N
N

N

HAL

open science

Lower bounds on the approximation ratios of leading
heuristics for the single machine total tardiness problem

Federico Della Croce, Andrea Grosso, Vangelis Th. Paschos

» To cite this version:

Federico Della Croce, Andrea Grosso, Vangelis Th. Paschos. Lower bounds on the approximation
ratios of leading heuristics for the single machine total tardiness problem. 2005. hal-00004213

HAL Id: hal-00004213
https://hal.science/hal-00004213

Preprint submitted on 10 Feb 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00004213
https://hal.archives-ouvertes.fr

Table of Contents

Résumé

Abstract

1 Introduction

2 Theoretical background

3 Approximation results
3.1 Constructive heuristics .
3.2 Decomposition heuristics

4 Conclusions

ii

ii



Des bornes inférieures pour le rapport d’approximation pour les principales
heuristiques du probléme du retard total d’ordonnancement sur une seule
machine (single machine total scheduling tardiness problem)

Résumé

Le probléme du retard total d’ordonnancement sur une seule machine (single machine
total scheduling tardiness problem) est faiblement NP-hard ; il a été largement étudié durant
les derniéres décennies. Plusieurs méthodes heuristiques ont été proposées qui résolvent assez
bien ce probléme en pratique. Par aileurs, il peut étre aussi résolu par un schéma d’approxi-
mation complétement polynomial (avec complexité d’O(n/¢), Ve > 0). Dans cette note,
nous démontrons que toutes les heuristiques constructives connues comme MDD, PSK, WI,
COVERT, AU, NBR ont un rapport d’approximation au pire des cas arbitrairement mau-
vais. Le méme comportement est observé par les heuristique de décomposition DEC/EDD,
DEC/MDD, DEC/PSK et DEC/WL

Mots-clé : ordonnancement, retard total, algorithme d’approximation, rapport d’approxi-
mation, probléme NP-complet.

Lower bounds on the approximation ratios of leading heuristics for the single
machine total tardiness problem

Abstract

The weakly NP-hard single machine total scheduling tardiness problem has been ex-
tensively studied in the last decades. Various heuristics have been proposed to efficiently
solve in practice a problem for which a fully polynomial time approximation scheme exists
(though with complexity O(n7/¢)). In this note we show that all known constructive heuris-
tics for the problem, namely MDD, PSK, WI, COVERT, AU, NBR, present arbitrarily bad
approximation ratio. Same behavior is shown by the decomposition heuristics DEC/EDD,
DEC/MDD, DEC/PSK and DEC/WTL.

Keywords: scheduling, total tardiness, approximation algorithm, approximation ratio,
NP-complete problem.
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1 Introduction

We consider the one-machine total tardiness 1|| Y7} problem where a jobset N = {1,2,...,n}
of n jobs must be scheduled on a single machine. For each job j, we define a processing time p;
and a due date d;. The problem calls for arranging the jobset in a sequence S* = (1,2,...,n)
such that T(N,S*) =>"" | T; = > ;" ; max{C; — d;,0}, where C; = " | p; is minimum.

The 1|| Y~ T} problem is NP-hard in the ordinary sense ([1]). It has been extensively studied
in the literature and many exact procedures were proposed. The state-of-the-art exact method
of [2] manages to solve problems with up to 500 jobs. A fully polynomial time approximation
scheme was given in [3], though with huge complexity O(n”/e). Despite the presence of a
fully polynomial time approximation scheme, various heuristic procedures were proposed (a non
exhaustive list of papers include [4, 5, 6, 7, 8, 9, 10]). The purpose of this work is to analyze the
approximation ratio of the most applied heuristics for the 1|| > Tj problem. Given an algorithm A
computing a feasible schedule S, for a jobset N of 1||" T}, we denote by Tx (N, S) the total
tardiness of S and by ra (N, S) the approximation ratio T (N, S)/T(N,S*) where S* indicates
the optimal solution for 1|| "7} on N. We will use 75 to indicate the worst value of 74 (N, .S)
over all jobsets V.

We show in this note that, quite surprisingly, all the constructive heuristics, the basic de-
composition heuristic DEC/EDD, as well as the enhanced DEC/MDD, DEC/PSK and DEC/WI
decomposition heuristics perform arbitrarily bad since the lower bounds on their corresponding
approximation ratios depend at least linearly on the problem size. The paper is organized as
follows: in Section 2, the theoretical background for this problem is recalled; in Section 3, the
constructive and decomposition heuristics are briefly presented and their approximation ratio is
discussed; finally, Section 4 concludes the paper with final remarks.

2 Theoretical background

We make use of the following notation. Given the jobset N = {1,2,...,n}, let (1,2,...,n)
be an SPT sequence (where i < j whenever p; = p; and d; < d;). Let also ([1],[2],...,[n])
be an EDD sequence (where [i] < [j] whenever d; = d; and p; < p;). As the cost function is
a regular performance measure, we know that in the optimal solution the jobs are processed
with no interruption starting from time zero. Let p(B) = >, ppr. Let B; and A; be the
sets of jobs that have been shown, at any time, to precede and follow job j in an optimal
sequence. Correspondingly, let e; and [/; be the earliest and latest completion times of job j in
this sequence. Then, e; = p(B;)+p; and [; = p(N — A;). The main known theoretical properties
are the following.

Property 1. (/11]) Consider two jobs i and j, i < j. Then, i — j if d; < max{d;,e;}, else
J—tifd; +p; > 1.

Property 2. ([12]) Let job n in SPT corresponds to job [k] in EDD. Then, job n can be
set only in position h > k and the jobs preceding and following k are uniquely determined as
B, ={[1],12],...,[k—1],[k+1],...,[h]} and A, ={[h+1],...,[n]}.

Property 3. ([12, 13, 14]) Let Cy(h) = Z?:l pj]- Then, job n ([k]) cannot be set in position
h >k if:

Cn(h) = djpy), h < nj;
Cn(h) < dpy + ppy, b > k;
Cn(h) < dy) + ppy, for somer =k, ..., h—1.



By exploiting Property 2, Lawler proposed in [12] a pseudo-polynomial dynamic programming
algorithm running with complexity O(n* 3" p;). Also, by means of scaling techniques, he derived
in [3] a fully polynomial time approximation scheme running with complexity O(n”/¢). Further
recent improved dominance and decomposition results ([15, 16, 17]) are not mentioned here as
they were not used in the considered heuristics.

3 Approximation results

The following lemma provides an upper bound for the approximation ratio of the EDD sequence.
It limits it to n and shows that it can be attained.

Lemma 1. rgpp < n and this bound is tight.

Proof. Consider a jobset N and an EDD sequence Sgpp on N. Denote by Tiax(N, Sepp) the
value of the maximum tardiness of Sgpp and by S* an optimal solution of 1| T; on N.
As the EDD rule minimizes the 1||Tjhax problem, we have Tax(V, SEpp) < Tmax(N,S*) <
T(N,S*). But then, T(N, Sgpp) < nTmax(N, Sgpp) < nT(N, S*), and the upper bound claimed
is proved.

In order to prove the tightness of the ratio above, consider the following example (E}):
N ={1,2,....n}, pr = m, p2,...,pp = 1, dy =0, da,...,d, = ¢. The optimal sequence is
S* = (2,...,n,1), with T(N,S*) =n(n+1)/2+m —1— (n— 1)e. The EDD rule produces

sequence Sgpp = (1,2,...,n), where Ty = m, T; = m+i—1—¢ for i = 2,...,n. Thus,
T(N,Sgpp) = nm +n(n —1)/2 — (n — 1)e. Hence, for m large enough and ¢ small enough, we
have rgpp (N, Sgpp) ~ n. O

3.1 Constructive heuristics

This subsection deals with approximation ratios for constructive heuristics. Quick dispatching
rules as well as simple greedy algorithms are grouped in this class. Below are indicated and
briefly exposed the main constructive heuristics proposed for the 1|| YT} problem. For sake of
conciseness, only one-shot procedures are fully described while, for the other procedures, the
relevant references are indicated for details.

MDD ([4]): at time ¢, schedule i before j if max{t+p;,d;} < max{t+p;,d;}, or max{t+p;, d;} =
max{t+ p;,d;} and p; < p;.

PSK: starts with a SPT sequence and scans in that order the jobs searching for the best job to
be placed in the first unscheduled position; once that position is filled, the next position is
considered and the process is iterated until all jobs have been sequenced; we refer here to
the description of the algorithm in [8].

WI: can be seen as a hybrid construction/local search heuristic because it uses adjacent job
pairwise interchanges in the process of building the schedule; we refer here to the description
of the algorithm in [10].

COVERT ([5]): given a partial sequence S, places one job at a time among the remaining
unscheduled jobs according to the following priority index PI; (E denotes the set of un-
scheduled jobs that have no unscheduled predecessors according to Property 1):

1(5 \_a dj < p(S) + pj

p(SUE) —d;

PL={ ““—— 7 pS)+p;<di<p(SUE

j o(B) — 1, p(S) +p; < dj <p( )
0 p(SUE) < dj;



the job selected is the one with largest PI;/p; ratio. This heuristic was designed for the
more general 1|| ) w;T; problem.

AU ([7]): at time ¢, schedule i before j if u; > u;, where u; = exp|— max{d; —t — p;,0}/kp]/p;
and p = > ;" pi/n. This heuristic, specifically developed like COVERT for the more
general weighted tardiness problem 1| ) w;Tj, does not take into account Property 1.

NBR: starts with an EDD schedule and checks whether a job should be relocated by means
of a dominance rule based on Property 1 used in combination with the Net Benefit of job
Relocation; we refer here to the description of the algorithm in [6].

PI‘OpOSitiOD 1. T™MDD = TPSK = "'WI = I'COVERT = n/2.

Proof. Consider the following example denoted by Es in what follows: N = {1,2,...,n + 1},
PL="N, P2 - sPnt1 = 1,d1 =n, do,...,dpt1 =n+ €.

The MDD rule selects at time ¢ = 0 job 1 to be scheduled in first position. All the other
(identical) jobs will then follow. Hence an EDD sequence S = (1,...,n + 1) is generated where
Ty =0,T; =i—1—¢, fori =2,...,n+ 1. Thus, Tvmpp(N,S) = n(n + 1)/2 —ne. The
optimal sequence is S* = (2,...,n + 1,1), with T(N,S*) = n. Hence, for € small enough,
’I”MDD(N, S) 7 n/2.

As pointed out in [18] and [19], procedures PSK and WI are basically equivalent to the MDD
rule for all those instances such as example F5 where there are no couples of jobs ¢ and j with
pi # p; or d; # d; such that max{t + p;, d;} = max{t+ p;,d;}. Indeed, both PSK and WI reach
the same result as MDD in example FEj.

Finally, with respect to COVERT, notice that Property 1 implies 2 — 3 — -+ — n + 1,
whereas job 1 is not involved in precedence relations. Also, notice that PI; = 1. Consider the
first stage, where S = 0, E = {1,2}. Then p(S) = 0, p(E) = n+ 1, and Pl = (1 —¢)/n.
Hence job 1 is scheduled first, yielding the same sequence Scoygrr = (1,2,...,n+ 1), and this
completes the proof of the proposition. O

Proposition 2. rpy > nk for any constant k > 1.

Proof. Consider the following example F3: N = {1,2,...,n+ 1}, p1 = n, p2,...,Dny1 = &
d1 =n, d2,...,dn+1 =n—1.

Notice that p = (n + ne)/n ~ 1, for large n. We have S* = (2,...,n,n + 1,1) and
T(N,S*) = ne. Applying AU, at time ¢ = 0 we get: w3 = 1/n and, for i = 2,...,n,
u; = (1/e)(exp[—(n —1—¢)/(kp)]). For e = n~% and n large enough, we have u; < u; and
job 1 is scheduled first. The other (identical) jobs are sequenced next. The resulting sequence is
S =(1,2,...,n), with T(N, S) = n — ne, thus giving rauy(N, Say) ~ 1/e = nF. O

Proposition 3. rnpr > n/6.

Proof. Consider the following example denoted by FE4: set n = 2m + 2 and consider N =
{1,2,....2m+ 2}, pr =m, pp =1, p3 =+ = pmy1 =€, Pm42 =+ = Pamt1 = 1, pam2 = 2¢,
di=m,de=m+(e/2),di =m+ (i —2)g, for i =3,....m+1, dpyo = m+1+ (m— 1),
dj=j+ (m—1)e, for j=m+3,...,2m, dom+1 = dom42 = 2m + (m — 1)e.

The NBR algorithm considers, at any stage, a sequence S and a set of jobs i < iy < -+ < iy,
in S such that T;, < pi, and p;;, > pip > -+ > pi,.. A job is selected among 71, ..., 7,1 in order to
be moved just after iy, so that the decrease in tardiness is maximum (see [6] for details). Notice
that, for example F4, NBR will execute one single stage, considering jobs 1,2m + 1,2m + 2, and
moving job 1 to the last position with tardiness (m+1)+(m+1)e. The sequence induced by NBR
is then Sxpr = (2,3,...,2m+2,1) with T(N, Sxpr) = (m+1)+(m+1)e. The optimal sequence



is S*=1(2,3,....m+1,1,m+2,m+3,...,2m+ 2) with T(N,S*) = 3+ (m + 1)e. Recalling
that n = 2m + 2, we have rNr(N, SxBr) = (m+ 1)+ (m+1)e)/(3+2¢) > m/3~n/6. O

3.2 Decomposition heuristics

Decomposition heuristics were proposed in |9, 20| to which we refer for details. Below are sketched
the main decomposition heuristics applied to the 1|| )" T} problem.

DEC/EDD: exploits Properties 2 and 3; when more than one position & can be occupied by the
largest processing time job, the EDD rule is used to solve the two subproblems generated
for each value of k; the largest processing time job is then placed in the position inducing
the best cost function value.

DEC/(MDD-PSK-WI): as above but applies MDD (or PSK or WI) instead of EDD.
Proposition 4. rpgc/ppp = /2.

Proof. Consider the following example denoted by FEs: set n = 2m + 1 and consider N =
{1727"'72m+1}a pr=m—¢, p2 = " = Pmtl = 17 Pm+2 = - = P2m+1 = €&, dl = m,
di=m+i—1fori=2,... mdpy1=2m—-1,d;=2m—14¢,fori=m+2,...,2m+ 1.
We have Sgpp = (1,...,2m + 1). Job 1 is the largest processing time job. The completion
time C(r) for job 1 in position r is
CI(T)_{m—I—r—l—e r=1,...,m+1
2m+ (r—m—2)e r=m+2,...,2m+ 1.

Positions 7 = 2,...,m + 1 are eliminated by d, + p, > Ci(r); positions r = m + 2,...,2m
are eliminated by Cj(r) > d,+1. Job 1 can thus be placed in positions 1 and 2m + 1 inducing
sequences pt = (1,...,2m+ 1) and 0 = (2,...,2m + 1,1). We get T'(N,u) = (1 — &) + em(m —
1)/2—(m—2)e+ (m+1) and T(N,0) = m+ (m — 2)e. Hence, T'(N, ) > T(N, 6) and position
2m + 1 is selected for job 1 with tardiness m + (m — 2)e. Then, sequence (2,...,2m) is entirely
early and the jobs can be scheduled as they are. So, Sprc/epp = 6. Besides, the optimal
sequence is S* = (1,m+2,...,2m+1,2,...,m+1) with T(N,S*) = 1+m(m—1)e. Hence for €
small enough, rprc/Epp (N, SpEc/EDD) = (M + (M —2)e) /(1 +m(m — 1)e) = m =~ n/2. O

Proposition 5. rppc/vpp = "pEC/PSK = TDEC/WI = 1/3-

Proof. Consider the following example Fg: set n = 3m/2 and assume N = {1,2,...,3m/2},
with p1 = m?, p; = 2m, for i = 2,...,m/2, p; = 2, for j = (m/2) + 1,...,3m/2, d1 = m?,
di =m?+2(—1)m, fori =2,...,(m/2) — 1, Ao = 2m? — 2m — e, d;j = 2m? — 2m + ¢, for
Jj=(m/2)+1,...,3m/2.

Job 1 has the largest processing time and can be placed in positions 1 and 3m/2 only. If
it is placed in position 1, its tardiness is 0 and the MDD rule induces sequence (1,2,...,3m/2)
with value m(m + 1) — (m — 1)e = m? + m — (m — 1)e. If, on the other hand, it is placed
in the last position, its tardiness is m? but all the other jobs are early and the total tardiness
2. Hence, for € small enough, the last position is selected. In all, SpEc/MDD =
(2,...,3m/2,1) and T(N, Spgc/mpp) = m?. However, the optimal sequence for this example is
S*=(1,2,...,(m/2)—1,(m/2)+1,...,3m/2, m/2) with value 2m+e¢. Recalling that n = 3m/2,
we have rpgc/mpp (N, S) = m?2/(2m + ¢) ~ m/2 = n/3. Analogously to Proposition 1, we have
that both DEC/PSK and DEC/WTI reach the same result as DEC/MDD in example E7, and
this completes the proof of the proposition. O

remains m



4 Conclusions

In this note we have provided lower bounds for the approximation ratios of the leading heuristics
for the 1|| > T} problem. Though no upper bounds have been simultaneously derived, we have
shown that there is no hope of constant approximation ratio for all known constructive heuristics,
nor for the decomposition ones. For this latter category, even if the lower bounds obtained are
slightly better than the corresponding bounds of the former category, their approximation ratios
depend linearly on the problem size. Notice that, as far as examples E5 and Fg are concerned,
the same bounds are obtained even if the improved elimination rules of [15] and the double
decomposition scheme of [16] are embedded in the considered decomposition heuristics.
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