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Morrey-Campanato estimates for Helmholtz

equations with two unbounded media

Elise Fouassier

Abstract

We prove uniform Morrey-Campanato estimates for Helmholtz equations in the
case of two unbounded inhomogeneous media separated by an interface. They imply
weighted L

2-estimates for the solution. We also prove a uniform L
2-estimate without

weight for the trace of the solution on the interface.

AMS subject classifications: 35J05, 35B45.

1 Introduction

We consider the following Helmholtz equation

iεu+ ∆u+ n(x)u = f(x), x ∈ R
d. (1.1)

We assume that the refraction index n is nonnegative and discontinuous at
the interface between two unbounded inhomogeneous media Ω+, Ω− such that
Ω+ ∪ Ω− = Ω+ ∪ Ω− = R

d. We write

n(x) =

{

n+(x) if x ∈ Ω+

n−(x) if x ∈ Ω−.

We study here the limiting absorption principle, i.e. the limit when ε → 0+

of equation (1.1): our goal is to prove bounds on u that are uniform in ε. A
related question is the statement of the Sommerfeld radiation condition for the
following equation

∆u+ n(x)u = f(x), x ∈ R
d. (1.2)

This is an open problem in the full generality of our assumptions, stated below.

In this paper, we prove uniform Morrey-Campanato type estimates for this
equation, using a multiplier method borrowed from [9]. These bounds encode

in the optimal way the decay: |u(x)| ∼ 1/|x|
d−1

2 at infinity of the solution u.
They imply weighted L2-estimates for the solution u. We also prove a uniform
L2-estimate without weight for the trace of the solution on the interface, which
states that u carries essentially no energy on this set.

In order to state precisely our assumptions and results, we need the following
notations.
First, we use the Morrey-Campanato norm, defined for u ∈ L2

loc,

‖u‖Ḃ∗ = sup
R>0

1

R

∫

B(R)

|u(x)|2dx, (1.3)
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where B(R) denotes the ball of radius R. We also use the following dual norm

‖f‖Ḃ =
∑

j∈Z

(

2j+1

∫

C(j)

|f(x)|2dx
)1/2

, (1.4)

where C(j) = {x ∈ R
d/2j ≤ |x| ≤ 2j+1}.

The duality is given by the easy estimate

∣

∣

∣

∫

fudx
∣

∣

∣
≤ ‖f‖Ḃ‖u‖Ḃ∗. (1.5)

Note that both norms Ḃ and Ḃ∗ are homogeneous in space.

We also denote the radial and tangential derivatives by

∂

∂r
=

x

|x|
· ∇,

∂

∂τ
= ∇−

x

|x|

∂

∂r
.

On the other hand, we assume that the interface between the two media
Γ = ∂Ω+ = ∂Ω− is a smooth surface (Lipschitz is enough). Let dγ be the
euclidian surface measure on Γ and ν(x) be the unit normal vector at x ∈ Γ
directed from Ω− to Ω+. We denote, for x ∈ Γ, the jump

[n](x) = n+(x) − n−(x).

Throughout this paper we will write ∇n instead of ∇n+1Ω+
+ ∇n−1Ω−

, the
derivative of n outside the interface. Similarly, ∂dn will denote the partial
derivative of n with respect to the xd variable outside the interface.

The key assumptions we make on the interface Γ and the refraction index n
are the following. We comment on these assumptions later.
(H1) There is α > 0 such that the d-th component of ν satisfies

νd(x) ≥ α for all x ∈ Γ. (1.6)

(H2) [n](x) has the same sign for all x ∈ Γ; the following notation will be
convenient: let σ = − if [n] is non-negative and σ = + if [n] is non-positive.
(H3) n ∈ L∞, n ≥ 0.
(H4)

2
∑

j∈Z

sup
C(j)

(x · ∇n(x))−
n(x)

:= β1 <∞. (1.7)

(H5)
1

α

∑

j∈Z

sup
C(j)

2j+1 (∂dn(x))σ

n(x)
:= β2 <∞. (1.8)

(H6) β1 + β2 < 1.

We are now ready to state our main theorem.
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Theorem 1.1 For dimensions d ≥ 3, assume (H1)-(H6). Then, the solution
to the Helmholtz equation (1.1) satisfies the following estimates :

‖∇u‖2
Ḃ∗

+‖n1/2u‖2
Ḃ∗

+‖(x·∇n)
1/2
+ u‖2

Ḃ∗
+

∫

Rd

|∇τu|
2

|x|
dx+sup

R>0

1

R2

∫

S(R)

|u|2dσR

+

∫

Γ

∣

∣[n]
∣

∣ |u|2dγ +

∫

Rd

|∂dn| |u|
2dx ≤ C‖f‖2

Ḃ
, (1.9)

where C is a constant depending only on α, β1 and β2.

We would like to stress several aspects of our analysis. First, the homogene-
ity of the estimates and assumptions makes this theorem compatible with the
high frequencies. The scaling invariance plays a fundamental role in the high
frequency limit of Helmholtz equations (see Benamou et al [2], Castella et al [3]
for the case of a regular index of refraction).

We would like to point out several terms in the left-hand side. The last two
say that, in principle, the energy is not trapped at the interface and it mainly
radiates in the directions where ∂dn vanishes. On the other hand, the first two
terms essentially assert that u and ∇u belong to the optimal space Ḃ∗, provided
f ∈ Ḃ. This is the same Morrey-Campanato estimates as in the regular case.

Let us now comment our assumptions on n. First, they allow some growth
at infinity : n does not go to a constant at infinity. The hypotheses (H2), (H4)
and (H5) can be understood as conditions on the trajectories of the geometrical
optics. The condition (H4) implies the dispersion of these trajectories. The
conditions (H2) and (H5) ensure that the energy goes from one side of the in-
terface to the other. The condition (H5) involves both the interface and the
index: it becomes a weaker assumption on the index when the interface is close
to a hyperplane (α ∼ 1). This type of assumptions is natural in the study of the
high frequency limit where the link with Liouville’s equations can be understood
through Wigner transform (see L. Miller [8] for a refraction result in the case of
a sharp interface for Schrodinger equation, E. Fouassier [6] for high frequency
limit of Helmholtz equations with interface; for an account on high frequency
limit for wave equations, see P.-L. Lions, T.Paul [7], and [2], [3] for Helmholtz
equations without interface).

Taking [n] = 0 in Theorem 1.1, i.e. the case without interface, our results
boil down to the uniform estimate proved by B. Perthame, L. Vega [9] when
the refraction index satisfies assumptions (H3)-(H4) with β1 < 1. Under these
assumptions, they also proved in [10], [11] an energy estimate saying that the
energy |u|2 mainly radiates in the directions of the critical points of n∞ (where
n∞ is given by n(x) → n∞( x

|x|), |x| → ∞). In our case, the corresponding

energy estimate corresponds to the last two terms.
In the case of two unbounded media, similar results, but not scaling invariant,

were obtained in previous papers. Eidus [5] first proved weighted-L2-estimates,
and the L2-estimate on the trace of the solution on the interface, for a piecewise
constant index of refraction. To do so, he assumed that the interface satisfied
an extra ”cone-like” shape condition, |x · ν| ≤ C for x ∈ Γ. Under the same
assumption on the interface, Bo Zhang [12] also proved inhomogeneous B∗-B
estimates when n is a long-range perturbation of a piecewise constant function.
S. DeBievre, D.W. Pravica [4] proved weighted-L2-estimates in a very general
context using Mourre’s commutator method. In particular they considered the
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case of an index that is smooth outside of a compact set in the xd-direction and
only bounded in this compact set.

Our proof is based on a multiplier method. Following B. Perthame, L.
Vega [9], we use a combination of a Morawetz-type multiplier and of an ellip-
tic multiplier. Following Eidus [5], we combine it with a multiplier specific to
the case with an interface for which one direction plays a particular role (the
xd-direction here). The first two multipliers allow us to control both ∇u and
u locally in L2 by ‖f‖Ḃ and we estimate the integral over the interface of |u|2

using the third multiplier.

The paper is organized as follows. In Sections 2 and 3, we present the
basic multipliers and the particular choice we make here to prove Theorem 1.1.
Then, in Section 4, we give another estimate containing the trace of ∇u on the
interface.

2 Basic identities

Lemma 2.1 The solution to the Helmholtz equation (1.1) satisfies the following
four identities, for smooth real valued test functions ϕ, ψ,

−

∫

Rd

ϕ(x)|∇u(x)|2 +
1

2

∫

Rd

∆ϕ(x)|u(x)|2 +

∫

Rd

ϕ(x)n(x)|u(x)|2

= Re

∫

Rd

f(x)ϕ(x)ū(x), (2.1)

ε

∫

Rd

ϕ(x)|u(x)|2 − Im

∫

Rd

∇ϕ(x) · ∇u(x)ū(x) = Im

∫

Rd

f(x)ϕ(x)ū(x), (2.2)

∫

Rd

∇ū(x)·D2ψ(x)·∇u(x)−
1

4

∫

Rd

∆2ψ(x)|u(x)|2+
1

2

∫

Rd

∇n(x)·∇ψ(x)|u(x)|2

− εIm

∫

Rd

∇ψ(x) · ∇u(x)ū(x) +
1

2

∫

Γ

[n]ν(x) · ∇ψ(x)|u(x)|2dγ(x)

= −Re

∫

Rd

f(x)(∇ψ(x) · ∇ū(x) +
1

2
∆ψ(x)ū(x)), (2.3)

1

2

∫

Γ

[n]νd(x)|u(x)|
2dγ(x) +

1

2

∫

Rd

∂dn(x)|u(x)|2

= −Re

∫

Rd

f(x)∂dū(x) − εIm

∫

Rd

u(x)∂dū(x). (2.4)

Proof: The identities (2.1) and (2.2) are obtained by multiplying the Helmholtz
equation (1.1) by ϕū and then taking the real and imaginary parts. The iden-
tity (2.3) is obtained using the Morawetz-type multiplier ∇ψ(x) · ∇ū(x) +
1
2∆ψ(x)ū(x) and taking the real part. To get the last identity (2.4), we use
the multiplier ∂dū and take the real part. �
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Lemma 2.2 The solution to the Helmholtz equation (1.1) satisfies the following
estimate

∫

Γ

|[n]||u(x)|2dγ(x) +
1

α

∫

Rd

(∂dn)σ|u|
2

≤ 2

∫

Rd

|f∂dū| + 2ε
∣

∣Im

∫

Rd

u∂dū
∣

∣ +
1

α

∫

Rd

(∂dn)−σ|u|
2. (2.5)

Proof: This lemma follows directly from the identity (2.4) using the hypothesis
(H1). �

3 Proof of theorem 1.1

The following proof in which all the details are included for the convenience
of the reader is essentially adapted from [9], apart from the treatment of the
terms involving the interface and the partial derivative with respect to the xd-
direction, which is the key difficulty of this paper.

We derive the proof of theorem 1.1 from the above identities. We make the
following choice of test functions ψ and ϕ, for R > 0,

∇ψ(x) =

{

x/R for |x| ≤ R

x/|x| for |x| > R,

ϕ(x) =

{

1/2R for |x| ≤ R

0 for |x| > R.

We also need the following calculations (in the distributional sense)

D2
ijψ(x) =

{

δij/R for |x| ≤ R

(δij |x|
2 − xixj)/|x|

3 for |x| > R,

∆ψ(x) =

{

d/R for |x| ≤ R

(d− 1)/|x| for |x| > R,

and the inequality

1

4

∫

Rd

v∆(2ϕ− ∆ψ) ≥
d− 1

4R2

∫

S(R)

vdσR for v ≥ 0. (3.1)

We add the identity (2.1) to (2.3), which gives, using the inequality (3.1),
for the previous choice of ψ, ϕ,

1

2R

∫

B(R)

|∇u(x)|2 +
1

2R

∫

B(R)

n|u(x)|2 +

∫

|x|>R

1

|x|

(

|∇u(x)|2 −

∣

∣

∣

∣

x

|x|
· ∇u

∣

∣

∣

∣

2)

+
d− 1

4R2

∫

S(R)

|u|2dσR +
1

2

∫

Rd

(∇ψ(x) · ∇n(x))+|u(x)|
2

≤ C

∫

Rd

|f(x)|
|u(x)|

|x|
+ C

∫

Rd

|f(x)||∇u(x)| +
1

2

∫

Rd

(∇ψ(x) · ∇n(x))−|u(x)|
2

+ Cε

∫

Rd

|u(x)||∇u(x)| +
1

2

∫

Γ

∣

∣[n]
∣

∣ |ν · ∇ψ||u(x)|2dγ.
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Then, we use the inequality (2.5), together with the bound |∇ψ| ≤ 1 to
estimate the trace term

1

R

∫

B(R)

|∇u(x)|2 +
1

R

∫

B(R)

|u(x)|2 +
1

R

∫

B(R)

(x · ∇n(x))+|u(x)|
2 (3.2)

+

∫

|x|>R

|∇τu(x)|
2

|x|
+
d− 1

2R2

∫

S(R)

|u|2dσR (3.3)

≤ C

∫

Rd

|f(x)|
|u(x)|

|x|
+ C

∫

Rd

|f(x)||∇u(x)| + Cε

∫

Rd

|u(x)||∇u(x)| (3.4)

+

∫

Rd

(∇ψ(x) · ∇n(x))−|u(x)|
2 +

1

α

∫

Rd

(∂dn(x))σ |u(x)|
2.

(3.5)

Our task is to estimate the terms in the right-hand side of the last inequal-
ity. We separate them in three types : those containing the source f , those
containing ε and those containing the index n.
We begin by the two terms containing f . Using the duality estimate (1.5), we
get for all δ > 0

∫

Rd

|f ||∇u| ≤ ‖∇u‖Ḃ∗‖f‖Ḃ

≤ δ‖∇u‖2
Ḃ∗

+ Cδ‖f‖
2
Ḃ
.

For the second term, we use a Cauchy-Schwarz inequality to obtain, for all
δ > 0

∫

Rd

|f(x)|
|u(x)|

|x|
≤

∑

j∈Z

(

2−j

∫

C(j)

|u|2

|x|2

)1/2(

2j

∫

C(j)

|f |2
)1/2

≤

(

sup
R>0

1

R2

∫

S(R)

|u|2dσR

)1/2
∑

j∈Z

(

2j

∫

C(j)

|f |2
)1/2

≤ δ sup
R>0

1

R2

∫

S(R)

|u|2dσR + CδN(f)2.

Next, we turn to the term containing ε. First, using the identities (2.2) and
(2.1) with ϕ = 1, one can notice

ε

∫

Rd

|u|2 ≤

∫

Rd

|fū|,

ε

∫

Rd

|∇u|2 ≤ ‖n‖L∞

∫

Rd

|fū|.

Hence, using again the duality estimate (1.5), we obtain for all δ > 0

ε

∫

Rd

|u||∇u| ≤ C‖u‖Ḃ∗‖f‖Ḃ

≤ δ‖∇u‖2
Ḃ∗

+ Cδ‖f‖
2
Ḃ
.
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The terms with n remain. We write
∫

Rd

(∇ψ · ∇n)−|u|
2 ≤

∑

j∈Z

∫

C(j)

n|u|2
(x · ∇n(x))−

n|x|

≤

(

sup
R>0

1

R

∫

B(R)

|u|2
)

∑

j∈Z

sup
C(j)

2j+1 (x · ∇n)−
n|x|

.

Hence,
∫

Rd

(∇ψ(x) · ∇n(x))−|u(x)|
2 ≤ β1‖u‖

2
Ḃ∗
.

Similarly, we get
1

α

∫

Rd

(∂dn(x))σ |u(x)|
2 ≤ β2‖u‖

2
Ḃ∗
.

Putting all these estimates together gives for all δ > 0

1

R

∫

B(R)

|∇u(x)|2 +
1

R

∫

B(R)

|u(x)|2 +
1

R

∫

B(R)

(x · ∇n(x))+|u(x)|
2

+

∫

|x|>R

|∇τu(x)|
2

|x|
+
d− 1

2R2

∫

S(R)

|u|2dσR

≤ (β1 + β2 + δ)‖u‖2
Ḃ∗

+ Cδ‖f‖
2
Ḃ
.

Hence, choosing δ small enough (depending on β1 + β2) and taking the
supremum with respect to R, we obtain

‖∇u‖2
Ḃ∗

+ ‖n1/2u‖2
Ḃ∗

+

∫

Rd

|∇τu|
2

|x|
+ ‖(x · ∇n)

1/2
+ u‖2

Ḃ∗
(3.6)

+ sup
R>0

1

R2

∫

S(R)

|u|2dσR ≤ C‖f‖2
Ḃ
. (3.7)

To end up the proof, it remains to estimate the two last terms in the left-hand
side of (1.9). We use the inequality (2.5) and the previous bounds

∫

Γ

∣

∣[n]
∣

∣ |u(x)|2dγ +

∫

Rd

(∂dn)−σ|u|
2

≤ C

∫

Rd

|f∂dū| + Cε

∫

Rd

|u|∇u|+ C
1

α

∫

Rd

(∂dn)σ|u|
2

≤ C(‖f‖2
Ḃ

+ ‖u‖2
Ḃ∗

).

Using (3.6) we obtain
∫

Γ

∣

∣[n]
∣

∣ |u(x)|2dγ +

∫

Rd

(∂dn)−σ|u|
2 ≤ C‖f‖2

Ḃ
.

This ends the proof.

4 Another trace estimate

In this section, we assume that the interface Γ is a hyperplane Γ = {xd = 0}.
Then we prove the following extra uniform estimate

7



Theorem 4.1 Under the assumptions of Theorem 1.1, if we assume moreover
that Γ = {xd = 0} and there exists β > 0 such that 〈x〉1+β |∇x′n| ∈ L∞, then

∫

Γ

∣

∣[n]
∣

∣ |∇u(x)|2dx′ ≤ C
(

‖f‖2
Ḃ

+ ‖∇x′f‖2
Ḃ

)

(4.1)

where C is a constant depending only on α, β1, β2 and ‖〈x〉1+β∇x′n‖L∞.

To prove this theorem, we will need the following identity

Lemma 4.1 The solution to the Helmholtz equation (1.1) satisfies

1

2

∫

Γ

[n] |∇x′u(x)|2dx′ −
1

2

∫

Γ

[n] |∂du(x)|
2dx′ −

1

2

∫

Γ

[n2] |u(x)|2dx′

−

∫

Rd

∂d(n
2(x))|u|2 − εIm

∫

Rd

n(x)u(x)∂dū(x)

= Re

∫

Rd

n(x)f(x)∂dū(x). (4.2)

Proof: This identity is obtained by multiplying the equation (1.1) by n∂dū and
taking the real part. �

Proof of Theorem 4.1:
Firstly, note that ∇x′n u ∈ Ḃ:

‖∇x′n u‖Ḃ ≤
∑

j∈Z

(

2j+1

∫

C(j)

〈x〉−2−2β |u|2
)1/2

≤
∑

j<0

(

2j+1

∫

C(j)

〈x〉−2−2β |u|2
)1/2

+
∑

j≥0

(

2j+1

∫

C(j)

〈x〉−2−2β |u|2
)1/2

but, using (1.9), we have, for δ > 0,

‖〈x〉−
1
2
−δu‖L2 ≤ C‖u‖Ḃ∗ ≤ C‖f‖Ḃ,

hence

‖∇x′n u‖Ḃ ≤ C‖f‖Ḃ

∑

j<0

2
j+1

2 + C
∑

j≥0

2−jβ/2‖〈x〉−
1
2
− β

2 u‖L2

≤ C‖f‖Ḃ.

So, we can apply the estimate (1.9) to ∇x′u. Indeed, ∇x′u satisfies the following
Helmholtz equation

iε∇x′u+ ∆∇x′u+ n(x)∇x′u = ∇x′f(x) + ∇x′n u, (4.3)

so ∇x′u satisfies

∫

Γ

∣

∣[n]
∣

∣ |∇x′u|2dx′ ≤ C
(

‖(∇x′f‖2
Ḃ

+ ‖f‖Ḃ

)

.
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Then, we use (4.2) to get

∫

Γ

∣

∣[n]
∣

∣ |∂du|
2dx′ ≤

∫

Γ

∣

∣[n]
∣

∣ |∇x′u|2dx′ +

∫

Γ

∣

∣[n2]
∣

∣ |u|2dx′ +

∫

Rd

|∂d(n
2)||u|2

+ ε

∫

Rd

n|u∂dū| +

∫

Rd

n|f∂dū|. (4.4)

Since n ∈ L∞, we have
∫

Γ

∣

∣[n2]
∣

∣ |u|2dx′ ≤ 2‖n‖∞

∫

Γ

|[n]||u|2dx′ ≤ C‖f‖2
Ḃ

and
∫

Rd

|∂d(n
2)||u|2 ≤ 2‖n‖∞

∫

Rd

|∂dn||u|
2 ≤ C‖f‖2

Ḃ
.

Hence, estimating the two last terms in the rigth-hand side of (4.4) as before
and using (1.9), we get

∫

Γ

∣

∣[n]
∣

∣ |∂du|
2dx′ ≤ C

(

‖f‖2
Ḃ

+ ‖∇x′f‖Ḃ

)

,

and thus the theorem is proved.
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