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Galois coverings, Morita equivalence and smash

extensions of categories over a field∗

Claude Cibils and Andrea Solotar

Abstract

We consider categories over a field k in order to prove that smash
extensions and Galois coverings with respect to a finite group coincide
up to Morita equivalence of k-categories. For this purpose we describe
processes providing Morita equivalences called contraction and expansion.
We prove that composition of these processes provides any Morita equiv-
alence, a result which is related with the karoubianisation (or idempotent
completion) and additivisation of a k-category.

2000 Mathematics Subject Classification : 16W50, 18E05, 16W30, 16S40, 16D90.

Keywords : Hopf algebra, Galois covering, k-category, Morita theory, smash product,
completion, karoubianisation.

1 Introduction

In this paper we consider categories C over a field k, which means that the objects C0

are a set, each morphism set yCx from an object x to an object y is a k-vector space
and the composition of maps of C is k-bilinear. In particular each endomorphism set

xCx is an associative k-algebra. Such categories are called k-categories, they have been
considered extensively and are considered as algebras with several objects, see [12, 13].

This work has a two-fold main purpose. In one direction we show that there is
a coincidence up to Morita equivalence between Galois coverings of k-categories and
smash extensions for a finite group. More precisely we associate to each Galois covering

∗This work has been supported by the projects CONICET-CNRS:”METODOS HO-
MOLOGICOS EN REPRESENTACIONES Y ALGEBRA DE HOPF”, PICS 1514, PICT
08280 (ANPCyT), UBACYTX169 and PIP-CONICET 02265. The second author is a
research member of CONICET (Argentina) and a Regular Associate of ICTP Associate
Scheme.
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of a k-category with finite group G a smash extension with the same group, having
the property that the categories involved are Morita equivalent to the starting ones.
In particular from a full and dense functor we obtain a faithful one. Conversely, a
smash extension of categories gives rise to a Galois covering, with categories actually
equivalent to the original ones. Consequently both procedures are mutual inverses up
to Morita equivalence.

In the other direction we study the Morita equivalence of k-categories that we
need for the results stated above. We consider modules over a k-category C, that is
k-functors from C to the category of k-vector spaces i.e. collections of vector spaces
attached to the objects with ”actions” of morphisms transforming vectors at the source
of the morphism to vectors at the target. Notice that if C is a finite object set k-
category it is well known and easy to prove that modules over C coincide with usual
modules over the ”matrix algebra” a(C) = ⊕x,y∈CyCx.

We introduce in this paper a general framework for Morita theory for k-categories.
More precisely we establish processes which provide categories Morita equivalent to
a starting one. We prove in the Appendix that up to equivalence of categories any
Morita equivalence of k-categories is a composition of contractions and expansions
of a given k-category, where contraction and expansion are processes generalizing a
construction considered in [5]. More precisely, given a partition E of the set of objects
of a k-category C by means of finite sets, the contracted category CE along E has set of
objects the sets of the partition while morphisms are provided by the direct sum of all the
morphism spaces involved between two sets of the partition. The reverse construction is
called expansion. Another process is related to the classical Morita theory for algebras,
that is for each vertex we provide an endomorphism algebra Morita equivalent to the
given one together with a corresponding Morita context, which enables us to modify the
morphisms of the original category. In particular the matrix category of a given category
is obtained in this way. A discussion of this processes in relation with karoubianisation
and additivisation (see for instance [1, 16]) is also presented in the Appendix. We thank
Alain Bruguières and Mariano Suarez Alvarez for useful conversations concerning this
point.

Usually smash extensions are considered for algebras, see for instance [14]. We
begin by extending this construction to k-categories, namely given a Hopf algebra H
we consider a Hopf module structure on a k-category C which is provided by an H-
module structure on each morphism space such that the composition maps of C are
H-module maps - in particular the endomorphism algebra of each object is required to
be an usual H-module algebra. Given a Hopf module k-category C we define the smash
category C#H in a coherent way with the algebra case.

We need this extension of the usual algebra setting to the categorical one in order
to relate smash extensions to Galois coverings of k-categories as considered for instance
in [3, 5, 7].

Notice that we can consider, as in the algebra case, a smash extension of a category
as a Hopf Galois extension with the normal basis property and with trivial map σ, see
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[14, p. 101] and also [2, 11, 15]. It would be interesting to relate non trivial maps σ to
an extended class of coverings of categories accordingly, we will not initiate this study
in the present paper.

We define a smash extension of an H-module category C to be the natural functor
from C to C#H . An expected compatibility result holds, namely if the number of objects
of C is finite, the corresponding matrix algebra a(C) has an usual smash extension
provided by a(C#H). The later algebra can indeed be considered since the category
C#H has also a finite number of objects, namely the set of objects of C. Moreover,
we have that a(C)#H = a (C#H).

We consider also Galois coverings of k-categories given by a group G, that is a k-
category with a free G-action and the projection functor to the corresponding quotient
category. More precisely, by definition a G-k-category C has a set action of G on the
set of objects, and has linear maps yCx → syCsx for each element s of G and each
couple of objects x and y, verifying the usual axioms that we recall in the text. In
other words we have a group morphism from G to the autofunctors of C. In case C
is object-finite, we infer a usual action of G by automorphisms of the algebra a(C). A
G-k-category is called free in case the set action on the objects is free, namely sx = x
implies s = 1. The quotient category is well defined only in this case and we recall its
construction, see [3, 9, 7, 5, 4].

The group algebra kG is a Hopf algebra, hence we can consider kG-module cate-
gories. Notice that G-k-categories form a wider class than kG-module categories. In
fact kG-module categories are G-k-categories which have trivial action of G on the set
of objects.

First we establish a comparison between two constructions obtained when starting
with a graded category C over a finite group G. From one side the smash product
category C#kG is defined in the present paper, and from the other side a smash product
category C#G has been considered in [4], actually the later is the Galois covering of C
corresponding to the grading. We show that C#kG and C#G are not equivalent but
Morita equivalent categories.

We note that starting with a Galois covering C of a category B, the covering
category C is B#G (see [4] and the grading of B introduced there, first considered by
E. Green in [10] for presented k-categories by a quiver with relations). Unfortunately
B#G has no natural kG-module category structure. However B#G and B#kG are
Morita equivalent and we perform the substitution. The later is a kG-module category
using the left kG-module structure of kG provided by tδs = δst−1 . In this way we
associate to the starting Galois covering the smash extension (B#kG)#kG of B#kG.

The important point is that the later is Morita equivalent to C while (B#kG)#kG
is isomorphic to a matrix category that we introduce, which in turn is Morita equiv-
alent to B. Notice that this result is a categorical version of the Cohen Montgomery
duality Theorem, see [6]. Hence we associate to the starting Galois covering C → B a
smash extension with the same group and where the categories are replaced by Morita
equivalent ones.
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Second we focus to the reverse procedure, namely given a smash extension of
categories with finite group G – that is a kG-module category B and the inclusion B →
C = B#kG – we intend to associate a Galois covering to this data. For this purpose
we consider the inflated category IFB of a category B along a sequence F = {Fx} of
sets associated to the vertices of the original category : each object x of B0 provides
| Fx | new objects while the set of morphisms from (x, i) to (y, j) is precisely the vector
space yBx with the obvious composition. For a finite group G the inflated category of a
kG-module category – using the constant sequence of sets G – has a natural structure
of a free G-k-category. The inflated category IGB is Morita equivalent to the matrix
category M|G|(B) by contraction and in turn the later is Morita equivalent to B.

Moreover the categorical quotient of IGC exists and in this way we obtain a Galois
covering having the required properties with respect to the starting smash extension.

2 Hopf module categories

In this section we introduce the smash product of a category with a Hopf algebra and
we specify this construction in case the Hopf algebra is the function algebra of a finite
group G. We will obtain that the later is Morita equivalent to the smash product
category defined in [4].

We recall (see for instance [14]) that for a Hopf algebra H over k, an H-module
algebra A is a k-algebra which is simultaneously an H-module in such a way that the
product map of A is a morphism of H-modules, where A ⊗ A is considered as an
H-module through the comultiplication of H . Moreover we require that h1A = ǫ(h)1A

for every h ∈ H .

We provide an analogous definition for a k-category C instead of an algebra.

DEFINITION 2.1 A k-category C is an H-module category if each morphism space
is an H-module, each endomorphism algebra is an H-module algebra and composition
maps are morphisms of H-modules, where as before the tensor product of H-modules
is considered as an H-module via the comultiplication of H .

Notice that analogously we may consider the structure of an H-comodule category.
In case H is a finite dimensional Hopf algebra, we recall from [14] that there is a
bijective vector space preserving correspondence between right H-modules and left
H∗-comodules.

Remark 2.2 Given a finite k-category C, let a(C) be the k-algebra obtained as the
direct sum of all k-module morphisms of C equipped with the usual matrix product
combined with the composition of C. In case C is an H-module category a(C) is an
H-module algebra.
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Let C be an H-module category. We define the k-category C#H as follows. The
objets remain the same, while given two objects x and y we put y(C#H)x = yCx⊗kH .
The composition map for morphisms

z(C#H)y ⊗ y(C#H)x −→ z(C#H)x

is given by

(zϕy ⊗ h) ◦ (yψx ⊗ h′) =
∑

zϕy ◦ (h1 yψx) ⊗ h2h
′,

where the comultiplication ∆ of H is given by ∆(h) =
∑
h1 ⊗ h2 and ◦ denotes

composition in C. As before we have an immediate coherence result:

PROPOSITION 2.3 Let C be a finite object H-module category C. Then the k-
algebras a(C)#H and a(C#H) are canonically isomorphic.

Let now G be a group. A G-graded k-category C (see for instance [4]) is a k-
category C such that each morphism space yCx is the direct sum of sub-vector spaces

yCs
x, indexed by elements s ∈ G such that zCy

t
yCx

s ⊆ yCx
ts for all x, y ∈ C and for

all s, t ∈ G.

Notice that as in the algebra case, gradings of a k-category C by means of a group
G are in one-to-one correspondence with kG-comodule category structures on C. Let
now G be a finite group, C be a G-graded k-category and consider the function algebra
kG = (kG)∗ which is a Hopf algebra. The category C is a kG-module category, hence
according to our previous definition we can consider C#kG.

We want to compare this category with another construction of a k-category de-
noted C#G which can be performed for an arbitrary group G, see [4] : the set of objects

is C0 ×G while the morphisms from (x, s) to (y, t) is the vector space yCx
(t−1s). The

composition of morphisms is well-defined as an immediate consequence of the definition
of a graded category.

Notice that given a graded algebra A considered as a single object G-graded k-
category, the preceding construction provides a category with as many objects as ele-
ments of G, even if G is infinite. If G is finite, the associated algebra is known to be
the usual smash product algebra A#kG, see [4].

We will recall below the definition of the module category of a k-category in order
to prove that in case of a finite group G the module categories over C#kG and C#G
are equivalent.

First we introduce a general setting which is interesting by itself.

DEFINITION 2.4 Let D be a k-category equipped with a partition E of the set of
objects D0 by means of finite sets {Ei}i∈I . Then DE is a new k-category obtained
by contraction along the partition, more precisely I is the set of objects of DE and
morphisms are given by
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j(DE)i =
⊕

y∈Ej x∈Ei

yDx.

Composition is given by matrix product combined with composition of the original
category. Notice that the identity map of an object i is given by

∑
z∈Ei

z1z, which
makes sense since Ei is finite.

EXAMPLE 2.5 Let A be an algebra and let F be a complete finite family of orthogonal
idempotents in A (we don’t require that the idempotents are primitive). Consider the
category D with set of objects F and morphisms yDx = yAx. Then the contracted
category along the trivial partition with only one subset is a single object category
having endomorphism algebra

⊕
x,y∈F yDx =

⊕
x,y∈F yAx = A.

We also observe that for a finite object k-category C, the contracted category along the
trivial partition is a single object category with endomorphism algebra precisely a(C).
More generally let E be a partition of C0, then the k-algebras a(C) and a(CE) are equal.

We will establish now a relation between D and DE at the representation theory
level of these categories. In order to do so we recall the definition of modules over a
k-category.

DEFINITION 2.6 Let C be a k-category. A left C-module M is a collection of k-
modules {xM}x∈C0

provided with a left action of the k-modules of morphisms of C,
given by k-module maps yCx ⊗k xM → yM, where the image of yfx ⊗ xm is denoted

yfx xm, verifying the usual axioms:

• zfy (ygx xm) = (zfy ygx) xm,

• x1x xm = xm.

In other words M is a covariant k-functor from C to the category of k-modules,
the preceding explicit definition is useful for some detailed constructions. We denote
by C − Mod the category of left C-modules. In case of a k-algebra A it is clear that
A-modules considered as k-vector spaces equipped with an action of A coincide with
Z-modules provided with an A-action. Analogously, C-modules as defined above are
the same structures than Z-functors from C to the category of Z-modules.

DEFINITION 2.7 Two k-categories are said to be Morita equivalent if their left mod-
ule categories are equivalent.

PROPOSITION 2.8 Let D be a k-category and let E be a partition of the objects
of D by means of finite sets. Then D and the contracted category DE are Morita
equivalent.
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We notice that this result is an extension of the well known fact that the category of
modules over an algebra is isomorphic to the category of functors over the category of
projective left modules provided by a direct sum decomposition of the free rank one left
module, obtained for instance through a complete system of orthogonal idempotents
of the algebra.

Proof. Let M be a D-module and let FM be the following DE-module:

iFM =
⊕

x∈Ei

xM for each i ∈ I,

the action of a morphism jfi = (yfx)x∈Ei,y∈Ej
∈ j(DE)i on im = (xm)x∈Ei

∈ iF (M)
is obtained as a matrix by a column product, namely:

jfi im = (
∑

x∈Ei

yfx xm)y∈Ej
.

A D−Mod morphism φ : M → M′ is a natural transformation between both functors,
i.e. a collection of k-maps xφ : xM → xM′, satisfying compatibility conditions. We
define Fφ : FM → FM′ by:

i(Fφ) =
⊕

x∈Ei

xφ.

Conversely given a DE-module N , let GN ∈ (D − Mod) be the functor given by

x(GN ) = ex (iN ), where i is unique element in I such that x ∈ Ei, and where ex is
the idempotent |Ei| × |Ei| - matrix with one in the (x, x) entry and zero elsewhere.

The action of yfx ∈ yDx on x(GN ) is obtained as follows: let i, j ∈ I be such
that x ∈ Ei and y ∈ Ej . Let yfx ∈ j(DE)i be the matrix with yfx in the (y, x) entry
and zero elsewhere. Then, for exn ∈ x(GN ) we put (yfx)(exn) = j(yfx)i i(exn) ∈
ey (jN ) = y(GN ).

It is easy to verify that both compositions of F and G are the corresponding identity
functors.

We will now apply the preceding result to the situationD = C#G using the partition
provided by the orbits of the free G-action on the objects.

THEOREM 2.9 The k-categories C#G and C#kG are Morita equivalent.

Proof. We consider the contraction of C#G along the partition provided by the orbits,
namely for x ∈ C0 we put Ex = {(x, g) | g ∈ G}. Observe that for all x ∈ C0 the set
Ex is finite since its cardinal is the order of the group G. Moreover the set of objects
((C#G)E)0 of the contracted category is identified to C0.

The morphisms from x to y in the contracted category are
⊕

s,t∈G yCx
t−1s. On

the other hand

y(C#kG)x = yCx ⊗ kG =
⊕

v∈G

yCx
v ⊗ kG.
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We assert that the contracted category (C#G)E and C#kG are isomorphic. The sets
of objects already coincide. We define the functor L on the morphisms as follows. Let

(y,t)f(x,s) be an elementary matrix morphism of the contracted category. We put

L
(
(y,t)f(x,s)

)
= f ⊗ δs ∈ yCx

t−1s ⊗ kG.

It is not difficult to check that L is an isomorphism preserving composition.

Remark 2.10 The categories C#G and C#kG are not equivalent in general as the
following simple example already shows : let A be the group algebra kC2 of the cyclic
group of order two C2 and let CA be the single object C2-graded k-category with A
as endomorphism algebra. The category C#C2 has two objects that we denote (∗, 1)
and (∗, t), while C#kC2 has only one object ∗. If C#G and C#kG were equiva-
lent categories the algebras EndC#C2

((∗, 1)) and EndC#kC2 (∗)) would be isomorphic.
However the former is isomorphic to k while the latter is the four dimensional algebra
EndC#kC2 (∗) = (k

⊕
kt) ⊗ kC2 .

3 kG-module categories

Let G be a group and let C be a kG-module category. Using the Hopf algebra struc-
ture of kG and the preceding definitions we are able to construct the smash category
C#kG. We have already noticed that if C is an object finite k-category then the algebra
a(C#kG) is the classical smash product algebra a(C)#kG.

According to [4] a G-k-category D is a k-category with an action of G on the
set of objects and, for each s ∈ G, a k-linear map s : yDx → syDsx such that
s(gf) = s(g)s(f) and t(sf) = (ts)f for any composable couple of morphisms g, f and
any elements s, t of G. Such a category is called a free G-k-category in case the action
of G on the objects is a free action, namely the only group element acting trivially on
the category is the trivial element of G.

Remark 3.1 Notice that kG-module categories are G-k-categories verifying that the
action of G on the set of objects is trivial.

We need to associate a free G-k-category to a kG-module category C, in order
to perform the quotient category as considered in [4]. For this purpose we consider
inflated categories as follows.

DEFINITION 3.2 Let C be a k-category and let F = (Fx)x∈C0
be a sequence of sets

associated to the objects of C. The set of objects of the inflated category IF C is

{(x, i) | x ∈ C0 and i ∈ Fx}

8



while (y,j)(IF C)(x,i) = yCx with the obvious composition provided by the composition
of C. Alternatively, consider F as a map ϕ from a set to C0 such that the fiber over
each object x is Fx. The set of objects of the inflated category is the fiber product of
C0 with this set over ϕ.

Remark 3.3 Clearly an inflated category is equivalent to the original category since all
the objects with the same first coordinate are isomorphic. Hence a choice of one object
in each set {(x, i) | i ∈ Fx} provides a full sub-category of IFC which is isomorphic to
C.

In case C is a kG-module category we use the constant sequence of sets provided by
the underlying set of G. We obtain a free action of G on the objects of the inflated
category IGC by translation on the second coordinate. Moreover the original action of
G on each morphism set of C provides a free G-k-category structure on the inflated
category. More precisely the G-action on the category IGC is obtained through maps
for each u ∈ G as follows:

u : (y,t)IGC(x,s) → (y,ut)IGC(x,us)

u
(
(y,t)f(x,s)

)
= (y,ut)(u (yfx)) (x,us).

As a next step we notice that the free G-k-category IGC has a skew category
(IGC)[G] associated to it. In fact any G-k-category has a related skew category defined
in [4]. We recall that (IGC)[G]0 = (IGC)0 = C0 ×G. For x, y ∈ C0 t, s ∈ G we have

(y,t)(IGC)[G](x,s) =
⊕

u∈G

(y,ut)(IGC)(x,s) =
⊕

u∈G

yCx = yCx ×G.

We are going to compare the categories C#kG and (IGC)[G]. In order to do so
we consider the intermediate quotient category (IGC)/G (see [4, Definition 2.1]). We
recall the definition of D/G, where D is a free G-k-category: the set of objects is the
set of G-orbits of D0, while the k-module of morphisms in D/G from the orbit α to
the orbit β is

β(D/G)α =




⊕

b∈β,a∈α

bDa



 /G.

Recall that X/G denotes the module of coinvariants of a kG-module X , namely the
quotient of X by (Ker ǫ)X where ǫ : kG → k the augmentation map. Composition
is well defined precisely because the action of G is free on the objects, more explicitly,
for g ∈ dDc and f ∈ bDa where b and c are objects in the same G-orbit, let s be the
unique element of G such that sb = c. Then [g][f ] = [g (sf)] = [(s−1g) f ].

LEMMA 3.4 The k-categories C#kG and (IGC)/G are isomorphic.
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Proof. Clearly the set of objects can be identified. Given a morphism (yfx ⊗ u) ∈

y(C#kG)x we associate to it the class [f ] of the morphism f ∈ (y,1)(IGC)(x,u). Notice
that in the smash category we have

(zgy ⊗ v)(yfx ⊗ u) = zgy v(yfx) ⊗ vu

which has image [zgy v(yfx)]. The composition in the quotient provides precisely
[g][f ] = [g vf ]. The inverse functor is also clear.

Since (IGC)/G and (IGC)[G] are equivalent (see [4]), we obtain the following:

PROPOSITION 3.5 The categories C#kG and (IGC)[G] are equivalent.

4 From Galois coverings to smash extensions and vice versa

Our aim is to relate kG-smash extensions and Galois coverings for a finite group G. Re-
call that it has been proved in [4] that any Galois covering with group G of a k-category
B is obtained via a G-grading of B, we have that C = B#G is the corresponding Galois
covering of B. We have already noticed that for a finite group G a G-grading of a
k-category B is the same thing than a kG-module category structure on B.

However neither B nor B#G have a natural kG-module category structure which
could provide a smash extension. We have proven before that B#kG is Morita equiva-
lent to the category B#G. The advantage of B#kG is that it has a natural kG-module
category structure provided by the left kG-module structure of kG given by tδs = δst−1 .

In this way we associate to the starting Galois covering B#G of B the smash
extension (B#kG) → (B#kG)#kG. In [15] the authors describe when a given Hopf-
Galois extension is of this type (in the case of algebras). We will prove that the later is
isomorphic to an ad-hoc category M|G|(B) which happens to be Morita equivalent to
B.

DEFINITION 4.1 Let B be a k-category and let n be a sequence of positive integers
(nx)x∈B0

. The objects of the matrix category Mn(B) remain the same objects of B.
The set of morphisms from x to y is the vector space of nx-columns and ny-rows
rectangular matrices with entries in yBx. Composition of morphisms is given by the
matrix product combined with the composition in B.

Remark 4.2 In case the starting category B is a single object category provided by an
algebra B, the matrix category has one object with endomorphism algebra precisely the
usual algebra of matrices Mn(B).

Notice that the matrix category that we consider is not the category Mat(C) defined
by Mitchell in [12]. In fact Mat(C) corresponds to the additivisation of C (see the
Appendix).
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We need the next result in order to have that the smash extension associated to a
Galois covering has categories Morita equivalent to the original ones. In fact this result
is also a categorical generalization of Cohen Montgomery duality Theorem [6].

LEMMA 4.3 Let B be a G-graded category. Then the categories (B#kG)#kG and
Mn(B) are isomorphic.

Proof. Both sets of objects coincide. Given two objects x and y we define two linear
maps:

φ : yBx ⊗ kG ⊗ kG→ y(Mn(B))x ,

ψ : y(Mn(B))x → yBx ⊗ kG ⊗ kG.

Given an homogeneous element

(f ⊗ δg ⊗ h) ∈ yBx ⊗ kG ⊗ kG,

where f has degree r and g, h ∈ G we put

φ(f ⊗ δg ⊗ h) = f rgEgh,

where rgEgh is the elementary matrix with 1 in the (rg, gh)-spot and 0 elsewhere. It
is straightforward to verify that φ is well-behaved with respect to compositions.

We also define ψ on elementary morphisms as follows:

ψ(f gEh) = f ⊗ δr−1g ⊗ g−1rh,

where r is the degree of f .

Next we have to prove that Mn(B) is Morita equivalent to B. In order to do so
we develop some Morita theory for k-categories which is interesting by itself. When
we restrict the following theory to a particular object, it will coincide with the classical
theory, see for instance [17, p.326]. Moreover, in case of a finite object set k-categories
both Morita theories coincide using the associated algebras that we have previously
described.

Let C be a k-category. For simplicity for a given object x we denote by Ax the k-
algebra xCx. For each x, let Bx be a k-algebra such that there is a (Bx, Ax)-bimodule
Px and a (Ax, Bx)-bimodule Qx verifying that Px ⊗Ax

Qx
∼= Bx as Bx-bimodules and

Qx ⊗Bx
Px

∼= Ax as Ax-bimodules. In other words for each object we assume that we
have a Morita context providing that Ax and Bx are Morita equivalent. Note that it
follows from the assumptions that Px is projective and finitely generated on both sides,
see for instance [17].

Using the preceding data we modify the morphisms in order to define a new k-
category D which will be Morita equivalent to C. In particular the endomorphism
algebra of each object x will turn out to be Bx.
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More precisely the set of objects of D remains the set of objects of C while for
morphisms we put

yDx = Py ⊗Ay yCx ⊗Ax
Qx.

Notice that for x = y we have xDx
∼= Bx. In order to define composition in D we need

to provide a map

(Pz ⊗Az zCy ⊗Ay
Qy) ⊗k (Py ⊗Ay yCy ⊗Ax

Qx) −→ Pz ⊗Az zCx ⊗Ax
Qx,

For this purpose let ϕx be a fixed Ax-bimodule isomorphism from Qx ⊗Bx
Px to Ax

and consider φx the composition the projection Qx ⊗k Px → Qx ⊗Bx
Px followed by

ϕx. Then composition is defined as follows

(pz ⊗ g ⊗ qy)(py ⊗ f ⊗ qx) = pz ⊗ g [φy(qy ⊗ py)] f ⊗ qx.

This composition is associative since the use of the morphisms φ do not interfere
in case of composition of three maps.

PROPOSITION 4.4 Let C and D be k-categories as above. Then C and D are Morita
equivalent.

Proof. For a C-module M we define the D-module FM as follows:

x(FM) = Px ⊗Ax xM, which is already a left Bx-module.

The left action yDx ⊗ x(FM) → y(FM) is obtained using the following morphism
induced by φx

(
Py ⊗Ay yCx ⊗Ax

Qx

)
⊗k (Px ⊗Ax xM) −→ Py ⊗Ay yCx ⊗k Ax ⊗k xM

and the actions of Ax and of yCx on xM. We then obtain a map with target y(FM).
This defines clearly a D-module structure.

Similarly we obtain a functor G in the reverse direction which is already an equiv-
alent inverse for F .

We apply now this Proposition to a k-category C and the category obtained from
C by replacing each endomorphism algebra by matrix algebras over it. For each object
x in C0 consider the k-algebra Bx = Mn(Ax). The bimodule Mn(Ax)(Px)Ax

is the left
ideal of Mn(Ax) given by the first column and zero elsewhere, while Ax

(Qx)Mn(Ax)

is given by the analogous right ideal provided by the first row. Then the category D
defined above is precisely Mn(C).

COROLLARY 4.5 C and Mn(C) are Morita equivalent.
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Remark 4.6 An analogous Morita equivalence still hold when the integer n is replaced
by a sequence of positive integers (nx)x∈C0

.

The applications of Morita theory for categories developed above covers a larger
spectra than the one considered in this paper. We have produced several sorts of Morita
equivalences for categories, namely expansion, contraction and the Morita context for
categories described above. We will prove the next result in the Appendix.

THEOREM 4.7 Let C and D be Morita equivalent k-categories. Up to equivalence
of categories, D is obtained from C by contractions and expansions.

EXAMPLE 4.8 Let A be a k-algebra and CA the corresponding single object category.
It is well known that the following k-category MCA is Morita equivalent to CA: objects
are all the positive integers [n] and the morphisms from [n] to [m] are the matrices
with n columns, m rows, and with A entries.

At each object [n] choose the system of n idempotents provided by the elementary
matrices which are zero except in a diagonal spot where the value is the unit of the
algebra. The expansion process through this choice provides a category with numerable
set of objects, morphisms are A between any couple of objects, they are all isomorphic,
consequently this category is equivalent to CA. This way a Morita equivalence (up to
equivalence) between CA and MCA is obtained using the expansion process.

Conversely, in order to obtainMCA from CA, first inflate CA using the set of positive
integers. Then consider the partition by means of the finite sets having all the positive
integers cardinality, namely {1}, {2, 3}, {4, 5, 6}, . . .. Finally the contraction along this
partition provides precisely MCA.

We provide now an alternative proof of the fact that a matrix category is Morita
equivalent to the original one. It provides also evidence for Theorem 4.7 concerning the
structure of the Morita equivalence functors. First consider the inflated category using
the sequence of positive integers defining the matrix category. We have shown before
that this category is equivalent to the original one. Secondly perform the contraction
of this inflated category along the finite sets partition provided by couples having the
same first coordinate. This category is the matrix category. Since we know that a
contracted category is Morita equivalent to the original one, this provides a proof that
a matrix category is Morita equivalent to the the starting category, avoiding the use of
Morita contexts. The alternative proof we have presented indicate how classical Morita
equivalence between algebras can be obtained by means of contractions, expansions
and equivalences of categories. More precisely Theorem 4.7 states that classical Morita
theory can be replaced by those processes.

The results that we have obtained provide the following

THEOREM 4.9 Let C −→ B be a Galois covering of categories with finite group G.

13



The associated smash extension B#kG −→ (B#kG)#kG verifies that B#kG is Morita
equivalent to C and (B#kG)#kG is Morita equivalent to B.

Finally notice that the proof of a converse for this result is a direct consequence of
the discussion we have made in the previous section:

THEOREM 4.10 Let C −→ B be a smash extension with finite group G. The cor-
responding Galois covering IGC −→ (IGC) /G verifies that IGC is equivalent to C and
that (IGC) /G is equivalent to B.

Proof. Indeed an inflated category is isomorphic to the original one; moreover B =
C#kG and by Lemma 3.4 this category is isomorphic to (IGC)/G.

5 Appendix: Morita equivalence of categories over

a field

We have considered in this paper several procedures that we can apply to a k-category.
We briefly recall and relate them with the karoubianisation (also called idempotent com-
pletion) and the additivisation (or additive completion), see for instance the appendix
of [16].

The inflation procedure clearly provides an equivalent category : given a set Fx

over each object x of the k-category C, the objects of the inflated category IF C are
the couples (x, i) with i ∈ Fx. Morphisms from (x, i) to (y, j) remain the morphisms
from x to y. Consequently objects with the same first coordinate are isomorphic in the
inflated category. Choosing one of them above each object of the original category C
provides a full subcategory of the inflated one, which is isomorphic to C.

The skeletonisation procedure consists in choosing precisely one object in each
isomorphism set of objects and considering the corresponding full subcategory. Clearly
any category is isomorphic to an inflation of its skeleton. Skeletons of the same category
are isomorphic, as well as skeletons of equivalent categories.

Those remarks show that up to isomorphism of categories, any equivalence of
categories is the composition of a skeletonisation and an inflation procedure.

Concerning Morita equivalence, we have used contraction and expansion. In order
to contract we need a partition of the objects of the k-category C by means of finite sets.
The sets of the partition become the objects of the contracted category, and morphisms
are provided by matrices of morphisms of C. Conversely, in order to expand we choose
a complete system of orthogonal idempotents for each endomorphism algebra at each
object of the k-category (the trivial choice is given by just the identity morphism at
each object). The set of objects of the expanded category is the disjoint union of all
those finite sets of idempotents. Morphisms from e to f are fyCxe, assuming e is an
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idempotent at x and f is an idempotent at y. Composition is given by the composition
of C.

We assert that the karoubianisation and the additivisation (see for instance [1, 16])
can be obtained through the previous procedures.

Recall that the karoubianisation of C replaces each object of C by all the idempo-
tents of its endomorphism algebra, while the morphisms are defined as for the expansion
process above.

Consider now the partition of the objects of the karoubianisation of C given by an
idempotent and its complement, namely the sets {e, 1−e} for each idempotent at each
object of C. The contraction along this partition provides a category equivalent to C,
since all the objects over a given object of C are isomorphic in the contraction of the
karoubianisation. Concerning the additivisation, notice first that two constructions are
in force which provide equivalent categories as follows.

The larger category is obtained from C by considering all the finite sequences of
objects, and morphisms given through matrix morphisms of C. Observe that two objects
(i.e. two finite sequences) which differ by a transposition are isomorphic in this category,
using the evident matrix morphism between them.

Consequently the objects of the smaller construction are the objects of the previous
one modulo permutation, namely the set of objects are finite sets of objects of C with
positive integers coefficients attached. In other words objects are maps from C0 to N

with finite support. Morphisms are once again matrix morphisms.

The observation above concerning finite sequences differing by a transposition
shows that the larger additivisation completion is equivalent to the smaller one.

Finally the smaller additivisation of C can be expanded: choose the canonical com-
plete orthogonal idempotent system at each object provided by the matrix endomor-
phism algebra. Of course the expanded category have several evident isomorphic objects
which keeps trace of the original objects. A choice provides a full subcategory equivalent
to C.

It follows from this discussion that karoubianisation and additivisation provide
Morita equivalent categories to a given category, using contraction and expansion pro-
cesses, up to isomorphism of categories.

We denote Ĉ the completion of C, namely the additivisation of the karoubianisation
(or vice-versa since those procedures commute). We notice that two categories are
Morita equivalent if and only if their completions are Morita equivalent.

Recall that a k-category is called amenable if it has finite coproducts and if idempo-
tents split, see for instance [8]. It is well known and easy to prove that the completion

Ĉ is amenable.

We provide now a proof of Theorem 4.7. We have shown that the completion of a
k-category is obtained (up to equivalence) by expansions and contractions of the original
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one. Notice that Ĉ and D̂ are Morita equivalent amenable categories. We recall now
the proof that this implies that the categories Ĉ and D̂ are already equivalent (a result
known as ”Freyd’s version of Morita equivalence”, see [12, p.18]): consider the full sub-

category of representable Ĉ-modules, namely modules of the form −Ĉx. This category
is isomorphic to the opposite of the original one (this is well known and immediate

to prove using Yoneda’s Lemma). Since Ĉ is amenable, representable Ĉ-modules are
precisely the small (or finitely generated) projective ones, see for instance [8, p. 119].
Finally the small projective modules are easily seen to be preserved by any equivalence
of categories; consequently the opposite categories of Ĉ and D̂ are equivalent, hence
the categories themselves are also equivalent.
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