
= 0(C4)

n(n+ 2)(n+ 6)(n+ 10)
(
(n2 − 48n+ 272)h+ 30(n− 4)(n+ 4)

)
= 0(C6)
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n(n+ 2)(n+ 4)(n+ 8)(n+ 14)

×
(
(n− 4)(n− 30)(n− 50)h+ 42(n+ 6)(3n2 − 14n+ 40)

)
= 0

(C8)

(n− 2)n(n+ 2)(n+ 4)(n+ 6)(n+ 10)(n+ 18)

×
(
(n− 24)(n− 28)(n− 76)h+ 30(n+ 8)(17n2 − 8n+ 336)

)
= 0

(C10)

n(n+ 2)(n+ 4)(n+ 6)(n+ 8)(n+ 12)(n+ 22)

×
(
(n5 − 186n4 + 10852n3 − 228504n2 + 1659232n− 967680)h

+ 66n(n− 2)(n+ 10)(31n2 + 130n+ 1144)
)

= 0

(C12)

We can now explicit the positive integral solutions of these equations. Let us take
for example (C4): we have (n− 10)h+ 6(n+ 2) = 0, hence

h =
6(n+ 2)

10 − n
.

Since h > 0, we have n < 10. Now, if we introduce n = 1, 2, . . . , 9 in the last
formula, we obtain the integral solutions

(n, h) = (1, 2) , (2, 3) , (4, 6) , (6, 12) , (7, 18) , (8, 30) , (9, 16).

It is now easy to list all strongly eutactic root systems having one of these param-
eters.

B Application to some selfdual lattices

9 The cubic lattices

Let
Zn := {x = (x1, . . . , xn) ∈ R

n | xi ∈ Z, i = 1, · · · , n}
be the cubic lattice of rank n. It is an odd selfdual lattice whose shadow is:

Sh(Zn) = {x ∈ R
n | xi ∈ Z + 1

2 , i = 1, · · · , n}.
In particular, σ(Zn) = n.

24. Lemma. We have

ΘZn,P =






θn
3 if P = 1,

0 if P ∈ H(2)(Rn),

c1(P )∆8θ
n
3 if P ∈ H(4)(Rn),

c2(P )Φ ∆8θ
n
3 if P ∈ H(6)(Rn),

where c1 is a nonzero linear form if and only if n > 2, and c2 is a nonzero linear
form if and only if n > 3.

Remark. The theta series of Sh(Zn) are given by Proposition 10.

Proof. The equality ΘZn = θn
3 follows directly from ΘZn = (ΘZ)n and ΘZ = θ3.

Proposition 14 gives the form of ΘZn,P for P ∈ H(2j)(Rn), j = 1, 2, 3.

It remains to show that c1 and c2 are not identically zero for n large enough,
i.e., there exists P ∈ H(4)(Rn) (if n > 2) such that ΘZn,P 6= 0, and there exists
Q ∈ H(6)(Rn) (if n > 3) such that ΘZn,Q 6= 0. We can chose for example

P (x) = x4
1 + x4

2 − 6x2
1x

2
2, ΘZn,P (z) = 4q + · · · ,
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and

Q(x) = (x6
1 + x6

2 + x6
3) − 15(x4

1x
2
2 + x4

2x
2
3 + x4

3x
2
1) + 90(x2

1x
2
2x

2
3),

ΘZn,Q(z) = 6q + · · · .

Finally, the fact that c1 ≡ 0 [respectively c2 ≡ 0] if n = 1 [respectively if
n = 1 or 2] is an easy exercise.

The zero coefficients of the Fourier expansion of the series of the last Lemma
are given in Lemma 17. Therefore, by Lemma 5, we have:

25. Theorem.

(i) For n > 2, all nonempty shells of Zn and Sh(Zn) are spherical 3-designs.

(ii) The following shells are spherical 31/2-designs:

Z2 and Sh(Z2) : every nonempty shell,
(Z16)m : m = 4a2, a > 0
Sh(Z16)m : m = 4a2, a > 1
Sh(Z40)m : m = 24.

(iii) The following shells are spherical 5-designs:

(Z4)m : m = 2a, a > 1
(Z7)m : m = 4a(8b+ 3), a, b > 0
Sh(Z16)m : m = 4a+ 2, a > 1.

Note that the zero coefficients of series ∆8θ
n
3 for n = 2, 3, and Φ ∆8θ

n
3 for n = 3,

that are mentioned in Lemma 17, correspond to empty shells of the lattices Z2 and
Z3. Zero coefficients of ∆8θ

n
3 for n = 1 and Φ ∆8θ

n
3 for n = 1, 2 are irrelevant for our

purpose, because they correspond to cases where c1 and c2 are zero in Lemma 24.
Similar remarks hold for the shadows of these modular forms.

We give in Appendix an alternative proof that some shells of the cubic lattices
of rank 4 and 7 are 5-designs.

26. Proposition.

(i) For n > 2 and 1 6 m 6 1200, the nonempty shells of norm m of Zn are not
spherical 5-designs, except those mentioned in Theorem 25.

(ii) For n > 2 and n/4 6 m 6 n/4 + 1200, the nonempty shells of norm m of
Sh(Zn) are not a spherical 5-designs, except those mentioned in Theorem 25.

Proof. (i) We check first numerically that the statement holds for n < 408. Then,
we apply Lemma 18 with ϕ(0) = ∆8(z) = q+O(q2) and ψ = θ3(z) = 1+2q+O(q4).

Numerical computations give M408 > 1200, and thus the coefficients a
(n)
j of

ϕ(n) = ∆8(z) θ3(z)
n =

∑

j>1

a
(n)
j qj

are positive for 1 6 j 6 1200 and n > 408. By Lemma 24 and Lemma 5, the
corresponding shells (Zn)j are not spherical 5-designs.
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(ii) We check first numerically that the statement holds for n < 426. Then, we
apply Lemma 18 to

ϕ(0) = −16Sh∆8(z/2) = 1 − 16q +O(q2),

ψ = q−1/8θ2(z/2) = 2 + 2q +O(q3).

(The substitution z 7→ z/2 is equivalent to the substitution q 7→ q1/2.) Numerical

computations give M426 > 600. It follows that the coefficients a
(n)
j of

ϕ(n) = −16 qn/8 Sh∆8(z/2) θ2(z/2)n =
∑

j>0

a
(n)
j qj

are positive for 0 6 j 6 600 and n > 426. In other words, the coefficients c
(n)
j of

Sh∆8(z) θ2(z)
n =

∑

j>0

c
(n)
j q2j+n/4

are negative for n/4 6 2j + n/4 6 n/4 + 1200 and n > 426. The proof is achieved
by invoking Lemma 24 together with Proposition 10, and Lemma 5.

10 The Witt lattices

Let n be a positive multiple of 4. The Witt lattice of rank n is the lattice

Γn :=

{
x = (x1, . . . , xn) ∈ R

n

∣∣∣∣∣

2xi ∈ Z ∀i,
xi − x1 ∈ Z ∀i,
x1 + x2 + · · · + xn ∈ 2Z

}
.

It is selfdual, and it is even if n ≡ 0 mod 8 and odd otherwise. When n ≡ 4 mod 8,
the shadow of Γn is

Sh(Γn) =

{
x = (x1, . . . , xn) ∈ R

n

∣∣∣∣∣

2xi ∈ Z ∀i,
xi − x1 ∈ Z ∀i,
x1 + x2 + · · · + xn ∈ 2Z + 1

}
.

The lattice Γ4 is equivalent to the cubic lattice Z4 and is thus analysed in the
previous Section; therefore, we assume that n > 8. The lattice Γ8 is analysed more
precisely in the next Section.

27. Lemma. Let n be a multiple of 4 greater than or equal to 8. Then

ΘΛ,P =





1
2 (θn

2 + θn
3 + θn

4 ) if P = 1,

0 if P ∈ H(2)(Rn),

c1(P ) θ42θ
4
3θ

4
4(−θn−4

2 + θn−4
3 − θn−4

4 ) if P ∈ H(4)(Rn),

c2(P ) θ42θ
4
3θ

4
4

(
(θ43 + θ44)θ

n−4
2

+(θ44 − θ42)θ
n−4
3 − (θ42 + θ43)θ

n−4
4

)
if P ∈ H(6)(Rn).

where c1 and c2 are nonzero linear forms on H(4)(Rn) and H(6)(Rn) respectively.

Proof. Let G the subgroup of O(n) containing the transformations of the form

(x1, . . . , xn) 7→ (ǫ1x1, . . . , ǫnxn)
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where ǫi = ±1 and ǫ1ǫ2 · · · ǫn = 1. It is clear that G leaves Γn invariant. We denote
by H(2j)(Rn)G the set of elements of H(2j)(Rn) which are invariant under the action
of G given by (γP )(x) = P (γ−1x). Let

π : H(2j)(Rn) → H(2j)(Rn)G, π(P ) =
1

|G|
∑

γ∈G

γP

be the projection on the invariant part of H(2j)(Rn). Since for all γ ∈ G

ΘΓn,γP = Θγ−1Γn,P = ΘΓn,P ,

we have ΘΓn,P = ΘΓn,π(P ). Therefore, it suffices to prove the Lemma for P ∈
H(2j)(Rn)G.

Let

Γ′
n =

{
x = (x1, . . . , xn) ∈ R

n

∣∣∣∣∣

2xi ∈ Z ∀i,
xi − x1 ∈ Z ∀i,
− x1 + x2 + · · · + xn ∈ 2Z

}
,

which is a lattice equivalent to Γn. Let Dn := {x ∈ Zn | 〈x | x〉 ∈ 2Z}; we have, by
definition, Sh(Zn) = D♯

n \ Dn. We have the following inclusions of lattices, where
labels indicate indices of sublattices:

D♯
n

2

}}
}}

}}
}}

2
2

AA
AA

AA
A

Γn Zn Γ′
n

Dn

2

BBBBBBBB
2

2

||||||||

Expressing D♯
n as the union of its classes modulo Dn, we obtain

D♯
n = (Γn \ Dn) ⊔ (Zn \Dn) ⊔ (Γ′

n \ Dn) ⊔Dn.

Hence, since Sh(Zn) = D♯
n \ Zn,

Sh(Zn) = (Γn \ Dn) ⊔ (Γ′
n \ Dn),

from which we deduce,

ΘSh(Zn),P = ΘΓn,P + ΘΓ′

n,P − 2ΘDn,P .

As 2ΘDn,P (z) = ΘZn,P (z) + ΘZn,P (z + 1), we have

ΘΓn,P (z) + ΘΓ′

n,P (z) = ΘZn,P (z) + ΘZn,P (z + 1) + ΘSh(Zn),P (z).

Let σ be the orthogonal transformation of R
n defined by

σ(x1, x2, . . . , xn) = (−x1, x2, . . . , xn);

we have σΓ′
n = Γn. Let P ∈ H(2j)(Rn)G, where 0 6 2j 6 6. It is easily checked

that, since 2j 6 n, P is a polynomial which is even in x1, x2, . . . , xn, and therefore
P is invariant under the action of σ. Thus, ΘΓ′

n,P = ΘΓn,σP = ΘΓn,P , and

ΘΓn,P (z) =
1

2

(
ΘZn,P (z) + ΘZn,P (z + 1) + ΘSh(Zn),P (z)

)
.

We use Lemma 24 and identities found in [ConSlo99, Chap. 4, §4.1, p. 104] to
conclude.
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Now, using Lemma 5, we have:

28. Theorem. Let n be a multiple of 4 greater than or equal to 8.

(i) All nonempty shells of Γn and Sh(Γn) are spherical 3-designs.

(ii) All nonempty shells of Γ8 are spherical 7-designs.

(iii) All nonempty shells of Γ16 are spherical 31/2-designs.

We do not know if any shell of Γn, for n > 12 is a spherical 5-design; however,
as in the case of cubic lattices, we can show:

29. Proposition. For n > 12 and 1 6 m 6 1200, the nonempty shells of norm m
of Γn and of their shadows are not spherical 5-designs.

Proof. For m < n/4, we remark that (Γn)m = (Zn)m when m is an even integer and
(Γn)m = ∅ otherwise. If moreover n ≡ 4 mod 8, then we have

(
Sh(Γn)

)
m

= (Zn)m

when m is an odd integer and
(
Sh(Γn)

)
m

= ∅ otherwise. Therefore, for n > 4800, it
suffices to apply Proposition 26. For n 6 4800, we content ourself with a numerical
verification.

The case of Γ8 is considered in more details in the next Section.

11 Even selfdual lattices of rank at most 24

We recall here the classification of these lattices, due to Niemeier. Note that we
already know by Proposition 3 that their rank is a multiple of 8.

30. Theorem.

(i) There is exactly one even selfdual lattice of rank 8, that is the Korkine-
Zolotarev lattice

Γ8 = E+
8 .

(ii) There are exactly two even selfdual lattices of rank 16, that is

Γ8 ⊕ Γ8 = (2E8)
+ and Γ16 = D+

16.

(iii) There is a bijection between the even selfdual lattices of rank 24 and the
twenty-four strongly eutactic root systems of norm 2 and of rank 24, given by
Λ ↔ Λ2. These root systems are (in parentheses is the Coxeter number of the
system):

O24 (0), 24A1 (2), 12A2 (3), 8A3 (4),

6A4 (5), 4A5 + D4 (6), 6D4 (6), 4A6 (7),

2A7 + 2D5 (8), 3A8 (9), 9A9 + D6 (10), 4D6 (10),

A11 + D7 + E6 (12), 4E6 (12), 2A12 (13), 3D8 (14),

A15 + D9 (16), D10 + 2E7 (18), A17 + E7 (18), 2D12 (22),

A24 (25), D16 + E8 (30), 3E8 (30), D24 (46).

Claims (i) and (ii) are consequences of Claim (iii), since Λ = R+ is an even
unimodular lattice of rank 8 [respectively 16] if and only if Λ⊕Γ8⊕Γ8 = (R+2E8)

+

[resp. Λ ⊕ Γ8 = (R + E8)
+] is an even unimodular lattice of rank 24.
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The lattice corresponding to O24 is the famous Leech lattice, and those corre-
sponding to nonempty strongly eutactic root systems of rank 24 are the the Niemeier
lattices; those corresponding to the three last root systems listed are Γ16 ⊕ Γ8,
Γ8 ⊕ Γ8 ⊕ Γ8, and Γ24 respectively.

There exist several proofs of Claim (iii); a proof explaining the bijection is found
in [Venk78].

31. Lemma.

(i) Let Λ = Γ8 = E+
8 be the Korkine-Zolotareff lattice. Then

ΘΛ,P =





Q if P = 1,

0 if P ∈ H(2j)(R8), 2j = 2, 4, 6, 10,

c1(P )∆24 if P ∈ H(8)(R8),

c2(P )Q ∆24 if P ∈ H(12)(R8),

c3(P )R ∆24 if P ∈ H(14)(R8),

c4(P )Q2∆24 if P ∈ H(16)(R8),

c5(P )R Q2∆24 if P ∈ H(18)(R8),

where c1, c2, c3, c4, and c5 are nonzero linear form on H(8)(R8), H(12)(R8),
H(14)(R8), H(16)(R8), and H(18)(R8) respectively.

(ii) Let Λ be one of the two even selfdual lattices of rank 16. Then

ΘΛ,P =





Q2 if P = 1,

0 if P ∈ H(2j)(R16), 2j = 2, 6,

c1(P )∆24 if P ∈ H(4)(R16),

c2(P )Q ∆24 if P ∈ H(8)(R16),

c3(P )R ∆24 if P ∈ H(10)(R16),

c4(P )Q2∆24 if P ∈ H(12)(R16),

c5(P )R Q2∆24 if P ∈ H(14)(R16),

where c1, c2, c3, c4, and c5 are nonzero linear forms on H(4)(R16), H(8)(R16),
H(10)(R16), H(12)(R16), and H(14)(R16) respectively.

(iii) Let Λ be the Leech lattice. Then

ΘΛ,P =





Q3 − 720∆24 if P = 1,

0 if P ∈ H(2j)(R24), 2j = 2, 4, 6, 8, 10, 14,

c1(P )∆2
24 if P ∈ H(12)(R24),

c2(P )Q ∆2
24 if P ∈ H(16)(R24),

c3(P )R ∆2
24 if P ∈ H(18)(R24),

c4(P )Q2∆2
24 if P ∈ H(20)(R24),

c5(P )R Q2∆24 if P ∈ H(22)(R24),

where c1, c2, c3, c4, and c5 are nonzero linear forms on the corresponding
spaces.

(iv) Let Λ be an even selfdual lattice of rank 24 and of minimum 2. Let h :=
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|Λ2| /24. Then

ΘΛ,P =






Q3 − 24(30 − h)∆24 if P = 1,

0 if P ∈ H(2)(Rn),

c1(P )Q ∆24 if P ∈ H(4)(Rn),

c2(P )R ∆24 if P ∈ H(6)(Rn),

c3(P )Q2∆24 if P ∈ H(8)(Rn),

c4(P )R Q2∆24 if P ∈ H(10)(Rn),

where c1, c2, c3, and c4 are nonzero linear forms on the corresponding spaces.

Proof. It suffices to apply Propositions 15 and 16. In order to see that the linear
forms ci, i = 1, 2, . . ., are nonzero, we apply Lemma 5 and Proposition 23 to Λ2 if
Λ is not the Leech lattice, and to Λ4 if Λ is the Leech lattice. (Note that, since
{〈x | y〉 | x, y ∈ Λ4} = {0,±1,±2,±4}, the shell Λ4 is a tight 11-design: see
[DeGoSe77, Theorems 5.12 and 6.8] or [GoeSei79, Theorems 5.3 and 5.4]. It follows
that Λ4 cannot be a 12-design.)

Remark. In fact, Propositions 15 and 16 show that the root system of an even
selfdual lattice of rank 8 [respectively 16, 24] is nonempty and a 71/2-design [resp.
is nonempty and a 51/2-design, is strongly eutactic]. Theorem 30 says that, for each
root system in dimension up to 24 which satisfies the above condition, there exists
exactly one even selfdual lattice with such a root system. But in higher dimensions,
there can be more than one even selfdual lattice with the same root system.

As in the preceding case, Lemma 5 give:

32. Theorem.

(i) All shells of Γ8 = E+
8 are spherical 71/2-designs.

(ii) All shells of the two even selfdual lattices of rank 16 are spherical 31/2-designs.

(iii) All shells of the Leech lattice are spherical 111/2-designs.

(iv) All shells of any even selfdual lattice of rank 24 and of minimum 2 are spherical
3-designs.

Remark. We have checked numerically that the shells of norm at most 1200 of these
lattices are not spherical designs of higher strength.

Claims (i) to (iii) of the Theorem above are special cases of Theorem 16.4 of
[VenMar01] (see also [Venk84]), since the lattices mentioned in these claims are
extremal. See the remark at the end of Section 5.

Another consequence of our analysis is a reformulation in terms of spherical
design strength of shells of lattices of a famous conjecture of Lehmer, which states
that the Ramanujan numbers τ(m) are never zero for m > 1. This conjecture has
been verified for m 6 1015 [Serr85, § 3.3].

33. Proposition. Let τ(m), m > 1, be the Ramanujan numbers defined by

∆24(z) =
∑

m>1

τ(m)q2m.

For m > 1, the following are equivalent:

(a) τ(m) = 0;
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(b) (Γ8)2m is an 8-design (and therefore an 11-design);

(c) for any even selfdual lattice Λ of rank 16, Λ2m is a 4-design (and therefore a
7-design);

Therefore, Lehmer’s conjecture is true if and only if no shell of Γ8 is an 8-design,
and if and only if no shell of any even selfdual lattice of rank 16 is a 4-design.

Similar conjectures could be stated for other modular forms than ∆24, and have
an equivalent formulation in terms of spherical design strength of shells of lattices
(see Proposition C in the Introduction).

12 Selfdual lattices with long shadow

In this section, we consider selfdual lattices with σ(Λ) = n−8. We begin with those
of minimum at least 2. We recall here their classification [Elki95b].

34. Theorem. There is a bijection between the selfdual lattices with σ(Λ) =
n − 8 of minimum at least 2 and the 14 strongly eutactic root systems satisfying
h = 2(23 − n), given by Λ ↔ Λ2. These root systems are (in parentheses are the
corresponding values of n and h):

E8 (8, 30), D12 (12, 26), 2E7 (14, 18), A15 (15, 16),

2D8 (16, 14), A11 + E6 (17, 12), 2A9 (18, 10),

3D6 (18, 10), 2A7 + D5 (19, 8), 4A5 (20, 6),

5D4 (20, 6), 7A3 (21, 4), 22A1 (22, 2), O23 (23, 0).

Recall that we denote by R+ the (unique up to dimension 23) selfdual lattice Λ
of root system R = Λ2. Apart from Γ8 = E+

8 , which is even, all these lattices are
odd. They are of minimum 2, except O+

23 which is of minimum 3 (it is the so-called
shorter Leech lattice).

The theta series of such lattices are now easy to calculate (we exclude here the
theta series of Γ8 = E+

8 , which have been given in Lemma 31).

35. Lemma. Let Λ be an odd selfdual lattice with σ(Λ) = n− 8 and of minimum
at least 2.

(i) If Λ is of minimum 2, then

ΘΛ,P =





θn
3 − 2n θn−8

3 ∆8 if P = 1,

0 if P ∈ H(2)(Rn),

c1(P ) θn−8
3 ∆2

8 if P ∈ H(4)(Rn),

c2(P )Φθn−8
3 ∆2

8 if P ∈ H(6)(Rn).

where c1 and c2 are nonzero linear forms on H(4)(Rn) and H(6)(Rn) respec-
tively.

(ii) If Λ = O+
23 is the shorter Leech lattice, then

ΘΛ,P =





θ233 − 46 θ153 ∆8 if P = 1,

0 if P ∈ H(2j)(R23), 2j = 2, 4, 6,

c1(P ) θ153 ∆3
8 if P ∈ H(8)(R23),

c2(P )Φθ153 ∆3
8 if P ∈ H(10)(R23),

where c1 and c2 are nonzero linear forms on H(8)(Rn) and H(10)(Rn) respec-
tively.
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Proof. Propositions 13 and 14 give the forms of the theta series (incidently, they
show that Λ2 is strongly eutactic and that h = 2(23−n) as stated in Theorem 34),
except the fact that the linear forms c1 and c2 are nonzero.

If Λ is of minimum 2, by Proposition 5 applied to the root system of Λ, the
linear forms c1 and c2 are nonzero.

Consider now the case Λ = O+
23. Let x ∈ Λ3, and set Nα :=

∣∣{y ∈ Λ3 | 〈x | y〉 =
α}

∣∣. It is known that

N3 = N−3 = 2, N1 = N−1 = 891, N0 = 2816,

and Nα = 0 for other α’s. (This follows from he fact that Λ3 is a tight 7-design: see
[DeGoSe77, Theorems 5.12 and 6.8] or [GoeSei79, Theorems 5.3 and 5.4].) From
this, using Lemma 22 (with λx = 1 if x ∈ Λ3, and λx = 0 otherwise), it is easy to
see that c1 and c2 are indeed nonzero.

The zero coefficients of the Fourier series for the modular forms of the Lemma
are given by Lemma 17. We deduce:

36. Theorem.

(i) Every nonempty shell of any selfdual lattice with σ(Λ) = n−8 of minimum 2,
and every nonempty shell of its shadow, is a spherical 3-design.

(ii) The following shells are spherical 31/2-designs:

(2D8)
+ : m = 4a, a > 1

(iii) The following shells are spherical 5-designs:

(4A5)
+, (5D4)

+ :m = 4a, a > 1

(2D8)
+ : m = 2a+ 1, a > 1

(iv) All nonempty shells of the shorter Leech lattice O+
23 and of its shadow are

spherical 7-designs.

Remark. We have checked numerically that the shells of norm at most 1200 of these
lattices and of their shadows are not spherical designs of higher strength.

Let us now turn to selfdual lattices of minimum 1.

37. Lemma. Let Λ be a selfdual lattice with σ(Λ) = n− 8 of minimum 1.

(i) If Λ = Z1 ⊕ E+
8 = Z1 ⊕ Γ8, then

ΘΛ,P =






θ93 − 16 θ3∆8 if P = 1,

c1(P )Φθ3∆8 if P ∈ H(2)(R9),

c2(P ) (θ93∆8 + 8 θ3∆
2
8) if P ∈ H(4)(R9),

c4(P ) (Φθ93∆8 − Φθ3∆
2
8) if P ∈ H(6)(R9),

where c1, c2 and c4 are nonzero linear forms on H(2)(R9), H(4)(R9) and
H(6)(R9) respectively.
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(ii) If Λ = Z1 ⊕ O+
23, then

ΘΛ,P =






θ243 − 46 θ163 ∆8 if P = 1,

c1(P )Φθ163 ∆8 if P ∈ H(2)(R24),

c2(P ) (θ243 ∆8 − 40 θ163 ∆2
8) if P ∈ H(4)(R24),

c4(P ) (Φθ243 ∆8 − 16 Φθ163 ∆2
8) if P ∈ H(6)(R24),

where c1, c2 and c4 are nonzero linear forms on H(2)(R24), H(4)(R24) and
H(6)(R24) respectively.

(iii) Otherwise, we have

ΘΛ,P =





θn
3 − 2n θn−8

3 ∆8 if P = 1,

c1(P )Φθn−8
3 ∆8 if P ∈ H(2)(Rn),

c2(P ) θn
3 ∆8 + c3(P ) θn−8

3 ∆2
8 if P ∈ H(4)(Rn),

c4(P )Φθn
3 ∆8 + c5(P )Φθn−8

3 ∆2
8 if P ∈ H(6)(Rn),

where c1 is a nonzero linear form on H(2)(Rn), c2 and c3 are linearly indepen-
dent linear forms on H(4)(Rn), and c4 and c5 are linearly independent linear
forms on H(6)(Rn).

Proof. Let Λ = Zp ⊕L, where L is a lattice of minimum 2 and of rank N , and let h
be the Coxeter number of the strongly eutactic root lattice L2. Let V1 [respectively
V2] be the space generated by Zp [resp. L], so that Rn = V1 ⊕ V2. For x ∈ Rn, let
xi ∈ Vi (i = 1, 2) such that x = x1 + x2. Let ωi(x) := 〈xi | xi〉.

First, Proposition 13 gives the exact form of ΘΛ.

Now, by Proposition 14, we have ΘΛ,P = c1(P )Φθn−8
3 ∆8 for P ∈ H(2)(Rn).

The polynomial

P :=
1

2p
ω1 −

1

2N
ω2 ∈ H(2)(Rn)

verifies ΘΛ,P (z) = q +O(q2) 6= 0; thus c1 is not identically equal to zero.

Then, we have ΘΛ,P = c2(P ) θn
3 ∆8 + c3(P ) θn−8

3 ∆2
8 for P ∈ H(4)(Rn). Let be

the polynomial

Q :=
1

2p
ω2

1 − p+ 2

pN
ω1ω2 +

p+ 2

2N(N + 2)
ω2

2 ∈ H(4)(Rn).

We have

ΘΛ,Q(z) = q + 4
(
(p− 1) +

h(p+ 2)

2(N + 2)

)
q2 +O(q3)

=

(
q + (2n− 8)q2 +O(q3)

)
+

((
2p− 2N + 4 +

2h(p+ 2)

N + 2

)
q2 +O(q3)

)

= θn
3 (z)∆8(z) +

(
2p− 2N + 4 +

2h(p+ 2)

N + 2

)
θn−8
3 (z)∆2

8(z).

If L is neither O+
23 nor E+

8 , then, by Lemma 35, there exists a R ∈ H(4)(V2) ⊆
H(4)(Rn) such that ΘL,R 6= 0. So we have

ΘΛ,R(z) = ΘZp,1(z)ΘL,R(z) = c4(R) q2 +O(q3) = c4(R) θn−8
3 (z)∆2

8(z),

with c4(R) 6= 0; that shows that c3 and c4 are linearly independant.

If Λ = Zp ⊕ E+
8 and if p > 2, we can find a S ∈ H(4)(V1) ⊆ H(4)(Rn) such that

ΘZp,S = θp
3∆8. So we have

Θ
Zp⊕E

+
8 ,S = Θ

Zp,SΘ
E

+
8 ,1 = θp

3∆8(θ
8
3 − 16 ∆8) = θn

3 ∆8 − 16 θn−8
3 ∆8.
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Therefore, if we compare

Θ
Zp⊕E

+
8 ,Q = θn

3 (z)∆8(z) + 8p θn−8
3 (z)∆2

8(z).,

Θ
Zp⊕E

+
8 ,S = θn

3 ∆8 − 16 θn−8
3 ∆8,

we find that c2 and c3 are linearly independent.

If Λ = Z1⊕E+
8 , it can be shown that c2 and c3 are not linearly independent. We

do not prove it, since it has no effect on the conclusions of the following Theorem.

If Λ = Zp ⊕ O+
23, we proceed as for Zp ⊕ E+

8 .

A similar method is used for computing ΘΛ,P for P ∈ H(6)(Rn). Note however
that in the cases Z2 ⊕ E+

8 and Z2 ⊕ E+
8 , the polynomial corresponding to S is a

polynomial of the form

S′ =
(
N ω1 − (p+ 8)ω2

)
f ∈ H(6)(Rn), where f ∈ H(4)(V1).

and such that ΘZ2,f 6= 0, since ΘZ2,P = 0 for every P ∈ H(6)(V1).

Again, Lemma 17 describes indices of vanishing coefficients for the series of the
previous Lemma. Therefore, we have:

38. Theorem.

(i) Let Λ be a selfdual lattice of rank 24 with σ(Λ) = 24 − 8 = 16. Then the
shells Λm and Sh(Λ)m are spherical 3-designs for m = 4a2, a > 0 (except the
shells Sh(Λ)2 and (Z1 ⊕ O+

23)2, which are empty).

(ii) Let Λ = Z3⊕Γ8. Then the shells Λm are spherical 3-designs for m = 4a(8b+7),
a, b > 0.

Remark. We have checked numerically that the shells of norm at most 1200 of these
lattices and of their shadows are not spherical designs of higher strength.

13 Odd selfdual lattices of rank 24 and of minimum at least 2

We need to know the precise form of the shell of norm 2 of these lattices and their
shadows:

39. Proposition. Let Λ be an odd selfdual lattice of rank 24 and of minimum 2.
Then there exist a root system R, and strongly eutactic root systems S and T of
Coxeter number hS and hT respectively, such that

– R = S ∩ T ,

– hS + hT = 3hR + 2 where hR := |R| /24,

– s ∈ S \R, t ∈ T \R =⇒ 〈s | t〉 = ± 1
2 ,

– Λ2 = R, and Sh(Λ)2 = (S \R) ∪ (T \R).

Moreover, T = R or S = R if and only if R is strongly eutactic.

Sketch of the proof. Let Λ be an odd selfdual lattice of rank 24 and of minimum 2.
Let Λ0 be the even sublattice of index 2, and let Λ♯

0 be its dual. Then Λ♯
0/Λ0 ≃

31



Z/2Z ⊕ Z/2Z, and we have the following diagramm (integers indicate indices of
sublattices):

Λ♯
0

2

~~
~~

~~
~

2
2

@@
@@

@@
@@

Λ′ Λ Λ′′

Λ0

2

AAAAAAAA
2

2

||||||||

where Λ′ and Λ′′ are even selfdual lattices. We have Sh(Λ) = (Λ′ \Λ0) ∪ (Λ′′ \ Λ0).
The root systems of the Proposition are

R = Λ2, S = Λ′
2, T = Λ′′

2 ,

and, according to Theorem 30.iii, S and T are strongly eutactic. By Proposition 13,
the theta series of Λ is

ΘΛ = θn
3 + c1∆8θ

n−8
3 + c2∆

2
8θ

n−16
3 ,

where

c2 = 24(|Λ2| /24 − 2) = 24(hR − 2)

= |Sh(Λ)2| = 24(hS + hT − 2hR),

hence hS + hT = 3hR + 2.

For x ∈ R24 and α ∈ R, let Nx,A
α := |{y ∈ A | 〈x | y〉 = α}|. Let s ∈ S \ R; it

can be shown that (see Lemma 40 below):

Ns,R
1 = Ns,R

−1 = Ns,T
1 = Ns,T

−1 = 3hR − hT = hS − 2,(∗)
Ns,T

1/2 = Ns,T
−1/2 = 12(hT − hR),

Ns,R
0 = Ns,T

0 = 8hT + 6hS − 12.

Let us suppose that R is strongly eutactic and that S \R 6= ∅. Let s ∈ S \R; since
the polynomial function x 7→ 〈s | x〉2 − 2〈x | x〉 is harmonic, we have the equality

∑

r∈R

〈s | r〉2 = 4hR,

hence
2hS − 4 = Ns,R

1 +Ns,R
−1 =

∑

r∈R

〈s | r〉2 = 4hR.

Using the equality hS + hT = 3hR + 2, we deduce that hT = hR, therefore T = R
and hS = 2hR + 2. Conversely, if T = R, then R is strongly eutactic.

To complete the proof, we establish formulae (∗) above:

40. Lemma. In the proof of the preceding Lemma, formulae (∗) hold.

Sketch of the proof. Let s ∈ S \R. The scalar product on Λ♯
0 reduces to a bilinear

form on Λ♯
0/Λ0 with values in

(
1
2Z

)/
Z, which is easy to explicit. In particular, for

t ∈ T , we have:

〈s | t〉 =

{
±1/2 if t ∈ T \R,

0,±1 if t ∈ R.
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(The values ±3/2 are excluded in the first case by computing the norm of s ∓ t.)
From this, we deduce Ns,T

±1/2 = 12(hT −hR), andNs,R
ǫ = Ns,T

ǫ for ǫ = 0,±1. Finally,

Ns,T
ǫ is deduced from the strongly eutaxy of T . For example, we have

−1

4
Ns,T

−1/2 +
3

4
Ns,T

1/2 + 2Ns,T
1 =

∑

t∈T

(
〈s | t〉 + 1

)
〈s | t〉 = 2hT .

The last equality follows from the fact that T is a spherical 2-design (use The-
orem 3.2 and Formula 3.6 in [VenMar01], or Proposition 1.13 in [HarPac04b]).
Therefore Ns,T

1 = 3hR − hT .

There are 156 odd selfdual lattices of rank 24, classified in [Borc84] and listed in
[BorcCS]. We give here the list of those with strongly eutactic root system, because
it is the occasion to point out a remarkable bijection between two sets (compare
with Theorems 30.iii and 34).

41. Theorem. There is a bijection between the set of odd selfdual lattices Λ of
rank 24, of minimum 2, and of strongly eutactic root system, and the set of pairs
of embedded strongly eutactic root systems R ⊆ S in R24 satisfying hS = 2hR + 2.
The bijection is given by R = Λ2 and S = Sh(Λ)2. The list of pairs R ⊆ S is given
below. (The numbers in brackets refer to Table 17.1 of [BorcCS]1 and Table III of
[Bach97]. These lattices correspond to bold edges in the neighbourhood graph of
Figure 17.1 in [BorcCS].)

O24 ⊆ 24A1 [1], 24A1 ⊆ 6D4 [6], 8A3 ⊆ 4D6 [32],

6D4 ⊆ 3D8 [74], 2A7 + D5 ⊆ D10 + 2E7 [105], 4D6 ⊆ 2D12 [130],

3D8 ⊆ 3E8 [145], 3D8 ⊆ E8 + D16 [146], 2D12 ⊆ D24 [154].

We are now ready to give the theta series for selfdual lattices of rank 24:

42. Lemma. Let Λ be an odd selfdual lattice of rank 24, and of minimum at least 2.

(i) If Λ2 is not strongly eutactic, and if h := |Λ2| /24, then

ΘΛ,P =






θ243 − 48 θ163 ∆8 + 24(h+ 2) θ83∆
2
8 if P = 1,

c1(P )Φθ83∆
2
8 if P ∈ H(2)(R24),

c2(P ) θ163 ∆2
8 + c3(P ) θ83∆

3
8 if P ∈ H(4)(R24),

where c1 is a nonzero linear form on H(2)(R24), and c2 and c3 are linearly
independent linear forms on H(4)(R24).

(ii) If Λ2 is nonempty and strongly eutactic of Coxeter number h, then

ΘΛ,P =





θ243 − 48 θ163 ∆8 + 24(h+ 2) θ83∆
2
8 if P = 1,

0 if P ∈ H(2)(R24),

c2(P ) θ163 ∆2
8 + c3(P ) θ83∆

3
8 if P ∈ H(4)(R24),

c4(P )Φθ163 ∆2
8 + c5(P )Φθ83∆

3
8 if P ∈ H(6)(R24),

where c2 and c3 are linearly independent linear forms on H(4)(R24), and c4
and c5 are linearly independent linear forms on H(6)(R24).

1There are some errors in that table in the two first editions, which have been corrected in the

third edition.
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(iii) If Λ2 is empty, then

ΘΛ,P =






θ243 − 48 θ163 ∆8 + 48 θ83∆
2
8 if P = 1,

0 if P ∈ H(2)(R24),

c3(P ) θ83∆
3
8 if P ∈ H(4)(R24),

c5(P )Φθ83∆
3
8 if P ∈ H(6)(R24),

where c3 and c5 are nonzero linear forms on H(4)(R24) and H(6)(R24) respec-
tively.

Idea of the proof. We use Proposition 13 for computing the theta series. The main
difficulty is to show that, for example, in case (ii), the coefficients c2 and c3 are
linearly independant. (Similar cases are treated in the same way.) The main idea
is to look at the theta series of the shadow (Proposition 10):

ΘΛ,P = c2(P ) θ163 ∆2
8 + c3(P ) θ83∆

3
8 = c2(P ) q2 +O(q3),

ΘSh(Λ),P = c2(P ) θ162 Sh∆2
8 + c3(P ) θ82Sh∆3

8 = −24 c3(P ) q2 +O(q4).

So, we have

c2(P ) =
∑

x∈Λ2

P (x) and c3(P ) = −2−4
∑

x∈Sh(Λ)2

P (x).

The shape of Λ2 and Sh(Λ)2 is given by Proposition 39. Finally, one can find two
harmonic homogeneous polynomials of degree 4 which give linearly independent
values of c2(P ) and c3(P ).

We can now conclude:

43. Theorem. Let Λ be an odd selfdual lattice of rank 24 and of minimum 2.

(i) If Λ2 is strongly eutactic, then all nonnempty shells of Λ and Sh(Λ) are 3-
designs.

(ii) If Λ2 is not strongly eutactic, then the shells Λm and Sh(Λ)m are 3-designs
for m = 4a, a > 1.

Remark. We have checked numerically that the shells of norm at most 1200 of these
lattices and of their shadows are not spherical designs of higher strength.

14 Other selfdual lattices up to rank 24

According to their classification ([ConSlo99, Chap. 16 and 17] and [Bach97]), the
remaining selfdual lattices of rank at most 24 enter in one of the three cases of the
following Lemma:

44. Lemma. Let Λ = Zp ⊕L ⊆ Rn be a selfdual lattice with σ(Λ) = n− 16, where
L ⊆ RN is of minimum 2.

(i) If p = 0 and if L2 is not strongly eutactic, then

ΘΛ,P = c(P )Φθn−16
3 ∆2

8 if P ∈ H(2)(Rn),

where c is a nonzero linear form on H(2)(Rn).
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(ii) If p > 1 and if L2 is strongly eutactic of Coxeter number h, then

ΘΛ,P = c(P )
(
Φθn−8

3 ∆8 + (46 − 2N − h)Φθn−16
3 ∆2

8

)
if P ∈ H(2)(Rn),

where c is a nonzero linear form on H(2)(Rn).

(iii) If p > 1 and if L2 is not strongly eutactic, then

ΘΛ,P = c1(P )Φθn−8
3 ∆8 + c2(P )Φθn−16

3 ∆2
8 if P ∈ H(2)(Rn),

where c1 and c2 are linearly independent linear forms on H(2)(Rn).

We have checked numerically that the shells of norm at most 1200 of these
lattices and of their shadows are not 3-spherical designs.

Appendix: The cubic lattices of rank 4 and 7

The aim of this section is to prove the following result, without the use of modular
forms:

45. Theorem.

(i) Let Z4 = {x = (x1, . . . , x4) ∈ R4 | xi ∈ Z} be the cubic lattice of rank 4, and
let m be an even positive integer. Then the shell (Z4)m is a 5-design.

(ii) Let Z7 = {x = (x1, . . . , x7) ∈ R7 | xi ∈ Z} be the cubic lattice of rank 7, and
let m be a positive integer of the form m = 4a(8b + 3), a, b > 0. Then the
shell (Z7)m is a 5-design.

We begin with the proof of Claim (i). Let C ⊆ (Z/2Z)4 be the even weight code
of length 4, which is defined by

c = (c1, c2, c3, c4) ∈ C ⇐⇒ c1 + c2 + c3 + c4 = 0 ∈ Z/2Z.

For y = (y1, . . . , y4) ∈ Z4 we write y ∈ (Z/2Z)4 its class modulo 2Z4. Let Λ be the
sublattice of Z4 consisting of elements x ∈ Z4 such that x ∈ C. It is a sublattice of
index 2, which is equivalent to the root lattice of D4.

All shells of Λ are 5-designs. This follows from the fact that Λ is invariant
under the Weyl group W(F4), and there is no nonconstant harmonic polynomial of
degree at most 5 that is invariant under the action of W(F4) ([GoeSei79, Thm. 6.1],
[GoeSei81, Thm. 3.12]; see also [HarPac04a, Sect. 4]).

Finally, for m an even positive integer, we have (Z4)m = Λm; therefore (Z4)m

is a spherical 5-design. This proves Claim (i) of the Theorem.

Let us now show Claim (ii). Let H ⊆ (Z/2Z)7 be the Hamming code of length 7.
Recall that it is a linear code of minimal Hamming distance 3, containing

– one codeword 0 := (0, 0, 0, 0, 0, 0, 0) of weight 0;

– seven codewords of weight 3;

– seven codewords of weight 4;

– one codeword 1 := (1, 1, 1, 1, 1, 1, 1) of weight 7.
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The set S of codewords of weight 3 forms a Steiner system S(2, 3, 7), and the set of
codewords of weight 4 is S + 1. See for example [Ebel94, Sect. 1.2, p. 7].

Let Λ be the sublattice of Z7 consisting of elements x ∈ Z7 such that x ∈ H . It
is a sublattice of index 8, which is equivalent to

√
2E

♯
7, the rescaled weight lattice

of E7.

As in the previous case, all shells of Λ are 5-designs, because Λ is invariant under
the Weyl group W(E7), and there is no harmonic polynomial of degree at most 5
that is invariant under the action of W(E7).

But contrarily to the previous case, no shell of Z7 is equal to any shell of Λ.
Therefore, we need to look at the effect of the action of some finite subgroup of the
orthogonal group of rank 7 on the shells of Λ.

We recall first what is a weighted spherical design.

46. Definition. A weighted spherical t-design or spherical cubature formula of
strength t is the data consisting of a nonempty finite subset X of Sn−1

m and a
positive function w : X → R>0, x 7→ wx, such that

∑
x∈X wx = 1 and such that

the condition

(Cj)
∑

x∈X

wx P (x) = 0, ∀P ∈ H(j)(Rn)

holds for every integer j with 1 6 j 6 t.

(For more on cubature formulae on spheres, see for example [HarPac04b].)

Occasionaly, we allow the weight function w : X → R to take the value zero.
A spherical design is a weighted spherical design with constant weight function
wx = 1/ |X |.

47. Lemma. Let X ⊆ S
n−1
m be a spherical t-design and let G be a finite subgroup

of the orthogonal group O(n). Then GX is a weighted spherical t-design for the
weight function

wy =

∣∣{σ ∈ G | σy ∈ X}
∣∣

|G| |X | , y ∈ GX.

Proof. For P ∈ H(j)(Rn), 1 6 j 6 t, we have

∑

y∈GX

wyP (y) =
1

|G| |X |
∑

x∈X
σ∈G

P (σx) =
1

|G| |X |
∑

σ∈G

(∑

x∈X

(P ◦ σ)(x)

)
.

The last term is zero, because P ◦ σ ∈ H(j)(Rn) and X is a spherical t-design.

We apply the previous Lemma to the subgroup G = Aut(Z7) ≃ (Z/2Z)7 ⋊ S7

of O(7), which consists of transformations of the form

(x1, . . . , x7) 7→ (ǫ1xπ(1), . . . , ǫ7xπ(7))

where ǫi ∈ {±1} and π is a permutation of the set {1, 2, . . . , 7}.
Let c ∈ {0, 1, . . . , 7}, and let m be a positive integer such that m ≡ c mod 8.

For y = (y1, . . . , y7) ∈ (Z7)m, let W (y) be the weight of y ∈ (Z/2Z)7, that is the
number of coordinates i such that yi is odd. (Caution: the word “weight” has two
different meanings in this Appendix.) The condition y2

1 + · · ·+y2
7 ≡ c mod 8 implies

that W (y) takes the values indicated in the following table:

c W (y)
0 0 , 4
1 1 , 5
2 2 , 6
3 3

c W (y)
4 0 , 4
5 1 , 5
6 2 , 6
7 3 , 7
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Now, the quantity

λ(y) :=

∣∣{σ ∈ G | σy ∈ Λm}
∣∣

|G| , for y ∈ (Zn)m

depends only of W (y); it is given by the following table:

W (y) λ(y)
0 1
1 0
2 0
3 1/5

W (y) λ(y)
4 1/5
5 0
6 0
7 1

Applying Lemma 47, we find that

– for m ≡ 0 mod 8 and m ≡ 4 mod 8, the shell (Z7)m is a weighted spherical
5-design for the weight function

wy =
1

|Λm| if W (y) = 0, and wy =
1

5 |Λm| if W (y) = 4;

– for m ≡ 3 mod 8, the shell (Z7)m is a spherical 5-design;

– for m ≡ 7 mod 8, the shell (Z7)m is a weighted spherical 5-design for the
weight function

wy =
1

|Λm| if W (y) = 7, and wy =
1

5 |Λm| if W (y) = 3.

In order to achieve the proof of Theorem 45, Claim (ii), it remains to show the
following statement:

Let m be a positive integer. If (Z7)m is a 5-design, then (Z7)4m is also
a 5-design.

The proof is the following. We write (Z7)4m as

(Z7)4m = 2 (Z7)m ⊔Q
where 2 (Z7)m is the shell of norm m rescaled by a factor 2, and Q contains the
elements y ∈ (Z7)4m such that W (y) = 4. We have shown that (Z7)4m is a weighted
5-design for the weight function

wy =
1

|Λm| if y ∈ 2 (Z7)m, and wy =
1

5 |Λm| if y ∈ Q.

But since (Z7)m is a 5-design by hypothesis, then (Z7)4m is a weighted 5-design for
the weight function

w̃y =
1

|(Z7)m| if y ∈ 2 (Z7)m = 0, and w̃y = 0 if y ∈ Q.

It is evident that, if X is a weighted t-design for two weight functions w and w̃,
then it is a weighted t-design for every convex linear combination of w and w̃.

In particular, since, in our case, there is a suitable convex linear combination of
w and w̃ which is constant on (Z7)4m, the shell (Z7)4m is indeed a 5-design.

Remark that our proof also shows that the shells of Z7 of norm m ≡ 7 mod 8
and those of norm m ≡ 0 mod 4 are weighted spherical 5-designs, although they are
not spherical 5-designs in general.
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Chap 1 of [MartV01].

[Vile68] N.Ya. Vilenkin, Speial~nye funkii i teori� predstavleniĭgrupp, second edition, Nauka (Moscow) 1991
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