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Small points on subvarieties of algebraic tori:

results and methods.

Francesco Amoroso ∗

Abstract. This paper is a survey on some quantitative versions of Bogo-
molov’s conjecture for a torus obtained by the author together with Sinnou
David. The proofs are partially sketched, starting with the simplest case of
hypersurfaces.

Mathematics Subject classification: 11 G 10, 11 J 81, 14 G 40.

1 Introduction : from torsion to small points

The former Manin-Mumford conjecture predicts that the set of torsion points
of a curve of genus ≥ 2 embedded in its jacobian is finite. More generally,
let G be a semi-abelian variety and V an algebraic subvariety of G, defined
over some algebraically closed field K. We say that V is a torsion subvariety
if V is a translate of a proper subtorus by a torsion point of G. We also
denote by Vtors the set of torsion points of G lying on V . Then we have the
following generalization of the Manin-Mumford conjecture

Theorem 1.1 i) If V is not a torsion subvariety, then the set Vtors of
torsion points of G lying on V is not Zariski dense.

ii) The Zariski closure of Vtors is a finite union of torsion subvarieties.

The two assertions are clearly equivalent. Theorem 1.1 was proved by
Raynaud ([Ray 1983]) when G is an abelian variety, by Laurent ([Lau 1984])
if G = Gn

m, and finally by Hindry ([Hin 1988]) in the general situation.
We assume from now on that all varieties are algebraic, defined over Q

and geometrically irreducible. Bogomolov ([Bog 1981]) gave the following
generalization of the former Manin-Mumford conjecture: a curve C of genus

∗Laboratoire de Mathématiques Nicolas Oresme, U.M.R. 6139 (C.N.R.S.), Université
de Caen, Campus II, BP 5186, F–14032 Caen Cedex.
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≥ 2 embedded in its jacobian is discrete for the metric induced by the Néron-
Tate height. In other words, Bogomolov conjectures that the set of points of
“sufficiently small” height on C is finite, while the former Manin-Mumford
conjecture makes a similar assertion on the set of torsion points (which are
precisely the points of zero height).

More generally, let G be a semi-abelian variety and let ĥ be a normalized
height on G(Q). Hence, ĥ is the Neron-Tate height if G is abelian, and it is
the Weil height if G = Gn

m ↪→ Pn (see section 2 for details); in particular ĥ
is a non-negative function on G and ĥ(P ) = 0 if and only if P is a torsion
point. Given an algebraic subvariety of G, we denote by V ∗ the complement
in V of the Zariski closure of the set of torsion points of V . Therefore, by
theorem 1.1, V \V ∗ = Vtors is a finite union of torsion varieties.

Theorem 1.2 Let V be a subvariety of a semi-abelian variety G. Then:

i) If V is not a torsion subvariety, then there exists θ > 0 such that the set
V (θ) = {P ∈ V such that ĥ(P ) ≤ θ} is not Zariski dense in V .

ii) V ∗ is discrete for the metric induced by ĥ, i.e.

inf{ĥ(P ) such that P ∈ V ∗} > 0.

It is easy to see that the two assertions are equivalent. In this formu-
lation, theorem 1.2 was proved for G = Gn

m by Zhang (see [Zha 1995]). In
the abelian case, Ullmo (see [Ull 1998]) proved Bogomolov’s original formu-
lation for curves (dim(V ) = 1); immediately after Zhang (see [Zha 1998])
prove theorem 1.2. The semi-abelian case was solved by David and Philip-
pon (see [Dav-Phi 2000]).

In this article we describe some quantitative versions of theorem 1.2
for a torus G = Gn

m and we sketch proofs of theorems which prove these
conjectures “up to an ε”.

The plan of the paper is as follows: in section 2 we introduce the nor-
malized height and the essential minimum of an algebraic subvariety of Gn

m.
In section 3 we recall the main conjectures and results on the essential min-
imum. Proofs will be sketched in section 4. Finally, in the last section, we
give some more precise conjectures and results on the distribution of points
of small heights (“small points”).
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2 Heights

Let α ∈ Q and let K be any number field containing α. We denote by MK

the set of places of K. For v ∈ K, let Kv be the completion of K at v and
let | · |v be the (normalized) absolute value of the place v. Hence

|α|v = |σα|,

if v is an archimedean place associated with the embedding σ : K ↪→ Q. If
v is a non archimedean place associated with the prime ideal ℘ over the
rational prime, we have

|α|v = p−λ/e,
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where e is the ramification index of ℘ and λ is the exponent of ℘ in the
factorization of the ideal (α) in the ring of integers of K. This standard
normalization agrees with the product formula∏

v∈MK

|α|[Kv :Qv ]
v = 1

which holds for any α ∈ K∗.
We define the Weil height of α by

h(α) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log max{|α|v, 1}.

It is easy to see that this definition does not depend on the field K containing
α; hence, it defines a function h : Q → R+.

More generally, let α = (α0 : · · · : αn) ∈ Pn(K) and let K be any number
field containing α0, . . . , αn. We define the Weil height of α by:

h(α) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log max{|α0|v, . . . , |αn|v}.

As before, this definition does not depend on the number field K; moreover it
does not depend on the projective coordinates of α (by the product formula).

The Weil height of an algebraic number is related to the Mahler measure
of a polynomial. Let f ∈ C[x] be non-zero; then its Mahler measure is

M(f) = exp
∫ 1

0
log |f

(
e2πit

)
|dt.

Let α1, . . . , αd be the roots of f and fd be its leading coefficient; by Jensen’s
formula we easily see that

M(f) = |fd|
d∏

j=1

max{|αj |, 1}. (1)

Let f ∈ Z[x] be the minimal polynomial of α over Z (i.e. f is irreducible in
Z[x], f(α) = 0 and its leading coefficient is positive); from (1) it is also easy
to see that

h(α) =
log M(f)
[Q(α) : Q]

. (2)
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We now consider a torus Gn
m and we fix the “standard embedding”

ι : Gn
m ↪→ Pn,

ι(x1, . . . , xn) = (1 : x1 : · · · : xn).

This gives the height function ĥ(x1, . . . , xn) = h(1 : x1 : · · · : xn). The
following properties hold:

i) the function ĥ is a positive function on Gn
m(Q), vanishing only on its

torsion points;

ii) ĥ(αβ) ≤ ĥ(α) + ĥ(β). Moreover, if ζ is a torsion point, ĥ(ζα) = ĥ(α)
and if n ∈ N then ĥ(αn) = nĥ(α);

iii) a subset of Gn
m(Q) of bounded height and bounded degree is finite.

2.1 Hypersurfaces

We have a “natural” definition of height on hypersurfaces since we can
extend the Mahler measure to polynomials in several variables. Let f ∈
C[x1, . . . , xn]; we define its Mahler measure as:

M(P ) = exp
∫ 1

0
· · ·
∫ 1

0
log |f

(
e2πit1 , . . . , e2πitn

)
|dt1 . . . dtn.

Let now K be a number field and let V be an hypersurface in Gn
m defined

over K:
V = {α ∈ Gn

m such that f(α) = 0}

for some polynomial f ∈ K[x] (irreducible over Q[x]). We define:

ĥ(V ) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log Mv(f),

where Mv(f) is the maximum of the v-adic absolute values of the coefficients
of f if v is non archimedean, and Mv(f) is the Mahler measure of σf if v is
an archimedean place associated with the embedding σ : K ↪→ Q.

Remark 2.1 If n = 1, then V = {α} and we have

ĥ(V ) = ĥ(α), (3)

since Mv(x− α) = max{1, |α|v} (by (1))
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Let V be an arbitrary subvarieties of Gn
m. For l ∈ N, we define

[l]−1V = {α ∈ Gn
m such that αl ∈ V }

and
[l]V = {αl such that α ∈ V }.

We are interested in relations between the degree1 and the height of V ,
[l]−1V and [l]V . For the degree we have:

deg([l]−1V ) = lcodim(V ) deg(V ) (4)

and

deg([l]V ) =
ldim(V ) deg(V )

|Ker([l]) ∩ Stab(V )|
, (5)

where Stab(V ) = {α ∈ Gn
m such that αV = V } is the stabilizer of V . The

first equality is easily proved, while the second one follows from the first and
from

[l]−1[l]V =
⋃

ω∈Ker([l])

ωV.

For further references we remark that

|Ker([l]) ∩ Stab(V )| = ldim Stab(V )|Ker([l]) ∩ (Stab(V )/Stab(V )0)|, (6)

where Stab(V )0 is the neutral component of Stab(V ) (i.e. its connected
component containing 1).

Let us suppose that V is an hypersurface. We have

ĥ([l]−1V ) = ĥ(V )

and

ĥ([l]V ) =
lnĥ(V )

|Ker([l]) ∩ Stab(V )|
.

Let f ∈ Q[x] be an equation for V . Again, the first equality is clear, since
f(xl) is an equation for [l]−1V and Mv(f(xl)) = Mv(f), while the second
equality follows from the first one and from the multiplicativity of Mv.

Let ‖f‖1 be the sum of the absolute values of the coefficients of f ∈ C[x]
(the “length” of f). Since the maximum of |f | on the product of unit disks
is bounded by ‖f‖1, we have M(f) ≤ ‖f‖1. Moreover,

‖f‖1 ≤ 2d1+···+dnM(f),
1The degree of an algebraic set V ⊆ Gn

m is the degree of its Zariski closure in Pn.
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where d1, . . . , dn are the partial degrees of f . If n = 1, this follows from (1)
and from usual formulas for the coefficients in C[x], while the general case
can be proved by induction on n, see [Mig 1992] for details.

Now, let ‖ · ‖ be any norm on C[x1, . . . , xn] such that

log ‖f‖ = log ‖f‖1 + o
(
(deg f)1+1/(n−1)

)
(7)

We define an height on hypersurfaces of Gn
m by choosing the norm ‖ · ‖ at

the archimedean places. We define

h(V ) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log Hv(f),

where Hv(f) = Mv(f) if v is non archimedean, and Hv(f) = ‖σf‖ if v is
an archimedean place associated with the embedding σ : K ↪→ Q. Then, by
the previous discussion,

ĥ([l]V ) = h([l]V ) + o
(
deg([l]V )1+1/(n−1)

)
,

as l → +∞. Using the relations between degree and height of V and [l]V
we see that

ĥ([l]V ) deg(V )
l deg([l]V )

= ĥ(V )

and deg([l]V ) ≤ ln−1 deg(V ). We have proved:

Remark 2.2 Let h(·) be any height function on the hypersurfaces of Gn
m

defined at the archimedean places by a norm satisfying (7). Then

lim
l 7→∞

h([l]V ) deg(V )
l deg([l]V )

= ĥ(V ).

2.2 Subvarieties of arbitrary dimension

The last remark suggests a “simple” definition of normalized height on sub-
varieties of Gn

m, alternative to the one commonly used in Arakelov theory.
We start by choosing a height on the subvarieties. If V is a d dimensional
subvariety and F is its Chow form2, we can define the height h(V ) as the
height of the hypersurface in G(d−1)n

m defined by {F = 0}, choosing any

2i.e. the irreducible multihomogeneous polynomial F (u1, . . . ,ud−1), where uj =
(uj

0, . . . , u
j
n), vanishing precisely if the intersection of V with the hyperplanes of coor-

dinates u1, . . . ,ud−1 is non empty.
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reasonable norm (i.e. satisfying (7)) at the archimedean places. David and
Philippon (see [Dav-Phi 1999]) prove that the limit

ĥ(V ) = lim
l→+∞

h([l]V ) deg(V )
l deg([l]V )

exists. It is easy to see (compute the Chow form) that this definition of
normalized height specializes in the previous ones if V is a point or if V is
an hypersurface (see [Dav-Phi 1999]). Moreover:

i) the function ĥ(·) is non-negative;

ii) for every l ∈ N we have

ĥ([l]−1V ) = lcodim(V )−1ĥ(V )

and

ĥ([l]V ) =
ldim(V )+1ĥ(V )

|Ker([l]) ∩ Stab(V )|
.

iii) for every torsion point ζ we have ĥ(ζV ) = ĥ(V ).

Using property iii) and ii), we see that a torsion subvariety V = ζH
has height zero. Indeed, if ζ is a torsion point and H is a subtorus, then
ĥ(ζH) = ĥ(H) and ĥ(H) = ĥ([l]H) = lĥ(H) for any l ∈ N (since H = [l]H
and |Ker([l]) ∩H| = ldim(H)).

Are torsion varieties the only varieties of zero height? The answer is
positive; more precisely, this question is equivalent to the multiplicative
analogue of the former Bogomolov’s conjecture. To see this, let us define
the essential minimum µ̂ess(V ) of a subvariety V as the infimum of the set
of θ > 0 such that the subset

V (θ) = {P ∈ V such that ĥ(P ) ≤ θ}

is Zariski dense in V . Theorem 1.2 asserts that µ̂ess(V ) = 0 if and only if
V is torsion. By a special case of an inequality of Zhang (see [Zha 1995],
theorem 5.2.), we also have

µ̂ess(V ) ≤ ĥ(V )
deg(V )

≤ (dim(V ) + 1)µ̂ess(V ). (8)

Hence ĥ(V ) = 0 if and only if µ̂ess(V ) = 0.
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3 Quantitative results.

We are interested in lower bounds for the essential minimum of a non-torsion
subvariety V of G. These lower bounds will depend on some geometric
invariants of V , for instance its degree. Moreover, if we do not make any
further geometric assumption on the variety, they must also depend on its
field of definition (“arithmetic case”). Indeed, let H be any subgroup of Gn

m

and let αn be a sequence of non-torsion points whose heights converge to
zero (for instance, αn = (21/n, . . . , 21/n)). Then, the varieties Vn = Hαn

have fixed degree deg(H) and essential minimum µ̂ess(Vn) ≤ ĥ(αn) → 0.
In spite of that, if we also assume that V is not a translate of a proper
subgroup (even by a point of infinite order), then Bombieri and Zannier
([Bom-Zan 1995]) proved that the essential minimum of V can be bounded
from below only in terms of degree of V (“geometric case”). In the sequel,
we formulate some sharp conjectures and we describe more recent results in
the arithmetic and in the geometric case.

The problem of finding sharp lower bounds for µ̂ess(V ) for subvarieties
of Gn

m is a generalization of a famous problem of Lehmer. Let α be a non-
zero algebraic number of degree d which is not a root of unity. Lehmer
(see [Leh 1933]) asks whether there exists an absolute constant c > 0 such
that

h(α) ≥ c

d
.

This should be the best possible lower bound for the height (without any
further assumption on α), since h(21/n) = (log 2)/n.

Lehmer’s conjecture is still open, but a celebrated result of Dobrowolski
([Dob 1979]) shows that it is almost true:

Theorem 3.1 (Dobrowolski) For an algebraic number α of degree d ≥ 2
which is not a root of unity, we have

ĥ(α) ≥ d

1200

(
log log d

log d

)3

.

Our aim is to generalize Lehmer’s problem and Dobrowolski’s theorem
(originally stated on Gm) to Gn

m. Let V be a subvariety of Gn
m and let K

be a subfield of Q. We denote by V
K the algebraic set⋃

σ∈Gal(Q/K)

σV
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and we remark that deg
(
V

K) = [LK : K] deg(V ), where L is the field of
definition of V . Let us define the “obstruction index” ωK(V ) of V over K

as the minimum of deg
(
Z

K) where Z is an hypersurface containing V .
For instance, if V = {α} ⊆ Gm we have ωK(α) = [K(α) : K] and, if

V = {α} ⊆ Gn
m,

ωK(V ) ≤ n[K(α) : K]1/n (9)

by a linear algebra argument. More generally, if Z is any subvariety of Gn
m

containing V ,
ωK(V ) ≤ n deg

(
Z

K)1/codim(Z) (10)

by a result of Chardin ([Cha 1988]).
It turns out that ωQ(V ), and not the degree of V

Q, is the right invariant
to formulate the sharpest conjectures on µ̂ess(V ) in the “arithmetic case”.
Similarly, ωQ(V ), and not deg V , is the right invariant in the “geometric
case”.

3.1 Arithmetic case

We propose the following conjecture, which generalizes Lehmer’s one:

Conjecture 3.2 Let V be a subvariety of Gn
m and assume that V is not

contained in any torsion subvariety. Then, there exist a constant c(n) such
that

µ̂ess(V ) ≥ c(n)
ωQ(V )

.

We remark that a 0-dimensional variety V = {α} is contained in a
torsion subvariety if and only if α1, . . . , αn are multiplicatively dependent
(indeed a subtorus of Gn

m is contained in a subtorus of codimension 1, which
has equation xλ1

1 . . . xλn
n = ±1 for some integers λ1, . . . , λn).

In [Amo-Dav 1999] (case dim V = 0), [Amo-Dav 2000] (case codimV =
1) and [Amo-Dav 2001] (general case) the following analogue of Dobrowolski
theorem on Gn

m is proved:

Theorem 3.3 Let V be a subvariety of Gn
m of codimension k and assume

that V is not contained in any torsion subvariety. Then there exists two
positive constants c(n) and κ(k) such that

µ̂ess(V ) ≥ c(n)
ωQ(V )

(log 3ωQ(V ))−κ(k) .
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This theorem sometimes produces lower bounds for the height of alge-
braic numbers which are even stronger than what is expected by Lehmer’s
conjecture. Let α1, . . . , αn multiplicatively independent algebraic numbers
of height ≤ h, lying in a number field of degree D. Let V = {α}. Then
µ̂ess(V ) ≤ h and, by (9),

ωQ(V ) ≤ nD1/n.

Thus, by theorem 3.3,

h ≥ c(n)
D1/n

(log 3D)−κ(n) .

for some c(n) > 0.

3.2 Geometric case

Assuming that the subvariety V is not a translate of a subgroup, we now look
for lower bounds for µ̂ess(V ) which do not depend on the field of definition
of V . Then we have ([Amo-Dav 2003]) the following conjecture which is the
analogue of conjecture 3.2.

Conjecture 3.4 Let V be a subvariety of Gn
m and assume that V is not

contained in any translate of a proper subgroup. Then, there exists a positive
constant c(n) such that

µ̂ess(V ) ≥ c(n)
ωQ(V )

.

In the same paper the following analogue of theorem 3.3 is proved :

Theorem 3.5 Let V be an irreducible subvariety of Gn
m of codimension k

and assume that V is not contained in any translate of a proper subgroup.
Then there exist two positive constants c(n) and λ(k) such that

µ̂ess(V ) ≥ c(n)
ωQ(V )

(
log 3ωQ(V )

)−λ(k)
.

4 Methods

We now describe the methods of the proofs of theorems 3.3 and 3.5. By con-
tradiction, we assume that the essential minimum is sufficiently small. We
then follow the usual steps of a transcendence proof: interpolation (construc-
tion of an auxiliary function), extrapolation, zero estimates and conclusion.
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For subvariety of codimension k > 1, we need a rather technical extra step
(descent argument). At the end of the proof, we obtain a contradiction
which shows that the assumption on the essential minimum was false.

As usual, we introduce some parameters which depend on the obstruction
index of V (and on the dimension n). A parameter L which bounds from
above the degree of the auxiliary function, T which bounds from below the
multiplicity of the auxiliary function on V , and k parameters N1, . . . , Nk

which control the set on which we shall extrapolate.
To simplify our exposition, we start with the case where V is an hyper-

surface. In this simpler case, the zero estimate are trivial in both arithmetic
and geometric case, since the varieties have codimension 1. Moreover we
can conclude without the descent argument.

Afterwards, we consider varieties of arbitrary dimension, with an extra
assumption which allows us to avoid again the descent. In this case the zero
estimates we need are variants of Philippon’s zero estimate (see [Phi 1986]
and [Phi 1996]).

Finally (section 4.3) we give a sketch of the final step of the proofs of
theorems 3.3 and 3.5 in the more general situation.

4.1 Hypersurfaces

Let V be an hypersurface in Gn
m and assume that V is non-torsion (arith-

metic case) or that V is not a translate of a subgroup (geometric case).
Let

K =

Q (arithmetic case);

Q (geometric case)

and define ω = deg
(
V

K). Let also3

N ≈ (log ω)2

log log ω
;

T ≈


log ω

log log ω
(arithmetic case);

N log ω

log log ω
(geometric case)

3The symbols ≈,� and� have the following meaning: A ≈ B if and only if A = c(n)B
with c(n) > 0. The constant c(n) is assumed to be sufficiently large (or small) in such a
way that the forthcoming assumptions are verified. Similarly, A � B (or B � A) if and
only if A ≤ c(n)B where c(n) > 0 has the same meaning as before.
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and L ≈ T 2ω.
We suppose that the essential minimum of V is small:

µ̂ess(V ) �


log ω

NL
(arithmetic case);

log ω

L
(geometric case).

(11)

4.1.1 Interpolation

In the arithmetic case the auxiliary function is a polynomial with rational
integer coefficients, degree ≤ L, vanishing on V with multiplicity at least T
and of “small” height4.

Let S ⊆ Gn
m(Q) and define Λ(S) to be the vector space of polynomials

with rational coefficients, degree ≤ L, vanishing on S with multiplicity ≥ T .
Let us assume that S is a set of bounded height and that Λ = Λ(S) is
a vector space of non-negative finite dimension. Using Bombieri-Vaaler’s
version of Siegel’s lemma ([Bom-Vaa 1983]) we can prove that there exists
a non-zero F ∈ Λ with integer coefficients satisfying

h(F ) ≤ r((T + n) log(L + 1) + L sup
α∈S

h(α)) ,

where

r =

(
L+n

n

)
− dim Λ(S)

dim Λ(S)
.

Let θ > µ̂ess(V ) and let V (θ) be the set of points on V of height ≤ θ. Then
Λ(V ) = Λ(V (θ)) (since V (θ) is Zariski dense on V ) and

dim Λ(V ) =
(

L− Tω + n

n

)
.

By the previous application of Siegel’s lemma, there exists a non-zero polyno-
mial F ∈ Z[x1, . . . , xn] of degree at most L, vanishing on V with multiplicity
at least T , and of height

h(F ) ≤ r
(
(T + n) log(L + 1) + Lθ

)
,

where

r =

(
L+n

n

)
−
(
L−Tω+n

n

)(
L−Tω+n

n

) � Tω

L

4Let F ∈ Q[x] be a polynomial of n variables and of total degree d. Let N =
`

d+n
n

´
.

The height h(F ) of F is the Weil height of the vector f ∈ PN−1(Q) of its coefficients.
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By our choice of parameters (and by the assumption on µ̂ess(V )) we have
ĥ(F ) � log ω.

The construction in the geometric case is similar, but we need to avoid
any dependence on the field of definition of V . For this, we use an absolute
Siegel’s lemma (see [Dav-Phi 1999], lemma 4.7) which is a consequence of
Zhang’s inequality (see [Zha 1995], theorem 5.2). The auxiliary function is
now a non-zero polynomial F with algebraic integers coefficients, vanishing
on V as before, whose degree and height satisfy the same conditions as
before.

4.1.2 Extrapolation

In the arithmetic case we extrapolate on some “multiples” of V . Let ℘ be
the set of prime numbers p such that N/2 ≤ p ≤ N . Using a variant of
Dobrowolski’s main lemma ([Dob 1979], lemma 1) and a density argument,
we prove that our auxiliary function must vanish on [p]V for all p ∈ ℘.

Indeed, if F does not vanish on some [p]V , then there exists α ∈ V of
height ≤ µ̂ess(V )+ε such that F (αp) 6= 0. A generalization of Dobrowolski’s
main lemma gives:

|F (αp)|v ≤ p−T max{1, |α1|v, . . . , |αn|v}pL

for any v | p. Using the product formula, we obtain

0 ≤ −T log p + h(F ) + n log(L + 1) + pLh(α)
≤ −T log(N/2) + h(F ) + n log(L + 1) + NL(µ̂ess(V ) + ε)

which is a contradiction5, since

T log(N/2)− h(F )− n log(L + 1) � log ω

by the choice of the parameters and by the estimate on h(F ), and

NL(µ̂ess(V ) + ε) � log ω

by the assumption on µ̂ess(V ).

In the geometric case, we extrapolate on some translate of V , and we
show that the auxiliary function must vanish on ζV for all p-torsion points
ζ and for all p ∈ ℘ (where ℘ is the same set as before).

5If we choose properly the implicit constants in the parameters.
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Indeed, let p ∈ ℘; if F does not vanish on ζV for some p-torsion point ζ,
then there exists α ∈ V of height ≤ µ̂ess(V ) + ε such that F (ζα) 6= 0. The
inequality |1 − ζ|v ≤ p−1/p, which holds for a p-root of unity ζ and a place
v | p, gives

|F (α)|v ≤ p−T/p max{1, |α1|v, . . . , |αn|v}L

for any v | p. Using the product formula, we obtain

0 ≤ −T
log p

p
+ h(F ) + n log(L + 1) + Lh(α)

≤ − T

N
log(N/2) + h(F ) + n log(L + 1) + L(µ̂ess(V ) + ε)

which is a contradiction again (see note 5), since

T

N
log(N/2)− h(F )− n log(L + 1) � log ω

by the choice of the parameters and by the estimate on h(F ), and

L(µ̂ess(V ) + ε) � log ω

by the assumption on µ̂ess(V ).

4.1.3 Zero estimate and conclusion

Let us consider the arithmetic case first.

Since V is not torsion, for any σ ∈ Gal(Q/Q) the varieties [p]V and
σ[q]V are distinct if p and q are distinct primes. Moreover, if we avoid some
exceptional primes, [p]V 6= σ[p]V for any σ ∈ Gal(Q/Q) such that σV 6=
V . A generalization of a combinatorial lemma of Dobrowolski ([Dob 1979]
lemma 3) shows that the number of these primes is ≤ (log r)/2, where r is
the degree over Q of the field of definition of V . Moreover, we have

deg([p]V ) = pn−1−dim Stab(V ) deg(V ),

if p does not divide the index λ = [Stab(V ) : Stab(V )0] (see (5) and (6)).
Again the number of these exceptional primes is bounded by

log λ

log 2
≤ log deg Stab(V )

log 2
≤ n log deg(V )

log 2
.

Let E(V ) be the set of all the previous exceptional primes. Then

Card(E(V )) � log deg
(
V

Q) = log ω, (12)
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and therefore is negligible6. Using the Prime Number Theorem we obtain:

L ≥ deg(F ) ≥ deg

 ⋃
p∈℘\E(V )

[p]V
Q


≥

∑
p∈℘\E(V )

pn−1−dim Stab(V ) deg
(
V

Q)

� Nn−dim Stab(V )ω

log N
≥ Nω

log N
.

(13)

Since

L ≈ T 2ω ≈ (log ω)2ω
(log log ω)2

and
Nω

log N
≈ (log ω)2ω

(log log ω)2

we get a contradiction (see note 5). Thus, our assumption on µ̂ess(V ) is false
and we have

µ̂ess(V ) � log ω

NL
� 1

ω

(
log log ω

log ω

)3

.

Remark 4.1 Let s = dim Stab(V ); if V is not a translate of a subgroup,
then n − s > 1 and we can improve the error term in the previous lower
bound by choosing N ≈

(
(log ω)2/ log log ω

)1/(n−s). We obtain

µ̂ess(V ) � log ω

NL
� 1

ω
× (log log ω)2+1/(n−s)

(log ω)1+2/(n−s)
.

Unfortunately, there is now a technical problem with the exceptional set
E(V ), since its cardinality could now exceeds

Card(℘) ≈ N

log N
≈ (log ω)2/(n−s)

(log log ω)1+1/(n−s)
.

A generalisation of an inductive argument of Rausch ([Rau 1985]) allows us
to avoid this problem (see [Amo-Dav 2000] for details).

6 Because Card(℘) ≈ N/ log N ≈ (log ω/ log log ω)2 is much bigger than log ω.
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We now consider the geometric case.

Let us set again λ = [Stab(V ) : Stab(V )0], s = dim Stab(V ) and let
E(V ) be the set of exceptional primes dividing λ. Then, if p1, p2 ∈ ℘\E(V )
are two primes not dividing λ and if ζ1 and ζ2 are two torsion points of order
exactly p1 and p2, then ζ1V = ζ2V if and only if ζ1 ≡ ζ2 mod Stab(V )0.
Moreover, for p1 6= p2 we have ζ1 ≡ ζ2 mod Stab(V )0 if and only if ζ1,
ζ2 ∈ Stab(V )0 (by Bezout’s theorem). Since the cardinality of the set of
p-torsion points in Stab(V )0 is ps, we have

L ≥ deg(F ) ≥ deg

 ⋃
p∈℘\E(V )

⋃
ζ∈Ker[p]

ζV


=

1 +
∑

p∈℘\E(V )

(pn−s − 1)

deg(V ).

As in the arithmetic case, the set E(V ) has cardinality less than

Card(E(V )) ≤ log λ

log 2
≤ log deg Stab(V )

log 2
≤ n log deg V

log 2
� log ω (14)

and therefore is again negligible (see note 6). Hence, by the Prime Number
Theorem,

L � Nn−s+1ω

log N

We have that s < n − 1, since V is not a translate of a subgroup; hence
n− s + 1 ≥ 3 and we deduce that

L � N3ω

log log ω
.

By the choice of the parameters, we have:

L ≈ T 2ω ≈ N2(log ω)2ω
(log log ω)2

≈ N3ω

log log ω
;

which gives again a contradiction (see note 5). Again our assumption on
µ̂ess(V ) is false, hence

µ̂ess(V ) � log ω

L
� 1

ω

(log log ω)4

(log ω)5
.
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Remark 4.2 It could be possible to improve the error term in the previous
lower bound. Choosing N ≈

(
(log ω)2/ log log ω

)1/(n−s−1) we would obtain

µ̂ess(V ) � 1
ω
× (log log ω)2+2/(n−s−1)

(log ω)1+4/(n−s−1)
.

Unfortunately, as in the arithmetic case (c.f. remark 4.1), this choice of N
gives a technical problem with the cardinality of the exceptional set E(V ).

4.2 Varieties of arbitrary dimension

Let V be a subvariety of Gn
m of codimension k and let us assume that V is

not contained in any torsion subvariety (arithmetic case) or that V is not
contained in any proper translate of a subgroup (geometric case). Let, as
before,

K =

Q (arithmetic case);

Q (geometric case)

and ω = ωK(V ). We also define, as for hypersurfaces, the exceptional set of
a subvariety Z of Gn

m as the set of primes p such that

p | [Stab(Z) : Stab(Z)0]

or7 [p]Z = σ[p]Z for some σ ∈ Gal(Q/K) such that σZ 6= Z. As for
hypersurfaces

Card(E(Z)) � log deg
(
Z

K)
(c.f. (12) and (14)).

To simplify the arguments we make for the moment the following addi-
tional assumption on V :

Hypothesis 4.3 There exists an hypersurface Z0 containing V such that

ωK([l]V ) = deg
(
[l]Z0

K)
for all positive integer l.

Let l ∈ N and assume that its prime factors do not belong to the excep-
tional set E(Z0). Then,

ωQ([l]V ) = deg
(
[l]Z0

Q) ≥ deg
(
Z0

Q) = ωQ(V ) (15)

7The following condition is empty in the geometric case.
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in the arithmetic case (see the discussion at the beginning of section 4.1.3),
and

ωQ([l]V ) = deg([l]Z0)

= ldim(Z0)−dim(Stab(Z0)) deg(Z0) ≥ l deg(Z0) = l ωQ(V ), (16)

in the geometric case (see (5) and (6)), since Z0 is not a translate of a
subgroup.

Let N1, . . . , Nk be some parameters such that (log ω)1+ε � Nj and
log Nj ≈ log log ω. Let also

T ≈



(
log ω

log log ω

)k

(arithmetic case);

N1 . . . Nk

(
log ω

log log ω

)k

(geometric case)

and
L ≈ T 2ω.

To simplify the notations, we denote by ℘j the set of primes p 6∈ E(Z0)
such that Nj/2 ≤ p ≤ Nj and we let ℘′j = ℘j ∪ {1}. The cardinality of
E(Z0) is � log ω and therefore it is negligible (since (log ω)1+ε � Nj); we
have:

Card(℘j) ≈
Nj

log Nj
≈ Nj

log log ω
. (17)

We finally suppose by contradiction, that the essential minimum of V is
small:

µ̂ess(V ) �


log ω

N1 · · ·NkL
(arithmetic case);

log ω

L
(geometric case).

(18)

4.2.1 Interpolation

As in section 4.1, we construct a non-zero polynomial in n variables having
rational integer coefficients (arithmetic case) or algebraic integer coefficients
(geometric case), of degree at most L, vanishing on V with multiplicity at
least T and of height

h(F ) � log ω.

19



4.2.2 Extrapolation

We repeat the extrapolation process k times: we show that F must vanish
on

[p1 · · · pk]V

for (p1, . . . , pk) ∈ ℘′1 × · · · × ℘′k (arithmetic case) or on

ζ1 · · · ζkV

for (ζ1, . . . , ζk) ∈ Ker[p1]× · · · ×Ker[pk] and for (p1, . . . , pk) ∈ ℘1× · · · ×℘k

(geometric case).

4.2.3 Zero estimate and conclusion

Let us consider the arithmetic case first.

A variant of Philippon’s zero estimate shows that there exist two integers
r and k′ with k′ ≤ r ≤ k and a variety Z of codimension k′, containing
[pr+1 · · · pk′+1]V for some (pr+1, . . . , pk′+1) ∈ ℘′r+1 × · · · × ℘′k′+1, such that

deg

( ⋃
p∈℘r

[p]Z
Q
)
≤ (N1 . . . Nr−1L)k′ .

As in (13),

deg

 ⋃
p∈℘r\E(Z)

[p]Z
Q

 ≥

 ∑
p∈℘r\E(Z)

1

deg
(
Z

Q)� Card(℘r) deg
(
Z

Q)
,

since the cardinality of E(Z) is negligible.
Let l = pr+1 · · · pk′+1; since [l]V ⊆ Z, using (10), the two last displayed

inequalities and the estimate (17) we obtain:

ωQ([l]V ) ≤ n deg
(
Z

Q)1/k′

� Card(℘r)−1/k′N1 . . . Nr−1L

�
(

log log ω

Nr

)1/k′

N1 . . . Nr−1

(
log ω

log log ω

)2k

ω.
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Therefore, using 1/k ≤ 1/k′ ≤ 1,

ωQ([l]V ) ≤ CN1 . . . Nr−1(log ω)2k

N
1/k
r

ω, (19)

for some positive constant C = C(n). We choose the parameters N1, . . . , Nk

increasing rapidly in such a way that

CN1 . . . Nr−1(log ω)2k

N
1/k
r

< 1

for r = 1, . . . , k. Then, by (19),

ωQ([l]V ) < ω = ωQ(V )

which contradicts inequality (15). Therefore, the inequality (18) is false and
we must have

µ̂ess(V ) � log ω

N1 · · ·NkL
� 1

ω
(log ω)−κ(k),

for some κ(k).

We now consider the geometric case.

Another variant of Philippon’s zero estimate shows that there exist two
integers r and k′ with k′ ≤ r ≤ k and a family of subvarieties {Zp}p∈℘r of
codimension k′ such that for all p the subvariety Zp contains some translate
of V and

deg

 ⋃
ζ1∈Ker[p1]

· · ·
⋃

ζr−1∈Ker[pr−1]

⋃
p∈℘r

⋃
ζ∈Ker[p]

ζ1 · · · ζr−1ζZp

 ≤ Lk′ .

for some (p1, . . . , pr−1) ∈ ℘1 × · · · × ℘r−1. Let l0 = p1 · · · pr−1; we remark
that, for p ∈ ℘r,⋃

ζ1∈Ker[p1]

· · ·
⋃

ζr−1∈Ker[pr−1]

⋃
ζ∈Ker[p]

ζ1 · · · ζr−1ζZp = [l0p]−1[l0p]Zp.

and this last variety has degree (l0p)k′ deg([l0p]Zp) by equation (4). Let
pr ∈ ℘r such that (l0pr)k′deg([l0pr]Zpr) is minimal and define l = l0pr
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and Z = Zpr . If the varieties ([l0p]−1[l0p]Zp)p∈℘r had only “few” common
components, then we would have

Lk′ �
∑
p∈℘r

(l0p)k′ deg([l0p]Zp) ≥ Card(℘r)lk
′
deg([l]Z),

and

deg([l]Z) � (L/l)k′

Card(℘r)
(20)

We prove a bound which is very close to the heuristic estimate (20), namely

deg([l]Z) � (L/l)k′ log ω

Card(℘r)
. (21)

If p, q ∈ ℘r define p ∼ q if there exist α ∈ ker[l0p] and β ∈ ker[l0q] such
that αZp = βZq. Let C1, . . . , Cs be the equivalence classes of this relation.
Then

s∑
j=1

deg

 ⋃
p∈Cj

[l0p]−1[l0p]Zp

 ≤ Lk′ . (22)

Let j ∈ {1, . . . , s}; we remark that the varieties Zp (p ∈ Cj) are translates
of each other. Therefore Sj = Stab(Zp) and dj = deg(Zp) only depend on
the equivalence classe Cj of p. We denote by C̃j the set of primes p ∈ Cj

dividing [Sj : S0
j ]. Then (see the proof of Corollary 4.4 of [Amo-Dav 2001]

at page 366 for details),

deg

 ⋃
p∈Cj

[l0p]−1[l0p]Zp

� max{Card(Cj\C̃j), 1} lk
′
deg([l]Z). (23)

By the obvious inequality max{x − y, 1} ≥ x/(2y), which holds for x ≥ 0
and y ≥ 1, we have8

max{Card(Cj\C̃j), 1} ≥
Card(Cj)

2 max{Card(C̃j), 1}
(24)

Since (22) implies in particular dj ≤ Lk′ , the number of exceptional primes
inside Cj s bounded by

Card(C̃j) ≤
log[Sj : S0

j ]
log 2

≤ n log deg Sj

log 2
≤ n log dj

log 2
� log ω. (25)

8Although this lower bound looks crude, it is essentially optimal when C̃j = Cj .
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From (23), (24) and (25) we obtain:

deg

 ⋃
p∈Cj

[l0p]−1[l0p]Zp

� Card(Cj)
log ω

lk
′
deg([l]Z).

Therefore, using (22),

Lk′ �
s∑

j=1

Card(Cj)
log ω

lk
′
deg([l]Z) =

Card(℘r)
log ω

lk
′
deg([l]Z).

This conclude the proof of (21).
Now, using (10), (21), (17) and 1/k ≤ 1/k′ ≤ 1, we obtain

ωQ([l]V ) ≤ n deg([l]Z)1/k′ � L

l

(log ω)(log log ω)

N
1/k
r

.

By our choice of the parameters,

L

l
=

Ll

l2
≈ T 2lω

(N1 · · ·Nr)2
≈ (N1 · · ·Nk)2(log ω)2kl ω

(N1 · · ·Nr)2(log log ω)2k

≈ (Nr+1 · · ·Nk)2
(

log ω

log log ω

)2k

l ω.

Hence,

ωQ([l]V ) ≤ C(Nr+1 · · ·Nk)2(log ω)2k+1

N
1/k′
r

lω (26)

for some positive constant C = C(n). We choose the parameters N1, . . . , Nk

decreasing rapidly in such a way that

C(Nr+1 · · ·Nk)2(log ω)2k+1

N
1/k
r

< 1

for r = 1, . . . , k. Then, by (26),

ωQ([l]V ) < l ω = l ωQ(V )

which contradicts inequality (16). Therefore (18) is false and we have

µ̂ess(V ) � log ω

L
� 1

ω
(log ω)−λ(k),

for some λ(k).
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4.3 Descent

We now remove the assumption 4.3. Without it, we need an extra step to
conclude the proofs of theorems 3.3 and 3.5, which we briefly sketch in the
arithmetic case (see [Amo-Dav 1999], §5.2 and [Amo-Dav 2004a], §3 for de-
tails when dim(V ) = 0).

Let us assume by contradiction that (18) holds. Then, the argument of
the previous section shows that there exists a positive integer l such that

ωQ([l]V ) < ωQ(V ).

Moreover, we can assume that the prime factors of l are not in a fixed
exceptional set of cardinality � log ω.

Let Zl be an hypersurfaces containing [l]V such that

deg
(
Zl

Q) = ωQ([l]V ).

Let also Z ′l be any component containing V of the algebraic set [l]−1Zl.

Hence, ωQ(V ) ≤ deg
(
Z ′l

Q)
and

deg
(
[l]Z ′l

Q) ≤ deg
(
Zl

Q) = ωQ([l]V ).

Moreover, if we could choose l with no prime factors in E(Z ′l), we would
have

deg
(
[l]Z ′l

Q) ≥ deg
(
Z ′l

Q)
(see the discussion at the beginning of section 4.1.3) and therefore

ωQ(V ) ≤ ωQ([l]V ),

a contradiction.
In practice, we cannot guarantee the existence of such an integer l, since

the obstruction variety Z ′l is given at the end of the construction and we do
not have any control a priori on its exceptional set.

To avoid this problem, we repeat several times the transcendence con-
struction, assuming that the essential minimum of V is sufficiently small.
By a rather complicated induction we obtain a variety V ′ = [l0]V and a
positive integer l with

ωQ([l]V ′) ≤ ε ωQ(V ′) (27)
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for some ε = ε(k) ∈ (0, 1], such that the following assertion holds. There
exist two subvarieties Z ′, Z of Gn

m of the same codimension k′ (eventually
> 1) such that

V ′ ⊆ Z ′, [l]Z ′ ⊆ Z and p | l ⇒ p 6∈ E(Z ′) (28)

and
n deg

(
Z

Q)1/k′
< ε−1 ωQ([l]V ′). (29)

From (28) we have (using (10))

ωQ(V ′) ≤ n deg
(
Z ′

Q)1/k′
, deg

(
[l]Z ′

Q) ≤ deg
(
Z

Q)
and

deg
(
[l]Z ′

Q) ≥ deg
(
Z ′

Q)
.

From the last three displayed inequalities and from (29) and (27) we obtain

ωQ(V ′) ≤ n deg
(
Z

Q)1/k′
< ε−1 ωQ([l]V ′) ≤ ωQ(V ′).

This contradiction shows that the essential minimum of V cannot be too
small, and concludes the proof of the arithmetic theorem 3.3.

The proof of the geometric theorem 3.5 also needs a descent step, which
is very similar to the previous one (see [Amo-Dav 2003], §5.2 for details).

5 Further quantitative results: small points.

5.1 Arithmetic case

Let V be a non-torsion subvariety of Gn
m and define

V ∗ = V \
⋃

B⊆V
B torsion

B.

By the former Manin-Mumford conjecture, V ∗ is a Zariski-open set, since
V \V ∗ is a finite union of translates of subgroups.

As mentioned in the introduction, an equivalent version of theorem 1.2
says that the height on V ∗(Q) is bounded from below by a positive quantity:

µ̂∗(V ) = inf
α∈V ∗

ĥ(α) > 0.
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More precisely, let us assume that V is the intersection of hypersurfaces
Z1, . . . , Zr such that deg Zj

Q ≤ δ and h(Zj) ≤ h. Let also D = deg V
Q.

Then, we have the following lower bounds:

µ̂∗(V ) ≥ expn(−D) [Bom-Zan 1995]

µ̂∗(V ) ≥ exp(−cδeh) [Sch 1996]

µ̂∗(V ) ≥ (−D log D)4
dim(V )+1

[Dav-Phi 1999]

Remark that obviously µ̂∗(V ) ≤ µ̂ess(V ). Hence one could hope, in analogy
to conjecture 3.2, that

µ̂∗(V ) ≥ c(n)
ωQ(V )

for some constant c(n) > 0. This lower bound is false, as the following
example shows. Let αk be a sequence of algebraic numbers whose height is
positive and tends to zero as k → +∞. Let us consider

Vk = {(αk, x2, x3) ∈ G3
m such that α2

k + α3
k − x2 − x3 = 0}.

One checks that Vk is not torsion, the height of αk = (αk, α
2
k, α

3
k) ∈ Vk\V ∗

k

tends to zero and ωQ(V ) ≤ 3, since Vk ⊆ {x2
1 + x3

1 − x2 − x− 3 = 0}.
We therefore introduce another quantity depending on the ideal of def-

inition of V and on its field of definition. Let K be any subfield of Q;
we let δK(V ) be the minimum integer δ such that V is the intersection of
hypersurfaces Z1, . . . , Zr with deg Zj

K ≤ δ. Then(
deg V

K)1/codim(V ) ≤ δK(V ) ≤ deg V
K

.

and both lower and upper bounds can be attained: therefore δK(V ) is still
more precise than deg V

K .
We formulate the following conjecture:

Conjecture 5.1 Let V be a non-torsion subvariety of Gn
m; then there exists

a constant c(n) > 0 such that

µ̂∗(V ) ≥ c(n)
δQ(V )

. (30)

A more optimistic version of this conjecture (see [Amo-Dav 2004a], con-
jecture 1.3) predicts that inequality (30) still holds if we replace δQ(V ) by
δQab(V ), where Qab is the union of all the cyclotomic fields. In the direction
of conjecture 5.1, we obtain the following result (see op. cit., théorème 1.4).
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Theorem 5.2 Let V be a non-torsion subvariety of Gn
m; then there exist

two positive constants c(n) and κ(n) such that

µ̂∗(V ) ≥ c(n)
δQ(V )

(log 3δQ(V ))−κ(n).

In the case n = 2 the proof of theorem 5.2 can be considerably simplified
and the result can be improved; Pontreau ([Pon 2004]) obtains:

Theorem 5.3 Let V be a non-torsion curve of G2
m and let α ∈ V be a

non-torsion point. Let also D = deg V
Q. Then

ĥ(α) ≥ 1.2× 10−16

D
× (log log(D + 15))11

(log(D + 15))13
.

Theorem 5.2 follows by an inductive argument from a “semi-relative”
version of theorem 3.3: a quite simple generalization of the method of the
proof of theorem 3.3 shows that:

Theorem 5.4 Let α ∈ Gn
m et let K be a cyclotomic extension. Let also

α ∈ Gn
m. Then there exist three positive constants c(n), κ(n) and λ(n) such

that if

ĥ(α) <
c(n)

ωK(α)

(
log(3[K : Q]ωK(α))

)−κ(n)
,

then α belongs to a torsion subvariety B = ζH such that

deg
(
B

K
)1/codim(B)

≤ c(n)−1 ωK(α)
(

log(3[K : Q]ωK(α))
)µ(n)

.

Hopefully, the factors [K : Q] in the previous formulas can be removed.
This would allow to obtain a generalization in several variables of the main
theorem of [Amo-Zan 2000]. This would also imply a proof “up to an ε >
0” of the full conjecture 1.3 of [Amo-Dav 2004a] (conjecture 5.1 with δQab

instead of δQ).

5.2 Geometric case

Let V be a subvariety of Gn
m which is not contained in a union of translates

of subgroups and define, as in [Bom-Zan 1995],

V 0 = V \
⋃

B⊆V

B.
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where the union is now on the set of translates B of subgroups of dimension 1.
Again V \V 0 is an open set (see [Bom-Zan 1995] and [Sch 1996]); Bombieri
and Zannier prove that, outside a finite set, the height on V 0 is bounded
from below by a positive quantity depending only on the ideal of definition
of V and not on its field of definition. More precisely, Schmidt [Sch 1996]
proves that the set of points α ∈ V 0 such that ĥ(α) < q(V )−1 is finite, of
cardinality ≤ q(V ), where

q(V ) = exp
(
nδQ(V )n

)
.

David and Philippon (see [Dav-Phi 1999]) improve this result, finding a
polynomial bound:

q(V ) = (deg(V ) log deg(V ))4
dim(V )

.

Let, for θ > 0,

V 0(θ) = {α ∈ V 0 such that h(α) < θ}

and
µ̂0(V ) = inf{θ > 0 such that Card(V 0(θ)) = ∞}.

Again, µ̂0(V ) ≤ µ̂ess(V ) and, as a consequence of the previous results,
µ̂0(V ) ≥ q(V ).

As in the arithmetic case, we can conjecture a very precise lower bound
for µ̂0(V ) and we can prove it “up to an ε > 0” (see [Amo-Dav 2004b]).

Conjecture 5.5 Let V be a subvariety of Gn
m which is not contained in a

union of translates of subgroups; then there exists a constant c(n) > 0 such
that

µ̂0(V ) ≥ c(n)
δQ(V )

.

This conjecture can be proved “up to an ε”:

Theorem 5.6 Let V be as before. Then there exist two positive constants
c(n) and λ(n) such that

µ̂0(V ) ≥ c(n)
δQ(V )

(log 3δQ(V ))−λ(n).

28



References

[Amo-Dav 1999] F. Amoroso et S. David. “Le problème de Lehmer en di-
mension supérieure”, J. Reine Angew. Math. 513 (1999), 145-179.

[Amo-Dav 2000] F. Amoroso et S. David. “Minoration de la hauteur nor-
malisée des hypersurfaces”, Acta Arith. 92 (2000), 4, 340-366.

[Amo-Dav 2001] F. Amoroso et S. David. “Densité des points à cordonnées
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