
HAL Id: hal-00004249
https://hal.science/hal-00004249

Submitted on 16 Feb 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A note on the Burrows-Wheeler transformation
Maxime Crochemore, Jacques Désarménien, Dominique Perrin

To cite this version:
Maxime Crochemore, Jacques Désarménien, Dominique Perrin. A note on the Burrows-Wheeler trans-
formation. Theoretical Computer Science, 2005, 332 (1-3), pp.567-572. �10.1016/j.tcs.2004.11.014�.
�hal-00004249�

https://hal.science/hal-00004249
https://hal.archives-ouvertes.fr


cc
sd

-0
00

04
24

9,
 v

er
si

on
 1

 -
 1

6 
Fe

b 
20

05

A note on the Burrows-Wheeler transformation

Maxime Crochemore Jacques Désarménien

Dominique Perrin

February 17, 2005

Abstract

We relate the Burrows-Wheeler transformation with a result in com-

binatorics on words known as the Gessel-Reutenauer transformation.

1 Introduction

The Burrows-Wheeler transformation is a popular method used for text com-
pression [2]. The rough idea is to encode a text in two passes. In the first pass,
the text w is replaced by a text T (w) of the same length obtained as follows: list
the cyclic shitfs of w in alphabetic order as the rows w1, w2, . . . , wn of an array.
Then T (w) is the last column of the array. In a second pass, a simple encoding
allows to compress T (w), using a simple method like run-length or move-to-front
encoding. Indeed, adjacent rows will often begin by a long common prefix and
T (w) will therefore have long runs of identical symbols. For example, in a text
in english, most rows beginning with ‘nd’ will end with ‘a’. We refer to [11] for
a complete presentation of the algorithm and an analysis of its performances.
It was remarked recently by S. Mantaci, A. Restivo and M. Sciortino [10] that
this transformation was related with notions in combinatorics on words such
as Sturmian words. Similar considerations were developped in [1] in a different
context. The results presented here are also close to the ones of [4].

In this note, we study the transformation from the combinatorial point of
view. We show that the Burrows-Wheeler transformation is a particular case of
a bijection due to I.M. Gessel and C. Reutenauer which allows the enumeration
of permutations by descents and cyclic type (see [9]).

The paper is organized as follows. In the first section, we describe the
Burrows-Wheeler transformation. The next section describes the inverse of the
transformation with some emphasis on the computational aspects. The last
section is devoted to the link with the Gessel-Reutenauer correspondance.

2 The Burrows-Wheeler transformation

The principle of the method is very simple. We consider an ordered alphabet A.
Let w = a1a2 · · · an be a word of length n on the alphabet A. The Parikh vector

1



of a word w on the alphabet A is the integer vector v = (n1, n2, . . . , nk) where
ni is the number of occurrences of the i-th letter of A in w. We suppose w to
be primitive, i.e. that w is not a power of another word. Let w1, w2, . . . , wn be
the sequence of conjugates of w in increasing alphabetic order. Let bi denote
the last letter of wi, for i = 1, . . . , n. Then the Burrows-Wheeler transform of
w is the word T (w) = b1b2 · · · bn.

Example 1 Let w = abracadabra. The list of conjugates of w sorted in alpha-
betical order is represented below.

1 2 3 4 5 6 7 8 9 10 11
1 a a b r a c a d a b r

2 a b r a a b r a c a d

3 a b r a c a d a b r a

4 a c a d a b r a a b r

5 a d a b r a a b r a c

6 b r a a b r a c a d a

7 b r a c a d a b r a a

8 c a d a b r a a b r a

9 d a b r a a b r a c a

10 r a a b r a c a d a b

11 r a c a d a b r a a b

The word T (w) is the last column of the array. Thus T (w) = rdarcaaaabb.

It is clear that T (w) depends only on the conjugacy class of w. Therefore, in
order to study the correspondance w 7→ T (w), we may suppose that w is a
Lyndon word, i.e. that w = w1. Let ci denote the first letter of wi. Thus the
word z = c1c2 · · · cn is the nondecreasing rearrangement of w (and of T (w)).

Let σ be the permutation of the set {1, . . . , n} such that σ(i) = j iff wj =
aiai+1 · · ·ai−1. In other terms, σ(i) is the rank in the alphabetic order of the
i-th circular shift of the word w.

Example 1 (continued)
We have

σ =

(

1 2 3 4 5 6 7 8 9 10 11
1 3 7 11 4 8 5 9 2 6 10

)

By definition, we have for each index i with 1 ≤ i ≤ n

ai = cσ(i). (1)

We also have the following formula expressing T (w) using σ

bi = aσ−1(i)−1 (2)

Indeed, bσ(j) is the last letter of wσ(j) = ajaj+1 · · · aj−1, whence bσ(j) = aj−1

which is equivalent to the above formula.

2



Let π = P (w) be the permutation defined by π(i) = σ(σ−1(i) + 1) where
the addition is to be taken modn. Actually, π is just the permutation obtained
by writing σ as a word and interpreting it as an n-cycle. Thus, we have also
σ(i) = πi−1(1) and

ai = cπi−1(1) (3)

Example 1 (continued)
We have, written as a cycle

π =
(

1 3 7 11 4 8 5 9 2 6 10
)

and as an array π =

(

1 2 3 4 5 6 7 8 9 10 11
3 6 7 8 9 10 11 5 2 1 4

)

Substituting in Formula (2) the value of ai given by Formula (1), we obtain
bi = cσ(σ−1(i)−1) which is equivalent to

ci = bπ(i) (4)

Thus the permutation π transforms the last column of the array of conjugates
of w into the first one. Actually, it can be noted that π transforms any column
of this array into the following one.

The computation of T (w) from w can be done in linear time. Indeed, pro-
vided w is chosen as a Lyndon word, the order between the conjugates is the
same as the order between the corresponding suffixes. The computation of the
permutation σ results from the suffix array of w which can be computed in
linear time [3] on a fixed alphabet. The corresponding result on the alphabet
of integers is a more recent result. It has been proved independently by three
groups of researchers, [7], [8] and [6].

3 Inverse transformation

We now show how w can be recovered from T (w). For this, we introduce the
following notation. The rank of i in the word y = b1b2 · · · bn, denoted rank(i, y)
is the number of occurrences of the letter bi in b1b2 · · · bi.

We observe that for each index i, and for the aforementioned words y =
b1b2 · · · bn and z = c1c2 · · · cn

rank(i, z) = rank(π(i), y). (5)

Indeed, we first note that for two words u, v of the same length and any letter
a, one has au < av ⇔ ua < va (⇔ u < v). Thus for all indices i, j

i < j and ci = cj ⇒ π(i) < π(j). (6)

Hence, the number of occurrences of ci in c1c2 · · · ci is equal to the number of
occurrences of bπ(i) = ci in b1b2 · · · bπ(i).

3



To obtain w from T (w) = b1b2 · · · bn, we first compute z = c1c2 · · · cn by
rearranging the letters bi in nondecreasing order. Property (5) shows that π(i)
is the index j such that ci = bj and rank(j, y) = rank(i, z). This defines the
permutation π, from which σ can be reconstructed. An algorithm computing π

from y = T (w) is represented below.

Permutation(b1b2 · · · bn)

1 c← sort(b1b2 · · · bn)
2 for i← 1 to n do

3 if i = 1 or ci−1 6= ci then

4 j ← 0
5 do j ← j + 1
6 while bj 6= ci

7 π(i)← j

8 return π

This algorithm can be optimized to a linear-time algorithm by storing the first
position of each symbol in the word z.

Finally w can be recovered from z = c1c2 · · · cn and π by Formula (3). The
algorithm allowing to recover w is represented below.

Word(z, π)

1 j ← 1
2 a1 ← c1

3 for i← 2 to n do

4 j ← π(j)
5 aj ← cj

6 return w

The computation of w is not possible without the Parikh vector or equivalently
the word z. One can however always compute the word w on the smallest possi-
ble alphabet associated with permutation π (this is the computation described
in [1]).

4 Descents of permutations

A descent of a permutation π is an index i such that π(i) > π(i+1). We denote
by des(π) the set of descents of the permutation π. It is clear by Property (6)
that if i is a descent of P (w), then ci 6= ci+1. Thus, the number of descents of
π is at most equal to k − 1 where k is the number of symbols appearing in the
word w.

Example 1 (continued) The descents of π appear in boldface.

π =

(

1 2 3 4 5 6 7 8 9 10 11
3 6 7 8 9 10 11 5 2 1 4

)

Thus des(π) = {7, 8, 9}.

4



Let us fix an ordered alphabet A with k elements for the rest of the paper.
Let w be a word and v = (n1, n2, . . . , nk) be the Parikh vector of w. We say
that v is positive if ni > 0 for i = 1, 2, . . . , k. We denote by ρ(v) the set of
integers ρ(v) = {n1, n1 + n2, . . . , n1 + · · ·+ nk−1}. When v is positive, ρ(v) has
k − 1 elements. Let π = P (w) and let v be the Parikh vector of w. It is clear
by Formula 6 that we have the inclusion des(π) ⊂ ρ(v).

Example 1 (continued) The Parikh vector of the word w = abracadabra is
v = (5, 2, 1, 1, 2) and ρ(v) = {5, 7, 8, 9}.

The following statement results from the preceding considerations.

Theorem 1 For any positive vector v = (n1, n2, · · · , nk) with n = n1+· · ·+nk,
the map w 7→ π = P (w) is one to one from the set of conjugacy classes of
primitive words of length n on A with Parikh vector v onto the set of cyclic
permutations on {1, 2, . . . , n} such that ρ(v) contains des(π).

This result is actually a particular case of a result stated in [9] and essentially
due to I. Gessel and C. Reutenauer [5]. The complete result ([9], Theorem 11.6.1
p. 378) establishes a bijection between words of type λ and pairs (π, E) where π

is a permutation of type λ and E is a subset of {1, 2, . . . , n−1} with at most k−1
elements containing des(π). The type of a word w of length n is the partition
of n realized by the length of the factors of its nonincreasing factorization in
Lyndon words. The type of a permutation is the partition resulting of the length
of its cycles. Thus, Theorem 1 corresponds to the case where w is a Lyndon
word (i.e. λ has only one part) and π is circular.

We illustrate the general case of an arbitrary word with an example for
the sake of clarity. For example, the word w = abaab has the nonincreasing
factorization in Lyndon words w = (ab)(aab). Thus w has type (3, 2). The
corresponding permutation of type (3, 2) is π = (35)(124). Actually, the permu-
tation π is obtained as follows. Its cycles correspond to the Lyndon factors of
w. The letters are replaced by the rank in the lexicographic order of the cyclic
iterates of the conjugates. In our example, we obtain

1 a a b a a b · · ·
2 a b a a b a · · ·
3 a b a b a b · · ·
4 b a a b a a · · ·
5 b a b a b a · · ·

We have des(π) = {3} which is actually included in ρ(v) = {3, 5}.
We may observe that when the alphabet is binary, i.e. when k = 2, The-

orem 1 takes a simpler form: the map w 7→ P (w) is one-to-one from the set
of primitive binary words of length n onto the set of circular permutations on
{1, 2, . . . , n} having one descent.

In the general case of an arbitrary alphabet, another possible formulation is
the following. Let us say that a word b1b2 · · · bn is co-Lyndon if the permutation

5



π built by Algorithm Permutation is an n-cycle. It is clear that the map
w 7→ T (w) is one-to-one from the set of Lyndon words of length n on A onto
the set of co-Lyndon words of length n on A.

The properties of co-Lyndon words have never been studied and this might
be an interesting direction of research.

Example 2 The following array shows the correspondance between Lyndon
and co-Lyndon words of length 5 on {a, b}. The permutation π is shown on the
right.

Lyndon co-Lyndon
aaaab baaaa (12345)
aaabb baaba (12354)
aabab bbaaa (13524)
aabbb babba (12543)
ababb bbbaa (14253)
abbbb bbbba (15432)

References

[1] Hideo Bannai, Shunsuke Inenaga, Ayumi Shinohara, and Masayuki Takeda.
Inferring strings from graphs and arrays. In Branislav Rovan and Peter
Vojtáš, editors, Mathematical Foundations of Computer Science 2003, vol-
ume 2747 of Lecture Notes in Computer Science. Springer-Verlag, 2003.

[2] Michael Burrows and David J. Wheeler. A block sorting data compression
algorithm. Technical report, Digital System Research Center, 1994.

[3] Maxime Crochemore and Wojciech Rytter. Jewels of Strigology. World
Scientific, 2002.

[4] Jean-Pierre Duval and Arnaud Lefebvre. Words over an ordered alphabet
and suffix permutations. Theoretical Informatics and Applications, 36:249–
260, 2002.

[5] Ira M. Gessel and Christophe Reutenauer. Counting permutations with
given cycle structure and descent set. J. Combin. Theory Ser. A, 64(2):189–
215, 1993.

[6] Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array con-
struction. In Jos C. M. Beaten, Jan Karel Lenstra, Joachim Parrow, and
Gerhard J. Woeginger, editors, Proc. 30th International Colloquium on Au-
tomata, Languages and Programming (ICALP ’03), volume 2619 of Lecture
Notes in Computer Science, pages 943–955. Springer-Verlag, 2003.

[7] Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Linear-
time construction of suffix arrays. In Ricardo Baeza-Yates, Edgar Chávez,
and Maxime Crochemore, editors, Combinatorial Pattern Matching, vol-
ume 2676 of Lecture Notes in Computer Science, pages 186–199. Springer-
Verlag, 2003.

6



[8] Pang Ko and Srinivas Aluru. Space efficient linear time construction
of suffix arrays. In Ricardo Baeza-Yates, Edgar Chávez, and Maxime
Crochemore, editors, Combinatorial Pattern Matching, volume 2676 of Lec-
ture Notes in Computer Science, pages 200–210. Springer-Verlag, 2003.

[9] M. Lothaire. Algebraic Combinatorics on Words. Cambridge University
Press, Cambridge, 2002.

[10] Sabrina Mantaci, Antonio Restivo, and Marinella Sciortino. The Burrows-
Wheeeler transform and Sturmian words. Information Processing Letters,
86:241–246, 2003.

[11] Giovanni Manzini. An analysis of the Burrows-Wheeler transform. J. ACM,
48(3):407–430, 2001.

7


